Sample records for dosimetric selectivity intercomparison

  1. Comprehensive Australasian multicentre dosimetric intercomparison: issues, logistics and recommendations.

    PubMed

    Ebert, M A; Harrison, K M; Cornes, D; Howlett, S J; Joseph, D J; Kron, T; Hamilton, C S; Denham, J W

    2009-02-01

    The present paper describes the logistics of the 2004-2008 Australasian Level III Dosimetry Intercomparison. Dosimetric intercomparisons (or 'audits') can be used in radiotherapy to evaluate the accuracy and quality of radiation delivery. An intercomparison was undertaken in New Zealand and Australia to evaluate the feasibility and logistics of ongoing dosimetric intercomparisons that evaluate all steps in the radiotherapy treatment process, known as a 'Level III' intercomparison. The study commenced in 2002 with the establishment of a study team, definition of the study protocol, acquisition of appropriate equipment and recruitment of participating radiotherapy centres. Measurements were undertaken between October 2004 and March 2008, and included collation of data on time, costs and logistics of the study. Forty independent Australian and New Zealand radiotherapy centres agreed to participate. Measurement visits were made to 37 of these centres. Data is presented on the costs of the study and the level of support required. The study involved the participation of 16 staff at the study centre who invested over 4000 hours in the study, and of over 200 professionals at participating centres. Recommendations are provided for future phantom-based intercomparisons. It is hoped that the present paper will be of benefit to any centres or groups contemplating similar activities by identifying the processes involved in establishing the study, the potential hazards and pitfalls, and expected resource requirements.

  2. Multicentre validation of IMRT pre-treatment verification: comparison of in-house and external audit.

    PubMed

    Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi

    2014-09-01

    We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit. While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    PubMed

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    PubMed

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  5. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  6. Multi-centre audit of VMAT planning and pre-treatment verification.

    PubMed

    Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria

    2017-08-01

    We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Fifth Calibration/Data Product Validation Panel Meeting

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The minutes and associated documents prepared from presentations and meetings at the Fifth Calibration/Data Product Validation Panel meeting in Boulder, Colorado, April 8 - 10, 1992, are presented. Key issues include (1) statistical characterization of data sets: finding statistics that characterize key attributes of the data sets, and defining ways to characterize the comparisons among data sets; (2) selection of specific intercomparison exercises: selecting characteristic spatial and temporal regions for intercomparisons, and impact of validation exercises on the logistics of current and planned field campaigns and model runs; and (3) preparation of data sets for intercomparisons: characterization of assumptions, transportable data formats, labeling data files, content of data sets, and data storage and distribution (EOSDIS interface).

  8. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  9. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  10. Manufacture and calibration of optical supersmooth roughness artifacts for intercomparisons

    NASA Astrophysics Data System (ADS)

    Ringel, Gabriele A.; Kratz, Frank; Schmitt, Dirk-Roger; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-09-01

    Intercomparison roughness measurements have been carried out on supersmooth artifacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using the optical heterodyne profiler Z5500 (Zygo), a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), and an Atomic Force Microscope (Park Scientific Instruments) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelengths for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that the applied superpolishing techniques yield supersmooth artifacts which can be used for more intercomparisons. More than 100 samples were investigated. Criteria were developed to select artifacts from the sample stock.

  11. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baly, L.; Otazo, M. R.; Molina, D.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  12. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  13. Cardiac risk index as a simple geometric indicator to select patients for the heart-sparing radiotherapy of left-sided breast cancer.

    PubMed

    Sung, KiHoon; Choi, Young Eun; Lee, Kyu Chan

    2017-06-01

    This is a dosimetric study to identify a simple geometric indicator to discriminate patients who meet the selection criterion for heart-sparing radiotherapy (RT). The authors proposed a cardiac risk index (CRI), directly measurable from the CT images at the time of scanning. Treatment plans were regenerated using the CT data of 312 consecutive patients with left-sided breast cancer. Dosimetric analysis was performed to estimate the risk of cardiac mortality using cardiac dosimetric parameters, such as the relative heart volumes receiving ≥25 Gy (heart V 25 ). For each CT data set, in-field heart depth (HD) and in-field heart width (HW) were measured to generate the geometric parameters, including maximum HW (HW max ) and maximum HD (HD max ). Seven geometric parameters were evaluated as candidates for CRI. Receiver operating characteristic (ROC) curve analyses were used to examine the overall discriminatory power of the geometric parameters to select high-risk patients (heart V 25  ≥ 10%). Seventy-one high-risk (22.8%) and 241 low-risk patients (77.2%) were identified by dosimetric analysis. The geometric and dosimetric parameters were significantly higher in the high-risk group. Heart V 25 showed the strong positive correlations with all geometric parameters examined (r > 0.8, p < 0.001). The product of HD max and HW max (CRI) revealed the largest area under the curve (AUC) value (0.969) and maintained 100% sensitivity and 88% specificity at the optimal cut-off value of 14.58 cm 2 . Cardiac risk index proposed as a simple geometric indicator to select high-risk patients provides useful guidance for clinicians considering optimal implementation of heart-sparing RT. © 2016 The Royal Australian and New Zealand College of Radiologists.

  14. Neutron spectrometry for radiation protection purposes

    NASA Astrophysics Data System (ADS)

    McDonald, J. C.; Siebert, B. R. L.; Alberts, W. G.

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  15. Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study.

    PubMed

    Mancosu, Pietro; Pasquino, Massimo; Reggiori, Giacomo; Masi, Laura; Russo, Serenella; Stasi, Michele

    2017-09-01

    In modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector. The project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8×0.8cm 2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10cm. Set-up conditions were 10cm depth in water phantom at SSD 90cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer. Data analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD)<1%; SD<0.4mm for the profile penumbra was obtained, while FWHM measurements showed SD<0.5mm. OF measurements showed SD<1.5% for field size greater than 2×2cm 2 . Median OFs values were in agreement with the recent bibliography. High degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddu, S; Kamal, G; Herman, A

    Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared againstmore » the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was found to be within clinically acceptable tolerance. However, this study includes a single energy with limited range of PDD change. Further studies are on going and the results will be presented. Received funding from Varian Medical Systems, Palo Alto, CA.« less

  17. GEOS observation systems intercomparison investigation results

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.

    1974-01-01

    The results of an investigation designed to determine the relative accuracy and precision of the different types of geodetic observation systems used by NASA is presented. A collocation technique was used to minimize the effects of uncertainties in the relative station locations and in the earth's gravity field model by installing accurate reference tracking systems close to the systems to be compared, and by precisely determining their relative survey. The Goddard laser and camera systems were shipped to selected sites, where they tracked the GEOS satellite simultaneously with other systems for an intercomparison observation.

  18. TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T

    2015-06-15

    Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP modeling is warranted. This work was supported by the Rosalie B. Hite Fellowship in Cancer research awarded to SPK.« less

  19. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and these were inter-compared against each other and against validation data such as CALIPSO lidar, ground-based lidar and aircraft observations. Results of the comparison exercise will be presented together with the conclusions and recommendations arising from the activity.

  20. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  1. Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer

    NASA Astrophysics Data System (ADS)

    Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim

    2017-02-01

    The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.

  2. Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in 192Ir breast brachytherapy applications.

    PubMed

    Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P

    2016-10-01

    To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Soil sampling strategies: evaluation of different approaches.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  4. Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies : A systematic review.

    PubMed

    Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad

    2018-05-17

    This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

  5. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.

    2017-05-01

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  6. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study.

    PubMed

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B

    2017-05-07

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  7. SU-E-T-448: Heightened Apical Positivity of 2-Year Post-Radiotherapy Biopsies Is Not Related to Suboptimal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, M; Stoyanova, R; Abramowitz, M

    2015-06-15

    Purpose: Previous research has demonstrated that following radiation therapy for prostate cancer, there is a relative increase in positive biopsies in the apex versus the rest of the prostate. The increase could be due to: 1) Inter-fraction apex motion or deformation, 2) Intra-fraction apex motion or deformation, 3) Suboptimal dose coverage in the apex, 4) Tissue composition in the apex and/or 5) Prostate size. In this initial study, the potential for suboptimal dose coverage in the apex was assessed by splitting the prostate planning target volume into the apex (inferior third) and remainder. Methods: 69 patients were selected from 303more » patients treated on a clinical radiotherapy trial for prostate cancer. These patients were selected as they had both a localized (sextant template) 2-year post-treatment biopsy and 3D dose information. Of these patients, 10 had positive biopsies in the apex, 8 in the remainder and 11 in both locations. For all patients, the following dosimetric data was acquired from the apex dose volume histogram: Dmean, Dmax, Dmin, D95% and V100%. Unpaired, one-tailed t-tests were used to test for statistical significance (p < 0.05) between all dosimetric parameters for patients with positive versus negative apical biopsies. Additionally, D95% for the apex was plotted against D95% of the remainder. Results: There was no statistical difference for the selected apical dosimetric parameters for patients with positive versus negative biopsies (p-values > 0.05). No correlation was found between D95% (normalized to the prescription dose) for the apex and remainder (R{sup 2} = 0.0116). Conclusion: No correlation was found between positive apical biopsy and suboptimal dosimetric coverage. Current research is looking into inter-fraction apex motion and deformation as a potential source of the increased apical failure using daily CBCT images.« less

  8. A Methodological Inter-Comparison of Gridded Meteorological Products

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.

    2017-12-01

    Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.

  9. Dosimetric evaluation of the feasibility of stereotactic body radiotherapy for primary lung cancer with lobe-specific selective elective nodal irradiation

    PubMed Central

    Komatsu, Tetsuya; Kunieda, Etsuo; Kitahara, Tadashi; Akiba, Takeshi; Nagao, Ryuta; Fukuzawa, Tsuyoshi

    2016-01-01

    More than 10% of all patients treated with stereotactic body radiotherapy (SBRT) for primary lung cancer develop regional lymph node recurrence. We evaluated the dosimetric feasibility of SBRT with lobe-specific selective elective nodal irradiation (ENI) on dose–volume histograms. A total of 21 patients were treated with SBRT for Stage I primary lung cancer between January 2010 and June 2012 at our institution. The extents of lobe-specific selective ENI fields were determined with reference to prior surgical reports. The ENI fields included lymph node stations (LNS) 3 + 4 + 11 for the right upper lobe tumors, LNS 7 + 11 for the right middle or lower lobe tumors, LNS 5 + 11 for the left upper lobe tumors, and LNS 7 + 11 for the left lower lobe tumors. A composite plan was generated by combining the ENI plan and the SBRT plan and recalculating for biologically equivalent doses of 2 Gy per fraction, using a linear quadratic model. The V20 of the lung, D1cm3 of the spinal cord, D1cm3 and D10cm3 of the esophagus and D10cm3 of the tracheobronchial wall were evaluated. Of the 21 patients, nine patients (43%) could not fulfill the dose constraints. In all these patients, the distance between the planning target volume (PTV) of ENI (PTVeni) and the PTV of SBRT (PTVsrt) was ≤2.0 cm. Of the three patients who developed regional metastasis, two patients had isolated lymph node failure, and the lymph node metastasis was included within the ENI field. When the distance between the PTVeni and PTVsrt is >2.0 cm, SBRT with selective ENI may therefore dosimetrically feasible. PMID:26566656

  10. An evaluation of the Wyoming Gauge System for snowfall measurement

    USGS Publications Warehouse

    Yang, Daqing; Kane, Douglas L.; Hinzman, Larry D.; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul Y.T.; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind‐induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this Intercomparison experiment. The Intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80–90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  11. Low-cost solar array project: Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: Radiometer standards

    NASA Technical Reports Server (NTRS)

    Estey, R. S.; Seaman, C. H.

    1981-01-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  12. The Continuous Intercomparison of Radiation Codes (CIRC): Phase I Cases

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Turner, David D.; Miller, Mark A.; Minnis, Patrick; Clough, Shepard; Barker, Howard; Ellingson, Robert

    2007-01-01

    CIRC aspires to be the successor to ICRCCM (Intercomparison of Radiation Codes in Climate Models). It is envisioned as an evolving and regularly updated reference source for GCM-type radiative transfer (RT) code evaluation with the principle goal to contribute in the improvement of RT parameterizations. CIRC is jointly endorsed by DOE's Atmospheric Radiation Measurement (ARM) program and the GEWEX Radiation Panel (GRP). CIRC's goal is to provide test cases for which GCM RT algorithms should be performing at their best, i.e, well characterized clear-sky and homogeneous, overcast cloudy cases. What distinguishes CIRC from previous intercomparisons is that its pool of cases is based on observed datasets. The bulk of atmospheric and surface input as well as radiative fluxes come from ARM observations as documented in the Broadband Heating Rate Profile (BBHRP) product. BBHRP also provides reference calculations from AER's RRTM RT algorithms that can be used to select the most optimal set of cases and to provide a first-order estimate of our ability to achieve radiative flux closure given the limitations in our knowledge of the atmospheric state.

  13. Determination of absorbed dose to water for high-energy photon and electron beams-comparison of the standards DIN 6800-2 (1997), IAEA TRS 398 (2000) and DIN 6800-2 (2006)

    PubMed Central

    Zakaria, Golam Abu; Schuette, Wilhelm

    2007-01-01

    For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit. PMID:21217912

  14. Determination of absorbed dose to water for high-energy photon and electron beams-comparison of the standards DIN 6800-2 (1997), IAEA TRS 398 (2000) and DIN 6800-2 (2006).

    PubMed

    Zakaria, Golam Abu; Schuette, Wilhelm

    2007-01-01

    For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit.

  15. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  16. Dependence of Achievable Plan Quality on Treatment Technique and Planning Goal Refinement: A Head-and-Neck Intensity Modulated Radiation Therapy Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.

    2015-03-15

    Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less

  17. INTERCOMPARISON OF DPASV AND ISE FOR THE MEASUREMENT OF CU COMPLEXATION CHARACTERISTICS OF NOM IN FRESHWATER. (R825395)

    EPA Science Inventory

    Complexation by dissolved humic substances has an important influence on
    trace metal behavior in natural systems. Unfortunately, few analytical
    techniques are available with adequate sensitivity and selectivity to measure
    free metal ions reliably at the low concent...

  18. Dosimetric evaluation of the feasibility of stereotactic body radiotherapy for primary lung cancer with lobe-specific selective elective nodal irradiation.

    PubMed

    Komatsu, Tetsuya; Kunieda, Etsuo; Kitahara, Tadashi; Akiba, Takeshi; Nagao, Ryuta; Fukuzawa, Tsuyoshi

    2016-01-01

    More than 10% of all patients treated with stereotactic body radiotherapy (SBRT) for primary lung cancer develop regional lymph node recurrence. We evaluated the dosimetric feasibility of SBRT with lobe-specific selective elective nodal irradiation (ENI) on dose-volume histograms. A total of 21 patients were treated with SBRT for Stage I primary lung cancer between January 2010 and June 2012 at our institution. The extents of lobe-specific selective ENI fields were determined with reference to prior surgical reports. The ENI fields included lymph node stations (LNS) 3 + 4 + 11 for the right upper lobe tumors, LNS 7 + 11 for the right middle or lower lobe tumors, LNS 5 + 11 for the left upper lobe tumors, and LNS 7 + 11 for the left lower lobe tumors. A composite plan was generated by combining the ENI plan and the SBRT plan and recalculating for biologically equivalent doses of 2 Gy per fraction, using a linear quadratic model. The V20 of the lung, D(1cm3) of the spinal cord, D(1cm3) and D(10cm3) of the esophagus and D(10cm3) of the tracheobronchial wall were evaluated. Of the 21 patients, nine patients (43%) could not fulfill the dose constraints. In all these patients, the distance between the planning target volume (PTV) of ENI (PTVeni) and the PTV of SBRT (PTVsrt) was ≤2.0 cm. Of the three patients who developed regional metastasis, two patients had isolated lymph node failure, and the lymph node metastasis was included within the ENI field. When the distance between the PTVeni and PTVsrt is >2.0 cm, SBRT with selective ENI may therefore dosimetrically feasible. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Agricultural model intercomparison and improvement project: Overview of model intercomparisons

    USDA-ARS?s Scientific Manuscript database

    Improvement of crop simulation models to better estimate growth and yield is one of the objectives of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The overall goal of AgMIP is to provide an assessment of crop model through rigorous intercomparisons and evaluate future clim...

  20. Subglacial Hydrology Model Intercomparison Project (SHMIP)

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; de Fleurian, Basile; Creyts, Timothy T.; Damsgaard, Anders; Delaney, Ian; Dow, Christine F.; Gagliardini, Olivier; Hoffman, Matthew J.; Seguinot, Julien; Sommers, Aleah; Irarrazaval Bustos, Inigo; Downs, Jakob

    2017-04-01

    The SHMIP project is the first intercomparison project of subglacial drainage models (http://shmip.bitbucket.org). Its synthetic test suites and evaluation were designed such that any subglacial hydrology model producing effective pressure can participate. In contrast to ice deformation, the physical processes of subglacial hydrology (which in turn impacts basal sliding of glaciers) are poorly known. A further complication is that different glacial and geological settings can lead to different drainage physics. The aim of the project is therefore to qualitatively compare the outputs of the participating models for a wide range of water forcings and glacier geometries. This will allow to put existing studies, which use different drainage models, into context and will allow new studies to select the most suitable model for the problem at hand. We present the results from the just completed intercomparison exercise. Twelve models participated: eight 2D and four 1D models; nine include both an efficient and inefficient system, the other three one of the systems; all but two models use R-channels as efficient system, and/or a linked-cavity like inefficient system, one exception uses porous layers with different characteristic for each of the systems, the other exception is based on canals. The main variable used for the comparison is effective pressure, as that is a direct proxy for basal sliding of glaciers. The models produce large differences in the effective pressure fields, in particular for higher water input scenarios. This shows that the selection of a subglacial drainage model will likely impact the conclusions of a study significantly.

  1. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  2. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  3. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    PubMed

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters. © 2017 American Association of Physicists in Medicine.

  4. Intercomparisons of Marine Boundary Layer Cloud Properties from the ARM CAP-MBL Campaign and Two MODIS Cloud Products

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-01-01

    From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.

  5. Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-02-01

    From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.

  6. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  7. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  8. SU-E-T-651: Quantification of Dosimetric Accuracy of Respiratory Gated Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S

    2015-06-15

    Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern filemore » from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J; Gu, X; Lu, W

    Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less

  10. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  11. Volumetric modulated arc radiotherapy sparing the thyroid gland for early-stage glottic cancer: A dosimetrical analysis.

    PubMed

    Kim, Eun Seok; Yeo, Seung-Gu

    2014-06-01

    Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.

  12. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    NASA Astrophysics Data System (ADS)

    M. Noor, Noramaliza; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D. A.

    2017-11-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 μm core diameter Ge-doped silica fibres (Ge-9 μm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%.

  13. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; hide

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  14. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less

  15. SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, A; Foster, J; Chu, W

    2015-06-15

    Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weeklymore » CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less

  16. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  17. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands.

    PubMed

    Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas

    2012-01-01

    Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  18. Photodynamic Nanomedicine in the Treatment of Solid Tumors: Perspectives and Challenges

    PubMed Central

    Master, Alyssa; Livingston, Megan; Gupta, Anirban Sen

    2013-01-01

    Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application. PMID:23474028

  19. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    NASA Astrophysics Data System (ADS)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard of PTB and a validated, two-pressure generator acting as a highly stable and reproducible source of water vapour. The aim of AV2-B was to perform an absolute, metrological comparison of the field instruments/calibration infrastructures to the metrological humidity scale, and to collect essential information about methods and procedures used by the atmospheric community for instrument calibration and validation, in order to investigate e.g. the necessity and possible comparability advantage by a standardized calibration procedure. The work will give an overview over the concept of the AV2-B inter-comparison, the various general measurement and calibration principles, and discuss the outcome and consequences of the comparison effort. The AQUAVIT effort is linked to the EMRP project METEOMET (ENV07) and partially supported by the EMRP and ENV07. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. [1] H. Saathoff, C. Schiller, V. Ebert, D. W. Fahey, R.-S. Gao, O. Möhler, and the aquavit team, The AQUAVIT formal intercomparison of atmospheric water measurement methods, 5th General Assembly of the European Geosciences Union, 13-18 April 2008, Vienna, Austria Keywords: humidity, water vapour, inter-comparison, airborne instruments.

  20. Field test to intercompare carbon monoxide, nitric oxide and hydroxyl instrumentation at Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Beck, Sherwin M.; Bendura, Richard J.

    1987-01-01

    Documentation of the first of three instrument intercomparisons conducted as part of NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE-1) is given. This ground-based intercomparison was conducted during July 1983 at NASA Wallops Flight Facility. Instruments intercompared included one laser system and three grab-sample approaches for CO; two chemiluminescent systems and one laser-induced fluorescent (LIF) technique for NO; and two different LIF systems and a radiochemical tracer technique for OH. The major objectives of this intercomparison was to intercompare ambient measurements of CO, NO, and OH at a common site by using techniques of fundamentally different detection principles and to identify any major biases among the techniques prior to intercomparison on an aircraft platform. Included in the report are comprehensive discussions of workshop requirements, philosophies, and operations as well as intercomparison analyses and results. In addition, the large body of nonintercomparison data incorporated into the workshop measurements is summarized. The report is an important source document for those interested in conducting similar large and complex intercomparison tests as well as those interested in using the data base for purposes other than instrument intercomparison.

  1. RESULTS FROM THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)

    EPA Science Inventory

    A North American Mercury Model Intercomparison Study (NAMMIS) has been conducted to build upon the findings from previous mercury model intercomparison in Europe. In the absence of mercury measurement networks sufficient for model evaluation, model developers continue to rely on...

  2. Comparative Study Of Resonator Optics For Lidar Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.

    1992-01-01

    Report discusses overall transmit/receive performances of laser-radar transceivers. Gaussian case and hard-edged case selected for comparison because of their practical importance. Intercomparison shows that for multi-joule-output pulsed CO2 lasers, Gaussian profiled optics offers little improvement over hard-edged option, while greater hardiness and superior energy extraction capability of latter constitutes strong argument in favor of its application.

  3. Accuracy of tretyakov precipitation gauge: Result of wmo intercomparison

    USGS Publications Warehouse

    Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Bates, Roy; Pangburn, Timothy; Hanson, Clayton L.; Emerson, Douglas G.; Copaciu, Voilete; Milkovic, Janja

    1995-01-01

    The Tretyakov non-recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period.The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge-measured precipitation data over large regions of the former USSR and central Europe.

  4. Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons - Carbon monoxide, nitric oxide, and hydroxyl instrumentation. [Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Beck, Sherwin M.; Bendura, Richard J.; Mcdougal, David S.; Hoell, James M., Jr.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Curfman, Howard J., Jr.; Torres, Arnold L.; Condon, Estelle P.

    1987-01-01

    An overview of the airborne intercomparisons of CO, NO, and OH instrumentation is presented in this first paper of the series on the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 1). This paper provides the reader with background information about several important characteristics of the project. These include the overall objectives and approach, the measurements taken, the intercomparison protocol, aircraft platform, profiles of each aircraft flight, and the participants. A synopsis of the overall results of the CO, NO, and OH instrument intercomparisons is also included. Companion papers discuss the detailed results of the CO and NO intercomparison tests as well as pertinent scientific findings.

  5. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  6. SU-E-J-119: Head-And-Neck Digital Phantoms for Geometric and Dosimetric Uncertainty Evaluation of CT-CBCT Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z; Koyfman, S; Xia, P

    2015-06-15

    Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less

  7. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.

    PubMed

    Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe

    2018-06-08

    Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.

  8. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    PubMed

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  9. Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.

    2011-08-01

    The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.

  10. Dosimetric characterization of a new directional low-dose rate brachytherapy source.

    PubMed

    Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S

    2018-05-24

    CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.

  11. Volumetric‐modulated arc therapy planning using multicriteria optimization for localized prostate cancer

    PubMed Central

    Ghandour, Sarah; Matzinger, Oscar

    2015-01-01

    The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p<0.01), D1% (p<0.01), CI (p<0.01), and HI (p<0.01) of the PTV, bladder (p<0.01), and rectum (p<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality. PACS numbers: 87.55.D, 87.55.de, 87.55.Qr PMID:26103500

  12. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  13. Modification and characterization of a high-energy photon irradiation facility using nitrogen-16

    NASA Astrophysics Data System (ADS)

    Roy, Tapash Kumar

    This work involves fabrication and characterization of a reactor source of high energy (˜7 MeV) nitrogen-16 photons for application in evaluation of dosimetric responses of personnel devices and portable instruments. The N-16 source has been established by continuously flowing coolant water from the core of a 1 MW research reactor through a cylindrical thin walled aluminium chamber. Dose measurements have been made at selected distances of interest along the depth axis both for with and without a near-air equilibrium wall of polymethyl methacrylate (PMMA) in place. Photon dose and exposure measurements were done using condenser-R ionization chambers with sufficiently thick walls to yield an approximate transient charged particle equilibrium (TCPE) condition. Field areal uniformity was defined using large area Kodak Readypack RP films along with lead foil radiators. Dosimetric quantities of interest include skin dose, eye (lens) dose, and 1 cm deep dose. Measurements were made at selected depths of 7, 300, and 1000 mg cm-2 for specific evaluation of these respective quantities. Photon spectral analysis was performed with a NaI(Tl) scintillation spectrometry system. Additionally, beta radiation measurements, and evaluation of neutron dose contributions to the radiation field were completed.

  14. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    PubMed

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  15. Contura Multi-Lumen Balloon breast brachytherapy catheter: comparative dosimetric findings of a phase 4 trial.

    PubMed

    Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D

    2013-06-01

    Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu; Vicini, Frank A.; Todor, Dorin A.

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125%more » of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.« less

  17. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a potential to generate high-quality proton beams for cancer treatment. Significant improvement in target dose uniformity and normal tissue sparing as well as in reduction of whole body dose can be achieved by IMPT with appropriate optimization and beam setup.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Janssens, G; Ainsley, C

    Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumormore » sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.« less

  19. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  20. Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.

    PubMed

    Kron, T

    1995-03-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).

  1. MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes

    NASA Astrophysics Data System (ADS)

    Fonseca, T. C. F.; Mendes, B. M.; Lacerda, M. A. S.; Silva, L. A. C.; Paixão, L.; Bastos, F. M.; Ramirez, J. V.; Junior, J. P. R.

    2017-11-01

    The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm2. This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results.

  2. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data

    DOE PAGES

    Wei, Yaxing; Liu, Shishi; Huntzinger, Deborah N.; ...

    2014-12-05

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model model and model observation comparisons. Inmore » this article, we describe the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO 2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5⁰ x 0.5⁰ resolution) and regional (North American: 0.25⁰ x 0.25⁰ resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. Lastly, the data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.« less

  3. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  4. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    PubMed

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  5. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Xia, P

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less

  6. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  7. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  8. Intercomparison of HONO Measurements Made Using Wet-Chemical (NITROMAC) and Spectroscopic (IBBCEAS & LP/FAGE) Techniques

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Lew, M.; Bottorff, B.; Bechara, J.; Mielke, L. H.; Berke, A.; Raff, J. D.; Stevens, P. S.; Afif, C.

    2013-12-01

    A good understanding of the oxidative capacity of the atmosphere is important to tackle fundamental issues related to climate change and air quality. The hydroxyl radical (OH) is the dominant oxidant in the daytime troposphere and an accurate description of its sources in atmospheric models is of utmost importance. Recent field studies indicate higher-than-expected concentrations of HONO during the daytime, suggesting that the photolysis of HONO may be an important underestimated source of OH. Understanding the tropospheric HONO budget requires confidence in analytical instrumentation capable of selectively measuring HONO. In this presentation, we discuss an intercomparison study of HONO measurements performed during summer 2013 at the edge of a hardwood forest in Southern Indiana. This exercise involved a wet chemical technique (NITROMAC), an Incoherent Broad-Band Cavity Enhanced Absorption Spectroscopy instrument (IBBCEAS), and a Laser-Photofragmentation/Fluorescence Assay by Gas Expansion instrument (LP/FAGE). The agreement observed between the three techniques will be discussed for both ambient measurements and cross calibration experiments.

  9. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruszyna, Marta

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  10. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  11. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2)

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  12. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercisesmore » were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the present status on radon and thoron passive, one-time cycle monitors.« less

  13. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  14. Improvements in Critical Dosimetric Endpoints Using the Contura Multilumen Balloon Breast Brachytherapy Catheter to Deliver Accelerated Partial Breast Irradiation: Preliminary Dosimetric Findings of a Phase IV Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Douglas W., E-mail: darthur@mcvh-vcu.ed; Vicini, Frank A.; Todor, Dorin A.

    2011-01-01

    Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals usingmore » the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.« less

  15. SU-E-CAMPUS-I-05: Internal Dosimetric Calculations for Several Imaging Radiopharmaceuticals in Preclinical Studies and Quantitative Assessment of the Mouse Size Impact On Them. Realistic Monte Carlo Simulations Based On the 4D-MOBY Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostou, T; Papadimitroulas, P; Kagadis, GC

    2014-06-15

    Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less

  16. Practical simplifications for radioimmunotherapy dosimetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S.; DeNardo, G.L.; O`Donnell, R.T.

    1999-01-01

    Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methodsmore » for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.« less

  17. SU-F-T-522: Dosimetric Study of Junction Dose in Double Isocenter Flatten and Flatten Filter Free IMRT and VMAT Plan Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuvel, K; Yadav, G; Bhushan, M

    2016-06-15

    Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, A

    Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less

  19. SU-E-T-332: Dosimetric Impact of Photon Energy and Treatment Technique When Knowledge Based Auto-Planning Is Implemented in Radiotherapy of Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z; Kennedy, A; Larsen, E

    2015-06-15

    Purpose: The aim of this study was to investigate the dosimetric impact of the combination of photon energy and treatment technique on radiotherapy of localized prostate cancer when knowledge based planning was used. Methods: A total of 16 patients with localized prostate cancer were retrospectively retrieved from database and used for this study. For each patient, four types of treatment plans with different combinations of photon energy (6X and 10X) and treatment techniques (7-field IMRT and 2-arc VMAT) were created using a prostate DVH estimation model in RapidPlan™ and Eclipse treatment planning system (Varian Medical System). For any beam arrangement,more » DVH objectives and weighting priorities were generated based on the geometric relationship between the OAR and PTV. Photon optimization algorithm was used for plan optimization and AAA algorithm was used for final dose calculation. Plans were evaluated in terms of the pre-defined dosimetric endpoints for PTV, rectum, bladder, penile bulb, and femur heads. A Student’s paired t-test was used for statistical analysis and p > 0.05 was considered statistically significant. Results: For PTV, V95 was statistically similar among all four types of plans, though the mean dose of 10X plans was higher than that of 6X plans. VMAT plans showed higher heterogeneity index than IMRT plans. No statistically significant difference in dosimetry metrics was observed for rectum, bladder, and penile bulb among plan types. For left and right femur, VMAT plans had a higher mean dose than IMRT plans regardless of photon energy, whereas the maximum dose was similar. Conclusion: Overall, the dosimetric endpoints were similar regardless of photon energy and treatment techniques when knowledge based auto planning was used. Given the similarity in dosimetry metrics of rectum, bladder, and penile bulb, the genitourinary and gastrointestinal toxicities should be comparable among the selections of photon energy and treatment techniques.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, M; Sura, S

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sumsmore » (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.« less

  1. Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.; hide

    2015-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.

  2. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  3. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  4. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE PAGES

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...

    2018-04-19

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  5. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  6. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Xiong; Liu, H. Helen; Tucker, Susan L.

    Purpose: To identify clinical and dosimetric factors influencing the risk of pericardial effusion (PCE) in patients with inoperable esophageal cancer treated with definitive concurrent chemotherapy and radiation therapy (RT). Methods and Materials: Data for 101 patients with inoperable esophageal cancer treated with concurrent chemotherapy and RT from 2000 to 2003 at our institution were analyzed. The PCE was confirmed from follow-up chest computed tomography scans and radiologic reports, with freedom from PCE computed from the end of RT. Log-rank tests were used to identify clinical and dosimetric factors influencing freedom from PCE. Dosimetric factors were calculated from the dose-volume histogrammore » for the whole heart and pericardium. Results: The crude rate of PCE was 27.7% (28 of 101). Median time to onset of PCE was 5.3 months (range, 1.0-16.7 months) after RT. None of the clinical factors investigated was found to significantly influence the risk of PCE. In univariate analysis, a wide range of dose-volume histogram parameters of the pericardium and heart were associated with risk of PCE, including mean dose to the pericardium, volume of pericardium receiving a dose greater than 3 Gy (V3) to greater than 50 Gy (V50), and heart volume treated to greater than 32-38 Gy. Multivariate analysis selected V30 as the only parameter significantly associated with risk of PCE. Conclusions: High-dose radiation to the pericardium may strongly increase the risk of PCE. Such a risk may be reduced by minimizing the dose-volume of the irradiated pericardium and heart.« less

  8. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    PubMed Central

    Jaberi, Ramin; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-01-01

    Purpose Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool. PMID:29441094

  9. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Liu, T

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. Allmore » plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.« less

  10. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  11. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  12. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  13. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  14. Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy.

    PubMed

    van de Schoot, Agustinus J A J; de Boer, Peter; Visser, Jorrit; Stalpers, Lukas J A; Rasch, Coen R N; Bel, Arjan

    2017-05-01

    Radiation therapy (RT) using a daily plan selection adaptive strategy can be applied to account for interfraction organ motion while limiting organ at risk dose. The aim of this study was to quantify the dosimetric consequences of daily plan selection compared with non-adaptive RT in cervical cancer. Ten consecutive patients who received pelvic irradiation, planning CTs (full and empty bladder), weekly post-fraction CTs and pre-fraction CBCTs were included. Non-adaptive plans were generated based on the PTV defined using the full bladder planning CT. For the adaptive strategy, multiple PTVs were created based on both planning CTs by ITVs of the primary CTVs (i.e., GTV, cervix, corpus-uterus and upper part of the vagina) and corresponding library plans were generated. Daily CBCTs were rigidly aligned to the full bladder planning CT for plan selection. For daily plan recalculation, selected CTs based on initial similarity were deformably registered to CBCTs. Differences in daily target coverage (D 98%  > 95%) and in V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% for rectum, bladder and bowel were assessed. Non-adaptive RT showed inadequate primary CTV coverage in 17% of the daily fractions. Plan selection compensated for anatomical changes and improved primary CTV coverage significantly (p < 0.01) to 98%. Compared with non-adaptive RT, plan selection decreased the fraction dose to rectum and bowel indicated by significant (p < 0.01) improvements for daily V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% . However, daily plan selection significantly increased the bladder V 1.5Gy , V 2Gy , D 50% and D 2% . In cervical cancer RT, a non-adaptive strategy led to inadequate target coverage for individual patients. Daily plan selection corrected for day-to-day anatomical variations and resulted in adequate target coverage in all fractions. The dose to bowel and rectum was decreased significantly when applying adaptive RT.

  15. Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells

    DTIC Science & Technology

    2014-01-01

    computational and empirical dosimetric tools [31]. For the computational dosimetry, we employed finite-dif- ference time- domain (FDTD) modeling techniques to...temperature-time data collected for a well exposed to THz radiation using finite-difference time- domain (FDTD) modeling techniques and thermocouples... like )). Alter- ation in the expression of such genes underscores the signif- 62 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 6, NO. 1

  16. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  17. Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.

    PubMed

    Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo

    2011-03-01

    The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.

  18. Improvements in critical dosimetric endpoints using the Contura multilumen balloon breast brachytherapy catheter to deliver accelerated partial breast irradiation: preliminary dosimetric findings of a phase iv trial.

    PubMed

    Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. MMAB Sea Ice Forecast Page

    Science.gov Websites

    verification statistics Grumbine, R. W., Virtual Floe Ice Drift Forecast Model Intercomparison, Weather and Forecasting, 13, 886-890, 1998. MMAB Note: Virtual Floe Ice Drift Forecast Model Intercomparison 1996 pdf ~47

  20. SU-F-J-29: Dosimetric Effect of Image Registration ROI Size and Focus in Automated CBCT Registration for Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Smith, A; Chao, S

    2016-06-15

    Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less

  1. Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam

    NASA Astrophysics Data System (ADS)

    Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.

    2013-06-01

    The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

  2. Characterisation of a reference site for quantifying uncertainties related to soil sampling.

    PubMed

    Barbizzi, Sabrina; de Zorzi, Paolo; Belli, Maria; Pati, Alessandra; Sansone, Umberto; Stellato, Luisa; Barbina, Maria; Deluisa, Andrea; Menegon, Sandro; Coletti, Valter

    2004-01-01

    The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the "fit-for-purpose" method; (iii) qualifying, in term of trace elements spatial variability, a reference site for national and international inter-comparison exercises. Preliminary results and considerations are illustrated.

  3. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  4. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  5. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  6. Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.

    PubMed

    Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen

    2018-05-28

    The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  8. Calculation of Hazard Category 2/3 Threshold Quantities Using Contemporary Dosimetric Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, William C.

    The purpose of this report is to describe the methodology and selection of input data utilized to calculate updated Hazard Category 2 and Hazard Category 3 Threshold Quantities (TQs) using contemporary dosimetric information. The calculation of the updated TQs will be considered for use in the revision to the Department of Energy (DOE) Technical Standard (STD-) 1027-92 Change Notice (CN)-1, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.” The updated TQs documented in this report complement an effort previously undertaken by the National Nuclear Security Administration (NNSA), which in 2014 issued revisedmore » Supplemental Guidance documenting the calculation of updated TQs for approximately 100 radionuclides listed in DOE-STD-1027-92, CN-1. The calculations documented in this report complement the NNSA effort by expanding the set of radionuclides to more than 1,250 radionuclides with a published TQ. The development of this report was sponsored by the Department of Energy’s Office of Nuclear Safety (AU-30) within the Associate Under Secretary for Environment, Health, Safety, and Security organization.« less

  9. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Ge, Y; Yuan, L

    Purpose: To investigate the impact of outliers on knowledge modeling in radiation therapy, and develop a systematic workflow for identifying and analyzing geometric and dosimetric outliers using pelvic cases. Methods: Four groups (G1-G4) of pelvic plans were included: G1 (37 prostate cases), G2 (37 prostate plus lymph node cases), and G3 (37 prostate bed cases) are all clinical IMRT cases. G4 are 10 plans outside G1 re-planned with dynamic-arc to simulate dosimetric outliers. The workflow involves 2 steps: 1. identify geometric outliers, assess impact and clean up; 2. identify dosimetric outliers, assess impact and clean up.1. A baseline model wasmore » trained with all G1 cases. G2/G3 cases were then individually added to the baseline model as geometric outliers. The impact on the model was assessed by comparing leverage statistic of inliers (G1) and outliers (G2/G3). Receiver-operating-characteristics (ROC) analysis was performed to determine optimal threshold. 2. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric outliers) was then progressively added to perturb this model. DVH predictions were performed using these perturbed models for remaining 5 G1 cases. Normal tissue complication probability (NTCP) calculated from predicted DVH were used to evaluate dosimetric outliers’ impact. Results: The leverage of inliers and outliers was significantly different. The Area-Under-Curve (AUC) for differentiating G2 from G1 was 0.94 (threshold: 0.22) for bladder; and 0.80 (threshold: 0.10) for rectum. For differentiating G3 from G1, the AUC (threshold) was 0.68 (0.09) for bladder, 0.76 (0.08) for rectum. Significant increase in NTCP started from models with 4 dosimetric outliers for bladder (p<0.05), and with only 1 dosimetric outlier for rectum (p<0.05). Conclusion: We established a systematic workflow for identifying and analyzing geometric and dosimetric outliers, and investigated statistical metrics for detecting. Results validated the necessity for outlier detection and clean-up to enhance model quality in clinical practice. Research Grant: Varian master research grant.« less

  11. The impact of active breathing control on internal mammary lymph node coverage and normal tissue exposure in breast cancer patients planned for left-sided postmastectomy radiation therapy.

    PubMed

    Barry, Aisling; Rock, Kathy; Sole, Claudio; Rahman, Mohammad; Pintilie, Melania; Lee, Grace; Fyles, Anthony; Koch, C Anne

    The purpose of this study was to evaluate the impact of the active breathing control (ABC) technique on IMN coverage and organs at risk in patients planned for postmastectomy radiation therapy (PMRT), with the inclusion of the internal mammary lymph nodes (IMNs). The effect of body mass index (BMI) on recorded dosimetric parameters was examined in the same patient cohort. Fifty left-sided postmastectomy patients with breast cancer who underwent free-breathing (FB) and ABC-Elekta CT simulation scans were selected at random from an institutional breast cancer database between 2008 and 2014. The ABC plans were directly compared with FB plans from the same patient. The IMN planning target volume coverage met dosimetric criteria for coverage of receiving more than 90% of the prescribed dose (V90) >90%, although it decreased with ABC compared with FB (94.5% vs 98%, P < .001). Overall, ABC significantly reduced doses to all measured heart and left anterior descending coronary artery parameters, ipsilateral lung V20, and mean lung dose compared with FB (P < .001). There was no difference seen between the ABC and FB plans with respect to the dose to contralateral lung or contralateral breast. There was no correlation identified between BMI and any of the dosimetric parameters recorded from the ABC and FB plans. Our results suggest that ABC reduces IMN coverage in left-sided breast cancer patients planned for PMRT; however, dosimetric criteria for IMN coverage were still met, suggesting that this is not likely to be clinically significant. ABC led to significant sparing of organs at risk compared with FB conditions and was not affected by BMI. Collectively, the results support the use of ABC for breast cancer patients undergoing left-sided PMRT requiring regional nodal irradiation that includes the IMNs. Further prospective clinical studies are required to determine the impact of these results on late normal tissue effects. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Ellis, R; Traughber, B

    Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with themore » MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan was more sensitive to the accuracy of catheter reconstruction.« less

  13. SU-E-J-39: Dosimetric Benefit of Implanted Marker-Based CBCT Setup for Definitive Prostatic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, H; Wu, Z; Bluemenfeld, P

    Purpose Daily setup for definitive prostatic radiotherapy is challenged by suboptimal visibility of the prostate boundary and daily variation of rectum shape and position. For patients with improved bowel preparation, we conducted a dosimetric comparison between prostate implanted marker (IM)-based daily setup and anterior rectal wall (ARW)-based setup, with the hypothesis that the former leads to adequate target coverage with better rectal sparing. Methods Five IMRT/VMAT prostate cases with implanted markers were selected for analysis. Daily CBCT showed improvement of the rectal volume compared to planning CT. For each patient, the prostate and rectum were contoured on three CBCT imagesmore » (fraction 5/15/25) with subsequent physician review. The CBCTs were then registered to a planning CT using IM-based registration. The deviation of ARW positions from planning CT to CBCT were analyzed at various sup-inf levels (−1.8 cm to 1.8 cm from level of prostate center). To estimate the potential dosimetric impact from ARW-based setup, the treatment plans were recalculated using A-P shifts ranging from −1mm to +6mm. Clinically important rectum DVH values including Dmax, D3cc and Dmean were computed. Results For the studied patients, we observed on average 32% rectum volume reduction from planning CT to CBCT. As a Results, the ARW on average shifts posteriorly by −1mm to +5mm, depending on the sup-inf level of observation, with larger shifts observed at more superior levels. Recalculation shows that when ARW shifts 1mm posteriorly, ARW-based CBCT setup leads to a 1.0%, 4.2%, and 3.2% increase in rectum Dmax, D3cc, and Dmean, respectively, compared to IM-based setup. The dosimetric deviations increase to 4.7%, 25.8% and 24.7% when ARW shifts 6mm posteriorly. No significant prostate-only dose difference was observed. Conclusion For patients with improved bowel preparation, IM-based CBCT setup leads to accurate prostate coverage along with significantly lower rectal dose, compared to ARW-based setup.« less

  14. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C; Badal, A

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. Wemore » also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.« less

  15. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  16. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  17. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework

    PubMed Central

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-01-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up. PMID:24344316

  18. Fabrication and characterization of optical super-smooth surfaces

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Kratz, Frank; Ringel, Gabriele A.; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-08-01

    Intercomparison roughness measurements have been carried out at supersmooth artefacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), the Optical Heterodyne Profiler Z5500 (Zygo), and an Atomic Force Microscope (Park Scientific) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelength for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that are applied superpolishing techniques yield supersmooth artefacts which can be used for more intercomparisons.

  19. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment - special observation period (hymex-sop1)

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario

    2018-04-01

    Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.

  20. Evaluation of the annual Canadian biodosimetry network intercomparisons

    PubMed Central

    Wilkins, Ruth C.; Beaton-Green, Lindsay A.; Lachapelle, Sylvie; Kutzner, Barbara C.; Ferrarotto, Catherine; Chauhan, Vinita; Marro, Leonora; Livingston, Gordon K.; Boulay Greene, Hillary; Flegal, Farrah N.

    2015-01-01

    Abstract Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10–12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. Results: Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. Conclusions: Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities. PMID:25670072

  1. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    PubMed

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  2. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  3. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong

    2017-02-01

    The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam modes showed no differences. This study demonstrated that the dosimetric and the radiobiological parameters for the PTV and the rectum affected the dose-calculation algorithms for prostate SBRT using an endorectal balloon. However, the dosimetric and the radiobiological parameters in the AAA and the AXB plans for other OARs were similar. Furthermore, difference between the dosimetric and the radiobiological parameters for different delivery-beam modes were not found when the same algorithm was used to generate the treatment plan.

  4. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    PubMed

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  5. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 1. COMPARISON OF MODELS WITH SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were comp...

  6. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  7. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. An intercomparison of carbon monoxide, nitric oxide, and hydroxyl measurement techniques - Overview of results

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Gregory, G. L.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.; Condon, E. P.

    1984-01-01

    Results from an intercomparison of methods to measure carbon monoxide (CO), nitric oxide (NO), and the hydroxyl radical (OH) are discussed. The intercomparison was conducted at Wallops Island, Virginia, in July 1983 and included a laser differential absorption and three grab sample/gas chromatograph methods for CO, a laser-induced fluorescence (LIF) and two chemiluminescence methods for NO, and two LIF methods and a radiocarbon tracer method for OH. The intercomparison was conducted as a field measurement program involving ambient measurements of CO (150-300 ppbv) and NO (10-180 pptv) from a common manifold with controlled injection of CO in incremental steps from 20 to 500 ppbv and NO in steps from 10 to 220 pptv. Only ambient measurements of OH were made. The agreement between the techniques was on the order of 14 percent for CO and 17 percent for NO. Hardware difficulties during the OH tests resulted in a data base with insufficient data and uncertanties too large to permit a meaningful intercomposition.

  9. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  10. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less

  11. SU-F-T-05: Dosimetric Evaluation and Validation of Newlydeveloped Well Chamber for Use in the Calibration of Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saminathan, S; Godson, H; Ponmalar, R

    2016-06-15

    Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less

  12. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  13. Radon intercomparisons at EML, January 1983 and February 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1985-02-01

    This report summarizes the results of two radon measurement intercomparison exercises held at the Environmental Measurements Laboratory (EML) in January 1983 and February 1984. Nineteen organizations, including five US federal facilities, one national laboratory, two state laboratories, six universities, three private sector laboratories and two non-US facilities participated in these exercises. The results indicate good agreement among the participants at /sup 222/Rn concentration levels of 50 and 80 pCi.L/sup -1/. Improvements in the EML calibration facilities, and the participation of two US laboratories in a Nuclear Energy Agency intercomparison program are also discussed. 8 references, 6 figures, 8 tables.

  14. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  15. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  16. On the use of advanced numerical models for the evaluation of dosimetric parameters and the verification of exposure limits at workplaces.

    PubMed

    Catarinucci, L; Tarricone, L

    2009-12-01

    With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.

  17. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less

  18. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.

    2017-07-01

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  19. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.

    PubMed

    Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D

    2017-06-26

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  20. THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)

    EPA Science Inventory

    This paper describes the North American Mercury Model Inter-comparison Study (NAMMIS). The NAMMIS is an effort to apply atmospheric Hg models in a tightly constrained testing environment with a focus on North America. With each model using the same input data sets for initial co...

  1. Monthly means of selected climate variables for 1985 - 1989

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Wu, C.-Y.; Zero, J.; Schemm, J.-K.; Park, C.-K.; Suarez, M.

    1992-01-01

    Meteorologists are accustomed to viewing instantaneous weather maps, since these contain the most relevant information for the task of producing short-range weather forecasts. Climatologists, on the other hand, tend to deal with long-term means, which portray the average climate. The recent emphasis on dynamical extended-range forecasting and, in particular measuring and predicting short term climate change makes it important that we become accustomed to looking at variations on monthly and longer time scales. A convenient toll for researchers to familiarize themselves with the variability which occurs in selected parameters on these time scales is provided. The format of the document was chosen to help facilitate the intercomparison of various parameters and highlight the year-to-year variability in monthly means.

  2. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  3. Errors in radiation oncology: A study in pathways and dosimetric impact

    PubMed Central

    Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff

    2005-01-01

    As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Giebeler, A; Mascia, A

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the twomore » treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Register, Steven; Takita, Cristiane; Reis, Isildinha

    To identify anatomic and treatment characteristics that correlate with organ-at-risk (OAR) sparing with deep inspiration breath-hold (DIBH) technique to guide patient selection for this technique. Anatomic and treatment characteristics and radiation doses to OARs were compared between free-breathing and DIBH plans. Linear regression analysis was used to identify factors independently predicting for cardiac sparing. We identified 64 patients: 44 with intact breast and 20 postmastectomy. For changes measured directly on treatment planning scans, DIBH plans decreased heart-chest wall length (6.5 vs 5.0 cm, p < 0.001), and increased lung volume (1074.4 vs 1881.3 cm{sup 3}, p < 0.001), and formore » changes measured after fields are set, they decreased maximum heart depth (1.1 vs 0.3 cm, p < 0.001) and heart volume in field (HVIF) (9.1 vs 0.9 cm{sup 3}, p < 0.001). DIBH reduced the mean heart dose (3.4 vs 1.8 Gy, p < 0.001) and lung V{sub 20} (19.6% vs 15.3%, p < 0.001). Regression analysis found that only change in HVIF independently predicted for cardiac sparing. We identified patients in the bottom quartile of the dosimetric benefits seen with DIBH and categorized the cause of this “minimal benefit.” Overall, 29% of patients satisfied these criteria for minimal benefit with DIBH and the most common cause was favorable baseline anatomy. Only the reduction in HVIF predicted for reductions in mean heart dose; no specific anatomic surrogate for the dosimetric benefits of DIBH technique could be identified. Most patients have significant dosimetric benefit with DIBH, and this technique should be planned and evaluated for all patients receiving left-sided breast/chest wall radiation.« less

  6. Breast conserving treatment for breast cancer: dosimetric comparison of different non-invasive techniques for additional boost delivery

    PubMed Central

    2014-01-01

    Background Today it is unclear which technique for delivery of an additional boost after whole breast radiotherapy for breast conserved patients should be state of the art. We present a dosimetric comparison of different non-invasive treatment techniques for additional boost delivery. Methods For 10 different tumor bed localizations, 7 different non-invasive treatment plans were made. Dosimetric comparison of PTV-coverage and dose to organs at risk was performed. Results The Vero system achieved an excellent PTV-coverage and at the same time could minimize the dose to the organs at risk with an average near-maximum-dose (D2) to the heart of 0.9 Gy and the average volume of ipsilateral lung receiving 5 Gy (V5) of 1.5%. The TomoTherapy modalities delivered an average D2 to the heart of 0.9 Gy for the rotational and of 2.3 Gy for the static modality and an average V5 to the ipsilateral lung of 7.3% and 2.9% respectively. A rotational technique offers an adequate conformity at the cost of more low dose spread and a larger build-up area. In most cases a 2-field technique showed acceptable PTV-coverage, but a bad conformity. Electrons often delivered a worse PTV-coverage than photons, with the planning requirements achieved only in 2 patients and with an average D2 to the heart of 2.8 Gy and an average V5 to the ipsilateral lung of 5.8%. Conclusions We present advices which can be used as guidelines for the selection of the best individualized treatment. PMID:24467916

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Y; Becker, S; Mutaf, Y

    Purpose: The first GammaPod™ unit, a dedicated prone stereotactic treatment device for early stage breast cancer, has been installed and commissioned at University of Maryland School of Medicine. The objective of this study was to investigate potential dosimetric impact of inaccurate breast contour. Methods: In GammaPod treatments, patient’s beast is immobilized by a breast cup device (BCID) throughout the entire same-day imaging and treatment procedure. 28 different BICD sizes are available to accommodate patients with varying breast sizes. A mild suction helps breast tissue to conform to the shape of the cup with selected size. In treatment planning, dose calculationmore » utilizes previously calculated dose distributions for available cup geometry rather than the breast shape from CT image. Patient CT images with breast cups indicate minor geometric discrepancy between the matched shape of the cup and the breast contour, i.e., the contour size is larger or smaller. In order to investigate the dosimetric impact of these discrepancies, we simulated such discrepancies and reassessed the dose to target as well as skin. Results: In vicinity of skin, hot/cold spots were found when matched cup size was smaller/larger than patient’s breast after comparing the corrected dose profiles from Monte Carlo simulation with the planned dose from TPS. The overdosing/underdosing of target could yield point dose differences as large as 5% due to these setup errors (D95 changes within 2.5%). Maximal skin dose was overestimated/underestimated up to 25%/45% when matched cup size was larger/smaller than real breast contour. Conclusion: The dosimetric evaluation suggests substantial underdosing/overdosing with inaccurate cup geometry during planning, which is acceptable for current clinical trial. Further studies are needed to evaluate such impact to treating small volume close to skin.« less

  8. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  9. Sensitivity tests to define the source apportionment performance criteria in the DeltaSA tool

    NASA Astrophysics Data System (ADS)

    Pernigotti, Denise; Belis, Claudio A.

    2017-04-01

    Identification and quantification of the contribution of emission sources to a given area is a key task for the design of abatement strategies. Moreover, European member states are obliged to report this kind of information for zones where the pollution levels exceed the limit values. At present, little is known about the performance and uncertainty of the variety of methodologies used for source apportionment and the comparability between the results of studies using different approaches. The source apportionment Delta (SA Delta) is a tool developed by the EC-JRC to support the particulate matter source apportionment modellers in the identification of sources (for factor analysis studies) and/or in the measure of their performance. The source identification is performed by the tool measuring the proximity of any user chemical profile to preloaded repository data (SPECIATE and SPECIEUROPE). The model performances criteria are based on standard statistical indexes calculated by comparing participants' source contribute estimates and their time series with preloaded references data. Those preloaded data refer to previous European SA intercomparison exercises: the first with real world data (22 participants), the second with synthetic data (25 participants) and the last with real world data which was also extended to Chemical Transport Models (38 receptor models and 4 CTMs). The references used for the model performances are 'true' (predefined by JRC) for the synthetic while they are calculated as ensemble average of the participants' results in real world intercomparisons. The candidates used for each source ensemble reference calculation were selected among participants results based on a number of consistency checks plus the similarity between their chemical profiles to the repository measured data. The estimation of the ensemble reference uncertainty is crucial in order to evaluate the users' performances against it. For this reason a sensitivity analysis on different methods to estimate the ensemble references' uncertainties was performed re-analyzing the synthetic intercomparison dataset, the only one where 'true' reference and ensemble reference contributions were both present. The Delta SA is now available on-line and will be presented, with a critical discussion of the sensitivity analysis on the ensemble reference uncertainty. In particular the grade of among participants mutual agreement on the presence of a certain source should be taken into account. Moreover also the importance of the synthetic intercomparisons in order to catch receptor models common biases will be stressed.

  10. Beam’s-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei

    2015-03-01

    Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  12. Measurement of low‐energy backscatter factors using GAFCHROMIC film and OSLDs

    PubMed Central

    Elson, Howard R.; Lamba, Michael A. S.

    2012-01-01

    Some of the lowest voltages used in radiotherapy are termed Grenz and superficial X‐rays of ~ 20 and ~ 100 kVp, respectively. Dosimetrically, the surface doses from these beams are calculated with the use of a free in‐air air kerma measurement combined with a backscatter factor and the appropriate ratio of mass energy absorption coefficients from the measurement material to water. Alternative tools to the standard ion chamber for measuring the BSF are GAFCHROMIC EBT2 film and optically stimulated luminescent dosimeter (OSLD) crystals made from Al2O3. The scope of this project included making three different backscatter measurements with an Xstrahl‐D3100 X‐ray unit on the Grenz ray and superficial settings. These measurements were with OSLDs, GAFCHROMIC EBT2 film, and a PTW ionization chamber. The varied measurement methods allowed for intercomparison to determine the accuracy of the results. The ion chamber measurement was the least accurate, as expected from previous experimental findings. GAFCHROMIC EBT2 film proved to be a useful tool which gave reasonable results, and Landauer OSLDs showed good results for smaller field sizes and an increasing overresponse with larger fields. The specific backscatter factors for this machine demonstrated values about 5% higher than the universal values suggested by the AAPM and IPEMB codes of practice for the 100 kVp setting. The 20 kvp measured data from both techniques showed general agreement with those found in the BJR Supplement No. 10, indicating that this unit's Grenz ray spectrum is similar to those used in previous experimental work. PACS number: 87.53.Bn PMID:23149776

  13. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  14. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data

    Treesearch

    J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva

    2014-01-01

    Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...

  15. FIELD INTERCOMPARISON OF SULFATE DRY DEPOSITION MONITORING AND MEASUREMENT METHODS: PRELIMINARY RESULTS

    EPA Science Inventory

    The Illinois State Water Survey hosted a three-week field intercomparison of several sulfate dry deposition measurement techniques during September 81. The site was an 80-acre grass field in a rural area 14 km southwest of Champaign, IL. The vegetation consisted of mixed grasses ...

  16. An Analysis of Simulated Wet Deposition of Mercury from the North American Mercury Model Intercomparison Study

    EPA Science Inventory

    A previous intercomparison of atmospheric mercury models in North America has been extended to compare simulated and observed wet deposition of mercury. Three regional-scale atmospheric mercury models were tested; CMAQ, REMSAD and TEAM. These models were each employed using thr...

  17. METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...

  18. WE-E-BRE-05: Ensemble of Graphical Models for Predicting Radiation Pneumontis Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Ybarra, N; Jeyaseelan, K

    Purpose: We propose a prior knowledge-based approach to construct an interaction graph of biological and dosimetric radiation pneumontis (RP) covariates for the purpose of developing a RP risk classifier. Methods: We recruited 59 NSCLC patients who received curative radiotherapy with minimum 6 month follow-up. 16 RP events was observed (CTCAE grade ≥2). Blood serum was collected from every patient before (pre-RT) and during RT (mid-RT). From each sample the concentration of the following five candidate biomarkers were taken as covariates: alpha-2-macroglobulin (α2M), angiotensin converting enzyme (ACE), transforming growth factor β (TGF-β), interleukin-6 (IL-6), and osteopontin (OPN). Dose-volumetric parameters were alsomore » included as covariates. The number of biological and dosimetric covariates was reduced by a variable selection scheme implemented by L1-regularized logistic regression (LASSO). Posterior probability distribution of interaction graphs between the selected variables was estimated from the data under the literature-based prior knowledge to weight more heavily the graphs that contain the expected associations. A graph ensemble was formed by averaging the most probable graphs weighted by their posterior, creating a Bayesian Network (BN)-based RP risk classifier. Results: The LASSO selected the following 7 RP covariates: (1) pre-RT concentration level of α2M, (2) α2M level mid- RT/pre-RT, (3) pre-RT IL6 level, (4) IL6 level mid-RT/pre-RT, (5) ACE mid-RT/pre-RT, (6) PTV volume, and (7) mean lung dose (MLD). The ensemble BN model achieved the maximum sensitivity/specificity of 81%/84% and outperformed univariate dosimetric predictors as shown by larger AUC values (0.78∼0.81) compared with MLD (0.61), V20 (0.65) and V30 (0.70). The ensembles obtained by incorporating the prior knowledge improved classification performance for the ensemble size 5∼50. Conclusion: We demonstrated a probabilistic ensemble method to detect robust associations between RP covariates and its potential to improve RP prediction accuracy. Our Bayesian approach to incorporate prior knowledge can enhance efficiency in searching of such associations from data. The authors acknowledge partial support by: 1) CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290) and 2) The Terry Fox Foundation Strategic Training Initiative for Excellence in Radiation Research for the 21st Century (EIRR21)« less

  19. Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997

    USGS Publications Warehouse

    Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.

    2009-01-01

    A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t

  20. The significance of the choice of radiobiological (NTCP) models in treatment plan objective functions.

    PubMed

    Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L

    2009-06-01

    A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

  1. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedam, S.; Docef, A.; Fix, M.

    2005-06-15

    The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less

  2. The response of numerical weather prediction analysis systems to FGGE 2b data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, A.; Lorenc, A.; Tracton, S.; Arpe, K.; Cats, G.; Uppala, S.; Kallberg, P.

    1985-01-01

    An intercomparison of analyses of the main PGGE Level IIb data set is presented with three advanced analysis systems. The aims of the work are to estimate the extent and magnitude of the differences between the analyses, to identify the reasons for the differences, and finally to estimate the significance of the differences. Extratropical analyses only are considered. Objective evaluations of analysis quality, such as fit to observations, statistics of analysis differences, and mean fields are discussed. In addition, substantial emphasis is placed on subjective evaluation of a series of case studies that were selected to illustrate the importance of different aspects of the analysis procedures, such as quality control, data selection, resolution, dynamical balance, and the role of the assimilating forecast model. In some cases, the forecast models are used as selective amplifiers of analysis differences to assist in deciding which analysis was more nearly correct in the treatment of particular data.

  3. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 2. MODELING RESULTS VS. LONG-TERM OBSERVATIONS AND COMPARISON OF COUNTRY ATMOSPHERIC BALANCES

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with availa...

  4. A Compendium on the NIST Radionuclidic Assays of the Massic Activity of 63Ni and 55Fe Solutions Used for an International Intercomparison of Liquid Scintillation Spectrometry Techniques

    PubMed Central

    Collé, R.; Zimmerman, B. E.

    1997-01-01

    The National Institute of Standards and Technology recently participated in an international measurement intercomparison for 63Ni and 55Fe, which was conducted amongst principal national radionuclidic metrology laboratories. The intercomparison was sponsored by EUROMET, and was primarily intended to evaluate the capabilities of liquid scintillation (LS) spectrometry techniques for standardizing nuclides that decay by low-energy β-emission (like 63Ni) and by low-Z (atomic number) electron capture (like 55Fe). The intercomparison findings exhibit a very good agreement for 63Ni amongst the various participating laboratories, including that for NIST, which suggests that the presently invoked LS methodologies are very capable of providing internationally-compatible standardizations for low-energy β-emitters. The results for 55Fe are in considerably poorer agreement, and demonstrated the existence of several unresolved problems. It has thus become apparent that there is a need for the various international laboratories to conduct rigorous, systematic evaluations of their LS capabilities in assaying radionuclides that decay by low-Z electron capture. PMID:27805141

  5. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. 1993 Intercomparison of Photometric Units Maintained at NIST (USA) and PTB (Germany)

    PubMed Central

    Ohno, Yoshihiro; Sauter, Georg

    1995-01-01

    A bilateral intercomparison of photometric units between NIST, USA and PTB, Germany has been conducted to update the knowledge of the relationship between the photometric units disseminated in each country. The luminous intensity unit (cd) and the luminous flux unit (lm) maintained at both laboratories are compared by circulating transfer standard lamps. Also, the photometric responsivity sv is compared by circulating a V(λ)-corrected detector with a built-in current-to-voltage converter. The results show that the difference of luminous intensity unit between NIST and PTB, (PTB-NIST)/NIST, is 0.2 % with a relative expanded uncertainty (coverage factor k = 2) of 0.24 %. The difference is reduced significantly from that at the 1985 CCPR intercomparison (0.9 %). The difference in luminous flux unit, (PTB – NIST)/NIST, is found to be 1.5 % with a relative expanded uncertainty (coverage factor k =2) of 0.15 %. The difference remained nearly the same as that at the 1985 intercomparison (1.6 %). These results agree with what is predicted from the history of maintaining the units at each laboratory. PMID:29151737

  7. Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE.

    PubMed

    Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M

    60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Application of dual-energy CT to suppression of metal artefact caused by pedicle screw fixation in radiotherapy: a feasibility study using original phantom

    NASA Astrophysics Data System (ADS)

    Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei

    2017-08-01

    The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of  -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).

  9. Dosimetric evaluation of Plastic Water Diagnostic-Therapy.

    PubMed

    Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K

    2008-04-29

    High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.

  10. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.

    PubMed

    Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang

    2015-02-01

    To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  11. TU-C-17A-10: Patient Features Based Dosimetric Pareto Front Prediction In Esophagus Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Zhao, K; Peng, J

    2014-06-15

    Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less

  12. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less

  13. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  14. Reirradiation for second primary or recurrent cancers of the head and neck: Dosimetric and outcome analysis.

    PubMed

    Garg, Shivank; Kilburn, Jeremy M; Lucas, John T; Randolph, David; Urbanic, James J; Hinson, William H; Kearns, William T; Porosnicu, Mercedes; Greven, Kathryn

    2016-04-01

    The purpose of this study was to examine outcomes, toxicity, and dosimetric characteristics of patients treated with reirradiation for head and neck cancers. Fifty patients underwent ≥2 courses of radiation therapy (RT) postoperatively or definitively with or without chemotherapy. Composite dose volume histograms (DVHs) for selected anatomic structures were correlated with grade ≥3 late toxicity. Median initial and retreatment radiation dose was 64 and 60 Gy, respectively. Median overall survival (OS), progression-free survival (PFS), and 1-year PFS rates were 18 months, 11 months, and 45%, respectively, with 13 months median follow-up. Thirty-four percent of patients experienced grade ≥3 late toxicity with 1 death from carotid blowout. The DVH corresponding to the carotid blowout fell above the third quartile compared with other patients. Our analysis is the first to systematically evaluate the dose to the carotid artery using composite dosimetry in head and neck reirradiation patients, and demonstrates a promising technique for evaluating the dose to other normal tissue structures. © 2015 Wiley Periodicals, Inc. Head Neck 38: E961-E969, 2016. © 2015 Wiley Periodicals, Inc.

  15. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less

  16. Reproducibility in cyclostratigraphy: initiating an intercomparison project

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; De Vleeschouwer, David; Zeeden, Christian; Claeys, Philippe

    2017-04-01

    The study of astronomical climate forcing and the application of cyclostratigraphy have experienced a spectacular growth over the last decades. In the field of cyclostratigraphy a broad range in methodological approaches exist. However, comparative study between the different approaches is lacking. Different cases demand different approaches, but with the growing importance of the field, questions arise about reproducibility, uncertainties and standardization of results. The radioisotopic dating community, in particular, has done far-reaching efforts to improve reproducibility and intercomparison of radioisotopic dates and their errors. To satisfy this need in cyclostratigraphy, we initiate a comparable framework for the community. The aims are to investigate and quantify reproducibility of, and uncertainties related to cyclostratigraphic studies and to provide a platform to discuss the merits and pitfalls of different methodologies, and their applicabilities. With this poster, we ask the feedback from the community on how to design this comparative framework in a useful, meaningful and productive manner. In parallel, we would like to discuss how reproducibility should be tested and what uncertainties should stand for in cyclostratigraphy. On the other hand, we intend to trigger interest for a cyclostratigraphic intercomparison project. This intercomparison project would imply the analysis of artificial and genuine geological records by individual researchers. All participants would be free to determine their method of choice. However, a handful of criterions will be required for an outcome to be comparable. The different results would be compared (e.g. during a workshop or a special session), and the lessons learned from the comparison could potentially be reported in a review paper. The aim of an intercomparison project is not to rank the different methods according to their merits, but to get insight into which specific methods are most suitable for which specific problems, and obtain more information on different sources of uncertainty. As this intercomparison project should be supported by the broader cyclostratigraphic community, we open the floor for suggestions, ideas and practical remarks.

  17. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z; Greskovich, J; Xia, P

    Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less

  19. SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Narayanasamy, G; Zhang, X

    2016-06-15

    Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less

  20. SU-F-T-460: Dosimetric Matching Between Trilogy Tx and TrueBeam STx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y; Kwak, J; Jeong, C

    Purpose: To compare the commissioned beam data for one flattening filter photon mode (6 MV) and two flattening filter-free (FFF) photon modes (6 and 10 MV-FFF) between Trilogy Tx and TrueBeam STx and evaluate the possibility of dosimetric matching Methods: Dosimetric characteristics of the new Trilogy Tx including percent depth doses (PDDs), profiles, and output factors were measured for commissioning. Linear diode array detector and ion chambers were used to measure dosimetric data. The depth of dose maximum (dmax) and PDD at 10 cm (PDD10) were evaluated: 3×3 cm{sup 2}, 10×10 cm{sup 2}, and 40×40 cm{sup 2}. The beam profilesmore » were compared and then penumbras were evaluated. As a further test of the dosimetric matching, the same VMAT plans were delivered, measured with film, and compared with TPS calculation. Results: All the measured PDDs matched well across the two units. PDD10 showed less than 0.5% variation and dmax were within 1.5 mm at the field sizes evaluated. Within the central 80% of transverse axis, profile data were almost identical. TrueBeam data resulted in a slightly greater penumbra width (up to 1.9 mm). The greatest differences of output factors were found at 40 × 40 cm{sup 2}: 2.40%, 2.03%, and 2.22% for 6 MV, 6 MV-FFF, and 10 MV-FFF, respectively. For smaller field sizes, less than 1% differences were observed. The film measurements demonstrated over 97.3% pixels passing-gamma analysis (2%/2mm). The results showed excellent agreement between measurements of two machines. Conclusion: The differences between Trilogy Tx and TrueBeam STx found could possibly affect small field and also very large field sizes in dosimetric matching considerations. These differences encountered are mostly related with the changes in the head design of the TrueBeam. Although it cannot guarantee full interchangeability of two machines, dosimetric matching by field size of 25 × 25 cm{sup 2} might be clinically acceptable.« less

  1. Comparative Analysis of Different Measurement Techniques for MLC Characterization: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.

    2008-08-11

    Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.

  2. Basic Principles and Practices of Integrated Dosimetric Passportization of the Settlements in Ukraine.

    PubMed

    Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B

    2015-12-01

    The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number of important radiological parameters, namely over 500 thousands of measurements of concentration of 137Cs and 90Sr in the local foodstuff (milk and potatoes); there are more than 1.3 million of measurements of the cesium content in the body of residents of the settlements of Ukraine; there are 100 thousands of dose estimates (both internal and external ones were measured separately) of inhabitants living on the radioactively contaminated areas. The results of the dosimetric passportization served as one of the main exposure criteria for generalized aftermath of the Chornobyl accident represented in the National reports for the first 15, 20 and 25 years after the accident. I. A. Likhtarov, L. M. Kovgan, S. V. Masiuk, O. M. Ivanova, M. I. Chepurny.

  3. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less

  4. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsburg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  5. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 2: Comparisons with global atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  6. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 3: Special diagnostic studies

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  7. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  8. SU-F-T-197: Investigating Optimal Oblique-Beam Arrangement for Bilateral Metallic Prosthesis Prostate Cancer in Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, S; Tesfamicael, B; Park, S

    Purpose: The main purpose of this study is to investigate the optimum oblique-beam arrangement for bilateral metallic prosthesis prostate cancer treatment in pencil beam scanning (PBS) proton therapy. Methods: A computed tomography dataset of bilateral metallic prosthesis prostate cancer case was selected for this retrospective study. A total of four beams (rightanterior- oblique [RAO], left-anterior-oblique [LAO], left-posterior-oblique [LPO], and right-posterior-oblique [RPO]) were selected for treatment planning. PBS plans were generated using multi-field-optimization technique for a total dose of 79.2 Gy[RBE] to be delivered in 44 fractions. Specifically, five different PBS plans were generated based on 2.5% ± 2 mm rangemore » uncertainty using five different beam arrangements (i)LAO+RAO+LPO+RPO, (ii)LAO+RAO, (iii)LPO+RPO, (iv)RAO+LPO, and (v)LAO+RPO. Each PBS plan was optimized by applying identical dose-volume constraints to the PTV, rectum, and bladder. Treatment plans were then compared based on the dose-volume histograms results. Results: The PTV coverage was found to be greater than 99% in all five plans. The homogeneity index (HI) was found to be almost identical (range, 0.03–0.04). The PTV mean dose was found to be comparable (range, 81.0–81.1 Gy[RBE]). For the rectum, the lowest mean dose (8.0 Gy[RBE]) and highest mean dose (31.1 Gy[RBE]) were found in RAO+LAO plan and LPO+RPO plan, respectively. LAO+RAO plan produced the most favorable dosimetric results of the rectum in the medium-dose region (V50) and high-dose region (V70). For the bladder, the lowest (5.0 Gy[RBE]) and highest mean dose (10.3 Gy[RBE]) were found in LPO+RPO plan and RAO+LAO plan, respectively. Other dosimetric results (V50 and V70) of the bladder were slightly better in LPO+RPO plan than in other plans. Conclusion: Dosimetric findings from this study suggest that two anterior-oblique proton beams arrangement (LAO+RAO) is a more favorable option with the possibility of reducing rectal dose significantly while maintaining comparable target coverage and acceptable bladder dose.« less

  9. SU-F-BRD-10: Lung IMRT Planning Using Standardized Beam Bouquet Templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, L; Wu, Q J.; Yin, F

    2014-06-15

    Purpose: We investigate the feasibility of choosing from a small set of standardized templates of beam bouquets (i.e., entire beam configuration settings) for lung IMRT planning to improve planning efficiency and quality consistency, and also to facilitate automated planning. Methods: A set of beam bouquet templates is determined by learning from the beam angle settings in 60 clinical lung IMRT plans. A k-medoids cluster analysis method is used to classify the beam angle configuration into clusters. The value of the average silhouette width is used to determine the ideal number of clusters. The beam arrangements in each medoid of themore » resulting clusters are taken as the standardized beam bouquet for the cluster, with the corresponding case taken as the reference case. The resulting set of beam bouquet templates was used to re-plan 20 cases randomly selected from the database and the dosimetric quality of the plans was evaluated against the corresponding clinical plans by a paired t-test. The template for each test case was manually selected by a planner based on the match between the test and reference cases. Results: The dosimetric parameters (mean±S.D. in percentage of prescription dose) of the plans using 6 beam bouquet templates and those of the clinical plans, respectively, and the p-values (in parenthesis) are: lung Dmean: 18.8±7.0, 19.2±7.0 (0.28), esophagus Dmean: 32.0±16.3, 34.4±17.9 (0.01), heart Dmean: 19.2±16.5, 19.4±16.6 (0.74), spinal cord D2%: 47.7±18.8, 52.0±20.3 (0.01), PTV dose homogeneity (D2%-D99%): 17.1±15.4, 20.7±12.2 (0.03).The esophagus Dmean, cord D02 and PTV dose homogeneity are statistically better in the plans using the standardized templates, but the improvements (<5%) may not be clinically significant. The other dosimetric parameters are not statistically different. Conclusion: It's feasible to use a small number of standardized beam bouquet templates (e.g. 6) to generate plans with quality comparable to that of clinical plans. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less

  10. Effect of green tea catechin, a local drug delivery system as an adjunct to scaling and root planing in chronic periodontitis patients: A clinicomicrobiological study

    PubMed Central

    Kudva, Praveen; Tabasum, Syeda Tawkhira; Shekhawat, Nirmal Kanwar

    2011-01-01

    Background: Evaluate the adjunctive use of locally delivered green tea catechin with scaling and root planing, as compared to scaling and root planing alone in the management of chronic periodontitis. Materials and Methods: Fourteen patients with two sites in the contralateral quadrants with probing pocket depth of 5–8mm were selected. Each of the sites was assessed for the plaque index, gingival index, and probing pocket depth at baseline and 21 days and for microbiological analysis at baseline, 1 week and 21 days. Test sites received scaling and root planing along with green tea catechin strips and control sites received scaling and root planning alone. Results: The result showed intercomparison of the plaque index and gingival index for test and control groups at 21 days was not significant with P>0.05, whereas the probing depth at 21 days was significant with P<0.001. Intercomparison between microbial results demonstrated a considerable reduction of occurrence of Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Fusobacterium species and Capnocytophaga in test. Conclusion: Green tea catechin local delivery along with scaling and root planing is more effective than scaling and root planing alone. PMID:21772720

  11. An intercomparison of the thermal offset for different pyranometers

    NASA Astrophysics Data System (ADS)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2016-07-01

    An unprecedented intensive intercomparison campaign focused on the experimental measurement of the thermal offset of pyranometers has been conducted at Badajoz (Spain) with the participation of three main manufacturers. The purpose of this study is to compare the thermal offset of six commercially available pyranometers, being some of them widely used and others recently commercialized. In this campaign, the capping methodology has been used to experimentally measure the daytime thermal offset of the pyranometers. Thus, a short but intense campaign has been conducted in two selected summer days under clear-sky conditions, covering a large range of solar zenith angle, irradiance, and temperature. Along the campaign, a total of 305 capping events have been performed, 61 for each pyranometer. The daytime thermal offset obtained for different pyranometers ranges between 0 and -16.8 W/m2 depending on the environmental conditions, being sometimes notably higher than values estimated indoors by manufacturers. The thermal offset absolute value of all instruments shows a diurnal cycle, increasing from sunrise to central hours of the day and decreasing from midafternoon to sunset. The analysis demonstrates that thermal offset is notably higher and more variable during daytime than during nighttime, requiring specific daytime measurements. Main results emphasize the key role played by wind speed in modulating the thermal offset.

  12. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; hide

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  13. Visualization tools for model/data comparisons and decision making during the Monterey Bay 2006 experiment.

    NASA Astrophysics Data System (ADS)

    Pawlowski, L.; Kolber, D.; Godin, M.; Chavez, F. P.

    2006-12-01

    During summer 2006, almost 100 different oceanographic sensors have captured for more than one month the properties of the waters of the Californian Central Coast. Data were assimilated in quasi-real time by three hydrodynamical models to forecast the evolution of the local conditions such as currents, sea water temperature, salinity and to adapt accordingly the sampling strategy of the involved unmanned vehicles (AUV, gliders). Due to the high diversity of data and models (sources, file structures, time and spatial coverage, periodicity of sampling), the collected informations were first converted into a standardized format which allows one to quickly find and extract the relevant variables from the main data server of the experiment. Visualization softwares were developed to provide live maps of the latest locations of instruments, surface plots and vertical transects of currents, temperature and salinity from data and models. These products were mainly used for decision making, for model intercomparison and to evaluate the quality of the data assimilation process for each model. Plots were updated several times a day and automatically posted on an internet collaborative portal. Softwares were adaptive in regards of the availability of simulations and datasets from satellite, aircraft, robotic vehicles, research vessels, moorings, drifters Their modular structures allowed a quick implementation of new instruments during the experiment. Profiles from gliders and AUV served as references for intercomparisons between models for salinity and temperature. As simulations were not synchronized between models, the involved algorithm selected, for all gliders, relevant portions of their tracks to serve as references for model intercomparison. These portions were delimited to prioritize the comparison for each model between observations and nowcasts/hindcasts and also to evaluate the loss of forecasting capabilities with time. We provide here several examples of these graphical products for different situations we encountered during the experiment.

  14. Crustal dynamics project session 4 validation and intercomparison experiments 1979-1980 report

    NASA Technical Reports Server (NTRS)

    Liebrecht, P.; Kolenkiewicz, R.; Ryan, J.; Hothem, L.

    1983-01-01

    As part of the Crustal Dynamics Project, an experiment was performed to verify the ability of Satellite Laser Ranging (SLR), Very Long Baseline interferometry (VLBI) and Doppler Satellite Positioning System (Doppler) techniques to estimate the baseline distances between several locations. The Goddard Space Flight Center (GSFC) lasers were in operation at all five sites available to them. The ten baselines involved were analyzed using monthly orbits and various methods of selecting data. The standard deviation of the monthly SLR baseline lengths was at the 7 cm level. The GSFC VLBI (Mark III) data was obtained during three separate experiments. November 1979 at Haystack and Owens Valley, and April and July 1980 at Haystack, Owens Valley, and Fort Davis. Repeatability of the VLBI in determining baseline lengths was calculated to be at the 2 cm level. Jet Propulsion Laboratory (JPL) VLBI (Mark II) data was acquired on the Owens Valley to Goldstone baseline on ten occasions between August 1979 and November 1980. The repeatability of these baseline length determinations was calculated to be at the 5 cm level. National Geodetic Survey (NGS) Doppler data was acquired at all five sites in January 1980. Repeatability of the Doppler determined baseline lengths results were calculated at approximately 30 cm. An intercomparison between baseline distances and associated parameters was made utilizing SLR, VLBI, and Doppler results on all available baselines. The VLBI and SLR length determinations were compared on four baselines with a resultant mean difference of -1 cm and a maximum difference of 12 cm. The SLR and Doppler length determinations were compared on ten baselines with a resultant mean difference of about 30 cm and a maximum difference of about 60 cm. The VLBI and Doppler lengths from seven baselines showed a resultant mean difference of about 30 cm and maximum difference of about 1 meter. The intercomparison of baseline orientation parameters were consistent with past analysis.

  15. Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)

    2002-01-01

    A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.

  16. Evaluation of DFIR and Bush Gauge Snowfall Measurements at Boreal Forest Sites in Saskatchewan/Canada and Valdai/Russia

    NASA Astrophysics Data System (ADS)

    Yang, D.; Smith, C.

    2013-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). Both the DFIR (double fence intercomparison reference) and the bush shielded gauge have been used in the past as a reference measurement for solid precipitation and they both have been selected as the references for the current SPICE project. Previous analyses of the DFIR vs. the bush (manual Tretyakov) gauge data collected at the Valdai station in Russia suggest DFIR undercatch of snowfall by up to 10% for high wind conditions. A regression relationship between the 2 systems was derived and used for the last WMO gauge intercomparison. Given the importance of the DFIR as the reference for the WMO SPICE project, it is necessary to re-examine and update the DFIR and bush gauge relationship. As part of Canada's contribution to the WMO SPICE project, a test site has been set up by EC/ASTD/WSDT in the southern Canadian Boreal forest to compare the DFIR and bush gauges. This site, called the Caribou Creek, has been installed within a modified young Jack Pine forest stand - north of Prince Albert in Saskatchewan. This study compiles and analyzes recent DFIR and bush gauge data from both the Valdai and Caribou Creek sites. This presentation summarizes the results of data analyses, and evaluates the performance of both references for snowfall observations in the northern regions. The methods and results of this research will directly support the WMO SPICE project and contribute to cold region hydrology and climate change research.

  17. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges

    USGS Publications Warehouse

    Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Pangburn, Timothy; Kang, Ersi; Milkovic, Janja

    1999-01-01

    Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20–70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed, temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurements was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in different climate conditions. Significant increase of precipitation is expected due to the adjustment particularly in high latitudes and other cold regions. This will have a meaningful impact on climate variation and change analyses.

  18. The NASA Reanalysis Ensemble Service - Advanced Capabilities for Integrated Reanalysis Access and Intercomparison

    NASA Astrophysics Data System (ADS)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.

    2017-12-01

    NASA's efforts to advance climate analytics-as-a-service are making new capabilities available to the research community: (1) A full-featured Reanalysis Ensemble Service (RES) comprising monthly means data from multiple reanalysis data sets, accessible through an enhanced set of extraction, analytic, arithmetic, and intercomparison operations. The operations are made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib; (2) A cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables. This near real-time capability enables advanced technologies like Spark and Hadoop-based MapReduce analytics over native NetCDF files; and (3) A WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation systems such as ESGF. The Reanalysis Ensemble Service includes the following: - New API that supports full temporal, spatial, and grid-based resolution services with sample queries - A Docker-ready RES application to deploy across platforms - Extended capabilities that enable single- and multiple reanalysis area average, vertical average, re-gridding, standard deviation, and ensemble averages - Convenient, one-stop shopping for commonly used data products from multiple reanalyses including basic sub-setting and arithmetic operations (e.g., avg, sum, max, min, var, count, anomaly) - Full support for the MERRA-2 reanalysis dataset in addition to, ECMWF ERA-Interim, NCEP CFSR, JMA JRA-55 and NOAA/ESRL 20CR… - A Jupyter notebook-based distribution mechanism designed for client use cases that combines CDSlib documentation with interactive scenarios and personalized project management - Supporting analytic services for NASA GMAO Forward Processing datasets - Basic uncertainty quantification services that combine heterogeneous ensemble products with comparative observational products (e.g., reanalysis, observational, visualization) - The ability to compute and visualize multiple reanalysis for ease of inter-comparisons - Automated tools to retrieve and prepare data collections for analytic processing

  19. Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO

    DTIC Science & Technology

    2014-05-01

    multiple times and intercompare the results to assess variability in the retrieved reflectance spectra. Retrieved chlorophyll values from this...intercomparison are similar and also agree well with the In situ chlorophyll measurements. 15. SUBJECT TERMS Atmospheric correction, cloud-shadow...reflectance spectra. Re- trieved chlorophyll values from this intercomparison are similar and also agree well with the in situ chlorophyll measurements

  20. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  1. A Comparison of Aircraft and Ground-Based Measurements at Mauna Loa Observatory, Hawaii, During GTE PEM-West and MLOPEX 2

    NASA Technical Reports Server (NTRS)

    Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.

    1996-01-01

    During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.

  2. Intercomparison of Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP-3)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Kidd, Christopher; Petty, Grant; Morrissey, Mark; Goodman, H. Michael; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A set of global, monthly rainfall products has been intercompared to understand the quality and utility of the estimates. The products include 25 observational (satellite-based), four model and two climatological products. The results of the intercomparison indicate a very large range (factor of two or three) of values when all products are considered. The range of values is reduced considerably when the set of observational products is limited to those considered quasi-standard. The model products do significantly poorer in the tropics, but are competitive with satellite-based fields in mid-latitudes over land. Over ocean, products are compared to frequency of precipitation from ship observations. The evaluation of the observational products point to merged data products (including rain gauge information) as providing the overall best results.

  3. Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zheng; Wang Zhiheng; Wu, Q. Jackie

    A new Novalis Tx system equipped with a high definition multileaf collimator (HDMLC) recently became available to perform both image-guided radiosurgery and conventional radiotherapy. It is capable of delivering a highly conformal radiation dose with three energy modes: 6 MV photon energy, 15 MV photon energy, and 6 MV photon energy in a stereotactic radiosurgery mode with 1000 MU/min dose rate. Dosimetric characteristics of the new Novalis Tx treatment unit with the HDMLC are systematically measured for commissioning. A high resolution diode detector and miniion-chamber detector are used to measure dosimetric data for a range of field sizes from 4x4more » mm to 400x400 mm. The commissioned Novalis Tx system has passed the RPC stereotactic radiosurgery head phantom irradiation test. The Novalis Tx system not only expands its capabilities with three energy modes, but also achieves better beam conformity and sharer beam penumbra with HDMLC. Since there is little beam data information available for the new Novalis Tx system, we present in this work the dosimetric data of the new modality for reference and comparison.« less

  4. Dosimetric characterization of a bi-directional micromultileaf collimator for stereotactic applications.

    PubMed

    Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P

    2002-07-01

    A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.

  5. Monte Carlo Determination of Dosimetric Parameters of a New (125)I Brachytherapy Source According to AAPM TG-43 (U1) Protocol.

    PubMed

    Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa

    2016-03-01

    (125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.

  6. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  7. Dosimetric and clinical predictors for radiation-induced esophageal injury.

    PubMed

    Ahn, Sung-Ja; Kahn, Daniel; Zhou, Sumin; Yu, Xiaoli; Hollis, Donna; Shafman, Timothy D; Marks, Lawrence B

    2005-02-01

    To evaluate the clinical and three-dimensional dosimetric parameters associated with esophageal injury after radiotherapy (RT) for non-small-cell lung cancer. The records of 254 patients treated for non-small-cell lung cancer between 1992 and 2001 were reviewed. A variety of metrics describing the esophageal dose were extracted. The Radiation Therapy Oncology Group toxicity criteria for grading of esophageal injury were used. The median follow-up time for all patients was 43 months (range, 0.5-120 months). Logistic regression analysis, contingency table analyses, and Fisher's exact tests were used for statistical analysis. Acute toxicity occurred in 199 (78%) of 254 patients. For acute toxicity of Grade 2 or worse, twice-daily RT, age, nodal stage of N2 or worse, and most dosimetric parameters were predictive. Late toxicity occurred in 17 (7%) of 238 patients. The median and maximal time to the onset of late toxicity was 5 and 40 months after RT, respectively. Late toxicity occurred in 2%, 3%, 17%, 26%, and 100% of patients with acute Grade 0, 1, 2, 3, and 4 toxicity, respectively. For late toxicity, the severity of acute toxicity was most predictive. A variety of dosimetric parameters are predictive of acute and late esophageal injury. A strong correlation between the dosimetric parameters prevented a comparison between the predictive abilities of these metrics. The presence of acute injury was the most predictive factor for the development of late injury. Additional studies to define better the predictors of RT-induced esophageal injury are needed.

  8. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    NASA Astrophysics Data System (ADS)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  9. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Gerald L; Bader, David C; Riches, Michael

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less

  10. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.

    PubMed

    Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank

    2016-05-01

    To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less

  12. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Zacariah E., E-mail: zelabby@humonc.wisc.edu; Chaudhary, Neeraj; Gemmete, Joseph J.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derivedmore » from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. Conclusions: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.« less

  13. A Bootstrap Algorithm for Mixture Models and Interval Data in Inter-Comparisons

    DTIC Science & Technology

    2001-07-01

    parametric bootstrap. The present algorithm will be applied to a thermometric inter-comparison, where data cannot be assumed to be normally distributed. 2 Data...experimental methods, used in each laboratory) often imply that the statistical assumptions are not satisfied, as for example in several thermometric ...triangular). Indeed, in thermometric experiments these three probabilistic models can represent several common stochastic variabilities for

  14. [Soft- and hardware support for the setup for computer tracking of radiation teletherapy].

    PubMed

    Tarutin, I G; Piliavets, V I; Strakh, A G; Minenko, V F; Golubovskiĭ, A I

    1983-06-01

    A hard and soft ware computer assisted complex has been worked out for gamma-beam therapy. The complex included all radiotherapeutic units, including a Siemens program controlled betatron with an energy of 42 MEV computer ES-1022, a Medigraf system of the processing of graphic information, a Mars-256 system for control over the homogeneity of distribution of dose rate on the field of irradiation and a package of mathematical programs to select a plan of irradiation of various tumor sites. The prospects of the utilization of such complexes in the dosimetric support of radiation therapy are discussed.

  15. Effects of high voltage transmission lines on honeybees: a feasibility study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, B.

    1977-07-01

    Methodology is described for the investigation of the effects of electric fields generated by high-tension power lines on honeybees (Apis mellifera L.). The parameters to be measured include colony population, honey stores, amount of acoustical noise generated by the bees, in-hive temperature, incidence of queen cell production, and tendency to swarm. Accompanying dosimetric support includes in-hive electric field measurements, development of shielding to eliminate the electric field from selected colonies, analysis of the acoustical data, and periodic checks on the ambient electric field present under the line and at the control site.

  16. Analysis of arsenical metabolites in biological samples.

    PubMed

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  17. SU-E-T-308: Dosimetric Comparison of SBRT VMAT Treatment Plans Generated for 6 MV, 6 MV FFF, and 10 MV FFF Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D; Wang, B; Dunlap, N

    2015-06-15

    Purpose: To assess differences in treatment plan quality between VMAT stereotactic body plans generated using the 6 MV, 6 MV FFF, and 10 MV FFF modalities available in our clinic. Plans for lung, spine, and other sites were compared to see if there is any advantage of one modality over the other. Methods: Treatment plans done for actual SBRT patients were selected. Groups of ten lung plans, five spine plans, and five plans from other sites were selected. New treatment plans were generated for each plan using the Varian Eclipse AAA algorithm. The constraints were kept the same as usedmore » in the actual plans, but the same version of software was used to generate plans for the three modalities. In addition, because there are natural variations in plans re-done with the same dose constraints, one of the lung plans was repeated ten times to assess those differences. Volumes of the 100%, 90%, 50%, 20% and 10% isodose surfaces were compared. Maximum dose two centimeters from the PTV were compared, as well as the volume of the 105% isodose surface outside of the PTV. In addition, the 20 Gray lung volume was compared for the lung plans. The values of these parameters were divided by the values for the 6 MV plans for comparison. Average and standard deviations were obtained for quantities in each group. The Student t test was done to determine if differences were seen at the 95% confidence level. Results: Comparison of the treatment plans showed no significant differences when assessing these volumes and doses. There were not any trends seen when comparing modalities as a function of PTV volume either. Conclusion: There is no obvious dosimetric advantage in selection of one modality over another for these types of SBRT plans.« less

  18. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  19. Water vapour intercomparison effort in the frame of HyMeX-SOP1

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Stelitano, Dario; Cacciani, Marco; Flamant, Cyrille; Chazette, Patrick; Ducrocq, Véronique; Nuret, Mathieu; Fourié, Nadia; Richard, Evelyne

    2014-05-01

    A water vapour intercomparison effort, involving airborne and ground-based water vapour lidar systems and mesoscale models, was carried out in the framework of the international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. Within HyMeX, a major field campaign was dedicated to heavy precipitation and flash flood events from 5 September to 6 November 2012. The 2 month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The main objective of this work is to provide accurate error estimates for the lidar systems i.e. the ground-based Raman lidar BASIL and the CNRS DIAL Leandre 2 on board the ATR42, as well as use BASIL data to validate mesoscale model results from the MESO NH and Arome WMED. The effort will benefit from the few dedicated ATR42 flights in the frame of the EUFAR Project "WaLiTemp". In the present work our attention was focused on two specific case studies: 13 September and 2 October in the altitude region 0.5 - 5.5 km. Comparisons between the ground-based Raman lidar BASIL and the airborne CNRS DIAL indicate a mean relative bias between the two sensors of 6.5%, while comparisons between BASIL and CNRS DIAL vs. the radiosondes indicate a bias of 2.6 and -3.5 %, respectively. The bias of BASIL vs. the ATR insitu sensor indicate a bias of -20.4 %. Specific attention will also be dedicated to the WALI/BASIL intercomparison effort which took place in Candillargues on 30 October 2012. Specific results from this intercomparison effort and from the intercomparison between BASIL and Meso-NH/AROME-WMed will be illustrated and discussed at the Conference.

  20. An international marine-atmospheric {sup 222}Rn measurement intercomparison in Bermuda. Part 2: Results for the participating laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colle, R.; Unterweger, M.P.; Hutchinson, J.M.R.

    1996-01-01

    As part of an international measurement intercomparison of instruments used to measure atmospheric {sup 222}Rn, four participating laboratories made nearly simultaneous measurements of {sup 222}Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed (blind) {sup 222}Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The {sup 222}Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq {center_dot} m{sup {minus}3} to about 2more » Bq {center_dot} m{sup {minus}3}, while the standardized sample additions covered a range from approximately 2.5 Bq {center_dot} m{sup {minus}3} to 35 Bq {center_dot} m{sup {minus}3}. The overall uncertainty in the latter concentrations was in the general range of 10%, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq {center_dot} m{sup {minus}3}. The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65% to 70%, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40% with respect to the first two laboratories.« less

  1. DOSIMETRIC CHARACTERISTICS OF GAMMA-TRON-2 (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krongauz, A.N.; Pavlova, T.G.; Frolova, A.V.

    1963-01-01

    Dosimetric characteristics of the Gammatron-2 during operation in a static regimen are presented. The air dose and the distribution of doses along the central ray of the beam and on the sides were determined. The protective properties of Gammatron-2 were studied. On the basis of the measurements, charts of isodoses were elaborated. (P.C.H.)

  2. 1989 Intercomparison of radon progeny measurement methods and equipment in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, P.; George, A.; Tu, Keng.

    1990-03-01

    At the 1989 {sup 222}Rn progeny intercomparison held at the Environmental Measurements Laboratory (EML), July 10--14, 1989, grab sampling and integrating/continuous {sup 222}Rn progeny methods were evaluated. Sixteen facilities participated in this intercomparison. Twelve facilities used {sup 222}Rn progeny grab sampling methods, and nine facilities used integrating/continuous instruments. Eighty-eight percent of the participants reported grab sample {sup 222}Rn progeny concentrations that were within 20% of the EML reference values. Good agreement between participant and EML grab-sample potential alpha energy concentrations (PAECs) was observed; 92% of the participants had PAECs within 20% of the EML values. For the integrating/continuous PAEC valuesmore » determined with integrating/continuous monitors, 89% of the participants were within 20% of the EML reference values. 9 refs., 3 figs., 4 tabs.« less

  3. The dosimetric impact of including the patient table in CT dose estimates

    NASA Astrophysics Data System (ADS)

    Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin

    2017-12-01

    The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.

  4. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  5. Review of the poster "Dosimetric comparison of gamma knife radiosurgery vs. 125I plaque brachytherapy in a cohort of choroidal melanomas".

    PubMed

    Odell, Kelly R

    2009-01-01

    Historically, treatment for choroidal melanomas was surgical enucleation. Currently, treatment methods such as stereotactic radiosurgery and brachytherapy are being used to spare the eye. The poster "Dosimetric Comparison of Gamma Knife Radiosurgery vs. I-125 Plaque Brachytherapy in a Cohort of Choroidal Melanomas" presented at ASTRO 2007 by Anderson et al. provides a comparison of these methods. The dose to disk, fovea and lens in 29 patients from a simulated I-125 treatment and a delivered Gamma Knife radiosurgery was compared. Thirty Gy was prescribed to the 50% Isodose line in the radiosurgery and 85 Gy was prescribed to the apex of the tumor in the I-125 simulation. It was found that the Gamma Knife spares the disk better in 59% of the tumors, including those >or=6.5 mm in height; spares the fovea better in 69% of the tumors, including those >or=5.5 mm; and spares lens better in only 30% of the tumors, with no distinction in size. Tumor location was not taken into account for this study, which could explain the variations in smaller tumors. For larger tumors, gamma knife will protect most organs at risk more effectively. This study shows how a tumor's parameters can be used in selecting treatment modality.

  6. Validation of automatic segmentation of ribs for NTCP modeling.

    PubMed

    Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob

    2016-03-01

    Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: a conceptual approach.

    PubMed

    Oller, Adriana R; Oberdörster, Günter

    2016-09-01

    Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM 10 , inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported.

  8. Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: a conceptual approach

    PubMed Central

    Oberdörster, Günter

    2016-01-01

    Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM10, inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported. PMID:27721518

  9. Combined online and offline adaptive radiation therapy: a dosimetric feasibility study.

    PubMed

    Yang, Chengliang; Liu, Feng; Ahunbay, Ergun; Chang, Yu-Wen; Lawton, Colleen; Schultz, Christopher; Wang, Dian; Firat, Selim; Erickson, Beth; Li, X Allen

    2014-01-01

    The purpose of this work is to explore a new adaptive radiation therapy (ART) strategy, combined "online and offline" ART, that can fully account for interfraction variations similar to the existing online ART but with substantially reduced online effort. The concept for the combined ART is to perform online ART only for the fractions with obvious interfraction variations and to deliver the ART plan for that online fraction as well as the subsequent fractions until the next online fraction needs to be adapted. To demonstrate the idea, the daily computed tomographic (CT) data acquired during image guided radiation therapy (IGRT) with an in-room CT (CTVision, Siemens Healthcare, Amarillo, TX) for 6 representative patients (including 2 prostate, 1 head-and-neck, and 1 pancreatic cancer, 1 adrenal carcinoma, and 1 craniopharyngioma patients) were analyzed. Three types of plans were generated based on the following selected daily CTs: (1) IGRT repositioning plan, generated by applying the repositioning shifts to the original plan (representing the current IGRT practice); (2) Re-Opt plan, generated with full-scope optimization; and (3) ART plan, either online ART plan generated with an online ART tool (RealArt, Prowess Inc, Concord, CA) or offline ART plan generated with shifts from the online ART plan. Various dose-volume parameters were compared with measure dosimetric benefits of the ART plans based on daily dose distributions and the cumulative dose maps obtained with deformable image registration. In general, for all the cases studied, the ART (with 3-5 online ART) and Re-Opt plans provide comparable plan quality and offer significantly better target coverage and normal tissue sparing when compared with the repositioning plans. This improvement is statistically significant. The combined online and offline ART is dosimetrically equivalent to the online ART but with substantially reduced online effort, and enables immediate delivery of the adaptive plan when an obvious anatomic change is observed. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  10. SU-E-T-09: A Dosimetric Analysis of Various Clinically Used Bolus Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, M; Yeager, C; Zhou, F

    Purpose: To evaluate the dosimetric effect of various clinically used bolus materials. Methods: Materials investigated include solid water, superflab, wet gauze, wet sheets, Play-Doh{sup ™}, and gauze embedded with petroleum jelly. Each bolusing material was scanned in a Philips CT to determine the Hounsfield unit (HU) and to verify uniformity throughout the material. Using the corresponding HU, boluses of 0.5 cm and 1.0 cm thicknesses were created in the Eclipse treatment planning system (TPS) on a solid water phantom. Dose was calculated at various depths for beam energies 6 MV, 6 MeV, 9 MeV, and 12 MeV to determine themore » effects of each material on deposition of dose. In addition, linac-based measurements at these energies were made using a farmer chamber in solid water. Wet sheets and wet gauze were measured with various water content to quantify the effects on dose. Results: Preliminary CT scans find a range in HU of bolus materials from −120 to almost 300. There is a trend in the dose at depth based on the HU of the material; however inconsistencies are found when the bolus materials have a negative HU value. The measured data indicates that there is a linear relationship between the mass of water in a material and the dose reading, the slope of which is material dependent. Conclusion: Due to the variation in HU of the bolus materials studied, it is recommended that any new bolus be evaluated before clinical use to determine physical and dosimetric properties. If possible, patients should have bolus included in their CT scans; or if the bolus is created in the TPS, the HU should correspond to the material used. For water-soaked materials, once the bolus material is selected (gauze or sheet), the bolusing effect is only dependent on the amount of water applied to the material.« less

  11. Neovascular Glaucoma After Stereotactic Radiotherapy for Juxtapapillary Choroidal Melanoma: Histopathologic and Dosimetric Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Bruno F.; Weisbrod, Daniel; Yuecel, Yeni H.

    2011-06-01

    Purpose: Enucleation after stereotactic radiotherapy (SRT) for juxtapapillary choroidal melanoma may be required because of tumor progression (TP) or the development of intractable radiation-induced neovascular glaucoma (NVG). We compare pathologic changes and dosimetric findings in those eyes enucleated secondary to NVG as opposed to TP to better understand potential mechanisms. Methods and Materials: Patients with juxtapapillary choroidal melanoma treated with SRT (70 Gy in 5 fractions, alternate days over a total of 10 days) at the Princess Margaret Hospital, Toronto, Ontario, Canada, who underwent enucleation between 1998 and 2006 were selected. We correlated dosimetric data based on the patient's originalmore » SRT treatment plan with histopathologic findings in the retina, optic nerve head, and anterior chamber. A dedicated ocular pathologist reviewed each case in a blinded fashion. Results: Ten eyes in ten patients were enucleated after SRT. Six were enucleated secondary to NVG and four secondary to because of TP. Aggressive tumor features such as invasion of the sclera and epithelioid cell type were observed predominantly in the TP group. Retinal damage was more predominant in the NVG group, as were findings of radiation-related retinal vascular changes of fibrinoid necrosis and hyalinization. No conclusive radiation-related effects were found in the anterior chamber. The maximum point dose and dose to 0.1 cc were lower for the anterior chamber as compared with the dose to the tumor, retina, and optic nerve head. The mean 0.1-cc doses to the retina were 69.4 Gy and 73.5 Gy and to the anterior chamber were 4.9 Gy and 17.3 Gy for the NVG group and tumor progression group, respectively. Conclusions: Our findings suggest that NVG is due to radiation damage to the posterior chamber of the eye rather than primary radiation damage to the anterior segment.« less

  12. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patientmore » is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end-to-end ART QA phantom.« less

  13. SU-E-T-315: Dosimetric Effects of Couch Top Shift On VMAT Delivery in Absence of Indexing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, M; Jin, H; Ferguson, S

    2015-06-15

    Purpose: To investigate dosimetric effects of couch top shift for volumetric-modulated arc therapy (VMAT) in absence of indexing of immobilization devices. Methods: A total of twelve VMAT treatment plans were selected from three regions (lung, abdomen, and pelvis) to account for the variation of the patient position relative to the couch top. The treatment plans were generated using the Varian Eclipse system. A pinpoint ionization chamber (PTW TN31014) was placed at the center of 16-cm solid water phantom and the dose was delivered using the Varian TrueBeam STx with BrainLAB ExacTrac couch top. To simulate the day-to-day variation of themore » patient position relative to couch top, the couch top was laterally shifted up to 50 mm, with an increment of 5 mm from 0 to 20 mm; and of 10 mm afterwards, and the phantom was moved back to 0 cm shift for measurement. The dose was also delivered using a Varian tennis racket grid insert at 0 cm shift to simulate the absence of couch top. The treatment plans were delivered with 6, 10, and 15 MV photons using the same leaf sequencing to investigate the energy dependence of couch top shift. The dose difference was normalized to 0 cm shift for the regular couch top for comparison. Results: The percent difference of dose was found to increase with lateral shift for all energies; however, the average differences were close to 0% and the maximum difference was within 1% along the lateral shifts. The differences with the absence of couch top were 2.2±0.5% (6MV), 1.7±0.3% (10MV), and 1.6±0.2% (15MV), respectively. Conclusion: The inclusion of couch top is recommended in treatment planning to minimize the dosimetric uncertainty between calculated and delivered dose even in absence of indexing of immobilization devices in VMAT delivery.« less

  14. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    PubMed

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  15. SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Chibani, O; Jin, L

    2016-06-15

    Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plansmore » were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.« less

  16. Whole-breast irradiation: a subgroup analysis of criteria to stratify for prone position treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramella, Sara, E-mail: s.ramella@unicampus.it; Trodella, Lucio; Ippolito, Edy

    2012-07-01

    To select among breast cancer patients and according to breast volume size those who may benefit from 3D conformal radiotherapy after conservative surgery applied with prone-position technique. Thirty-eight patients with early-stage breast cancer were grouped according to the target volume (TV) measured in the supine position: small ({<=}400 mL), medium (400-700 mL), and large ({>=}700 ml). An ad-hoc designed and built device was used for prone set-up to displace the contralateral breast away from the tangential field borders. All patients underwent treatment planning computed tomography in both the supine and prone positions. Dosimetric data to explore dose distribution and volumemore » of normal tissue irradiated were calculated for each patient in both positions. Homogeneity index, hot spot areas, the maximum dose, and the lung constraints were significantly reduced in the prone position (p < 0.05). The maximum heart distance and the V{sub 5Gy} did not vary consistently in the 2 positions (p = 0.06 and p = 0.7, respectively). The number of necessary monitor units was significantly higher in the supine position (312 vs. 232, p < 0.0001). The subgroups analysis pointed out the advantage in lung sparing in all TV groups (small, medium and large) for all the evaluated dosimetric constraints (central lung distance, maximum lung distance, and V{sub 5Gy}, p < 0.0001). In the small TV group, a dose reduction in nontarget areas of 22% in the prone position was detected (p = 0.056); in the medium and high TV groups, the difference was of about -10% (p = NS). The decrease in hot spot areas in nontarget tissues was 73%, 47%, and 80% for small, medium, and large TVs in the prone position, respectively. Although prone breast radiotherapy is normally proposed in patients with breasts of large dimensions, this study gives evidence of dosimetric benefit in all patient subgroups irrespective of breast volume size.« less

  17. PFLOTRAN-RepoTREND Source Term Comparison Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.

    Code inter-comparison studies are useful exercises to verify and benchmark independently developed software to ensure proper function, especially when the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment. This summary describes the results of the first portion of the code inter-comparison between PFLOTRAN and RepoTREND, which compares the radionuclide source term used in a typical performance assessment.

  18. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-Comparison of Ground-Based Lightning Reference Networks

    NASA Technical Reports Server (NTRS)

    Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  19. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-comparison of Ground-based Lightning Reference Networks

    NASA Astrophysics Data System (ADS)

    Cummins, K. L.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; Cecil, D. J.; Rudlosky, S. D.; Petersen, W. A.; Blakeslee, R. J.; Goodman, S. J.

    2011-12-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala's Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  20. Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE

    NASA Technical Reports Server (NTRS)

    Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping

    2013-01-01

    Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.

  1. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  2. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less

  3. Intercomparison of radiocarbon bomb pulse and 210Pb age models. A study in a peat bog core from North Poland

    NASA Astrophysics Data System (ADS)

    Piotrowska, Natalia; De Vleeschouwer, François; Sikorski, Jarosław; Pawlyta, Jacek; Fagel, Nathalie; Le Roux, Gaël; Pazdur, Anna

    2010-04-01

    Radiocarbon and 210Pb were measured on the uppermost 40 cm of a Wardenaar peat core retrieved from a Baltic raised bog at Słowińskie Błota (Pomerania, North Poland). This site is the subject of ongoing multiproxy studies covering the last 1300 years. Radiocarbon age model was constructed on the basis of 14 AMS dates obtained on selected Sphagnum spp. fragments, with use of P_Sequence tool. We present here a comparison of this model with the age model obtained using CRS model classically applied to 210Pb measurements.

  4. Polar cloud and surface classification using AVHRR imagery - An intercomparison of methods

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Goroch, A. K.; Rabindra, P.; Rangaraj, N.; Navar, M. S.

    1992-01-01

    Six Advanced Very High-Resolution Radiometer local area coverage (AVHRR LAC) arctic scenes are classified into ten classes. Three different classifiers are examined: (1) the traditional stepwise discriminant analysis (SDA) method; (2) the feed-forward back-propagation (FFBP) neural network; and (3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6 percent, 87.6 percent, and 87.0 percent for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1 percent.

  5. SU-F-T-165: Daily QA Analysis for Spot Scanning Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poenisch, F; Gillin, M; Sahoo, N

    2016-06-15

    Purpose: The dosimetric results of our daily quality assurance over the last 8 years for discrete pencil beam scanning proton therapy will be presented. Methods: To perform the dosimetric checks, a multi-ion chamber detector is used, which consists of an array of 5 single parallel plate ion chambers that are aligned as a cross separated by 10cm each. The Tracker is snapped into a jig, which is placed on the tabletop. Different amounts of Solid Water buildup are added to shift the dose distribution. The dosimetric checks consist of 3 parts: position check, range check and volume dose check. Results:more » The average deviation of all position-check data were 0.2±1.3%. For the range check, the average deviation was 0.1%±1.2%, which also corresponds to a range stability of better than 1 mm over all measurements. The volumetric dose output readings were all within ±1% with the exception of 2 occasions when the cable to the dose monitor was being repaired. Conclusion: Morning QA using the Tracker device gives very stable dosimetric readings but is also sensitive to mechanical and output changes in the proton therapy delivery system.« less

  6. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators.

    PubMed

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-09-01

    Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.

  7. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.

    2013-07-01

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  8. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods.

    PubMed

    Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg

    2005-02-21

    A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.

  9. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  10. SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.

    PubMed

    Sheth, N; Chen, Y; Yang, J

    2012-06-01

    The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.

  11. Analysis of estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in conventional road vehicle environments.

    PubMed

    Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco

    2015-03-01

    A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.

  12. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    PubMed

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  13. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.

    PubMed

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful

    2014-01-01

    Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients' respiratory efforts for gated arc therapy.

  14. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants.

    PubMed

    Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-09-01

    One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P + and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant ( p = 0.002). The HIPO with MR treatment plans produced a higher P + by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions.

  15. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants

    PubMed Central

    Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-01-01

    Purpose One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. Material and methods The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D¯¯) were used for treatment plan evaluation and comparison. Results Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant (p = 0.002). The HIPO with MR treatment plans produced a higher P+ by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Conclusions Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions. PMID:27853473

  16. TU-CD-304-03: Dosimetric Verification and Preliminary Comparison of Dynamic Wave Arc for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghelea, M; BRAINLAB AG, Munich; Babes Bolyai University, Cluj-Napoca

    2015-06-15

    Purpose: To evaluate the potential dosimetric benefits and verify the delivery accuracy of Dynamic Wave Arc, a novel treatment delivery approach for the Vero SBRT system. Methods: Dynamic Wave Arc (DWA) combines simultaneous movement of gantry/ring with inverse planning optimization, resulting in an uninterrupted non-coplanar arc delivery technique. Thirteen SBRT complex cases previously treated with 8–10 conformal static beams (CRT) were evaluated in this study. Eight primary centrally-located NSCLC (prescription dose 4×12Gy or 8×7.5Gy) and five oligometastatic cases (2×2 lesions, 10×5Gy) were selected. DWA and coplanar VMAT plans, partially with dual arcs, were generated for each patient using identical objectivemore » functions for target volumes and OARs on the same TPS (RayStation, RaySearch Laboratories). Dosimetric differences and delivery time among these three planning schemes were evaluated. The DWA delivery accuracy was assessed using the Delta4 diode array phantom (ScandiDos AB). The gamma analysis was performed with the 3%/3mm dose and distance-to-agreement criteria. Results: The target conformity for CRT, VMAT and DWA were 0.95±0.07, 0.96±0.04 and 0.97±0.04, while the low dose spillage gradient were 5.52±1.36, 5.44±1.11, and 5.09±0.98 respectively. Overall, the bronchus, esophagus and spinal cord maximum doses were similar between VMAT and DWA, but highly reduced compared with CRT. For the lung cases, the mean dose and V20Gy were lower for the arc techniques compares with CRT, while for the liver cases, the mean dose and the V30Gy presented slightly higher values. The average delivery time of VMAT and DWA were 2.46±1.10 min and 4.25±1.67 min, VMAT presenting shorter treatment time in all cases. The DWA dosimetric verification presented an average gamma index passing rate of 95.73±1.54% (range 94.2%–99.8%). Conclusion: Our preliminary data indicated that the DWA is deliverable with clinically acceptable accuracy and has the potential to further improve the plan quality. This collaborative work was supported by the Flemish government through the Hercules foundation and corporate funding from BrainLab AG. The first and the sixth author are financially supported by Brainlab AG. The other authors have no conflict of interest.« less

  17. NDSC Lidar Intercomparisons and Validation: OPAL and MLO3 Campaigns in 1995

    NASA Technical Reports Server (NTRS)

    McDermid, Stuart; McGee, Thomas J.; Stuart, Daan P. J.

    1996-01-01

    The Network for the Detection of Stratospheric Change (NDSC) has developed and adopted a Validation Policy in order to ensure that the results submitted and stored in its archives are of a known, high quality. As a part of this validation policy, blind instrument intercomparisons are considered an essential element in the certification of NDSC instruments and a specific format for these campaigns has been recommended by the NDSC-Steering Committee.

  18. The April 1992 and November 1992 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1993-07-01

    The Environmental Measurements Laboratory hosted two intercomparison exercises in Calendar Year 1992. Thirty-two groups, including US federal facilities, US Department of Energy`s Office of Health and Environmental Research contractors, national and state laboratories, and universities and foreign institutions, participated in these exercises. The majority of the participants` results were within {plus_minus}10% of the EML value at radon concentrations of 2075 and 1650 Bq m{sup {minus}3}.

  19. International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Ahn, Seung Kyu; Aoki, Dasiuke; Kokubo, Junichi; Yoon, Kyung Hoon; Saito, Hidenori; Lee, Kyung Sik; Magaino, Shinichi; Takagi, Katsuhiko; Lin, Ling-Chuan; Lee, Kun-Mu; Wu, Chun-Guey; Zhou, Hong; Igari, Sanekazu

    2017-02-01

    An international round-robin inter-comparison of the spectral responsivity (SR) and current-voltage (I-V) characteristics for dye-sensitized solar cells (DSCs) and crystalline silicon solar cells is reported for the first time. The crystalline silicon cells with various spectral responsivities were also calibrated by AIST to validate this round-robin activity. On the basis of the remarkable consistency in Pmax (within ±1.4% among participants) and Isc (within ±1.2% compared to the primary calibration of AIST) of the silicon specimens, the discrepancy in the SR and photovoltaic parameters of five DSCs among three national laboratories can be verified and diagnosed. Recommendations about sample packages, SR and I-V measurement methods as well as the inter-comparison protocol for improving the performance characterization of the mesoscopic DSCs are presented according to the consolidated data and the experience of the participants.

  20. The April 1994 and October 1994 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities andmore » foreign institutions participated in these exercises. The majority of the participant`s results were within {+-}10% of the EML value at radon concentrations of 570 and 945 Bq m{sup {minus}3}.« less

  1. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE PAGES

    Elliott, J.; Müller, C.; Deryng, D.; ...

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  2. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.

    1990-01-01

    The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.

  3. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the three axis. TriTel data evaluation and error estimations were studied in details. The evaluated deposited energy spectra measured with the improved TriTel instrument were compared with the count rates measured with the GM counters to calibrate them for dose rate in the cosmic radiation field at the altitude of the stratospheric balloons. From the SSNTD results the contribution of thermal neutrons was determined. In the frame of the TriTel and Pille intercomparison a correction factor calculation method was determined for future ISS data evaluation. The results will be used in the future scientific data evaluation in case of the ISS measurements. As a future outlook a short overview will be given about planned rocket radiation experiments.

  4. Three models intercomparison for Quantitative Precipitation Forecast over Calabria

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Lavagnini, A.; Accadia, C.; Mariani, S.; Casaioli, M.

    2004-11-01

    In the framework of the National Project “Sviluppo di distretti industriali per le Osservazioni della Terra” (Development of Industrial Districts for Earth Observations) funded by MIUR (Ministero dell'Università e della Ricerca Scientifica --Italian Ministry of the University and Scientific Research) two operational mesoscale models were set-up for Calabria, the southernmost tip of the Italian peninsula. Models are RAMS (Regional Atmospheric Modeling System) and MM5 (Mesoscale Modeling 5) that are run every day at Crati scrl to produce weather forecast over Calabria (http://www.crati.it). This paper reports model intercomparison for Quantitative Precipitation Forecast evaluated for a 20 month period from 1th October 2000 to 31th May 2002. In addition to RAMS and MM5 outputs, QBOLAM rainfall fields are available for the period selected and included in the comparison. This model runs operationally at “Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici”. Forecasts are verified comparing models outputs with raingauge data recorded by the regional meteorological network, which has 75 raingauges. Large-scale forcing is the same for all models considered and differences are due to physical/numerical parameterizations and horizontal resolutions. QPFs show differences between models. Largest differences are for BIA compared to the other considered scores. Performances decrease with increasing forecast time for RAMS and MM5, whilst QBOLAM scores better for second day forecast.

  5. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W.T.; Siebers, J.V.

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less

  6. Preliminary study for small animal preclinical hadrontherapy facility

    NASA Astrophysics Data System (ADS)

    Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.

    2017-02-01

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.

  7. SU-F-T-107: Correlations Between Dosimetric Indices of Pharyngeal Constrictors and Proximal Esophagus with Associated Patient-Reported Outcomes Six Months After Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chera, B; Price, A; Kostich, M

    Purpose: To compare the correlations between different dosimetric indices derived from the pharyngeal constrictor muscles and proximal esophagus with patient-reported difficulty in swallowing 6 months post radiotherapy using a novel patient reported outcome version of CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. We investigated correlations of individual patient dosimetric data of the superior (SPC), middle (MPC), inferior (IPC) pharyngeal constrictor muscles, the superior esophagus (SES), and the inferior esophagus (IES) to their self-reported 6 month post-treatment swallowing difficulty responses. Mild (≥more » Grade 1) swallowing difficulty responses were used as the clinical endpoint indicating response. The predictive efficacy of Dmean and dose-volume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratio (OR). Results: The SES and SPC had more favorable area under the curves (AUC) for the Dmean (0.62 and 0.70) while the Dmean to the IPC, MPC, and IES produced suboptimal AUCs (0.42, 0.48, and 0.52). Additionally, over the range of VD, the V54 and V55 for the SES and SPC demonstrated the highest AUCs: AUC(SES) = 0.76–0.73 and AUC(SPC) = 0.72–0.69, respectively. The IES, IPC, and MPC had worse AUC results over the range of VD. An optimal OR can be found when V54 = 96% for the SPC, where OR = 3.96 (1.07–14.62). Conclusion: The V45 and V55 of the SES and SPC had the highest correlation to the clinical endpoint compared to the commonly used dosimetric index, Dmean for both the esophagus and constrictor muscles. The reported dosimetric data demonstrates that new dosimetric indices may need to be considered in the setting of dose de-escalation and self-reported outcomes.« less

  8. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma.

    PubMed

    Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo

    2018-02-09

    The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.

  9. Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: rototranslational shift and dosimetric consequences

    PubMed Central

    Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario

    2015-01-01

    The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric‐modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT‐SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were <5mm in 81% of patients and the rotational shifts were <2∘ in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT‐TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p<0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing. PACS number: 87.55.de PMID:26699314

  10. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less

  11. Dosimetric treatment course simulation based on a statistical model of deformable organ motion

    NASA Astrophysics Data System (ADS)

    Söhn, M.; Sobotta, B.; Alber, M.

    2012-06-01

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.

  12. Dose-Volume Effects on Patient-Reported Acute Gastrointestinal Symptoms During Chemoradiation Therapy for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ronald C.; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

    2012-07-15

    Purpose: Research on patient-reported outcomes (PROs) in rectal cancer is limited. We examined whether dose-volume parameters of the small bowel and large bowel were associated with patient-reported gastrointestinal (GI) symptoms during 5-fluorouracil (5-FU)-based chemoradiation treatment for rectal cancer. Methods and Materials: 66 patients treated at the Brigham and Women's Hospital or Massachusetts General Hospital between 2006 and 2008 were included. Weekly during treatment, patients completed a questionnaire assessing severity of diarrhea, urgency, pain, cramping, mucus, and tenesmus. The association between dosimetric parameters and changes in overall GI symptoms from baseline through treatment was examined by using Spearman's correlation. Potential associationsmore » between these parameters and individual GI symptoms were also explored. Results: The amount of small bowel receiving at least 15 Gy (V15) was significantly associated with acute symptoms (p = 0.01), and other dosimetric parameters ranging from V5 to V45 also trended toward association. For the large bowel, correlations between dosimetric parameters and overall GI symptoms at the higher dose levels from V25 to V45 did not reach statistical significance (p = 0.1), and a significant association was seen with rectal pain from V15 to V45 (p < 0.01). Other individual symptoms did not correlate with small bowel or large bowel dosimetric parameters. Conclusions: The results of this study using PROs are consistent with prior studies with physician-assessed acute toxicity, and they identify small bowel V15 as an important predictor of acute GI symptoms during 5-FU-based chemoradiation treatment. A better understanding of the relationship between radiation dosimetric parameters and PROs may allow physicians to improve radiation planning to optimize patient outcomes.« less

  13. Influence of Free Radicals Signal from Dental Resins on the Radio-Induced Signal in Teeth in EPR Retrospective Dosimetry

    PubMed Central

    Dos Santos-Goncalvez, Ana Maria; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Gallez, Bernard

    2013-01-01

    In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal. PMID:23704875

  14. The use of megavoltage CT (MVCT) images for dose recomputations

    NASA Astrophysics Data System (ADS)

    Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.

    2005-09-01

    Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.

  15. Dosimetric treatment course simulation based on a statistical model of deformable organ motion.

    PubMed

    Söhn, M; Sobotta, B; Alber, M

    2012-06-21

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.

  16. Dosimetric Considerations in Respiratory-Gated Deep Inspiration Breath-Hold for Left Breast Irradiation.

    PubMed

    Walston, Steve; Quick, Allison M; Kuhn, Karla; Rong, Yi

    2017-02-01

    To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V 20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.

  17. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  18. Subungual squamous cell carcinoma: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neill, Cory J., E-mail: coryjneill@gmail.com

    The purpose of this case study is to describe a dosimetric delivery of radiation to a superficial disease process involving the skin and bone of the distal finger. A 76-year-old male patient presented with a subungual squamous cell carcinoma (SCC) of the left distal index finger with bony involvement. The patient refused conventional surgical treatment but agreed to external beam radiation therapy (EBRT). There is a gap in the current literature describing how to successfully immobilize fingers and which EBRT modality is dosimetrically advantageous in treating them. The construction of a simple immobilization method with the patient in a reproduciblemore » position is described. The use of photons and electrons were compared ultimately showing photons to be dosimetrically advantageous. Long-term efficacy of the treatment was not evaluated because of patient noncompliance.« less

  19. DARTAB: a program to combine airborne radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of predicted health impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.

    1981-08-01

    The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less

  20. Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.

    PubMed

    Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2015-12-01

    We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez

    2013-07-03

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138more » Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.« less

  2. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators

    PubMed Central

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-01-01

    Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681

  3. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code

    NASA Astrophysics Data System (ADS)

    Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.

    2006-02-01

    Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.

  4. Transformation of Physical DVHs to Radiobiologically Equivalent Ones in Hypofractionated Radiotherapy Analyzing Dosimetric and Clinical Parameters: A Practical Approach for Routine Clinical Practice in Radiation Oncology

    PubMed Central

    Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis

    2013-01-01

    Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743

  5. Radiation-induced complications in prostate cancer patients treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.

    2014-09-01

    The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.

  6. ACIX: Atmospheric Correction Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Doxani, Georgia; Gascon, Ferran; Vermote, Éric; Roger, Jean-Claude

    2017-04-01

    The free and open data access policy to Sentinel-2 (S-2) and Landsat-8 (L-8) satellite imagery has stimulated the development of atmospheric correction (AC) processors for generating Bottom-of-Atmosphere (BOA) products. Several entities have started to generate (or plan to generate in the short term) BOA reflectance products at global scale for S-2 and L-8 missions. To this end, the European Space Agency (ESA) and NASA are organizing an exercise on AC processors inter-comparison. The results of the exercise are expected to point out the strengths and weaknesses, as well as communalities and discrepancies of various AC processors, in order to suggest and define ways for their further improvement. In particular, 13 atmospheric processors from five different countries participate in ACIX with the aim to inter-compare their performance when applied to L-8 and S-2 data. A protocol describing the inter-comparison process and the test dataset, which is based on the AERONET sites, will be presented. The protocol has been defined according to what was agreed among the participants during the 1st ACIX workshop held in June 2016. It includes the comparison of aerosol optical thickness and water vapour products of the processors with the AERONET measurements. Moreover, concerning the surface reflectances, the protocol describes the inter-comparison among the processors, as well as the comparison with the MODIS surface reflectance and with a reference surface reflectance product. Such a reference product will be obtained using the AERONET characterization of the aerosol (size distribution and refractive indices) and an accurate radiative transfer code. The inter-comparison outcomes will be presented and discussed among the participants in the 2nd ACIX workshop, which will be held on 11-12 April 2017 (ESRIN/ESA). The proposed presentation is an opportunity for the user community to be informed for the first time about the ACIX results and conclusions.

  7. The Assessment of Atmospheric Correction Processors for MERIS Based on In-Situ Measurements-Updates in OC-CCI Round Robin

    NASA Astrophysics Data System (ADS)

    Muller, Dagmar; Krasemann, Hajo; Zuhilke, Marco; Doerffer, Roland; Brockmann, Carsten; Steinmetz, Francois; Valente, Andre; Brotas, Vanda; Grant, kMicheal G.; Sathyendranath, Shubha; Melin, Frederic; Franz, Bryan A.; Mazeran, Constant; Regner, Peter

    2016-08-01

    The Ocean Colour Climate Change Initiative (OC- CCI) provides a long-term time series of ocean colour data and investigates the detectable climate impact. A reliable and stable atmospheric correction (AC) procedure is the basis for ocean colour products of the necessary high quality.The selection of atmospheric correction processors is repeated regularly based on a round robin exercise, at the latest when a revised production and release of the OC-CCI merged product is scheduled. Most of the AC processors are under constant development and changes are implemented to improve the quality of satellite-derived retrievals of remote sensing reflectances. The changes between versions of the inter-comparison are not restricted to the implementation of AC processors. There are activities to improve the quality flagging for some processors, and the system vicarious calibration for AC algorithms in their sensor specific behaviour are widely studied. Each inter-comparison starts with an updated in-situ database, as more spectra are included in order to broaden the temporal and spatial range of satellite match-ups. While the OC-CCI's focus has laid on case-1 waters in the past, it has expanded to the retrieval of case-2 products now. In light of this goal, new bidirectional correction procedures (normalisation) for the remote sensing spectra have been introduced. As in-situ measurements are not always available at the satellite sensor specific central wave- lengths, a band-shift algorithm has to be applied to the dataset.In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite-derived water leaving reflectance spectra, is aided by a ranking system. In principal, the statistical parameters are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results.A comparison of round robin results for the OC-CCI version 2 and the current version 3 is presented and some major changes are highlighted.

  8. ATHLI16: the ATHens Lidar Intercomparison campaign

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; D'Amico, Giuseppe; Giunta, Aldo; Papagiannopoulos, Nikolaos; Papayannis, Alex; Argyrouli, Athina; Mylonaki, Maria; Tsaknakis, Georgios; Kokkalis, Panos; Soupiona, Ourania; Tzanis, Chris

    2018-04-01

    The results of the ATHLI16 (ATHens Lidar Intercomparison) campaign, held in Athens from 26/09 to 07/10 2016 are presented. The campaign was performed within the Lidar Calibration Centre activities (EU H2020 ACTRIS-2 project) to assess the performance of the EOLE lidar system (NTUA, Athens, Greece), operating within EARLINET, by comparing against the EARLINET reference lidar system MUSA (CNR-IMAA, Potenza, Italy). For both lidars only products retrieved by the EARLINET Single Calculus Chain have been compared.

  9. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry--part II (volume sources).

    PubMed

    Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J

    2012-09-01

    The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. VLBI Digital-Backend Intercomparison Test Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Beaudoin, Christopher; Cappallo, Roger; Niell, Arthur; Petrachenko, Bill; Ruszczyk, Chester A.; Titus, Mike

    2013-01-01

    Issues related to digital-backend (DBE) systems can be difficult to evaluate in either local tests or actual VLBI experiments. The 2nd DBE intercomparison workshop at Haystack Observatory on 25-26 October 2012 provided a forum to explicitly address validation and interoperability issues among independent global developers of DBE equipment. This special report discusses the workshop. It identifies DBE systems that were tested at the workshop, describes the test objectives and procedures, and reports and discusses the results of the testing.

  11. The August 1988 and June 1989 radon intercomparisons at EML (Environmental Measurements Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1990-06-01

    The Environmental Measurements Laboratory hosted the fifteenth and sixteenth radon intercomparison exercises in August 1988 and June 1989. Forty-five groups including US Federal facilities, USDOE Office of Health and Environmental Research contractors, national and state laboratories and foreign institutions participated in these exercises. The results show that the majority of the participants' results were within {plus minus} of the EML value at radon concentrations of 220 and 890 Bq m{sup {minus}3}. 10 refs., 4 figs., 9 tabs.

  12. Preliminary results of an intercomparison of total ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Williams, M. E.; Kerr, J. B.

    1981-01-01

    Preliminary results from an intercomparison of five total ozone spectrophotometers are presented. These are the Dobson spectrophotometer, the USSR M-83 ozonometer, the Canterbury filter photometer, the SenTran Company filter photometer, and the Brewer grating spectrophotometer. The pertinent characteristics of each are described, and conclusions are drawn about the agreement of each instrument's measurements with the Dobson's values over a time period of nearly one year. A discussion of the importance of calibration and long-term stability and reliability is included.

  13. Deep Search for Satellites Around the Lucy Mission Targets

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2017-08-01

    By performing the first deep search for Trojan satellites with HST we will obtain unique constraints on satellite-forming processes in this population. We have selected the targets from NASA's Lucy mission because they represent a taxonomically and physically diverse set of targets that allow intercomparisons from a small survey. Also, by searching now to identify any orbiting material around the Lucy targets, it will be possible impact hardware decisions and plan for maximum scientific return from the mission. This search also is a necessary step to assure mission safety as the Lucy spacecraft will fly within 1000 km of the targets, well within the region where stable orbits can exist.

  14. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  15. Potential dosimetric benefit of dose-warping based 4D planning compared to conventional 3D planning in liver stereotactic body radiotherapy (SBRT)

    NASA Astrophysics Data System (ADS)

    Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.

    2013-06-01

    Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.

  16. The work of the ICRP dose calculational task group: Issues in implementation of the ICRP dosimetric methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, K.F.

    Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less

  17. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less

  19. Maintaining High Quality Data and Consistency Across a Diverse Flux Network: The Ameriflux QA/QC Technical Team

    NASA Astrophysics Data System (ADS)

    Chan, S.; Billesbach, D. P.; Hanson, C. V.; Biraud, S.

    2014-12-01

    The AmeriFlux quality assurance and quality control (QA/QC) technical team conducts short term (<2 weeks) intercomparisons using a portable eddy covariance system (PECS) to maintain high quality data observations and data consistency across the AmeriFlux network (http://ameriflux.lbl.gov/). Site intercomparisons identify discrepancies between the in situ and portable measurements and calculated fluxes. Findings are jointly discussed by the site staff and the QA/QC team to improve in the situ observations. Despite the relatively short duration of an individual site intercomparison, the accumulated record of all site visits (numbering over 100 since 2002) is a unique dataset. The ability to deploy redundant sensors provides a rare opportunity to identify, quantify, and understand uncertainties in eddy covariance and ancillary measurements. We present a few specific case studies from QA/QC site visits to highlight and share new and relevant findings related to eddy covariance instrumentation and operation.

  20. An overview of sensor calibration inter-comparison and applications

    USGS Publications Warehouse

    Xiong, Xiaoxiong; Cao, Changyong; Chander, Gyanesh

    2010-01-01

    Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies.

  1. BIPM project: Intercomparison of water triple-point cells

    NASA Astrophysics Data System (ADS)

    Chattle, M. V.; Butler, J.

    1994-12-01

    The paper presents the results of an intercomparison between 3 triple point of water cells circulated by the Bureau International des Poids et Measures (BIPM), and a cell which is one of those used as a reference cell at the National Physical Laboratory (NPL). All 4 cells were prepared, stored and measured in the manner normally adopted at NPL. The results of the intercomparison show that over the course of about 6 weeks the temperatures of the 3 circulated cells generally agreed within 0.20 mK, with a maximum difference of 0.27(7) mK. Over the same period, the total variations of temperature measured in the 3 individual cells were 0.04 mK, 0.08 mK and 0.18 mK, respectively; the NPL cell varied by 0.10 mK. Gallium point measurements made over a similar period confirmed that these differences were partly due to small drifts in the thermometer resistance or in the measuring system.

  2. FACE-IT. A Science Gateway for Food Security Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montella, Raffaele; Kelly, David; Xiong, Wei

    Progress in sustainability science is hindered by challenges in creating and managing complex data acquisition, processing, simulation, post-processing, and intercomparison pipelines. To address these challenges, we developed the Framework to Advance Climate, Economic, and Impact Investigations with Information Technology (FACE-IT) for crop and climate impact assessments. This integrated data processing and simulation framework enables data ingest from geospatial archives; data regridding, aggregation, and other processing prior to simulation; large-scale climate impact simulations with agricultural and other models, leveraging high-performance and cloud computing; and post-processing to produce aggregated yields and ensemble variables needed for statistics, for model intercomparison, and to connectmore » biophysical models to global and regional economic models. FACE-IT leverages the capabilities of the Globus Galaxies platform to enable the capture of workflows and outputs in well-defined, reusable, and comparable forms. We describe FACE-IT and applications within the Agricultural Model Intercomparison and Improvement Project and the Center for Robust Decision-making on Climate and Energy Policy.« less

  3. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vives i Batlle, J.; Beresford, N. A.; Beaugelin-Seiller, K.

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of 90Sr, 131I and 137Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and whichmore » uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.« less

  4. The Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2)

    NASA Astrophysics Data System (ADS)

    Van Roozendael, M.; Hendrick, F.; Apituley, A.; Kreher, K.; Friess, U.; Richter, A.; Wagner, T.; Fehr, T.

    2017-12-01

    For the validation of space borne UV-Vis observations of air quality gases, ground based remote-sensing instruments using the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. Over the last decade, MAXDOAS instruments of various designs (including PANDORA systems) have been deployed worldwide forming the basis for a global ground based reference network suitable for the validation of future satellite sensors, such as TROPOMI/Sentinel-5 precursor, GEMS, TEMPO, and Sentinel 4 and 5. To ensure proper traceability of these observations, assess their accuracy and progress towards harmonized data acquisition and delivery, a thorough intercomparison campaign known as the Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2) was held in Cabauw, The Netherlands during the month of September 2016. About 35 MAXDOAS instruments operated by 25 different groups were deployed, together with systems providing key ancillary in-situ measurements of NO2 and aerosol optical properties, as well as vertical profiles of NO2 by lidar and sonde and vertical profiles of aerosol optical properties by Raman lidar. We provide an overview of the main outcome of the campaign, which included a formal semi-blind slant column intercomparison and a number of additional exercises aiming at assessing the potential of the MAXDOAS technique for retrieving vertically-resolved information on NO2, aerosol, HCHO, O3 and a few other more challenging species such as HONO and glyoxal.

  5. The 1996 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Ehramjian, James; Tusson, John; Mestechkina, Tanya; Beaubian, Mark; Gibson, James; Hayes, Douglass

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the third North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 17–25, 1996 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. The spectral irradiances of participants’ calibrated standard lamps were measured at NIST prior to the Intercomparison. The spectral irradiance scales used by the participants agreed with the NIST scale within the combined uncertainties, and for all lamps the spectral irradiance in the horizontal position was lower than that in the vertical position. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with NIST standard lamps operating in specially designed field calibration units. The spectral irradiance responsivity demonstrated instabilities for some instruments. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamps, the measured solar irradiances had some unexplained systematic differences between instruments. PMID:28009358

  6. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  7. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution—the fractional volumes receiving a dose above 20 Gy for the spinal cord are reduced by more than 40% when compared to the alternative schemes, while maintaining the same PTV coverage. With physically more meaningful modeling of the inter-structural tradeoff, the reported technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters. The new formalism also opens new opportunities for incorporating prior knowledge to facilitate the treatment planning process.

  8. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and cold states in the far-field ocean forcing. The MISOMIP experiment combines the MISMIP+ experiments with the third ISOMIP+ experiment. Changes in far-field ocean forcing lead to a rapid (over ~1-2 years) increase in sub-ice-shelf melting, which is allowed to drive ice-shelf retreat for ~100 years. Then, the far-field forcing is switched to a cold state, leading to a rapid decrease in melting and a subsequent advance over ~100 years. To illustrate, we present results from BISICLES and POP2x experiments for each of the three intercomparison exercises.

  9. Intercomparison of Operational Ocean Forecasting Systems in the framework of GODAE

    NASA Astrophysics Data System (ADS)

    Hernandez, F.

    2009-04-01

    One of the main benefits of the GODAE 10-year activity is the implementation of ocean forecasting systems in several countries. In 2008, several systems are operated routinely, at global or basin scale. Among them, the BLUElink (Australia), HYCOM (USA), MOVE/MRI.COM (Japan), Mercator (France), FOAM (United Kingdom), TOPAZ (Norway) and C-NOOFS (Canada) systems offered to demonstrate their operational feasibility by performing an intercomparison exercise during a three months period (February to April 2008). The objectives were: a) to show that operational ocean forecasting systems are operated routinely in different countries, and that they can interact; b) to perform in a similar way a scientific validation aimed to assess the quality of the ocean estimates, the performance, and forecasting capabilities of each system; and c) to learn from this intercomparison exercise to increase inter-operability and collaboration in real time. The intercomparison relies on the assessment strategy developed for the EU MERSEA project, where diagnostics over the global ocean have been revisited by the GODAE contributors. This approach, based on metrics, allow for each system: a) to verify if ocean estimates are consistent with the current general knowledge of the dynamics; and b) to evaluate the accuracy of delivered products, compared to space and in-situ observations. Using the same diagnostics also allows one to intercompare the results from each system consistently. Water masses and general circulation description by the different systems are consistent with WOA05 Levitus climatology. The large scale dynamics (tropical, subtropical and subpolar gyres ) are also correctly reproduced. At short scales, benefit of high resolution systems can be evidenced on the turbulent eddy field, in particular when compared to eddy kinetic energy deduced from satellite altimetry of drifter observations. Comparisons to high resolution SST products show some discrepancies on ocean surface representation, either due to model and forcing fields errors, or assimilation scheme efficiency. Comparisons to sea-ice satellite products also evidence discrepancies linked to model, forcing and assimilation strategies of each forecasting system. Key words: Intercomparison, ocean analysis, operational oceanography, system assessment, metrics, validation GODAE Intercomparison Team: L. Bertino (NERSC/Norway), G. Brassington (BMRC/Australia), E. Chassignet (FSU/USA), J. Cummings (NRL/USA), F. Davidson (DFO/Canda), M. Drévillon (CERFACS/France), P. Hacker (IPRC/USA), M. Kamachi (MRI/Japan), J.-M. Lellouche (CERFACS/France), K. A. Lisæter (NERSC/Norway), R. Mahdon (UKMO/UK), M. Martin (UKMO/UK), A. Ratsimandresy (DFO/Canada), and C. Regnier (Mercator Ocean/France)

  10. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    PubMed

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  11. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  12. Four-dimensional computed tomography based respiratory-gated radiotherapy with respiratory guidance system: analysis of respiratory signals and dosimetric comparison.

    PubMed

    Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum

    2014-01-01

    To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.

  13. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  14. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.

    PubMed

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun

    2015-11-07

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  15. Development of patient-specific phantoms for verification of stereotactic body radiation therapy planning in patients with metallic screw fixation

    NASA Astrophysics Data System (ADS)

    Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull

    2017-01-01

    A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.

  16. Consistency of climate change projections from multiple global and regional model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  17. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm, and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA

  18. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy.

    PubMed

    Zhang, Lian; Wang, Zhi; Shi, Chengyu; Long, Tengfei; Xu, X George

    2018-05-30

    Deformable image registration (DIR) is the key process for contour propagation and dose accumulation in adaptive radiation therapy (ART). However, currently, ART suffers from a lack of understanding of "robustness" of the process involving the image contour based on DIR and subsequent dose variations caused by algorithm itself and the presetting parameters. The purpose of this research is to evaluate the DIR caused variations for contour propagation and dose accumulation during ART using the RayStation treatment planning system. Ten head and neck cancer patients were selected for retrospective studies. Contours were performed by a single radiation oncologist and new treatment plans were generated on the weekly CT scans for all patients. For each DIR process, four deformation vector fields (DVFs) were generated to propagate contours and accumulate weekly dose by the following algorithms: (a) ANACONDA with simple presetting parameters, (b) ANACONDA with detailed presetting parameters, (c) MORFEUS with simple presetting parameters, and (d) MORFEUS with detailed presetting parameters. The geometric evaluation considered DICE coefficient and Hausdorff distance. The dosimetric evaluation included D 95 , D max , D mean , D min , and Homogeneity Index. For geometric evaluation, the DICE coefficient variations of the GTV were found to be 0.78 ± 0.11, 0.96 ± 0.02, 0.64 ± 0.15, and 0.91 ± 0.03 for simple ANACONDA, detailed ANACONDA, simple MORFEUS, and detailed MORFEUS, respectively. For dosimetric evaluation, the corresponding Homogeneity Index variations were found to be 0.137 ± 0.115, 0.006 ± 0.032, 0.197 ± 0.096, and 0.006 ± 0.033, respectively. The coherent geometric and dosimetric variations also consisted in large organs and small organs. Overall, the results demonstrated that the contour propagation and dose accumulation in clinical ART were influenced by the DIR algorithm, and to a greater extent by the presetting parameters. A quality assurance procedure should be established for the proper use of a commercial DIR for adaptive radiation therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. MO-F-CAMPUS-J-05: Using 2D Relative Gamma Analysis From EPID Image as a Predictor of Plan Deterioration Due to Anatomical Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piron, O; Varfalvy, N; Archambault, L

    2015-06-15

    Purpose: One of the side effects of radiotherapy for head and neck (H&N) cancer is the patient’s anatomical changes. The changes can strongly affect the planned dose distribution. In this work, our goal is to demonstrate that relative analysis of EPID images is a fast and simple method to detect anatomical changes that can have a strong dosimetric impact on the treatment plan for H&N patients. Methods: EPID images were recorded at every beam and all fractions for 50 H&N patients. Of these, five patients that showed important anatomical changes were selected to evaluate dosimetric impacts of these changes andmore » to correlate them with a 2D relative gamma analysis of EPID images. The planning CT and original contours were deformed onto CBCTs (one mid treatment and one at the end of treatment). By using deformable image registration, it was possible to map accurate CT numbers from the planning CT to the anatomy of the day obtained with CBCTs. Clinical treatment plan were then copied on the deformed dataset and dose was re-computed. In parallel, EPID images were analysed using the gamma index (3%3mm) relative to the first image. Results: It was possible to divide patients in two distinct, statistically different (p<0.001) categories using an average gamma index of 0.5 as a threshold. Below this threshold no significant dosimetric degradation of the plan are observed. Above this threshold two types of plan deterioration were seen: (1) target dose increases, but coverage remains adequate while dose to at least one OAR increases beyond tolerances; (2) the OAR doses remain low, but the target dose is reduced and coverage becomes inadequate. Conclusion: Relative analysis gamma of EPID images could indeed be a fast and simple method to detect anatomical changes that can potentially deteriorates treatment plan for H&N patients. This work was supported in part by Varian Medical System.« less

  20. Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes.

    PubMed

    Ferjani, Samah; Huang, Guangshun; Shang, Qingyang; Stephans, Kevin L; Zhong, Yahua; Qi, Peng; Tendulkar, Rahul D; Xia, Ping

    2013-10-01

    To determine the dosimetric impact of daily imaging alignment focus on the prostate soft tissue versus the pelvic bones for the concurrent treatment of the prostate and pelvic lymph nodes (PLN) and to assess whether multileaf collimator (MLC) tracking or adaptive planning (ART) is necessary with the current clinical planning margins of 8 mm/6 mm posterior to the prostate and 5 mm to the PLN. A total of 124 kilovoltage cone-beam computed tomography (kV-CBCT) images from 6 patients were studied. For each KV-CBCT, 4 plans were retrospectively created using an isocenter shifting method with 2 different alignment focuses (prostate, PLN), an MLC shifting method, and the ART method. The selected dosimetric endpoints were compared among these plans. For the isoshift contour, isoshift bone, MLC shift, and ART plans, D99 of the prostate was ≥97% of the prescription dose in 97.6%, 73.4%, 98.4%, and 96.8% of 124 fractions, respectively. Accordingly, D99 of the PLN was ≥97% of the prescription dose in 98.4%, 98.4%, 98.4%, and 100% of 124 fractions, respectively. For the rectum, D5 exceeded 105% of the planned D5 (and D5 of ART plans) in 11% (4%), 10% (2%), and 13% (5%) of 124 fractions, respectively. For the bladder, D5 exceeded 105% of the planned D5 (and D5 of ART) plans in 0% (2%), 0% (2%), and 0% (1%) of 124 fractions, respectively. For concurrent treatment of the prostate and PLN, with a planning margin to the prostate of 8 mm/6 mm posterior and a planning margin of 5 mm to the PLN, aligning to the prostate soft tissue can achieve adequate dose coverage to the both target volumes; aligning to the pelvic bone would result in underdosing to the prostate in one-third of fractions. With these planning margins, MLC tracking and ART methods have no dosimetric advantages. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.; Hardcastle, Nicholas; Tome, Wolfgang A.

    2012-01-15

    Purpose: Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. Methods: Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFsmore » between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. Results: Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. Conclusions: This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken to accumulate the dose, different results may be obtained. A postprocessing technique that reduces inverse consistency and transitivity error is presented, which allows for consistent dose accumulation regardless of the image pathway followed.« less

  2. WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marteinsdottir, M; University of Iceland, Reykjavik; Schuemann, J

    2016-06-15

    Purpose: To understand the clinical impact of key uncertainties in proton therapy potentially affecting the analysis of clinical trials, namely the assumption of using a constant relative biological effectiveness (RBE) of 1.1 compared to variable RBE for proton therapy and the use of analytical dose calculation (ADC) methods. Methods: Proton dose distributions were compared for analytical and Monte Carlo (TOPAS) dose calculations. In addition, differences between using a constant RBE of 1.1 (RBE-constant) were compared with four different RBE models (to assess model variations). 10 patients were selected from an ongoing clinical trial on IMRT versus scanned protons for sarcoma.more » Comparisons were performed using dosimetric indices based on dose-volume histogram analyses and γ-index analyses. Results: For three of the RBE-models the mean dose, D95, D50 and D02 (dose values covering 95%, 50% and 2% of the target volume, respectively) were up to 5% lower than for RBE-constant. The dosimetric indices for one of the RBE-models were around 9% lower than for the RBE-constant model. The differences for V90 (the percentage of the target volume covered by 90% of the prescription dose) were up to 40% for three RBE-models, whereas for one the difference was around 95%. All ADC dosimetric indices were up to 5% larger than for RBE-constant. The γ-index passing rate for the target volume with a 3%/3mm criterion was above 97% for all models except for one, which was below 24%. Conclusion: Interpretation of clinical trials on sarcoma may depend on dose calculation uncertainties (as assessed by Monte Carlo). In addition, the biological dose distribution depends notably on which RBE model is utilized. The current practice of using a constant RBE of 1.1 may overestimate the target dose by as much as 5% for biological dose calculations. Performing an RBE uncertainty analysis is recommended for trial analysis. U19 projects - U19 CA 021239. PI: Delaney.« less

  3. SU-F-T-435: Helical Tomotherapy for Craniospinal Irradiation: What We Have Learned from a Multi-Institutional Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, D; Kaprealian, T; Low, D

    Purpose: To report cranio-spinal irradiation (CSI) planning experience, compare dosimetric quality and delivery efficiency with Tomotherapy from different institutions, and to investigate effect of planning parameters on plan quality and treatment time. Methods: Clinical helical tomotherapy IMRT plans for thirty-nine CSI cases from three academic institutions were retrospectively evaluated. The planning parameters: field width (FW), pitch, modulation factor (MF), and achieved dosimetric endpoints were cross-compared. A fraction-dose-delivery-timing index (FDTI), defined as treatment time per fraction dose per PTV length, was utilized to evaluate plan delivery efficiency. A lower FDTI indicates higher delivery efficiency. We studied the correlation between planning quality,more » treatment time and planning parameters by grouping the plans under specific planning parameters. Additionally, we created new plans using 5cm jaw for a subset of plans that used 2.5cm jaw to exam if treatment efficiency can be improved without sacrificing plan quality. Results: There were significant dosimetric differences for organ at risks (OARs) among different institutions (A,B,C). Using the lowest average MF (1.9±0.4) and 5cm field width, C had the highest lung, heart, kidney, liver mean doses and maximum doses for lens. Using the same field width of 5cm, but higher MF (2.6±0.6), B had lower doses to the OARs in the thorax and abdomen area. Most of A’s plans were planned with 2.5cm jaw, the plans yielded better PTV coverage, higher OAR doses and slightly shorter FDTI compared to institution B. The replanned 5cm jaw plans achieved comparable PTV coverage and OARs sparing, while saving up to 44.7% treatment time. Conclusion: Plan quality and delivery efficiency could vary significantly in CSI planning on Tomotheapy due to choice of different planning parameters. CSI plans using a 5cm jaw, with proper selection of pitch and MF, can achieve comparable/ better plan quality with shorter delivery time compared to 2.5cm jaw plans.« less

  4. SU-E-T-213: Comparison of Treatment Efficiency of Gamma Knife SRS Plans for Brain Metastases with Different Planning Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Huang, Z; Lo, S

    2015-06-15

    Purpose: To improve Gamma Knife SRS treatment efficiency for brain metastases and compare the differences of treatment time and radiobiological effects between two different planning methods of automatic filling and manual placement of shots with inverse planning. Methods: T1-weighted MRI images with gadolinium contrast from five patients with a single brain metastatic-lesion were used in this retrospective study. Among them, two were from primary breast cancer, two from primary melanoma cancer and one from primary prostate cancer. For each patient, two plans were generated in Leksell GammaPlan10.1.1 for radiosurgical treatment with a Leksell GammaKnife Perfexion machine: one with automatic filling,more » automatic sector configuration and inverse optimization (Method1); and the other with manual placement of shots, manual setup of collimator sizes, manual setup of sector blocking and inverse optimization (Method2). Dosimetric quality of the plans was evaluated with parameters of Coverage, Selectivity, Gradient-Index and DVH. Beam-on Time, Number-of-Shots and Tumor Control Probability(TCP) were compared for the two plans while keeping their dosimetric quality very similar. Relative reduction of Beam-on Time and Number-of-Shots were calculated as the ratios among the two plans and used for quantitative analysis. Results: With very similar dosimetric and radiobiological plan quality, plans created with Method 2 had significantly reduced treatment time. Relative reduction of Beam-on Time ranged from 20% to 51 % (median:29%,p=0.001), and reduction of Number-of-Shots ranged from 5% to 67% (median:40%,p=0.0002), respectively. Time of plan creation for Method1 and Method2 was similar, approximately 20 minutes, excluding the time for tumor delineation. TCP calculated for the tumors from differential DVHs did not show significant difference between the two plans (p=0.35). Conclusion: The method of manual setup combined with inverse optimization in LGP for treatment of brain metastatic lesions with the Perfexion can achieve significantly higher time efficiency without degrading treatment quality.« less

  5. Dosimetric comparison of single-beam multi-arc and 2-beam multi-arc VMAT optimization in the Monaco treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalet, Alan M., E-mail: amkalet@uw.edu; Seattle Cancer Care Alliance, Seattle, Washington; Richardson, Hannah L.

    The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. We selected for this study a total of 17 previously treated patients with a range of pelvic disease sites including prostate (9), bladder (1), uterus (3), rectum (3), and cervix (1). For each patient, 2 plans were generated, one using an arc-per-beam setting of “1” and another with an arc-per-beam setting of “2” using the volumes and constraints established from the initial clinical treatments. All constraints and dose coverage objects were kept themore » same between plans, and all plans were normalized to 99.7% to ensure 100% of the planning target volume (PTV) received 95% of the prescription dose. Plans were evaluated for PTV conformity, homogeneity, number of monitor units, number of control points, and overall plan acceptability. Treatment delivery time, patient-specific quality assurance procedures, and the impact on clinical workflow were also assessed. We found that for complex-shaped target volumes (small central volumes with extending arms to cover nodal regions), the use of 2 arc-per-beam (2APB) parameter setting achieved significantly lower average dose-volume histogram values for the rectum V{sub 20} (p = 0.0012) and bladder V{sub 30} (p = 0.0036) while meeting the high dose target constraints. For simple PTV shapes, we found reduced monitor units (13.47%, p = 0.0009) and control points (8.77%, p = 0.0004) using 2APB planning. In addition, we found a beam delivery time reduction of approximately 25%. In summary, the dosimetric benefit, although moderate, was improved over a 1APB setting for complex PTV, and equivalent in other cases. The overall reduced delivery time suggests that the use of mulitple arcs per beam could lead to reduced patient-on-table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less

  6. Dosimetric feasibility of an “off-target isocenter” technique for cranial intensity-modulated radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel

    2015-01-01

    To evaluate the dosimetric effect of placing the isocenter away from the planning target volume (PTV) on intensity-modulated radiosurgery (IMRS) plans to treat brain lesions. A total of 15 patients who received cranial IMRS at our institution were randomly selected. Each patient was treated with an IMRS plan designed with the isocenter located at the target center (plan A). A second off-target isocenter plan (plan B) was generated for each case. In all the plans,100% of the prescription dose covered 99% of the target volume. The plans A and B were compared for the target dosage (conformity index [CI] andmore » homogeneity index) and organs-at-risk (OAR) dose sparing. Peripheral dose falloff was compared by using the metrics volume of normal brain receiving more than 12-Gy dose (V12) and CI at the level of the 50% of the prescription dose (CI 50%). The values found for each metric (plan B vs plan A) were (mean ± standard deviation [SD]) as follows—CI: 1.28 ± 0.15 vs 1.28 ± 0.15, p = 0.978; homogeneity index (HI): 1.29 ± 0.14 vs 1.34 ± 0.17, p = 0.079; maximum dose to the brainstem: 2.95 ± 2.11 vs 2.89 ± 1.88 Gy, p = 0.813; maximum dose to the optical pathway: 2.65 ± 4.18 vs 2.44 ± 4.03 Gy, p = 0.195; and maximum dose to the eye lens: 0.33 ± 0.73 vs 0.33 ± 0.53 Gy, p = 0.970. The values of the peripheral dose falloff were (plan B vs plan A) as follows—V12: 5.98 ± 4.95 vs 6.06 ± 4.92 cm{sup 3}, p = 0.622, and CI 50%: 6.08 ± 2.77 vs 6.28 ± 3.01, p = 0.119. The off-target isocenter solution resulted in dosimetrically comparable plans as the center-target isocenter technique, by avoiding the risk of gantry-couch collision during the cone beam computed tomography (CBCT) acquisition.« less

  7. SU-F-T-501: Dosimetric Comparison of Single Arc-Per-Beam and Two Arc-Per-Beam VMAT Optimization in the Monaco Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalet, A; Cao, N; Meyer, J

    Purpose: The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. Methods: A total of 17 previously treated patients were selected for this study with a range of pelvic disease site including prostate(9), bladder(1), uterus(3), rectum(3), and cervix(1). For each patient, two plans were generated, one using a arc-per-beam setting of ‘1’ and another with setting of ‘2’. The setting allows the optimizer to add a gantry direction change, creating multiple arc passes per beam sequence. Volumes and constraints established from the initialmore » clinical treatments were used for planning. All constraints and dose coverage objects were kept the same between plans, and all plans were normalized to 99.7% to ensure 100% of the PTV received 95% of the prescription dose. We evaluated the PTV conformity index, homogeneity index, total monitor units, number of control points, and various dose volume histogram (DVH) points for statistical comparison (alpha=0.05). Results: We found for the 10 complex shaped target volumes (small central volumes with extending bilateral ‘arms’ to cover nodal regions) that the use of 2 arcs-per-beam achieved significantly lower average DVH values for the bladder V20 (p=0.036) and rectum V30 (p=0.001) while still meeting the high dose target constraints. DVH values for the simpler, more spherical PTVs were not found significantly different. Additionally, we found a beam delivery time reduction of approximately 25%. Conclusion: In summary, the dosimetric benefit, while moderate, was improved over a 1 arc-per-beam setting for complex PTVs, and equivalent in other cases. The overall reduced delivery time suggests that the use of multiple arcs-per-beam could lead to reduced patient on table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less

  8. A novel curvilinear approach for prostate seed implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran

    Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90},more » V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the curvilinear implantation approach is dosimetrically superior to conventional rectilinear implantation technique.« less

  9. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  10. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  11. The use of ionisation chambers for dose rate measurements at industrial irradiation plants

    NASA Astrophysics Data System (ADS)

    Sephton, J. P.; Sharpe, P. H. G.; Chu, R. D. H.

    2002-03-01

    The use of ionisation chambers to measure dose rate at industrial irradiation plants has been studied as part of a wider project on real time dosimetry. The characteristics required of such a chamber are discussed. These include the ability to withstand operation at high cumulative doses (up to 5 MGy) and dose rates of up to about 150 kGy h -1. Other desirable features are water equivalence and immunity to environmental conditions such as temperature, pressure and humidity. A number of chambers have been assessed experimentally and a suitable chamber selected. The dosimetric characteristics of the chosen chamber have been assessed by comparison with absorbed dose measurements made using chemical dosimeters.

  12. Intercomparison of techniques for the non-invasive measurement of bone mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  13. Intercomparison of photon dose measurements at the 8 MeV electron accelerator

    NASA Astrophysics Data System (ADS)

    Angelescu, T.; Ghiordănescu, N.; Băl ţă ţeanu, N.; Labău, V.; Vasilescu, A.

    1997-02-01

    Measurements of dose with thermoluminescent detectors (TLD) and an ionisation chamber were performed in the range of 5-70 Gy in the electron bremsstrahlung field with a maximum energy of 8 MeV of the Bucharest linear accelerator. Previous calibration was done with a 60Co source. The results of the intercomparison were used in dosimetry of the n - γ field of the ΣΣ irradiation facility, with a photon spectrum similar to the 8 MeV bremsstrahlung field [T. Angelescu et al., Nucl. Instr. and Meth. A 378 (1996) 594].

  14. Visible light nitrogen dioxide spectrophotometer intercomparison: Mount Kobau, British Columbia, July 28 to August 10, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, C. T.; Elokhov, A. S.; Elansky, N.; Frank, H.; Johnston, P.; Kerr, J. B.

    1994-01-01

    Under the auspices of the World Meteorological Organization, Environment Canada hosted an international comparison of visible light spectrophotometers at Mt. Kobau, British Columbia in August of 1991. Instruments from four countries were involved. The intercomparison results have indicated that some significant differences exist in the responses of the various instruments, and have provided a basis for the comparison of the historical data sets which currently exist as a result of the independent researches carried out in the past in the former Soviet Union, New Zealand, and Canada.

  15. A dosimetric phantom study of thoracic radiotherapy based on three-dimensional modeling of mediastinal lymph nodes

    PubMed Central

    Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo

    2018-01-01

    The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300

  16. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.

    PubMed

    Shirey, Robert J; Wu, Hsinshun Terry

    2018-01-01

    This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Clinical and Dosimetric Predictors of Radiation Pneumonitis in a Large Series of Patients Treated With Stereotactic Body Radiation Therapy to the Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ryan; Han Gang; Sarangkasiri, Siriporn

    2013-01-01

    Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less

  18. Dosimetric quality endpoints for low-dose-rate prostate brachytherapy using biological effective dose (bed) vs. conventional dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.

    2003-12-31

    The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less

  19. SU-E-T-490: Independent Three-Dimensional (3D) Dose Verification of VMAT/SBRT Using EPID and Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, A; Han, B; Bush, K

    Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less

  20. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less

  1. SU-F-BRB-15: Dosimetric Study of Radiation Therapy for Head/Neck Patients with Metallic Dental Fixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L; Allan, E; Putten, M Van

    Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and verticalmore » film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.« less

  2. The dilemma of parotid gland and pharyngeal constrictor muscles preservation—Is daily online image guidance required? A dosimetric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffy, Olivia; Forde, Elizabeth; Leech, Michelle, E-mail: leechm@tcd.ie

    With margin reduction common in head and neck radiotherapy, it is critical that the dosimetric effects of setup deviations are quantified. With past studies focusing on the quantification of positional and volumetric changes of organs at risk (OARs), this study aimed to measure the dose delivered to these the parotid gland (PG) and pharyngeal constrictor muscles (PCMs) using cone beam computed tomography (CBCT). Furthermore, this investigation sought to establish a potential time trend of change in dose delivered to target volumes secondary to ascertaining the need for daily image guidance (IG) to reduce the dose burden to these important OARs.more » Intensity modulated radiotherapy (IMRT) plans for 5 locally advanced head and neck patients' plans were created and mapped to weekly CBCTs. Each plan was recalculated without heterogeneity correction allowing for dosimetric comparison. Dosimetric endpoints recorded to assess the effect of positional variation were as per ICRU 83 and included D{sub 95} and D{sub 98} for the target volumes, mean dose (MD) and V{sub 30} {sub Gy} for the PGs, and V{sub 50} {sub Gy} and MD for the PCMs. Results were deemed statistically significant if p < 0.05. No significant time trends were established for these OARs. A significant decrease in V{sub 50} {sub Gy} was observed for all PCMs (p < 0.001) on all CBCTs relative to the original plan. Regarding target volumes, a highly significant decrease in MD (MD = 20 Gy, CI: −20.310 to −19.820) in D{sub 98} of the high-dose planning target volume (PTV [70 Gy]; PTVD{sub 98%} = 70 Gy) for case 3 was found (p ≤ 0.001). A nonpredictable, yet significant dosimetric effect was found. A clinically acceptable balance must be achieved between OAR dosimetry and target coverage as can be achieved by frequent IG.« less

  3. Dosimetric characterization of optically stimulated luminescence dosimeter with therapeutic photon beams for use in clinical radiotherapy measurements.

    PubMed

    Ponmalar, Retna; Manickam, Ravikumar; Ganesh, K M; Saminathan, Sathiyan; Raman, Arun; Godson, Henry Finlay

    2017-01-01

    The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.

  4. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    PubMed

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  5. WE-AB-209-02: A New Inverse Planning Framework with Principle-Based Modeling of Inter-Structural Dosimetric Tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Dong, P; Xing, L

    Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less

  6. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, K; Alopoor, H

    Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less

  7. Comparing a volume based template approach and ultrasound guided freehand approach in multicatheter interstitial accelerated partial breast irradiation.

    PubMed

    Koh, Vicky Y; Buhari, Shaik A; Tan, Poh Wee; Tan, Yun Inn; Leong, Yuh Fun; Earnest, Arul; Tang, Johann I

    2014-06-01

    Currently, there are two described methods of catheter insertion for women undergoing multicatheter interstitial accelerated partial breast irradiation (APBI). These are a volume based template approach (template) and a non-template ultrasound guidance freehand approach (non-template). We aim to compare dosimetric endpoints between the template and non-template approach. Twenty patients, who received adjuvant multicatheter interstitial APBI between August 2008 to March 2010 formed the study cohort. Dosimetric planning was based on the RTOG 04-13 protocol. For standardization, the planning target volume evaluation (PTV-Eval) and organs at risk were contoured with the assistance of the attending surgeon. Dosimetric endpoints include D90 of the PTV-Eval, Dose Homogeneity Index (DHI), V200, maximum skin dose (MSD), and maximum chest wall dose (MCD). A median of 18 catheters was used per patient. The dose prescribed was 34 Gy in 10 fractions BID over 5 days. The average breast volume was 846 cm(3) (526-1384) for the entire cohort and there was no difference between the two groups (p = 0.6). Insertion time was significantly longer for the non-template approach (mean 150 minutes) compared to the template approach (mean: 90 minutes) (p = 0.02). The planning time was also significantly longer for the non-template approach (mean: 240 minutes) compared to the template approach (mean: 150 minutes) (p < 0.01). The template approach yielded a higher D90 (mean: 95%) compared to the non-template approach (mean: 92%) (p < 0.01). There were no differences in DHI (p = 0.14), V200 (p = 0.21), MSD (p = 0.7), and MCD (p = 0.8). Compared to the non-template approach, the template approach offered significant shorter insertion and planning times with significantly improved dosimetric PTV-Eval coverage without significantly compromising organs at risk dosimetrically.

  8. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716

  9. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer.

    PubMed

    Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt

    2015-01-01

    The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification

    PubMed Central

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J

    2015-01-01

    Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412

  11. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  12. FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.

    2017-12-01

    The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.

  13. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  14. First results of the CINDI-2 semi-blind MAX-DOAS intercomparison

    NASA Astrophysics Data System (ADS)

    Kreher, Karin; van Roozendael, Michel; Hendrick, Francois; Apituley, Arnoud; Friess, Udo; Lampel, Johannes; Piters, Ankie; Richter, Andreas; Wagner, Thomas; Cindi-2 Participants, All

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. The goals of this inter-comparison campaign are to support the creation of high-quality ground-based data sets (e.g. to provide reliable long-term time series for trend analysis and satellite data validation), to characterise and better understand the differences between a large number of MAX-DOAS and DOAS instruments and analysis methods, and to contribute to a harmonisation of the measurement settings and retrieval methods. During a time period of 17 days, from 12 to 28 September 2016, a formal semi-blind intercomparison was held following a detailed measurement protocol. The development of this protocol was based on the experience gained during the first CINDI campaign held in 2009 as well as more recent projects and campaigns such as the MADCAT campaign in Mainz, Germany, in 2013. Strong emphasis was put on the careful synchronisation of the measurement sequence and on exact alignment of the elevation angles using horizon scans and lamp measurements. In this presentation, we provide an overview and some highlights of the MAX-DOAS semi-blind intercomparison campaign. We will introduce the participating groups, their instruments and the measurement protocol details, and then summarize the campaign outcomes to date. The CINDI-2 data sets have been investigated using a range of diagnostics including comparisons of daily time series and relative differences between the data sets, regression analysis and correlation plots. The data products so far investigated are NO2 (nitrogen dioxide) in the UV and visible wavelength region, O4 (oxygen dimer) in the same two wavelength intervals, O3 (ozone) in the UV and visible wavelength region, HCHO (formaldehyde) and NO2 in an additional (smaller) wavelength range in the visible. The results based on the regression analysis are presented in summary plots and tables, addressing MAX-DOAS and twilight zenith sky measurements separately. Further information on instrumental details such as the alignment of the viewing direction and elevation and the field of view are also summarized and included in the overall interpretation.

  15. Atmospheric Correction Inter-comparison Exercise (ACIX)

    NASA Astrophysics Data System (ADS)

    Vermote, E.; Doxani, G.; Gascon, F.; Roger, J. C.; Skakun, S.

    2017-12-01

    The free and open data access policy to Landsat-8 (L-8) and Sentinel-2 (S-2) satellite imagery has encouraged the development of atmospheric correction (AC) approaches for generating Bottom-of-Atmosphere (BOA) products. Several entities have started to generate (or plan to generate in the short term) BOA reflectance products at global scale for L-8 and S-2 missions. To this end, the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) have initiated an exercise on the inter-comparison of the available AC processors. The results of the exercise are expected to point out the strengths and weaknesses, as well as communalities and discrepancies of various AC processors, in order to suggest and define ways for their further improvement. In particular, 11 atmospheric processors from five different countries participate in ACIX with the aim to inter-compare their performance when applied to L-8 and S-2 data. All the processors should be operational without requiring parametrization when applied on different areas. A protocol describing in details the inter-comparison metrics and the test dataset based on the AERONET sites has been agreed unanimously during the 1st ACIX workshop in June 2016. In particular, a basic and an advanced run of each of the processor were requested in the frame of ACIX, with the aim to draw robust and reliable conclusions on the processors' performance. The protocol also describes the comparison metrics of the aerosol optical thickness and water vapour products of the processors with the corresponding AERONET measurements. Moreover, concerning the surface reflectances, the inter-comparison among the processors is defined, as well as the comparison with the MODIS surface reflectance and with a reference surface reflectance product. Such a reference product will be obtained using the AERONET characterization of the aerosol (size distribution and refractive indices) and an accurate radiative transfer code. The inter-comparison outcomes were presented and discussed among the ACIX participants in the 2nd ACIX workshop, which was held on 11-12 April 2017 (ESRIN/ESA) and a detailed report was compiled. The proposed presentation is an opportunity for the user community to be informed about the ACIX results and conclusions.

  16. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; hide

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the intercomparison, allowing for detailed statistical comparisons at a high level of precision. This overview paper summarizes the campaign and provides a 'road map' to subsequent papers in this issue by the individual instrument teams which will present more detailed analysis of the data and conclusions.

  17. C-LAMP Subproject Description:Climate Forcing by the Terrestrial Biosphere During the Second Half of the 20th Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Curt; Hoffman, Forrest

    2008-10-02

    This project will quantify selected components of climate forcing due to changes in the terrestrial biosphere over the period 1948-2004, as simulated by the climate / carboncycle models participating in C-LAMP (the Carbon-Land Model Intercomparison Project; see http://www.climatemodeling.org/c-lamp). Unlike other C-LAMP projects that attempt to close the carbon budget, this project will focus on the contributions of individual biomes in terms of the resulting climate forcing. Bala et al. (2007) used a similar (though more comprehensive) model-based technique to assess and compare different components of biospheric climate forcing, but their focus was on potential future deforestation rather than the historicalmore » period.« less

  18. Intercomparison of American and Soviet stellar image motion monitors

    NASA Astrophysics Data System (ADS)

    Forbes, Fred F.; Kutyrev, Aleksandr

    1990-07-01

    Astronomical observatory site testing programs in the USA and USSR have used a variety of stellar image motion monitors in the selection of the best sites for the construction of large (6 to 10 meter) telescopes. While there appears to be a reasonable agreement between microthermal and sodar results for the better sites in both countries, there remain unexplained inconsistencies in measured seeing, especially at Mauna Kea, Hawaii and Mount Sanglok. The photoelectric seeing monitor built by Scheglov (1984) of the Moscow Sternberg Institute, and the National Optical Astronomy Observatories site-survey intensified CID seeing monitor have been mounted on the same telescope. Simultaneous image motion data recorded are compared for single images as differential measurements of dual images.

  19. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Hollingshead, M.; hide

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging, In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models, Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  20. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  1. The 1997 North American Interagency Intercomparison of Ultraviolet Spectroradiometers Including Narrowband Filter Radiometers

    PubMed Central

    Lantz, Kathleen; Disterhoft, Patrick; Early, Edward; Thompson, Ambler; DeLuisi, John; Berndt, Jerry; Harrison, Lee; Kiedron, Peter; Ehramjian, James; Bernhard, Germar; Cabasug, Lauriana; Robertson, James; Mou, Wanfeng; Taylor, Thomas; Slusser, James; Bigelow, David; Durham, Bill; Janson, George; Hayes, Douglass; Beaubien, Mark; Beaubien, Arthur

    2002-01-01

    The fourth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 15 to 25, 1997 at Table Mountain outside of Boulder, Colorado, USA. Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NIST and NOAA, and included participants from the ASRC, EPA, NIST, NSF, SERC, USDA, and YES. The UV measuring instruments included scanning spectroradiometers, spectrographs, narrow band multi-filter radiometers, and broadband radiometers. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity. The spectral irradiance responsivity was determined two to three times outdoors to assess temporal stability. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST traceable standard lamp, and a simple convolution technique with a Gaussian slit-scattering function to account for the different bandwidths of the instruments, the measured solar irradiance from the spectroradiometers excluding the filter radiometers at 16.5 h UTC had a relative standard deviation of ±4 % for wavelengths greater than 305 nm. The relative standard deviation for the solar irradiance at 16.5 h UTC including the filter radiometer was ±4 % for filter functions above 300 nm. PMID:27446717

  2. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    NASA Astrophysics Data System (ADS)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian

    2016-10-01

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the "Grand Challenges" proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), "historical" simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.

  3. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.

    2015-06-01

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  5. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  6. JCCRER Project 2.3 -- Deterministic effects of occupational exposure to radiation. Phase 1: Feasibility study; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okladnikova, N.; Pesternikova, V.; Sumina, M.

    1998-12-01

    Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects;more » creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.« less

  7. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-07

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  8. Status report on the Zagreb Radiocarbon Laboratory - AMS and LSC results of VIRI intercomparison samples

    NASA Astrophysics Data System (ADS)

    Sironić, Andreja; Krajcar Bronić, Ines; Horvatinčić, Nada; Barešić, Jadranka; Obelić, Bogomil; Felja, Igor

    2013-01-01

    A new line for preparation of the graphite samples for 14C dating by Accelerator Mass Spectrometry (AMS) in the Zagreb Radiocarbon Laboratory has been validated by preparing graphite from various materials distributed within the Fifth International Radiocarbon Intercomparison (VIRI) study. 14C activity of prepared graphite was measured at the SUERC AMS facility. The results are statistically evaluated by means of the z-score and u-score values. The mean z-score value of 28 prepared VIRI samples is (0.06 ± 0.23) showing excellent agreement with the consensus VIRI values. Only one sample resulted in the u-score value above the limit of acceptability (defined for the confidence interval of 99%) and this was probably caused by a random contamination of the graphitization rig. After the rig had been moved to the new adapted and isolated room, all u-score values laid within the acceptable limits. Our LSC results of VIRI intercomparison samples are also presented and they are all accepted according to the u-score values.

  9. An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Chen, Gao; Crawford, James H.; Flocke, Frank M.; Brown, Clyde C.

    2011-01-01

    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  10. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    PubMed Central

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  11. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  12. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  13. An International Marine-Atmospheric 222Rn Measurement Intercomparison in Bermuda Part I: NIST Calibration and Methodology for Standardized Sample Additions

    PubMed Central

    Collé, R.; Unterweger, M. P.; Hodge, P. A.; Hutchinson, J. M. R.

    1996-01-01

    As part of an international 222Rn measurement intercomparison conducted at Bermuda in October 1991, NIST provided standardized sample additions of known, but undisclosed (“blind”) 222Rn concentrations that could be related to U.S. national standards. The standardized sample additions were obtained with a calibrated 226Ra source and a specially-designed manifold used to obtain well-known dilution factors from simultaneous flow-rate measurements. The additions were introduced over sampling periods of several hours (typically 4 h) into a common streamline on a sampling tower used by the participating laboratories for their measurements. The standardized 222Rn activity concentrations for the intercomparison ranged from approximately 2.5 Bq · m−3 to 35 Bq · m−3 (of which the lower end of this range approached concentration levels for ambient Bermudian air) and had overall uncertainties, approximating a 3 standard deviation uncertainty interval, of about 6 % to 13 %. This paper describes the calibration and methodology for the standardized sample additions. PMID:27805090

  14. Neutron therapy in Saudi Arabia: an overview and results of dose searching study in head and neck cancer.

    PubMed

    el-Akkad, S; Schultz, H P; Ahmad, K; Clubb, B; McArthur, P; Dobson, H; DeVol, E

    1992-01-01

    The King Faisal Specialist Hospital and Research Centre is the only center in the Middle East that incorporates a neutron therapy facility. The neutron beam is produced by a cyclotron, which produces a beam by either a (d(15)+Be) or (p(26)+Be) reaction. The beam from the proton reaction is selected for therapy because of its superior physical characteristics. These were verified by an intercomparison conducted by the European Organization for Research on Treatment of Cancer (EORTC) Heavy Particle Therapy Group. Full beam data are presented. The first study in the neutron therapy Program is on the treatment of squamous cancers of the head and neck. This consists of two parts. Part I is a dose searching phase and Part II is a comparison of our current photon treatment versus neutrons using the neutron dose selected by Part I of the study. Results of the dose searching phase (Part I) are presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukada, Junichi, E-mail: fukada@rad.med.keio.ac.jp; Shigematsu, Naoyuki; Takeuchi, Hiroya

    Purpose: We investigated clinical and treatment-related factors as predictors of symptomatic pericardial effusion in esophageal cancer patients after concurrent chemoradiation therapy. Methods and Materials: We reviewed 214 consecutive primary esophageal cancer patients treated with concurrent chemoradiation therapy between 2001 and 2010 in our institute. Pericardial effusion was detected on follow-up computed tomography. Symptomatic effusion was defined as effusion ≥grade 3 according to Common Terminology Criteria for Adverse Events v4.0 criteria. Percent volume irradiated with 5 to 65 Gy (V5-V65) and mean dose to the pericardium were evaluated employing dose-volume histograms. To evaluate dosimetry for patients treated with two-dimensional planning inmore » the earlier period (2001-2005), computed tomography data at diagnosis were transferred to a treatment planning system to reconstruct three-dimensional plans without modification. Optimal dosimetric thresholds for symptomatic pericardial effusion were calculated by receiver operating characteristic curves. Associating clinical and treatment-related risk factors for symptomatic pericardial effusion were detected by univariate and multivariate analyses. Results: The median follow-up was 29 (range, 6-121) months for eligible 167 patients. Symptomatic pericardial effusion was observed in 14 (8.4%) patients. Dosimetric analyses revealed average values of V30 to V45 for the pericardium and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those with asymptomatic pericardial effusion (P<.05). Pericardial V5 to V55 and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those without pericardial effusion (P<.001). Mean pericardial doses of 36.5 Gy and V45 of 58% were selected as optimal cutoff values for predicting symptomatic pericardial effusion. Multivariate analysis identified mean pericardial dose as the strongest risk factor for symptomatic pericardial effusion. Conclusions: Dose-volume thresholds for the pericardium facilitate predicting symptomatic pericardial effusion. Mean pericardial dose was selected based not only on the optimal dose-volume threshold but also on the most significant risk factor for symptomatic pericardial effusion.« less

  16. Symptomatic pericardial effusion after chemoradiation therapy in esophageal cancer patients.

    PubMed

    Fukada, Junichi; Shigematsu, Naoyuki; Takeuchi, Hiroya; Ohashi, Toshio; Saikawa, Yoshiro; Takaishi, Hiromasa; Hanada, Takashi; Shiraishi, Yutaka; Kitagawa, Yuko; Fukuda, Keiichi

    2013-11-01

    We investigated clinical and treatment-related factors as predictors of symptomatic pericardial effusion in esophageal cancer patients after concurrent chemoradiation therapy. We reviewed 214 consecutive primary esophageal cancer patients treated with concurrent chemoradiation therapy between 2001 and 2010 in our institute. Pericardial effusion was detected on follow-up computed tomography. Symptomatic effusion was defined as effusion ≥grade 3 according to Common Terminology Criteria for Adverse Events v4.0 criteria. Percent volume irradiated with 5 to 65 Gy (V5-V65) and mean dose to the pericardium were evaluated employing dose-volume histograms. To evaluate dosimetry for patients treated with two-dimensional planning in the earlier period (2001-2005), computed tomography data at diagnosis were transferred to a treatment planning system to reconstruct three-dimensional plans without modification. Optimal dosimetric thresholds for symptomatic pericardial effusion were calculated by receiver operating characteristic curves. Associating clinical and treatment-related risk factors for symptomatic pericardial effusion were detected by univariate and multivariate analyses. The median follow-up was 29 (range, 6-121) months for eligible 167 patients. Symptomatic pericardial effusion was observed in 14 (8.4%) patients. Dosimetric analyses revealed average values of V30 to V45 for the pericardium and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those with asymptomatic pericardial effusion (P<.05). Pericardial V5 to V55 and mean pericardial doses were significantly higher in patients with symptomatic pericardial effusion than in those without pericardial effusion (P<.001). Mean pericardial doses of 36.5 Gy and V45 of 58% were selected as optimal cutoff values for predicting symptomatic pericardial effusion. Multivariate analysis identified mean pericardial dose as the strongest risk factor for symptomatic pericardial effusion. Dose-volume thresholds for the pericardium facilitate predicting symptomatic pericardial effusion. Mean pericardial dose was selected based not only on the optimal dose-volume threshold but also on the most significant risk factor for symptomatic pericardial effusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The Influence of Prostate Volume on Outcome After High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Hien, E-mail: hien.le@health.sa.gov.au; Rojas, Ana; Alonzi, Roberto

    2013-10-01

    Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemicalmore » relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.« less

  18. SU-F-T-198: Dosimetric Comparison of Carbon and Proton Radiotherapy for Recurrent Nasopharynx Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Zhao, J; Wang, W

    2016-06-15

    Purpose: Various radiotherapy planning methods for locally recurrent nasopharynx carcinoma (R-NPC) have been proposed. The purpose of this study was to compare carbon and proton therapy for the treatment of R-NPC in terms of dose coverage for target volume and sparing for organs at risk (OARs). Methods: Six patients who were suffering from R-NPC and treated using carbon therapy were selected for this study. Treatment plans with a total dose of 57.5Gy (RBE) in 23 fractions were made using SIEMENS Syngo V11. An intensity-modulated radiotherapy optimization method was chosen for carbon plans (IMCT) while for proton plans both intensity-modulated radiotherapymore » (IMPT) and single beam optimization (proton-SBO) methods were chosen. Dose distributions, dose volume parameters, and selected dosimetric indices for target volumes and OARs were compared for all treatment plans. Results: All plans provided comparable PTV coverage. The volume covered by 95% of the prescribed dose was comparable for all three plans. The average values were 96.11%, 96.24% and 96.11% for IMCT, IMPT, and proton-SBO respectively. A significant reduction of the 80% and 50% dose volumes were observed for the IMCT plans compared to the IMPT and proton-SBO plans. Critical organs lateral to the target such as brain stem and spinal cord were better spared by IMPT than by proton-SBO, while IMCT spared those organs best. For organs in the beam path, such as parotid glands, the mean dose results were similar for all three plans. Conclusion: Carbon plans yielded better dose conformity than proton plans. They provided similar or better target coverage while significantly lowering the dose for normal tissues. Dose sparing for critical organs in IMPT plans was better than proton-SBO, however, IMPT is known to be more sensitive to range uncertainties. For proton plans it is essential to find a balance between the two optimization methods.« less

  19. LiMgPO 4:Tb,B - A new sensitive OSL phosphor for dosimetry

    NASA Astrophysics Data System (ADS)

    Dhabekar, Bhushan; Menon, S. N.; Alagu Raja, E.; Bakshi, A. K.; Singh, A. K.; Chougaonkar, M. P.; Mayya, Y. S.

    2011-08-01

    Optically Stimulated Luminescence (OSL) technique has emerged as a serious competitor to Thermally Stimulated Luminescence (TSL) technique in various dosimetric applications, especially after the development of crystalline alumina (Al 2O 3:C) doped with carbon. Since then, several attempts are being made to develop other possible materials for OSL based dosimetric applications. Efforts conducted in our laboratory in this direction have led to the development of a new phosphor, Lithium Magnesium Phosphate doped with terbium and boron (LiMgPO 4:Tb,B). This phosphor is prepared by solid-state diffusion method involving conventional air furnaces with operating temperature 1000 °C and easily amenable to large scale production without compromising primary dosimetric advantages. In this work we present some of the dosimetric OSL characteristics of this phosphor. The phosphor exhibits a main TSL peak at 250 °C. The phosphor also emits OSL, when the irradiated phosphor is stimulated with 470 nm light with the OSL sensitivity 1.3 times that of commercially available Al 2O 3:C. Photoluminescence (PL) emission spectrum consists of sharp lines characteristics of Tb 3+ emission. The OSL discs made out of this phosphor are reusable up to at least 50 cycles, the phosphor exhibits dose linearity up to 1 kGy. Minimum detectable dose is found to be 20 μGy and fading of the OSL signal is found to be about 16% in four days, after which the OSL signal stabilizes.

  20. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    PubMed

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  1. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    NASA Astrophysics Data System (ADS)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less

  3. Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua

    2014-01-01

    Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184

  4. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneitymore » included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.« less

  5. Dosimetric Comparison of Helical Tomotherapy and Dynamic Conformal Arc Therapy in Stereotactic Radiosurgery for Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tsair-Fwu, E-mail: tflee@cc.kuas.edu.t; Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Chao, Pei-Ju

    2011-04-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality indexmore » (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT, although not all indices revealed a better outcome for HT. Whether this dosimetric advantage translates into a clinical benefit deserves further investigation.« less

  6. Soundings from SGP, June 2014 Sonde Comparison Study

    DOE Data Explorer

    Jensen, Michael

    2015-03-06

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  7. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).

    PubMed

    Zeyrek, C T; Gündüz, H

    2012-09-01

    This study gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silène experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together.

  8. Inter-comparison of boron concentration measurements at INFN-University of Pavia (Italy) and CNEA (Argentina).

    PubMed

    Portu, Agustina; Postuma, Ian; Gadan, Mario Alberto; Saint Martin, Gisela; Olivera, María Silvina; Altieri, Saverio; Protti, Nicoletta; Bortolussi, Silva

    2015-11-01

    An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. International Intercomparison of Regular Transmittance Scales

    NASA Astrophysics Data System (ADS)

    Eckerle, K. L.; Sutter, E.; Freeman, G. H. C.; Andor, G.; Fillinger, L.

    1990-01-01

    An intercomparison of the regular spectral transmittance scales of NIST, Gaithersburg, MD (USA); PTB, Braunschweig (FRG); NPL, Teddington, Middlesex (UK); and OMH, Budapest (H) was accomplished using three sets of neutral glass filters with transmittances ranging from approximately 0.92 to 0.001. The difference between the results from the reference spectrophotometers of the laboratories was generally smaller than the total uncertainty of the interchange. The relative total uncertainty ranges from 0.05% to 0.75% for transmittances from 0.92 to 0.001. The sample-induced error was large - contributing 40% or more of the total except in a few cases.

  10. The internal dosimetry code PLEIADES.

    PubMed

    Fell, T P; Phipps, A W; Smith, T J

    2007-01-01

    The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.

  11. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  12. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker is leveraged to provide a consistent mechanism for data discovery. Standards-based data services, including Open Geospatial Consortium (OGC) Web Coverage Service (WCS) and THREDDS are leveraged to provide on-demand data access and transformations through the data access broker. To ease the adoption of broker services, a package of broker client VisTrails modules have been developed to be easily plugged into scientific workflows. The initial IMIF has been successfully tested in selected model evaluation scenarios involved in the NASA-funded Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP).

  13. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examinemore » (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.« less

  14. Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2017-04-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.

  15. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).

  16. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  17. WCRP Task Team for the Intercomparison of Reanalyses (TIRA): Motivation and Progress

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael

    2017-01-01

    Reanalyses have proven to be an important resource for weather and climate related research, as well as societal applications at large. Several centers have emerged to produce new atmospheric reanalyses in various forms every few years. In addition, land and ocean communities are producing disciplinary uncoupled reanalyses. Current research and development in reanalysis is directed at (1) extending the length of reanalyzed period and (2) use of coupled Earth system models for climate reanalysis. While WCRPs involvement in the reanalyses communities through its Data Advisory Council (WDAC) has been substantial, for example in organizing international conferences on reanalyses, a central team of reanalyses expertise is not in place in the WCRP structure. The differences among reanalyses and their inherent uncertainties are some of the most important questions for both users and developers of reanalyses. Therefore, a collaborative effort to systematically assess and intercompare reanalyses would be a logical progression that fills the needs of the community and contributes to the WCRP mission. The primary charge to the TIRA is to develop a reanalysis intercomparison project plan that will attain the following objectives.1)To foster understanding and estimation of uncertainties in reanalysis data by intercomparison and other means 2)To communicate new developments and best practices among the reanalyses producing centers 3)To enhance the understanding of data and assimilation issues and their impact on uncertainties, leading to improved reanalyses for climate assessment 4)To communicate the strengths and weaknesses of reanalyses, their fitness for purpose, and best practices in the use of reanalysis datasets by the scientific community. This presentation outlines the need for a task team on reanalyses, their intercomparison, the objectives of the team and progress thus far.

  18. Inter-Comparison of Lightning Trends from Ground-Based Networks During Severe Weather: Applications Toward GLM

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Chris J.; Petersen, Walter A.; Rudlosky, Scott D.; Bateman, Monte; Cecil, Daniel J.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    The planned GOES-R Geostationary Lightning Mapper (GLM) will provide total lightning data on the location and intensity of thunderstorms over a hemispheric spatial domain. Ongoing GOES-R research activities are demonstrating the utility of total flash rate trends for enhancing forecasting skill of severe storms. To date, GLM total lightning proxy trends have been well served by ground-based VHF systems such as the Northern Alabama Lightning Mapping Array (NALMA). The NALMA (and other similar networks in Washington DC and Oklahoma) provide high detection efficiency (> 90%) and location accuracy (< 1 km) observations of total lightning within about 150 km from network center. To expand GLM proxy applications for high impact convective weather (e.g., severe, aviation hazards), it is desirable to investigate the utility of additional sources of continuous lightning that can serve as suitable GLM proxy over large spatial scales (order 100 s to 1000 km or more), including typically data denied regions such as the oceans. Potential sources of GLM proxy include ground-based long-range (regional or global) VLF/LF lightning networks such as the relatively new Vaisala Global Lightning Dataset (GLD360) and Weatherbug Total Lightning Network (WTLN). Before using these data in GLM research applications, it is necessary to compare them with LMAs and well-quantified cloud-to-ground (CG) lightning networks, such as Vaisala s National Lightning Detection Network (NLDN), for assessment of total and CG lightning location accuracy, detection efficiency and flash rate trends. Preliminary inter-comparisons from these lightning networks during selected severe weather events will be presented and their implications discussed.

  19. Worldwide multi-model intercomparison of clear-sky solar irradiance predictions

    NASA Astrophysics Data System (ADS)

    Ruiz-Arias, Jose A.; Gueymard, Christian A.; Cebecauer, Tomas

    2017-06-01

    Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of in-terest for, e.g., solar energy development, still remain sub-validated. Here, a worldwide inter-comparison of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) calculated by a number of appropriate clear-sky solar ra-diation models is proposed, without direct intervention of any weather or solar radiation ground-based observations. The model inputs are all gathered from atmospheric reanalyses covering the globe. The model predictions are compared to each other and only their relative disagreements are quantified. The largest differences between model predictions are found over central and northern Africa, the Middle East, and all over Asia. This coincides with areas of high aerosol optical depth and highly varying aerosol distribution size. Overall, the differences in modeled DNI are found about twice larger than for GHI. It is argued that the prevailing weather regimes (most importantly, aerosol conditions) over regions exhibiting substantial divergences are not adequately parameterized by all models. Further validation and scrutiny using conventional methods based on ground observations should be pursued in priority over those specific regions to correctly evaluate the performance of clear-sky models, and select those that can be recommended for solar concentrating applications in particular.

  20. Intercomparison Between Microwave Radiometer and Radiosonding Data

    NASA Astrophysics Data System (ADS)

    Toanca, Florica; Stefan, Sabina

    2014-05-01

    The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.

  1. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  2. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu

    2017-01-01

    The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.

  3. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittauer, K; Deraniyagala, R; Li, J

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied formore » dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.« less

  4. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.

    PubMed

    Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U

    2011-06-01

    High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. SU-E-T-467: Monte Carlo Dosimetric Study of the New Flexisource Co-60 High Dose Rate Source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2012-06-01

    Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V.). This study aims to obtain quality dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Penelope2008 and GEANT4 Monte Carlo codes were used to dosimetrically characterize this source. Water composition and mass density was that recommended by AAPM. Due to the high energy of the 60Co, dose for small distances cannot be approximated by collisional kerma. Therefore, we have considered absorbed dose to water for r<0.75 cm and collisional kerma from 0.75 0.8 cm and up to 2% closer to the source. Using Penelope2008 and GEANT4, an average of Î> = 1.085±0.003 cGy/(h U) (with k = 1, Type A uncertainties) was obtained. Dose rate constant, radial dose function and anisotropy functions for the Flexisource Co-60 are compared with published data for other Co-60 sources. Dosimetric data are provided for the new Flexisource Co-60 source not studied previously in the literature. Using the data provided by this study in the treatment planning systems, it can be used in clinical practice. This project has been funded by Nucletron BV. © 2012 American Association of Physicists in Medicine.

  6. Dosimetric impact of cylinder size in high-dose rate vaginal cuff brachytherapy (VCBT) for primary endometrial cancer.

    PubMed

    Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam

    2016-09-08

    The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.

  7. Dosimetric challenges of small animal irradiation with a commercial X-ray unit.

    PubMed

    Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar

    2014-12-01

    A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.

  8. Dosimetric Predictors of Duodenal Toxicity After Intensity Modulated Radiation Therapy for Treatment of the Para-aortic Nodes in Gynecologic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja

    Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less

  9. SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almonte, A; Polanco, G; Sanchez, E

    2016-06-15

    Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{supmore » 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.« less

  10. SU-D-204-04: Correlations Between Dosimetric Indices and Follow-Up Data for Salivary Glands Six Months After Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chera, B; Price, A; Kostich, M

    Purpose: To investigate the correlation between different dosimetric indices of salivary glands (as separate or combined structures) to patient-reported dry mouth 6 months post radiotherapy using the novel patient reported outcome version of the CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. Dosimetric constraints were used for the salivary glands (e.g. mean dose to the contralateral-parotid < 26 Gy). We investigated correlations of individual patient dosimetric data of the parotid and submandibular glands (as separate or combined structures) to their self-reported 6more » month post-treatment dry mouth responses. Moderate dry mouth responses were most prevalent and were used as the clinical endpoint indicating response. The correlation of Dmean, Dmax and a range of dosevolume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratios (OR). Results: Patients reporting non/mild dry mouth response (N=22) had average Dmean = 19.6 ± 6.2Gy to the contralateral-parotid compared to an average Dmean = 28.0 ± 8.3Gy and an AUC = 0.758 for the patients reporting moderate/severe/very severe dry mouth (N=21). Analysis of the range of VD’s for patients who had reported dry mouth showed that for the contralateral-parotid the indices V18 through V22 had the highest area under the curves (AUC) (0.762 – 0.772) compared to a more traditional dosimetric index V30, which had an AUC = 0.732. The highest AUC was observed for the combination of contralateral parotid and contralateral submandibular glands, for which V16 through V28 had AUC = 0.801 – 0.834. Conclusion: Patients who report moderate/severe/very severe dry mouth 6 months post radiotherapy had on average higher Dmean. The V16-V28 of the combination of the contralateral glands showed the highest correlation with the clinical endpoint.« less

  11. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less

  12. SU-F-BRA-14: Optimization of Dosimetric Guidelines for Accelerated Partial Breast Irradiation (APBI) Using the Strut-Adjusted Volume Implant (SAVI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Altman, M; Garcia-Ramirez, J

    Purpose: Treatment planning guidelines for accelerated partial breast irradiation (ABPI) using the strut-adjusted volume implant (SAVI) are inconsistent between the manufacturer and NSABP B-39/RTOG 0413 protocol. Furthermore neither set of guidelines accounts for different applicator sizes. The purpose of this work is to establish guidelines specific to the SAVI that are based on clinically achievable dose distributions. Methods: Sixty-two consecutive patients were implanted with a SAVI and prescribed to receive 34 Gy in 10 fractions twice daily using high dose-rate (HDR) Ir-192 brachytherapy. The target (PTV-EVAL) was defined per NSABP. The treatments were planned and evaluated using a combination ofmore » dosimetric planning goals provided by the NSABP, the manufacturer, and our prior clinical experience. Parameters evaluated included maximum doses to skin and ribs, and volumes of PTV-EVAL receiving 90%, 95%, 100%, 150%, and 200% of the prescription (V90, etc). All target parameters were evaluated for correlation with device size using the Pearson correlation coefficient. Revised dosimetric guidelines for target coverage and heterogeneity were determined from this population. Results: Revised guidelines for minimum target coverage (ideal in parentheses): V90≥95%(97%), V95≥90%(95%), V100≥88%(91%). The only dosimetric parameters that were significantly correlated (p<0.05) with device size were V150 and V200. Heterogeneity criteria were revised for the 6–1 Mini/6-1 applicators to V150≤30cc and V200≤15cc, and unchanged for the other sizes. Re-evaluation of patient plans showed 90% (56/62) met the revised minimum guidelines and 76% (47/62) met the ideal guidelines. All and 56/62 patients met our institutional guidelines for maximum skin and rib dose, respectively. Conclusions: We have optimized dosimetric guidelines for the SAVI applicators, and found that implementation of these revised guidelines for SAVI treatment planning yielded target coverage exceeding that required by existing guidelines while preserving heterogeneity constraints and minimizing dose to organs at risk.« less

  13. SU-E-T-313: Dosimetric Deviation of Misaligned Beams for a 6 MV Photon Linear Accelerator Using Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S

    2015-06-15

    Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less

  14. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation.

    PubMed

    Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B

    2017-01-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. [Dosimetric system for assessing doses received by people occupationally exposed to external sources of ionizing radiation].

    PubMed

    Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek

    2012-01-01

    The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.

  16. SU-E-J-52: Dosimetric Benefit of Adaptive Re-Planning in Lung Cancer Stereotactic Body Radiotherapy (SBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, J; Tian, Z; Gu, X

    Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less

  17. Clinical impact of dosimetric changes for volumetric modulated arc therapy in log file-based patient dose calculations.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-10-01

    A log file-based method cannot detect dosimetric changes due to linac component miscalibration because log files are insensitive to miscalibration. Herein, clinical impacts of dosimetric changes on a log file-based method were determined. Five head-and-neck and five prostate plans were applied. Miscalibration-simulated log files were generated by inducing a linac component miscalibration into the log file. Miscalibration magnitudes for leaf, gantry, and collimator at the general tolerance level were ±0.5mm, ±1°, and ±1°, respectively, and at a tighter tolerance level achievable on current linac were ±0.3mm, ±0.5°, and ±0.5°, respectively. Re-calculations were performed on patient anatomy using log file data. Changes in tumor control probability/normal tissue complication probability from treatment planning system dose to re-calculated dose at the general tolerance level was 1.8% on planning target volume (PTV) and 2.4% on organs at risk (OARs) in both plans. These changes at the tighter tolerance level were improved to 1.0% on PTV and to 1.5% on OARs, with a statistically significant difference. We determined the clinical impacts of dosimetric changes on a log file-based method using a general tolerance level and a tighter tolerance level for linac miscalibration and found that a tighter tolerance level significantly improved the accuracy of the log file-based method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2017-11-01

    One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.

  19. Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.

    PubMed

    Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang

    2011-01-01

    Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.

  20. Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis.

    PubMed

    Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J

    2017-01-01

    Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.

  1. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt

    2016-05-15

    Purpose: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. Methods: Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLCmore » tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam’s eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. Results: The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. Conclusions: Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.« less

  2. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    PubMed

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-04-01

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve smaller deviation from the ideal dose. In the L2,1/2-norm plans, the [mean dose, maximum dose] of OAR were reduced by an average of [2.38%, 4.24%] and[2.32%, 3.76%] of the prescription dose for the quadratic and LEUD cost function, respectively, compared with the IMPT plan using manual beam selection while maintaining the same PTV coverage. The L2,1/2 group sparsity plans were dosimetrically superior to the column generation plans as well. Besides beam orientation selection, spot sparsification was observed. Generally, with the quadratic cost function, 30%~60% spots in the selected beams remained active. With the LEUD cost function, the percentages of active spots were in the range of 35%~85%.The BOO-IMPT run time was approximately 20 min. This work shows the first IMPT approach integrating noncoplanar BOO and scanning-spot optimization in a single mathematical framework. This method is computationally efficient, dosimetrically superior and produces delivery-friendly IMPT plans. © 2018 American Association of Physicists in Medicine.

  3. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  4. Photon small-field measurements with a CMOS active pixel sensor.

    PubMed

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  5. Poster — Thur Eve — 74: Distributed, asynchronous, reactive dosimetric and outcomes analysis using DICOMautomaton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Haley; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.

    2014-08-15

    Many have speculated about the future of computational technology in clinical radiation oncology. It has been advocated that the next generation of computational infrastructure will improve on the current generation by incorporating richer aspects of automation, more heavily and seamlessly featuring distributed and parallel computation, and providing more flexibility toward aggregate data analysis. In this report we describe how a recently created — but currently existing — analysis framework (DICOMautomaton) incorporates these aspects. DICOMautomaton supports a variety of use cases but is especially suited for dosimetric outcomes correlation analysis, investigation and comparison of radiotherapy treatment efficacy, and dose-volume computation. Wemore » describe: how it overcomes computational bottlenecks by distributing workload across a network of machines; how modern, asynchronous computational techniques are used to reduce blocking and avoid unnecessary computation; and how issues of out-of-date data are addressed using reactive programming techniques and data dependency chains. We describe internal architecture of the software and give a detailed demonstration of how DICOMautomaton could be used to search for correlations between dosimetric and outcomes data.« less

  6. The Latest SORCE Solar Spectral Irradiance Data Release: Inter-Comparison and a First Look at TSIS SIM Measurement.

    NASA Astrophysics Data System (ADS)

    Beland, S.; Sandoval, L.; Vanier, B.; Elliott, J.; Harder, J. W.; Snow, M. A.; Woods, T. N.; Richard, E. C.; Pilewskie, P.

    2017-12-01

    The Spectral Irradiance Monitor (SIM), the SOLar STellar Irradiance Comparison Experiment (SOLSTICE), and the XUV Photometer System (XPS) instruments on board the Solar Radiation and Climate Experiment (SORCE) mission have been taking daily Solar spectral irradiance (SSI) measurements since April 2003. We present the latest data releases from these instruments, describing the improvements in the new datasets and the trends measured during Solar cycles 23 and 24. An inter-comparison of the SSI over the overlapping wavelengths for SIM and SOLSTICE is presented as well as, if the data is available, a comparison with the first light measurements from TSIS-SIM.

  7. Ozone Response to Aircraft Emissions: Sensitivity Studies with Two-dimensional Models

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Jackman, Charles H.; Douglass, Anne R.; Bureske, K.; Weubbles, Donald J.; Kinnison, Douglas E.; Brasseur, G.; Pyle, J.; Jones, Anna

    1992-01-01

    Our first intercomparison/assessment of the effects of a proposed high-speed civil transport (HSCT) fleet on the stratosphere is presented. These model calculations should be considered more as sensitivity studies, primarily designed to serve the following purposes: (1) to allow for intercomparison of model predictions; (2) to focus on the range of fleet operations and engine specifications giving minimal environmental impact; and (3) to provide the basis for future assessment studies. The basic scenarios were chosen to be as realistic as possible, using the information available on anticipated developments in technology. They are not to be interpreted as a commitment or goal for environmental acceptability.

  8. NASA Giovanni Portals for NLDAS/GLDAS Online Visualization, Analysis, and Intercomparison

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko Kato; Rodell, Matthew

    2011-01-01

    The North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) are generating a series of land surface forcing (e.g., precipitation, surface meteorology, and radiation), state (e.g., soil moisture and temperature, and snow), and flux (e.g., evaporation and sensible heat flux) products, simulated by several land surface models. To date, NLDAS and GLDAS have generated more than 30 (1979 - present) and 60 (1948 - present) years of data, respectively. To further facilitate data accessibility and utilization, three new portals in the NASA Giovanni system have been made available for NLDAS and GLDAS online visualization, analysis, and intercomparison.

  9. Ozone profile intercomparison based on simultaneous observations between 20 and 40 km

    NASA Technical Reports Server (NTRS)

    Aimedieu, P.; Krueger, A. J.; Robbins, D. E.; Simon, P. C.

    1983-01-01

    The vertical distribution of stratospheric ozone has been simultaneously measured by means of five different instruments carried on the same balloon payload. The launches were performed from Gap during the intercomparison campaign conducted in June 1981 in southern France. Data obtained between altitudes of 20 and 40 km are compared and discussed. Vertical profiles deduced from Electrochemical Concentration Cell sondes launched from the same location by small balloons and from short Umkehr measurements made at Mt Chiran (France) are also included in this comparison. Systematic differences of the order of 20 percent between ozone profiles deduced from solar u.v. absorption and in situ techniques are found.

  10. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  11. Past and future weather-induced risk in crop production

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.

    2016-12-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.

  12. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  13. Constraints and potentials of future irrigation water availability on agricultural production under climate change.

    PubMed

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M; Folberth, Christian; Foster, Ian; Gosling, Simon N; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-03-04

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

  14. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  15. Nuclear accident dosimetry intercomparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, C.S.

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less

  16. Economic impacts of climate change on agriculture: the AgMIP approach

    NASA Astrophysics Data System (ADS)

    Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter

    2015-01-01

    The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.

  17. Long History of IAM Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.

    2015-04-23

    Correspondence to editor: We agree with the editors that the assumptions behind models of all types, including integrated assessment models (IAMs), should be as transparent as possible. The editors were in error, however, when they implied that the IAM community is just “now emulating the efforts of climate researchers by instigating their own model inter-comparison projects (MIPs).” In fact, model comparisons for integrated assessment and climate models followed a remarkably similar trajectory. Early General Circulation Model (GCM) comparison efforts, evolved to the first Atmospheric Model Inter-comparison Project (AMIP), which was initiated in the early 1990s. Atmospheric models evolved to coupledmore » atmosphere-ocean models (AOGCMs) and results from the first Coupled Model Inter-Comparison Project (CMIP1) become available about a decade later. Results of first energy model comparison exercise, conducted under the auspices of the Stanford Energy Modeling Forum, were published in 1977. A summary of the first comparison focused on climate change was published in 1993. As energy models were coupled to simple economic and climate models to form IAMs, the first comparison exercise for IAMs (EMF-14) was initiated in 1994, and IAM comparison exercises have been on-going since this time.« less

  18. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  19. Models and Measurements Intercomparison 2

    NASA Technical Reports Server (NTRS)

    Park, Jae H. (Editor); Ko, Malcolm K. W. (Editor); Jackman, Charles H. (Editor); Plumb, R. Alan (Editor); Kaye, Jack A. (Editor); Sage, Karen H. (Editor)

    1999-01-01

    Models and Measurement Intercomparison II (MM II) summarizes the intercomparison of results from model simulations and observations of stratospheric species. Representatives from twenty-three modeling groups using twenty-nine models participated in these MM II exercises between 1996 and 1999. Twelve of the models were two- dimensional zonal-mean models while seventeen were three-dimensional models. This was an international effort as seven were from outside the United States. Six transport experiments and five chemistry experiments were designed for various models. Models participating in the transport experiments performed simulations of chemically inert tracers providing diagnostics for transport. The chemistry experiments involved simulating the distributions of chemically active trace cases including ozone. The model run conditions for dynamics and chemistry were prescribed in order to minimize the factors that caused differences in the models. The report includes a critical review of the results by the participants and a discussion of the causes of differences between modeled and measured results as well as between results from different models, A sizable effort went into preparation of the database of the observations. This included a new climatology for ozone. The report should help in evaluating the results from various predictive models for assessing humankind perturbations of the stratosphere.

  20. Metafitting: Weight optimization for least-squares fitting of PTTI data

    NASA Technical Reports Server (NTRS)

    Douglas, Rob J.; Boulanger, J.-S.

    1995-01-01

    For precise time intercomparisons between a master frequency standard and a slave time scale, we have found it useful to quantitatively compare different fitting strategies by examining the standard uncertainty in time or average frequency. It is particularly useful when designing procedures which use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate from the calibrating intercomparisons. We use the term 'metafitting' for the choices that are made before a fitting procedure is operationally adopted. We present methods for calculating the standard uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a general noise model suitable for many PTTI applications. We present the results of the metafitting of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration of a maser time scale. We have identified a cumulative series of improvements that give a significant reduction of the expected standard uncertainty, compared to the simplest procedure of resetting the maser synthesizer after each calibration. The metafitting improvements presented include the optimum choice of weights for the calibration runs, optimized over a period of a week or 10 days.

  1. The DeepMIP Contribution to PMIP4: Experimental Design for Model Simulations of the EECO, PETM, and pre-PETM (version 1.0)

    NASA Technical Reports Server (NTRS)

    Lunt, Daniel J.; Huber, Matthew; Anagnostou, Eleni; Baatsen, Michiel L. J.; Caballero, Rodrigo; DeConto, Rob; Dijkstra, Henk A.; Donnadieu, Yannick; Evans, David; Feng, Ran; hide

    2017-01-01

    Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( greater than 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (approximately 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4(times) CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modeling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.

  2. The T-REX valley wind intercomparison project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidli, J; Billings, B J; Burton, R

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less

  3. Intercomparison of different operational oceanographic forecast products in the CMEMS IBI area

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Dabrowski, Tomasz; Amo-Baladrón, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Cossarini, Gianpiero; Salon, Stefano; Tonani, Marina; Alvarez-Fanjul, Enrique

    2017-04-01

    The development of skill assessment software packages and dedicated web applications is a relatively novel theme in operational oceanography. Within the CMEMS IBI-MFC, the quality of IBI (Iberia-Biscay-Ireland) forecast products is assessed by means of NARVAL (North Atlantic Regional VALidation) web-based tool. The validation of IBI against independent in situ and remote-sensing measurements is routinely conducted to evaluate model's veracity and prognostic capabilities. Noticeable efforts are in progress to define meaningful skill scores and statistical metrics to quantitatively assess the quality and reliability of the IBI model solution. Likewise, the IBI-MFC compares the IBI forecast products with other model solutions by setting up specific intercomparison exercises on overlapping areas at diverse timescales. In this context, NARVAL web tool already includes a specific module to evaluate strengths and weaknesses of IBI versus other CMEMS operational ocean forecasting systems (OOFSs). In particular, the IBI physical ocean solution is compared against the CMEMS MED and NWS OOFSs. These CMEMS regional services delivered for the Mediterranean and the North West Shelves include data assimilation schemes in their respective operational chains and generate analogous ocean forecast products to the IBI ones. A number of physical parameters (i.e. sea surface temperature, salinity and current velocities) are evaluated through NARVAL on a daily basis in the overlapping areas existing between these three regional systems. NARVAL is currently being updated in order to extend this intercomparison of ocean model parameters to the biogeochemical solutions provided by the aforementioned OOFSs. More specifically, the simulated chlorophyll concentration is evaluated over several subregions of particular concern by using as benchmark the CMEMS satellite-derived observational products. In addition to this IBI comparison against other regional CMEMS products on overlapping areas, a specific intercomparison between the CMEMS GLOBAL solution and the IBI (regional application dynamically embedded in the former) is conducted in order to check its consistency and ability to outperform the parent model solution. Particular emphasis is placed on the comparison of time-series at specified locations (class-2 metrics). The standardized validation methodology presented here is particularly useful and could encompass the intercomparison of the regional application (IBI) and other nested higher resolution models at coastal/shelf scales to quantify the added value of downscaling in local downstream approaches.

  4. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    NASA Astrophysics Data System (ADS)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.

  5. Evaluation of dosimetric properties of shielding disk used in intraoperative electron radiotherapy: A Monte Carlo study.

    PubMed

    Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe

    2018-05-01

    A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Meno

    Purpose: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with {sup 125}I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. Methods: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumormore » height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using PLAQUESIMULATOR v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. Results: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.« less

  7. SU-E-T-534: Dosimetric Effect of Multileaf Collimator Leaf Width On Volumetric Modulated Arc Stereotactic Radiotherapy for Spine Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoush, A; Djemil, T; Subedi, L

    2014-06-01

    Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plansmore » were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.« less

  8. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, 453100; Ma, Lin

    2016-07-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV),more » correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the preferential choice for the body + pedicle-type lesions. This study suggests further clinical investigations with longer follow-up for these studied cases.« less

  9. SU-E-T-347: Effect of MLC Leaf Position Inaccuracy On Dose Distribution for Spinal SBRT with Different Energies and Dose Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, T; Dang, J; Dai, C

    2015-06-15

    Purpose: To evaluate dosimetric impact of spinal SBRT when MLC leaf positions deviate from planning positions for different energies and doserates. Methods and Materials: 18 localized spinal metastases patients were selected for SBRT using IMRT planning with 9 posterior beams delivered at gantry angles ranging between 100°–260°. A modern linear accelerator(Varian Turebeam STX with HDMLC 2.5 mm thick leaf at isocenter) IMRT plans were generated using both 6X and 6X-FFF(Flattening filter free) beams with a nominal prescription dose of 6 Gy/fraction to PTV. Doserates ranging from 200–600 MU/min for 6X and 400–1400 MU/min for 6X-FFF, with 200 increments were examined.more » A fixed amount(0.3, 0.5, 1, and 2 mm) of MLC-leaf position deviation was simulated to each plan under following conditions: 1)only along X1 collimator; 2)with increments at both X1 and X2 collimator directions;3)with reductions at both X1 and X2 collimator directions. Dose was recalculated for each modified plans. Both original and modified plans were delivered using Turebeam STX machine and measured using both portal dosimetry and a 3D dosimeter(Delta4 of ScandiDos). Each field’s Result were compared using following three parameters: the 95% iso-dose level Conformal Index(95%CI), the spinal cord maximum dose(SCDmax), and the planned target volume(PTV) mean dose. Results: Dosimetric impacts on the 95%CI, SCDmax and the PTV mean dose are: 1)negligible if MLC-leaf position deviation only along a single collimator direction ≥1.0 mm,2)substantial if MLC-leaf position increment along both collimator directions ≥0.3 mm(95% CI decreases while SCDmax and PTV mean-dose increase), 3)substantial if MLC-leaf position reduction along both collimator directions ≥0.3 mm(95% CI first increases and then decreases while SCDmax and PTV mean-dose decrease). Different energies and doserates demonstrated comparable dosimetric impacts. Conclusion: Substantial dose deviations could happen for spinal SBRT using IMRT plan with HD-MLC if leaf position deviation ≥0.3 mm. The effects of different energy and doserate are negligible.« less

  10. SU-E-T-125: Dosimetric Comparison of Intensity Modulated Radiation Therapy Using Robotic Versus Traditional Linac Platform in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, T; Rella, J; Yang, J

    Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less

  11. Combination of longitudinal and circumferential three-dimensional esophageal dose distribution predicts acute esophagitis in hypofractionated reirradiation of patients with non-small-cell lung cancer treated in stereotactic body frame.

    PubMed

    Poltinnikov, Igor M; Fallon, Kevin; Xiao, Yian; Reiff, Jay E; Curran, Walter J; Werner-Wasik, Maria

    2005-07-01

    To evaluate dosimetric predictors of acute esophagitis (AE) and clinical outcome of patients with non-small-cell lung cancer (NSCLC) receiving reirradiation. Seventeen patients with NSCLC received reirradiation to the lung tumors/mediastinum, while immobilized in stereotactic body frame (SBF). CT simulation and hypofractionated three-dimensional radiotherapy were used. Two axial segments of esophagus contours merged together were defined as esophagus disc (ED). For each ED, the percentage (%) of the volume of esophageal circumference treated to % of prescribed dose (PD) was assessed. Number of EDs with 50% or any % of volume (V) of esophageal circumference receiving more than or equal to (>/=) 50%, 80%, and 100% of PD (50% V >/=50% PD; 50% V >/=80% PD; any % V >/=100% PD) were calculated. These dosimetric variables and the length of the esophagus within the radiation therapy (RT) port were correlated with AE using exact Wilcoxon test. A median RT dose was 32 Gy with a median fraction size of 4 Gy. Eleven of 13 patients presenting with pain and/or shortness of breath had complete or partial resolution of symptoms. Median survival time from the start of reirradiation in SBF until death was 5.5 months. AE was observed in 7 patients and resolved within 3 months of RT completion. No Grade 3 or higher events were noticed. The length of the esophagus within RT port did not predict for AE (p = 0.71). However, an increased number of EDs predicted for AE for the following dosimetric variables: 50% V >/=50% PD (p = 0.023), 50% V >/=80% PD (p = 0.047), and any % V >/=100% PD (p = 0.004). Patients with at least 2 EDs receiving >/=100% PD to any % V of circumference had AE compared to those with zero EDs. Reirradiation using hypofractionated three-dimensional radiotherapy and SBF immobilization is an effective strategy for palliation of symptoms in selected patients with recurrent NSCLC. The length of the esophagus in the RT field does not predict for AE. However, an increasing number of EDs displaying the combination of longitudinal and circumferential three-dimensional dose distribution along the esophagus is a valuable predictor for AE.

  12. TH-EF-BRB-03: Significant Cord and Esophagus Dose Reduction by 4π Non-Coplanar Spine Stereotactic Body Radiation Therapy and Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Tran, A; Nguyen, D

    Purpose: To demonstrate significant organ-at-risk (OAR) sparing achievable with 4π non-coplanar radiotherapy on spine SBRT and SRS patients. Methods: Twenty-five stereotactic spine cases previously treated with VMAT (n = 23) or IMRT (n = 2) were included in this study. A computer-aided-design model of a Linac with a 3D-scanned human surface was utilized to determine the feasible beam space throughout the 4π steradian and beam specific source-to-target-distances (STD) required for collision avoidance. 4π radiotherapy plans integrating beam orientation and fluence map optimization were then created using a column-generation algorithm. Twenty optimal beams were selected for each case. To evaluate themore » tradeoff between dosimetric benefit and treatment complexity, 4π plans including only isocentrically deliverable beams were also created. Beam angles of all standard and isocentric 4π plans were imported into Eclipse to recalculate the dose using the same calculation engine as the clinical plans for unbiased comparison. OAR and PTV dose statistics for the clinical, standard-4π, and isocentric-4π plans were compared. Results: Comparing standard-4π to clinical plans, particularly significant average percent reduction in the [mean, maximum] dose of the cord and esophagus of [41%, 21.7%], and [38.7%, 36.4%] was observed, along with global decrease in all other OAR dose statistics. The average cord volume receiving more than 50% prescription dose was substantially decreased by 76%. In addition, improved PTV coverage was demonstrated with a maximum dose reduction of 0.93% and 1.66% increase in homogeneity index (D95/D5). All isocentric-4π plans achieved dosimetric performance equivalent to that of the standard-4π plans with higher delivery complexity. Conclusion: 4π radiotherapy significantly improves stereotactic spine treatment dosimetry. With the substantial OAR dose sparing, PTV dose escalation is considerably safer. Isocentric-4π is sufficient to achieve the dosimetric gain. The successful implementation of 4π using an FDA approved planning system paves the way for a prospective clinical trial. Varian Medical Systems, NIH R43CA183390 and R01CA188300, NSF graduate research fellowship DGE-1144087.« less

  13. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua

    2015-10-01

    The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less

  14. Use of tomotherapy in treatment of synchronous bilateral breast cancer: dosimetric comparison study

    PubMed Central

    Wadasadawala, T; Sarin, R; Upreti, R R; Paul, S; Phurailatpam, R

    2015-01-01

    Objective: Synchronous malignancy in both breasts is a rare incidence. The present study aims at dosimetric comparison of conventional bitangential radiotherapy (RT) technique with conventional [field-in-field (FIF)] and rotational [Helical TomoTherapy® and TomoDirect™ (TD); Accuray Inc., Sunnyvale, CA] intensity-modulated RT for patients with synchronous bilateral breast cancer (SBBC). Methods: CT data sets of 10 patients with SBBC were selected for the present study. RT was planned for all patients on both sides to whole breast and/or chest wall using the above-mentioned techniques. Six females with breast conservation on at least one side also had a composite plan along with tumour bed (TB) boost using sequential electrons for bitangential and FIF techniques or sequential helical tomotherapy (HT) boost (for TD) or simultaneous integrated boost (SIB) for HT. Results: All techniques produced acceptable target coverage. The hotspot was significantly lower with FIF technique and HT but higher with TD. For the organs at risk doses, HT resulted in significant reduction of the higher dose volumes. Similarly, TD resulted in significant reduction of the mean dose to the heart and total lung by reducing the lower dose volumes. All techniques of delivering boost to the TB were comparable in terms of target coverage. HT-SIB markedly reduced mean doses to the total lung and heart by specifically lowering the higher dose volumes. Conclusion: This study demonstrates the cardiac and pulmonary sparing ability of tomotherapy in the setting of SBBC. Advances in knowledge: This is the first study demonstrating feasibility of treatment of SBBC using tomotherapy. PMID:25605345

  15. Dosimetric characterization of the M−15 high‐dose‐rate Iridium−192 brachytherapy source using the AAPM and ESTRO formalism

    PubMed Central

    Thanh, Minh‐Tri Ho; Munro, John J.

    2015-01-01

    The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489

  16. Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer.

    PubMed

    Coates, James; Jeyaseelan, Asha K; Ybarra, Norma; David, Marc; Faria, Sergio; Souhami, Luis; Cury, Fabio; Duclos, Marie; El Naqa, Issam

    2015-04-01

    We explore analytical and data-driven approaches to investigate the integration of genetic variations (single nucleotide polymorphisms [SNPs] and copy number variations [CNVs]) with dosimetric and clinical variables in modeling radiation-induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients. Sixty-two patients who underwent curative hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 and 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Fifty-four patients had full dosimetric profiles. Two parallel modeling approaches were compared to assess the risk of severe RB (Grade⩾3) and ED (Grade⩾1); Maximum likelihood estimated generalized Lyman-Kutcher-Burman (LKB) and logistic regression. Statistical resampling based on cross-validation was used to evaluate model predictive power and generalizability to unseen data. Integration of biological variables xrcc1 CNV and SNP improved the fit of the RB and ED analytical and data-driven models. Cross-validation of the generalized LKB models yielded increases in classification performance of 27.4% for RB and 14.6% for ED when xrcc1 CNV and SNP were included, respectively. Biological variables added to logistic regression modeling improved classification performance over standard dosimetric models by 33.5% for RB and 21.2% for ED models. As a proof-of-concept, we demonstrated that the combination of genetic and dosimetric variables can provide significant improvement in NTCP prediction using analytical and data-driven approaches. The improvement in prediction performance was more pronounced in the data driven approaches. Moreover, we have shown that CNVs, in addition to SNPs, may be useful structural genetic variants in predicting radiation toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Agreement Between Institutional Measurements and Treatment Planning System Calculations for Basic Dosimetric Parameters as Measured by the Imaging and Radiation Oncology Core-Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas

    Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less

  18. Correlation of dosimetric parameters obtained with the analytical anisotropic algorithm and toxicity of chest chemoradiation in lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha

    The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented withmore » grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.« less

  19. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.

  20. Examining the relationship between pre- and postimplant geometry in prostate low-dose-rate brachytherapy and its correlation with dosimetric quality using the similarity concept.

    PubMed

    Todor, Dorin A; Anscher, Mitchell S; Karlin, Jeremy D; Hagan, Michael P

    2014-01-01

    This is a retrospective study in which we define multiple metrics for similarity and then inquire on the relationship between similarity and currently used dosimetric quantities describing preimplant and postimplant plans. We analyzed a unique cohort of 94 consecutively performed prostate seed implant patients, associated with excellent dosimetric and clinical outcomes. For each patient, an ultrasound (US) preimplant and two CT postimplant (Day 0 and Day 30) studies were available. Measures for similarity were created and computed using feature vectors based on two classes of moments: first, invariant to rotation and translation, and the second polar-radius moments invariant to rotation, translation, and scaling. Both similarity measures were calibrated using controlled perturbations (random and systematic) of seed positions and contours in different size implants, thus producing meaningful numerical threshold values used in the clinical analysis. An important finding is that similarity, for both seed distributions and contours, improves significantly when scaling invariance is added to translation and rotation. No correlation between seed and contours similarity was found. In the setting of preplanned prostate seed implants using preloaded needles, based on our data, similarity between preimplant and postimplant plans does not correlate with either minimum dose to 90% of the volume of the prostate or analogous similarity metrics for prostate contours. We have developed novel tools and metrics, which will allow practitioners to better understand the relationship between preimplant and postimplant plans. Geometrical similarity between a preplan and an actual implant, although useful, does not seem to be necessary to achieve minimum dose to 90% of the volume of the prostate-good dosimetric implants. Copyright © 2014 American Brachytherapy Society. All rights reserved.

  1. A general method for the definition of margin recipes depending on the treatment technique applied in helical tomotherapy prostate plans.

    PubMed

    Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto

    2016-01-01

    To obtain specific margin recipes that take into account the dosimetric characteristics of the treatment plans used in a single institution. We obtained dose-population histograms (DPHs) of 20 helical tomotherapy treatment plans for prostate cancer by simulating the effects of different systematic errors (Σ) and random errors (σ) on these plans. We obtained dosimetric margins and margin reductions due to random errors (random margins) by fitting the theoretical results of coverages for Gaussian distributions with coverages of the planned D99% obtained from the DPHs. The dosimetric margins obtained for helical tomotherapy prostate treatments were 3.3 mm, 3 mm, and 1 mm in the lateral (Lat), anterior-posterior (AP), and superior-inferior (SI) directions. Random margins showed parabolic dependencies, yielding expressions of 0.16σ(2), 0.13σ(2), and 0.15σ(2) for the Lat, AP, and SI directions, respectively. When focusing on values up to σ = 5 mm, random margins could be fitted considering Gaussian penumbras with standard deviations (σp) equal to 4.5 mm Lat, 6 mm AP, and 5.5 mm SI. Despite complex dose distributions in helical tomotherapy treatment plans, we were able to simplify the behaviour of our plans against treatment errors to single values of dosimetric and random margins for each direction. These margins allowed us to develop specific margin recipes for the respective treatment technique. The method is general and could be used for any treatment technique provided that DPHs can be obtained. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation.

    PubMed

    Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai

    2015-01-01

    This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution.

  3. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation

    PubMed Central

    Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai

    2015-01-01

    This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution. PMID:26885108

  4. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  5. Dosimetric parameters of three new solid core I‐125 brachytherapy sources

    PubMed Central

    Solberg, Timothy D.; DeMarco, John J.; Hugo, Geoffrey; Wallace, Robert E.

    2002-01-01

    Monte Carlo calculations and TLD measurements have been performed for the purpose of characterizing dosimetric properties of new commercially available brachytherapy sources. All sources tested consisted of a solid core, upon which a thin layer of I125 has been adsorbed, encased within a titanium housing. The PharmaSeed BT‐125 source manufactured by Syncor is available in silver or palladium core configurations while the ADVANTAGE source from IsoAid has silver only. Dosimetric properties, including the dose rate constant, radial dose function, and anisotropy characteristics were determined according to the TG‐43 protocol. Additionally, the geometry function was calculated exactly using Monte Carlo and compared with both the point and line source approximations. The 1999 NIST standard was followed in determining air kerma strength. Dose rate constants were calculated to be 0.955±0.005,0.967±0.005, and 0.962±0.005 cGyh−1U−1 for the PharmaSeed BT‐125‐1, BT‐125‐2, and ADVANTAGE sources, respectively. TLD measurements were in excellent agreement with Monte Carlo calculations. Radial dose function, g(r), calculated to a distance of 10 cm, and anisotropy function F(r, θ), calculated for radii from 0.5 to 7.0 cm, were similar among all source configurations. Anisotropy constants, ϕ¯an, were calculated to be 0.941, 0.944, and 0.960 for the three sources, respectively. All dosimetric parameters were found to be in close agreement with previously published data for similar source configurations. The MCNP Monte Carlo code appears to be ideally suited to low energy dosimetry applications. PACS number(s): 87.53.–j PMID:11958652

  6. Three-dimensional dosimetric considerations from different point A definitions in cervical cancer low-dose-rate brachytherapy

    PubMed Central

    Chen, Ting; Kim, Leonard H.; Nelson, Carl; Gabel, Molly; Narra, Venkat; Haffty, Bruce; Yue, Ning J.

    2013-01-01

    Purpose To investigate the dosimetric difference due to the different point A definitions in cervical cancer low-dose-rate (LDR) intracavitary brachytherapy. Material and methods Twenty CT-based LDR brachytherapy plans of 11 cervical patients were retrospectively reviewed. Two plans with point As following the modified Manchester system which defines point A being 2 cm superior to the cervical os along the tandem and 2 cm lateral (Aos), and the American Brachytherapy Society (ABS) guideline definition in which the point A is 2 cm superior to the vaginal fornices instead of os (Aovoid) were generated. Using the same source strength, two plans prescribed the same dose to Aos and Aovoid. Dosimetric differences between plans including point A dose rate, treatment volume encompassed by the prescription isodose line (TV), and dose rate of 2 cc of the rectum and bladder to the prescription dose were measured. Results On average Aovoid was 8.9 mm superior to Aos along the tandem direction with a standard deviation of 5.4 mm. With the same source strength and arrangement, Aos dose rate was 19% higher than Aovoid dose rate. The average TV(Aovoid) was 118.0 cc, which was 30% more than the average TV(Aos) of 93.0 cc. D2cc/D(Aprescribe) increased from 51% to 60% for rectum, and increased from 89% and 106% for bladder, if the prescription point changed from Aos to Aovoid. Conclusions Different point A definitions lead to significant dose differences. Careful consideration should be given when changing practice from one point A definition to another, to ensure dosimetric and clinical equivalency from the previous clinical experiences. PMID:24474971

  7. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer

    PubMed Central

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-01-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630

  8. Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel.

    PubMed

    Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi

    2014-05-01

    Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.

  9. CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients

    PubMed Central

    2013-01-01

    Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312

  10. Sci—Thur PM: Planning and Delivery — 04: Respiratory margin derivation and verification in partial breast irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, S; Conroy, L; Smith, WL

    Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20more » mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.« less

  11. Human respiratory tract model for radiological protection: a revision of the ICRP Dosimetric Model for the Respiratory System.

    PubMed

    Bair, W J

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users. This should facilitate application of the revised human respiratory tract model to worldwide radiation protection needs.

  12. The SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  13. LIDAR mapping of ozone-episode dynamics in Paris and intercomparison with spot analyzers Supplementary material available at http://link.springer.de/journals/apb

    NASA Astrophysics Data System (ADS)

    Thomasson, A.; Geffroy, S.; Frejafon, E.; Weidauer, D.; Fabian, R.; Godet, Y.; Nominé, M.; Ménard, T.; Rairoux, P.; Moeller, D.; Wolf, J. P.

    Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50-, and 300-m altitudes on the Eiffel Tower. Very good agreement is found when spatial resolution, acquisition time, and required concentration accuracy are optimized. Sensitivity to these parameters for successful intercomparison in urban areas is discussed.

  14. An intercomparison of longwave measurements by ERBE radiometers on the NOAA-9 and ERBS satellites

    NASA Technical Reports Server (NTRS)

    House, Frederick B.

    1989-01-01

    Two instrument modules of each satellite on which the Earth Radiation Budget Experiment (ERBE) is orbiting observe components of the earth radiation budget with three different scales of earth view. An intercomparison of longwave measurements by these instruments provides relative information concerning radiometric performance at satellite altitude, techniques of estimating upwelling exitances, and an end-to-end evaluation of the data processing system. Results indicate that the ERBE radiometers are mildly sensitive to varying thermal loads from the spacecraft and/or the earth-space environment. Radiometric variations at the satellite and methods of data interpretation contribute about equally to the uncertainty of radiant exitances from the earth.

  15. Intercomparisons of radiosondes and an airborne refractometer for measuring radio ducts

    NASA Astrophysics Data System (ADS)

    Morrissey, J. F.; Izumi, Y.; Cote, O. R.

    1986-07-01

    The capabilities of two types of radiosondes and an aircraft refractometer to measure radio ducting conditions were compared in a series of flights in September 1985 at Chatham, Mass., on Cape Cod. The tests were part of a program studying radio propagation on Air Force communication links. The intercomparisons were made between data from a refractometer mounted on a small single engine aircraft (Cessna 172) and data from an operational National Weather Service synoptic sounding system. The synoptic sonde and the portable sonde were often on the same balloon train. The comparisons show that the aircraft refractometer data indicate the highest number of ducts and the synoptic data the least number of ducts.

  16. Intercomparison of analytical methods for arsenic speciation in human urine.

    PubMed

    Crecelius, E; Yager, J

    1997-06-01

    An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l.

  17. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  18. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  19. 3-D Inhomogeous Radiative Transfer Model using a Planar-stratified Forward RT Model and Horizontal Perturbation Series

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Gasiewski, A. J.

    2017-12-01

    A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.

  20. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

Top