Sample records for dosimetry system methods

  1. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-07

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  2. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  3. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  4. A comparison of two methods of in vivo dosimetry for a high energy neutron beam.

    PubMed

    Blake, S W; Bonnett, D E; Finch, J

    1990-06-01

    Two methods of in vivo dosimetry have been compared in a high energy neutron beam. These were activation dosimetry and thermoluminescence dosimetry (TLD). Their suitability was determined by comparison with estimates of total dose, obtained using a tissue equivalent ionization chamber. Measurements were made on the central axis and a profile of a 10 x 10 cm square field and also behind a shielding block in order to simulate conditions of clinical use. The TLD system was found to provide the best estimate of total dose.

  5. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  6. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  7. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB.

    PubMed

    Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens

    2017-01-01

    In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.

  8. SU-E-T-482: In Vivo Dosimetry of An Anthropomorphic Phantom by Using the RADPOS System for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, R; Motegi, K; Hotta, K

    Purpose: Delivered doses in an anthropomorphic phantom were evaluated by using the RADPOS system for proton beam therapy. Methods: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing simultaneous online measurements of dose and spatial position. Through the RADPOS system, dose evaluation points can be determined. In vivo proton dosimetry was evaluated by using the RADPOS system and anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared to the treatment plan values that were calculated by a simplified Monte Carlo (SMC) method. Although the MOSFET responsemore » depends strongly on the linear energy transfer (LET) of proton beam, the MOSFET responses to proton beams were corrected with the SMC. Here, the SMC calculated only dose deposition determined by the experimental depth–dose distribution and lateral displacement of protons due to both multiple scattering effect in materials and incident angle. As a Result, the SMC could quickly calculate accurate doses in even heterogeneities. Results: In vivo dosimetry by using the RADPOS, as well as the MOSFET doses agreed in comparison with calculations by the SMC in the range of −3.0% to 8.3%. Most measurement errors occurred because of the uncertainties of dose calculations due to the position error of 1 mm. Conclusion: We evaluated the delivered doses in the anthropomorphic phantom by using the RADPOS system for proton beam therapy. The MOSFET doses agreed in comparison with calculations by the SMC within the measurement error. Therefore, we could successfully control the uncertainties of the measurement positions by using the RADPOS system within 1 mm in in vivo proton dosimetry. We aim for the clinical application of in vivo proton dosimetry with this RADPOS system.« less

  9. Innovation and the future of advanced dosimetry: 2D to 5D

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2017-05-01

    Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.

  10. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  11. STATUS REPORT: EVIDENCE BASED ADVANCES IN ...

    EPA Pesticide Factsheets

    This report summarizes the status of specific inhalation dosimetry procedures for gases as outlined in U.S. EPA’s 1994 Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry (U.S. EPA 1994) and reviews recent scientific advances in gas dosimetry related to these procedures. These procedures are used predominately for interspecies extrapolation, typically from laboratory animal inhalation exposures to humans. The specific procedures addressed in this report are those used for the tracheobronchial (TB) and pulmonary (PU) regions of the respiratory tract and the procedure used for the systemic or extrarespiratory (ER) region. In addition, this report presents, reviews and discusses information and data on inhalation dosimetry in children and the adequacy of the procedures in the RfC Methods with regard to children. For the purposes of this report the scientific literature was searched from 1985 (about 10 years prior to the issuance of RfC Methods) to April 30, 2011. The studies identified in this update addressing overall concepts and approaches for portal-of-entry gas dosimetry in the TB and PU regions of the airways support the principles and procedures in RfC Methods. In some cases these studies suggest and provide examples of further refinement within the existing dosimetry modeling framework of the RfC Methods through development and application of mass transfer coefficients as regional measures of gas up

  12. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations

    PubMed Central

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829

  13. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  14. Evaluation of Effective Sources in Uncertainty Measurements of Personal Dosimetry by a Harshaw TLD System

    PubMed Central

    Hosseini Pooya, SM; Orouji, T

    2014-01-01

    Background: The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective: In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. Method: These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. Results: The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. Conclusion: The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services. PMID:25505769

  15. Monte Carlo simulations in radiotherapy dosimetry.

    PubMed

    Andreo, Pedro

    2018-06-27

    The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".

  16. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  17. Nuclear accident dosimetry intercomparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, C.S.

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less

  18. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  19. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  20. Development and demonstration of 2D dosimetry using optically stimulated luminescence from new Al2O3 films for radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Md Foiez

    Scope and Method of Study: The goal of this work was to develop and demonstrate a 2D dosimetry system based on the optically stimulated luminescence (OSL) from new Al2O3 films for radiotherapy applications. A 2D laser-scanning system was developed for the readout and two OSL films (Al2O3:C and Al2O3:C,Mg) were tested. A dose reconstruction algorithm addressing corrections required for the characteristic material properties and the properties related to the system design was developed. The dosimetric properties of the system were tested using clinical X-ray (6 MV) beam. The feasibility of small field dosimetry was tested using heavy ion beams (221 MeV proton and 430 MeV 12C beam). For comparison, clinical tests were performed with ionization chamber, diode arrays and the commercial radiochromic films (Gafchromic EBT3) when applicable. Findings and Conclusions: The results demonstrate that the developed image reconstruction algorithm enabled > 300x faster laser-scanning readout of the Al2O3 films, eliminating the restriction imposed by its slow luminescence decay. The algorithm facilitates submillimeter spatial resolution, reduces the scanner position dependence (of light collection efficiency) and removes the inherent galvo geometric distortion, among other corrections. The system has a background signal < 1 mGy, linearity correction factor of < 10% up to ˜4.0 Gy and < 2% dose uncertainty over the clinically relevant dose range of 0.1 - 30 Gy. The system has a dynamic range of 4 - 5 orders, only limited by PMT linearity. The absolute response from Al2O2:C films is higher than Al2O 2:C,Mg films, but with lower image signal-to-noise ratio due to lower concentration of fast F+-center emission. As a result, Al2O2:C,Mg films are better suited than Al2O3:C films for small field dosimetry, which requires precise dosimetry with sub-millimeter spatial resolution. The dose uncertainty associated with OSL film dosimetry is lower than that associated with EBT3 film dosimetry due to lower background, simpler calibration and wider dynamic range. In conclusion, this work demonstrates excellent potentials of the 2D OSL dosimetry system for both relative and absolute dosimetry in radiotherapy applications, with especial emphasis on small fields.

  1. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  2. Characterising an aluminium oxide dosimetry system.

    PubMed

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  3. [Automatic Extraction and Analysis of Dosimetry Data in Radiotherapy Plans].

    PubMed

    Song, Wei; Zhao, Di; Lu, Hong; Zhang, Biyun; Ma, Jun; Yu, Dahai

    To improve the efficiency and accuracy of extraction and analysis of dosimetry data in radiotherapy plans for a batch of patients. With the interface function provided in Matlab platform, a program was written to extract the dosimetry data exported from treatment planning system in DICOM RT format and exported the dose-volume data to an Excel file with the SPSS compatible format. This method was compared with manual operation for 14 gastric carcinoma patients to validate the efficiency and accuracy. The output Excel data were compatible with SPSS in format, the dosimetry data error for PTV dose interval of 90%-98%, PTV dose interval of 99%-106% and all OARs were -3.48E-5 ± 3.01E-5, -1.11E-3 ± 7.68E-4, -7.85E-5 ± 9.91E-5 respectively. Compared with manual operation, the time required was reduced from 5.3 h to 0.19 h and input error was reduced from 0.002 to 0. The automatic extraction of dosimetry data in DICOM RT format for batch patients, the SPSS compatible data exportation, quick analysis were achieved in this paper. The efficiency of clinical researches based on dosimetry data analysis of large number of patients will be improved with this methods.

  4. Depth Dose Measurement using a Scintillating Fiber Optic Dosimeter for Proton Therapy Beam of the Passive-Scattering Mode Having Range Modulator Wheel

    NASA Astrophysics Data System (ADS)

    Hwang, Ui-Jung; Shin, Dongho; Lee, Se Byeong; Lim, Young Kyung; Jeong, Jong Hwi; Kim, Hak Soo; Kim, Ki Hwan

    2018-05-01

    To apply a scintillating fiber dosimetry system to measure the range of a proton therapy beam, a new method was proposed to correct for the quenching effect on measuring an spread out Bragg peak (SOBP) proton beam whose range is modulated by a range modulator wheel. The scintillating fiber dosimetry system was composed of a plastic scintillating fiber (BCF-12), optical fiber (SH 2001), photo multiplier tube (H7546), and data acquisition system (PXI6221 and SCC68). The proton beam was generated by a cyclotron (Proteus-235) in the National Cancer Center in Korea. It operated in the double-scattering mode and the spread out of the Bragg peak was achieved by a spinning range modulation wheel. Bragg peak beams and SOBP beams of various ranges were measured, corrected, and compared to the ion chamber data. For the Bragg peak beam, quenching equation was used to correct the quenching effect. On the proposed process of correcting SOBP beams, the measured data using a scintillating fiber were separated by the Bragg peaks that the SOBP beam contained, and then recomposed again to reconstruct an SOBP after correcting for each Bragg peak. The measured depth-dose curve for the single Bragg peak beam was well corrected by using a simple quenching equation. Correction for SOBP beam was conducted with a newly proposed method. The corrected SOBP signal was in accordance with the results measured with an ion chamber. We propose a new method to correct for the SOBP beam from the quenching effect in a scintillating fiber dosimetry system. This method can be applied to other scintillator dosimetry for radiation beams in which the quenching effect is shown in the scintillator.

  5. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojechko, Casey; Phillps, Mark; Kalet, Alan

    Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into differentmore » failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.« less

  6. High resolution MR based polymer dosimetry versus film densitometry: a systematic study based on the modulation transfer function approach.

    PubMed

    Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E

    2004-09-07

    Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.

  7. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  8. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method.

    PubMed

    HosseiniAliabadi, S J; Hosseini Pooya, S M; Afarideh, H; Mianji, F

    2015-06-01

    The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. This system can be utilized in large scale environmental monitoring with a higher accuracy.

  9. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less

  10. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  11. SU-G-TeP2-03: Comparison of Standard Dosimetry Protocol in Japan and AAPM TG-51 Addendum in Order to Establish Optimal Dosimetry for FFF Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, T; Adachi, Y; Hayashi, N

    Purpose: Japan Standard Dosimetry of Absorbed dose to water in external beam radiotherapy (JSDP12) is widely used to measure radiation dose in radiotherapy. However, JSDP12 does not take flattening-filter-free (FFF) beam into consideration. In addition, JSDP12 applied TPR20,10 for dose quality index for photon beam. The purpose of this study is to compare JSDP12 with AAPM TG-51 addendum in order to establish optimal dosimetry procedure for FFF beam. Method: We evaluated the ion-recombination factor (ks) and the correction factor of radial beam profile (Prp) in FFF beam dosimetry. The ks was introduced by 2 voltages method and verified by Jaffe’smore » plot. The Prp was given by both film measurement and calculation of treatment planning system, and compared them. Next, we compared the dose quality indexes (kQ) between TPR20,10 method and PDD(10)x method. Finally we considered optimal dosimetry protocol for FFF photon beam using JSDP12 with referring TG-51 addendum protocols. The FFF photon beams of 6 MV (6X-FFF) and 10 MV (10X-FFF) from TrueBeam were investigated in this study. Results: The ks for 6X-FFF and 10X-FFF beams were 1.005 and 1.010, respectively. The Prp of 0.6 cc ionization chamber for 6X-FFF and 10X-FFF beams (Film, TPS) were (1.004, 1.008) and (1.005, 1.008), respectively. The kQ for 6X-FFF and 10X-FFF beams (JSDP12, TG-51 addendum) were (0.9950, 0.9947) and (0.9851, 0.9845), respectively. The most effective factor for uncertainty in FFF photon beam measurement was Prp for JSDP12 formalism. Total dosimetric differences between JSDP12 and TG-51 addendum for 6X-FFF and 10X-FFF were -0.47% and -0.73%, respectively. Conclusion: The total dosimetric difference between JSDP12 and TG-51 addendum was within 1%. The introduction of kQ given by JSDP is feasible for FFF photon beam dosimetry. However, we think Prp should be considered for optimal dosimetry procedure even if JSDP12 is used for FFF photon beam dosimetry.« less

  12. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    PubMed Central

    HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.

    2015-01-01

    Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to testmore » the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%/3 mm for an IMRT QA plan and 3%/2 mm for a brachytherapy QA plan are passing 95% gamma function points. Conclusions: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.« less

  14. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less

  15. Reference dosimeter system of the iaea

    NASA Astrophysics Data System (ADS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  16. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  17. Quantitative imaging for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  18. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  19. SU-F-T-262: Commissioning Varian Portal Dosimetry for EPID-Based Patient Specific QA in a Non-Aria Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M; Knutson, N; University of Rhode Island, Kingston, RI

    2016-06-15

    Purpose: Development of an in-house program facilitates a workflow that allows Electronic Portal Imaging Device (EPID) patient specific quality assurance (QA) measurements to be acquired and analyzed in the Portal Dosimetry Application (Varian Medical Systems, Palo Alto, CA) using a non-Aria Record and Verify (R&V) system (MOSAIQ, Elekta, Crawley, UK) to deliver beams in standard clinical treatment mode. Methods: Initial calibration of an in-house software tool includes characterization of EPID dosimetry parameters by importing DICOM images of varying delivered MUs to determine linear mapping factors in order to convert image pixel values to Varian-defined Calibrated Units (CU). Using this information,more » the Portal Dose Image Prediction (PDIP) algorithm was commissioned by converting images of various field sizes to output factors using the Eclipse Scripting Application Programming Interface (ESAPI) and converting a delivered configuration fluence to absolute dose units. To verify the algorithm configuration, an integrated image was acquired, exported directly from the R&V client, automatically converted to a compatible, calibrated dosimetric image, and compared to a PDIP calculated image using Varian’s Portal Dosimetry Application. Results: For two C-Series and one TrueBeam Varian linear accelerators, gamma comparisons (global 3% / 3mm) of PDIP algorithm predicted dosimetric images and images converted via the inhouse system demonstrated agreement for ≥99% of all pixels, exceeding vendor-recommended commissioning guidelines. Conclusion: Combinations of a programmatic image conversion tool and ESAPI allow for an efficient and accurate method of patient IMRT QA incorporating a 3rd party R&V system.« less

  20. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, P

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to amore » digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.« less

  1. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  2. Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.

    PubMed

    Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas

    2017-01-01

    With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.

  3. USAFSAM Review and Analysis of Radiofrequency Radiation Bioeffects Literature: Second Report.

    DTIC Science & Technology

    1982-05-01

    10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17 Other 18...APPLICATIONS List of Analyses ......... .................... 137 (14) REVIEW List of Analyses ......... .................... 138 (16) PHYSICAL METHODS/DOSIMETRY...physiological 10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17

  4. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  5. Index extraction for electromagnetic field evaluation of high power wireless charging system.

    PubMed

    Park, SangWook

    2017-01-01

    This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario.

  6. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  7. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system.

    PubMed

    Lee, S Y; Kim, B H; Lee, K J

    2001-06-01

    Significant advances have been made in recent years to improve measurement technology and performance of phosphor materials in the fields of optically stimulated luminescence (OSL) dosimetry. Pulsed and continuous wave OSL studies recently carried out on alpha-Al2O3:C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of the study is to propose a new personal dosimetry system using alpha-Al2O3:C by taking advantage of its optical properties and energy dependencies. In the process of the study, a new dose assessment algorithm was developed using artificial neural networks in hopes of achieving a higher degree of accuracy and precision in personal OSL dosimetry system. The original hypothesis of this work is that the spectral information of X- and gamma-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feedforward neural network using the error back-propagation method with Bayesian optimization was applied for the response unfolding procedure. The validation of the proposed algorithm was investigated by unfolding the 10 measured responses of alpha-Al2O3:C for arbitrarily mixed photon fields which range from 20 to 662 keV. c2001 Elsevier Science Ltd. All rights reserved.

  8. Development of a Multileaf Collimator for Proton Radiotherapy

    DTIC Science & Technology

    2010-06-01

    generated and compared to the dosimetry derived from radiochromic media. TLDS may be inserted into the phantom to further confirm the technique. Finally...of dosimetry systems for scanned beams: (FY 2006-2009). We are investigating dosimetry systems for use with scanned beams and will either purchase a...group Research in Monte Carlo Simulations and Dosimetry Studies of Proton Therapy Rulon Mayer, PhD Energetic protons used to damage tumors

  9. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  10. Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.

    PubMed

    Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L

    1995-01-01

    This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.

  11. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  12. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  13. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    DTIC Science & Technology

    2002-11-01

    of CaF2:Mn and A120 3 TLDs for gamma-ray dosimetry ). In addition, DRDC Ottawa has recently substantially expanded its efforts in radiation dosimetry ...use of any real- time electronic dosimeter. Foils have long been proposed and used for criticality dosimetry (as well as for general monitoring of...ray Dosimetry DRDC Ottawa offers a number (over five) of various thermoluminescence dosimetry ( TLD ) systems. The choice of any particular TLD depends

  14. Progress in high-dose radiation dosimetry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters are also treated in this review. In addition, an IAEA program of high-dose intercomparison and standardization for industrial radiation processing is described.

  15. Progress in high-dose radiation dosimetry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters also treated in this review. In addition, an IAEA programme of high-dose intercomparison and standardization for industrial radiation processing is described.

  16. Effects of Pulsed and CW (Continuous Wave) 2450 MHz Radiation on Transformation and Chromosomes of Human Lymphocytes in vitro

    DTIC Science & Technology

    1989-12-15

    conditions of these experiments. In order to provide reliable quantitative data on exposure, a system with automated dosimetry was developed, and tested...exposure system and dosimetry, and (2) studies on lymphocyte cultures, and (3) conclusions. EXPOSURE SYSTEM AND DOSIMETRY Description of the Exposure... System The experiments planned in this project necessitated the design and assembly of an exposure system that would meet several engineering

  17. SU-F-T-52: Study of Energy Dependent Effect of Dosimetry Systems Used in Therapeutic Soft X-Ray Energy Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Qian, X; Gill, G

    Purpose: To investigate energy dependent effects of different dosimetry systems which can be used as in vivo dosimetry monitoring for intraoperative radiotherapy in therapeutic soft x-ray energy range. Methods: Three dosimetry systems were evaluated in therapeutic soft x-ray energy range: optically stimulated luminescent dosimeter (OSLD) nanoDots, radiochromic EBT2 and EBT3 films. The x-ray photons were produced by a Zeiss Intrabeam 50 kV x-ray radiotherapy system. Solid water and bolus slabs with different thicknesses were used in the process of irradiation. An aluminum filter set was used to measure HVLs of X-rays. Calibration curves were made at different depth of boluses.more » Results: Half Value Layers at depths of 0, 3, 10, and 20 mm of solid water were measured to represent the energy change versus depth, yielding 0.306, 0.482, 0.865 and 0.901 respectively and indicating nearly unchanged HVL beyond 1 cm depth. The responses of each system at different depths were normalized to the response at 2 cm depth. In film dosimetry, the response is calculated as optical density (OD). The results show that there is nearly the same energy dependence for EBT2 and EBT3. At a HVL of 0.482 mm Al, the relative responses of nanoDots and EBT3 are 0.85 ± 0.04 and 0.89 ± 0.03 compared to those at 0.901 mm Al HVL, respectively, indicating no obvious difference between those two systems within the measurement uncertainty. Conclusion: It was observed that the studied dosimeter response increases about 13% from the x-ray energy of 0.48 mm Al to 0.90 mm Al. Therefore, caution should be exercised in using an appropriate calibration curve, and x-ray beam hardening effect has to be taken into account.« less

  18. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, J; Dooley, J; Chang, S

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using amore » nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have demonstrated that real-time dosimetry of MRT microbeams is feasible using a nanoscintillator fiber-optic detector with integrated positioning system.« less

  19. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.

  20. Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan

    Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solidmore » water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.« less

  1. Index extraction for electromagnetic field evaluation of high power wireless charging system

    PubMed Central

    2017-01-01

    This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario. PMID:28708840

  2. Properties of Principal TL (Thermoluminescence) Dosimeters.

    DTIC Science & Technology

    1983-10-01

    thermoluminescence dosimetry ( TLD ) emerged as the preferred means because of convenience of batch evaluation, reusability, large detection range, linearity and...personnel dosimetry , thermoluminescence dosimetry has emerged as a superior technique due to its manifold advantages over other methods of dose...their suitability for dosimetry . A brief description of important TL materials and their properties is documented in this report. DD ,JN 1473 EDITION 0

  3. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  4. 3D dosimetry by optical-CT scanning

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  5. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  6. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transformmore » (CHT) algorithm.« less

  7. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  8. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  9. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  10. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate

    NASA Astrophysics Data System (ADS)

    Bedford, James L.; Hanson, Ian M.; Hansen, Vibeke N.

    2018-01-01

    In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.

  11. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

  12. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazififard, Mohammad, E-mail: nazifi@kashanu.ac.ir; Mahmoudieh, Afshin; Suh, Kune Y.

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty.more » Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.« less

  13. Performance characteristics of the EPR dosimetry system with table sugar in radiotherapy applications.

    PubMed

    Mikou, M; Ghosne, N; El Baydaoui, R; Zirari, Z; Kuntz, F

    2015-05-01

    Performance characteristics of the megavoltage photon dose measurements with EPR and table sugar were analyzed. An advantage of sugar as a dosimetric material is its tissue equivalency. The minimal detectable dose was found to be 1.5Gy for both the 6 and 18MV photons. The dose response curves are linear up to at least 20Gy. The energy dependence of the dose response in the megavoltage energy range is very weak and probably statistically insignificant. Reproducibility of measurements of various doses in this range performed with the peak-to-peak and double-integral methods is reported. The method can be used in real-time dosimetry in radiation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE PAGES

    Napier, B. A.

    2017-03-17

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  15. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B. A.

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  16. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  17. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

  18. MO-B-BRB-00: Three Dimensional Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

  19. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

  20. MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, L.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

  1. MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceberg, S.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

  2. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A; Poli, G; Beykan, S

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a standard format for data collection, organization, as well as for dosimetry research and software development.« less

  3. MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoek, M; Bevins, N

    Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogatemore » measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps clinical staff visualize, internalize, and ultimately utilize the safety techniques learned during the training. RaySafe/Unfors/Fluke lent us a portable version of their RaySafe i2 Dosimetry System for 6 months.« less

  4. Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study

    PubMed Central

    Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.

    2014-01-01

    Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253

  5. A combined TLD/emulsion method of sampling dosimetry applied to Apollo missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1979-01-01

    A system which simplifies the complex monitoring methods used to measure the astronaut's radiation exposure in space is proposed. The excess dose equivalents of trapped protons and secondary neutrons, protons, and alpha particles from local nuclear interactions are determined and a combined thermoluminescent dosimeter (TLD)/nuclear emulsion method which measures the absorbed dose with thermoluminescent dosimeter chips is presented.

  6. STATUS REPORT: EVIDENCE BASED ADVANCES IN INHALATION DOSIMETRY FOR GASES WITH EFFECTS IN THE LOWER RESPIRATORY TRACT AND IN THE BODY

    EPA Science Inventory

    This report summarizes the status of specific inhalation dosimetry procedures for gases as outlined in U.S. EPA’s 1994 Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry (U.S. EPA 1994) and reviews recent scientific advances in...

  7. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    PubMed

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and organ-based dosimetry. Errors at the organ-level were -6.71%, 2.17%, and 227.46% for the single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with non-uniform activity distributions offers fast personalized dosimetry at whole-body level, yielding results comparable to those of the direct Monte Carlo approach. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less

  9. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daci, Lulzime, E-mail: lulzime.daci@nodlandssykehuset.no; Malkaj, Partizan, E-mail: malkaj-p@hotmail.com

    2016-03-25

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distancemore » to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.« less

  10. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy.

    PubMed

    Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G

    2003-01-01

    To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (p<0.001), and the 1-month CT volume was 43.6 cm(3) (p<0.001). The mean difference between the OR dose received by 90% of the prostate (D(90)) and the CT D(90) was 3.4% (95% confidence interval, 2.5-6.6%; p=0.034). The mean dose to 30% of the urethra was 120% of prescription in the OR and 138% on CT. The mean difference was 18% (95% confidence interval, 13-24%; p<0.001). Although small differences exist between the OR and CT dosimetry results, these data suggest that this intraoperative implant dosimetric representation system provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.

  11. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.

  12. SU-D-204-03: Comparison of Patient Positioning Methods Through Modeling of Acute Rectal Toxicity in Intensity Modulated Radiation Therapy for Prostate Cancer. Does Quality of Data Matter More Than the Quantity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Fatyga, M; Vora, S

    Purpose: To determine if differences in patient positioning methods have an impact on the incidence and modeling of grade >=2 acute rectal toxicity in prostate cancer patients who were treated with Intensity Modulated Radiation Therapy (IMRT). Methods: We compared two databases of patients treated with radiation therapy for prostate cancer: a database of 79 patients who were treated with 7 field IMRT and daily image guided positioning based on implanted gold markers (IGRTdb), and a database of 302 patients who were treated with 5 field IMRT and daily positioning using a trans-abdominal ultrasound system (USdb). Complete planning dosimetry was availablemore » for IGRTdb patients while limited planning dosimetry, recorded at the time of planning, was available for USdb patients. We fit Lyman-Kutcher-Burman (LKB) model to IGRTdb only, and Univariate Logistic Regression (ULR) NTCP model to both databases. We perform Receiver Operating Characteristics analysis to determine the predictive power of NTCP models. Results: The incidence of grade >= 2 acute rectal toxicity in IGRTdb was 20%, while the incidence in USdb was 54%. Fits of both LKB and ULR models yielded predictive NTCP models for IGRTdb patients with Area Under the Curve (AUC) in the 0.63 – 0.67 range. Extrapolation of the ULR model from IGRTdb to planning dosimetry in USdb predicts that the incidence of acute rectal toxicity in USdb should not exceed 40%. Fits of the ULR model to the USdb do not yield predictive NTCP models and their AUC is consistent with AUC = 0.5. Conclusion: Accuracy of a patient positioning system affects clinically observed toxicity rates and the quality of NTCP models that can be derived from toxicity data. Poor correlation between planned and clinically delivered dosimetry may lead to erroneous or poorly performing NTCP models, even if the number of patients in a database is large.« less

  13. Recent Progress in Electromagnetic Absorption and Dosimetry in Biological Systems.

    DTIC Science & Technology

    1978-12-21

    AEROSPACE M!DICAL RESEARCH LABORATORY NAVAL AIR STATION PENSACOLA, FLORIDA 32508 L4 oj6L I SUMMARY PAGE Ti9(PROSLEM Dosimetry , as a subset of research In...absonce of sound dosimetry design, lacks credibility. This study provides a usable orientation in present and future dosimetric technology through a...leading experiment; while at other times experimental results lead the way. Progress In absorption and dosimetry Is still urderway, and higher degrees

  14. Nonuniform Irradiation of the Canine Intestine. 2. Dosimetry

    DTIC Science & Technology

    1990-01-01

    irradiation is accurate assessment In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD - 100 lith- of the injury after either accidental or... vivo TLD dosimetry system allowed measure- 5 and 6. The dose was determined from the median TLD ment of the °Co dose deposited in the canine small...provide replicate measurements. Two separate dosimetry tubes were deveoped (Fig. 1). The first contained 30 TLD cap- doses (1). Nevertheless, current

  15. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kry, S.

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  16. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  17. INTERCOMPARISON ON THE MEASUREMENT OF THE QUANTITY PERSONAL DOSE EQUIVALENT HP(10) IN PHOTON FIELDS. LINEARITY DEPENDENCE, LOWER LIMIT OF DETECTION AND UNCERTAINTY IN MEASUREMENT OF DOSIMETRY SYSTEMS OF INDIVIDUAL MONITORING SERVICES IN GABON AND GHANA.

    PubMed

    Ondo Meye, P; Schandorf, C; Amoako, J K; Manteaw, P O; Amoatey, E A; Adjei, D N

    2017-12-01

    An inter-comparison study was conducted to assess the capability of dosimetry systems of individual monitoring services (IMSs) in Gabon and Ghana to measure personal dose equivalent Hp(10) in photon fields. The performance indicators assessed were the lower limit of detection, linearity and uncertainty in measurement. Monthly and quarterly recording levels were proposed with corresponding values of 0.08 and 0.025 mSv, and 0.05 and 0.15 mSv for the TLD and OSL systems, respectively. The linearity dependence of the dosimetry systems was performed following the requirement given in the Standard IEC 62387 of the International Electrotechnical Commission (IEC). The results obtained for the two systems were satisfactory. The procedure followed for the uncertainty assessment is the one given in the IEC technical report TR62461. The maximum relative overall uncertainties, in absolute value, expressed in terms of Hp(10), for the TL dosimetry system Harshaw 6600, are 44. 35% for true doses below 0.40 mSv and 36.33% for true doses ≥0.40 mSv. For the OSL dosimetry system microStar, the maximum relative overall uncertainties, in absolute value, are 52.17% for true doses below 0.40 mSv and 37.43% for true doses ≥0.40 mSv. These results are in good agreement with the requirements for accuracy of the International Commission on Radiological protection. When expressing the uncertainties in terms of response, comparison with the IAEA requirements for overall accuracy showed that the uncertainty results were also acceptable. The values of Hp(10) directly measured by the two dosimetry systems showed a significant underestimation for the Harshaw 6600 system, and a slight overestimation for the microStar system. After correction for linearity of the measured doses, the two dosimetry systems gave better and comparable results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  19. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  20. Fission neutron source in Rome

    NASA Astrophysics Data System (ADS)

    Coppola, Mario; Di Majo, V.; Ingrao, G.; Rebessi, S.; Testa, A.

    1997-02-01

    A fission neutron source is operating in Rome at the ENEA Casaccia Research Center since 1971, consisting of a low power fast reactor named RSV-Tapiro. it is employed for a variety of experiments, including dosimetry, material testing, radiation protection and biology. In particular, application to experimental radiobiology includes studies of the biological action of neutrons in the whole-body irradiated animal, or in specialized systems in vivo or in vitro. For his purpose a vertical irradiation facility was originally constructed. Recently, a new horizontal irradiation facility has been designed to allow the exposure of larger samples or larger sample batches at one time. Dosimetry at the sample irradiation positions is routinely carried out by the conventional method of using two ion chambers. This physical dosimetry has recently been compared with the results of biological dosimetry based on the detection of chromosomal aberrations in peripheral blood human lymphocytes irradiated in vitro. A characterization of the radiation quality in the two configurations has been carried out by tissue equivalent proportional counter microdosimetry measurements. Information about the main characteristics of the reactor and the two irradiation facilities is provided and relevant results of the various measurements are summarized. Radiobiological results obtained using this neutron source are also briefly outlined.

  1. SU-E-T-435: Development and Commissioning of a Complete System for In-Vivo Dosimetry and Range Verification in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel, D; Testa, M; Park, Y

    Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separablemore » into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient.« less

  2. Dosimetric Considerations in Radioimmunotherapy and Systemic Radionuclide Therapies: A Review

    PubMed Central

    Loke, Kelvin S. H.; Padhy, Ajit K.; Ng, David C. E.; Goh, Anthony S.W.; Divgi, Chaitanya

    2011-01-01

    Radiopharmaceutical therapy, once touted as the “magic bullet” in radiation oncology, is increasingly being used in the treatment of a variety of malignancies; albeit in later disease stages. With ever-increasing public and medical awareness of radiation effects, radiation dosimetry is becoming more important. Dosimetry allows administration of the maximum tolerated radiation dose to the tumor/organ to be treated but limiting radiation to critical organs. Traditional tumor dosimetry involved acquiring pretherapy planar scans and plasma estimates with a diagnostic dose of intended radiopharmaceuticals. New advancements in single photon emission computed tomography and positron emission tomography systems allow semi-quantitative measurements of radiation dosimetry thus allowing treatments tailored to each individual patient. PMID:22144871

  3. A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images

    NASA Astrophysics Data System (ADS)

    Sperling, Nicholas Niven

    The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.

  4. Film dosimetry using a smart device camera: a feasibility study for point dose measurements

    NASA Astrophysics Data System (ADS)

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-01

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  5. Film dosimetry using a smart device camera: a feasibility study for point dose measurements.

    PubMed

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-03

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  6. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons.

    PubMed

    Ainsbury, Elizabeth; Badie, Christophe; Barnard, Stephen; Manning, Grainne; Moquet, Jayne; Abend, Michael; Antunes, Ana Catarina; Barrios, Lleonard; Bassinet, Celine; Beinke, Christina; Bortolin, Emanuela; Bossin, Lily; Bricknell, Clare; Brzoska, Kamil; Buraczewska, Iwona; Castaño, Carlos Huertas; Čemusová, Zina; Christiansson, Maria; Cordero, Santiago Mateos; Cosler, Guillaume; Monaca, Sara Della; Desangles, François; Discher, Michael; Dominguez, Inmaculada; Doucha-Senf, Sven; Eakins, Jon; Fattibene, Paola; Filippi, Silvia; Frenzel, Monika; Georgieva, Dimka; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Hadjiiska, Ljubomira; Hristova, Rositsa; Karakosta, Maria; Kis, Enikő; Kriehuber, Ralf; Lee, Jungil; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Macaeva, Ellina; Majewski, Matthaeus; Vanda Martins, S; McKeever, Stephen W S; Meade, Aidan; Medipally, Dinesh; Meschini, Roberta; M'kacher, Radhia; Gil, Octávia Monteiro; Montero, Alegria; Moreno, Mercedes; Noditi, Mihaela; Oestreicher, Ursula; Oskamp, Dominik; Palitti, Fabrizio; Palma, Valentina; Pantelias, Gabriel; Pateux, Jerome; Patrono, Clarice; Pepe, Gaetano; Port, Matthias; Prieto, María Jesús; Quattrini, Maria Cristina; Quintens, Roel; Ricoul, Michelle; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Sholom, Sergey; Sommer, Sylwester; Staynova, Albena; Strunz, Sonja; Terzoudi, Georgia; Testa, Antonella; Trompier, Francois; Valente, Marco; Hoey, Olivier Van; Veronese, Ivan; Wojcik, Andrzej; Woda, Clemens

    2017-01-01

    RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.

  7. Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields

    NASA Astrophysics Data System (ADS)

    Rosen, Benjamin S.

    Radiotherapy treatments with small and nonstandard fields are increasing in use as collimation and targeting become more advanced, which spare normal tissues while increasing tumor dose. However, dosimetry of small and nonstandard fields is more difficult than that of conventional fields due to loss of lateral charged-particle equilibrium, tight measurement setup requirements, source occlusion, and the volume-averaging effect of conventional dosimeters. This work aims to create new small and nonstandard field dosimetry protocols using radiochromic film (RCF) in conjunction with novel readout and analysis methodologies. It also is the intent of this work to develop an improved understanding of RCF structure and mechanics for its quantitative use in general applications. Conventional digitization techniques employ white-light, flatbed document scanners or scanning-laser densitometers which are not optimized for RCF dosimetry. A point-by-point precision laser densitometry system (LDS) was developed for this work to overcome the film-scanning artifacts associated with the use of conventional digitizers, such as positional scan dependence, off-axis light scatter, glass bed interference, and low signal-to-noise ratios. The LDS was shown to be optically traceable to national standards and to provide highly reproducible density measurements. Use of the LDS resulted in increased agreement between RCF dose measurements and the single-hit detector model of film response, facilitating traceable RCF calibrations based on calibrated physical quantities. GafchromicRTM EBT3 energy response to a variety of reference x-ray and gamma-ray beam qualities was also investigated. Conventional Monte Carlo methods are not capable of predicting film intrinsic energy response to arbitrary particle spectra. Therefore, a microdosimetric model was developed to simulate the underlying physics of the radiochromic mechanism and was shown to correctly predict the intrinsic response relative to a reference beam quality. These scanning and analysis methodologies form a reliable system for accurate, high-resolution dosimetry. Output factors of 6MV linear accelerator small fields were measured using the LDS-EBT3 system and were in agreement with Monte Carlo-simulated results. Additionally, measured and simulated relative dose profiles were in agreement, even in build-up regions, in out-of-field locations, and at deep depths. Together, this work presents reliable methods for dose verification in a variety of challenging dosimetric situations.

  8. Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tumor-to-liver ratio from global 99mTc-MAA SPECT information

    NASA Astrophysics Data System (ADS)

    Mañeru, Fernando; Abós, Dolores; Bragado, Laura; Fuentemilla, Naiara; Caudepón, Fernando; Pellejero, Santiago; Miquelez, Santiago; Rubio, Anastasio; Goñi, Elena; Hernández-Vitoria, Araceli

    2017-12-01

    Dosimetry in liver radioembolization with 90Y microspheres is a fundamental tool, both for the optimization of each treatment and for improving knowledge of the treatment effects in the tissues. Different options are available for estimating the administered activity and the tumor/organ dose, among them the so-called partition method. The key factor in the partition method is the tumor/normal tissue activity uptake ratio (T/N), which is obtained by a single-photon emission computed tomography (SPECT) scan during a pre-treatment simulation. The less clear the distinction between healthy and tumor parenchyma within the liver, the more difficult it becomes to estimate the T/N ratio; therefore the use of the method is limited. This study presents a methodology to calculate the T/N ratio using global information from the SPECT. The T/N ratio is estimated by establishing uptake thresholds consistent with previously performed volumetry. This dose calculation method was validated against 3D voxel dosimetry, and was also compared with the standard partition method based on freehand regions of interest (ROI) outlining on SPECT slices. Both comparisons were done on a sample of 20 actual cases of hepatocellular carcinoma treated with resin microspheres. The proposed method and the voxel dosimetry method yield similar results, while the ROI-based method tends to over-estimate the dose to normal tissues. In addition, the variability associated with the ROI-based method is more extreme than the other methods. The proposed method is simpler than either the ROI or voxel dosimetry approaches and avoids the subjectivity associated with the manual selection of regions.

  9. RCT: Module 2.04, Dosimetry, Course 8769

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.« less

  10. Interferometric optical online dosimetry for selective retina treatment (SRT)

    NASA Astrophysics Data System (ADS)

    Stoehr, Hardo; Ptaszynski, Lars; Fritz, Andreas; Brinkmann, Ralf

    2007-07-01

    Selective retina treatment (SRT) is a new laser based method to treat retinal diseases associated with disorders of the retinal pigment epithelium (RPE). Applying microsecond laser pulses tissue damage spatially confined to the retinal pigment epithelium (RPE) is achieved. The RPE cell damage is caused by transient microbubbles emerging at the strongly absorbing melanin granules inside the RPE cells. Due to the spatial confinement to the RPE the photoreceptors can be spared and vision can be maintained in the treated retinal areas. A drawback for effective clinical SRT is that the laser induced lesions are ophthalmoscopically invisible. Therefore, a real-time feedback system for dosimetry is necessary in order to avoid undertreatment or unwanted collateral damage to the adjacent tissue. We develop a dosimetry system which uses optical interferometry for the detection of the transient microbubbles. The system is based on an optical fiber interferometer operated with a laser diode at 830nm. We present current results obtained with a laser slit lamp using porcine RPE explants in vitro and complete porcine eye globes ex vivo. The RPE cell damage is determined by Calcein fluorescence viability assays. With a threshold criterium for RPE cell death derived from the measured interferometric signal transients good agreement with the results of the viability assays is achieved.

  11. On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.

    PubMed

    Chen, Z; Agostinelli, A; Nath, R

    1998-03-01

    The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.

  12. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    DTIC Science & Technology

    1987-04-01

    and would still be well under 10(C. .% % p., I V a- E p - -12 - IABLE 8 (a) TLD results for phantom dosimetry - all values shown are measured charge...SAI. Conclusions The current DREO dosimetry system-consisting of bubble, CR39 and TLD dosimeters - has proven capable of producing meaningful results at...MC FILE CoPy’ Defence nationale 00 ANTHROPOMORPHIC PHANTOM RADIATION DOSIMETRY AT THE NATO STANDARD OREFERENCE POINT AT ABERDEEN PROVING GROUND by T

  13. Comparison of Three Methods of Calculation, Experimental and Monte Carlo Simulation in Investigation of Organ Doses (Thyroid, Sternum, Cervical Vertebra) in Radioiodine Therapy

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Ayat, Saba

    2012-01-01

    Radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs is important to weigh the risks and benefits of this method. The aim of this study is to measure the absorbed doses of important organs by Monte Carlo N Particle (MCNP) simulation and comparing the results of different methods of dosimetry by performing a t-paired test. To calculate the absorbed dose of thyroid, sternum, and cervical vertebra using the MCNP code, *F8 tally was used. Organs were simulated by using a neck phantom and Medical Internal Radiation Dosimetry (MIRD) method. Finally, the results of MCNP, MIRD, and Thermoluminescent dosimeter (TLD) measurements were compared by SPSS software. The absorbed dose obtained by Monte Carlo simulations for 100, 150, and 175 mCi administered 131I was found to be 388.0, 427.9, and 444.8 cGy for thyroid, 208.7, 230.1, and 239.3 cGy for sternum and 272.1, 299.9, and 312.1 cGy for cervical vertebra. The results of paired t-test were 0.24 for comparing TLD dosimetry and MIRD calculation, 0.80 for MCNP simulation and MIRD, and 0.19 for TLD and MCNP. The results showed no significant differences among three methods of Monte Carlo simulations, MIRD calculation and direct experimental dosimetry using TLD. PMID:23717806

  14. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in all the color channels the multichannel method provides the ability to examine the agreement between the color channels. Furthermore, when using calibration data to convert RGB film images to dose using the new method, poor correspondence between the dose calculations for the three color channels provides an important indication that the this new technique enables easy indication in case the dose and calibration films are curve mismatched. The method permit compensation for thickness nonuniformities in the film, increases the signal to noise level, mitigates the lateral dose-dependency of flatbed scanners effect of the calculated dose map and extends the evaluable dose range to 10 cGy-100 Gy. Multichannel dosimetry with radiochromic film like Gafchromic EBT2 is shown to have significant advantages over single channel dosimetry. It is recommended that the dosimetry protocols described be implemented when using this radiochromic film to ensure the best data integrity and dosimetric accuracy.

  15. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation

    NASA Astrophysics Data System (ADS)

    Best, S.; Ralston, A.; Suchowerska, N.

    2005-12-01

    The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  16. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  17. In vitro exposure systems and dosimetry assessment tools for inhaled tobacco products: Workshop proceedings, conclusions and paths forward for in vitro model use.

    PubMed

    Behrsing, Holger; Hill, Erin; Raabe, Hans; Tice, Raymond; Fitzpatrick, Suzanne; Devlin, Robert; Pinkerton, Kent; Oberdörster, Günter; Wright, Chris; Wieczorek, Roman; Aufderheide, Michaela; Steiner, Sandro; Krebs, Tobias; Asgharian, Bahman; Corley, Richard; Oldham, Michael; Adamson, Jason; Li, Xiang; Rahman, Irfan; Grego, Sonia; Chu, Pei-Hsuan; McCullough, Shaun; Curren, Rodger

    2017-07-01

    In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide. 2017 FRAME.

  18. ESTIMATING SOLAR RADIATION EXPOSURE IN WETLANDS USING RADIATION MODELS, FIELD DATA, AND GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    This seminar will describe development of methods for the estimation of solar radiation doses in wetlands. The methodology presents a novel approach to incorporating aspects of solar radiation dosimetry that have historically received limited attention. These include effects of a...

  19. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  20. Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2017-05-01

    For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.

  1. TU-F-201-00: Radiochromic Film Dosimetry Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  2. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niroomand-Rad, A.

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  3. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  4. High sensitive pulse oximeter-spectrophotometer for laser-optical dosimetry in biology and medicine

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.; Mamilov, S. A.; Plaksiy, Yu. S.

    2006-03-01

    High sensitive multi channel pulse oxymeter - spectrophotometer for control of the local tissue oxygen saturation is presented. Due to an original method of data storing and processing the accuracy of measurements 3-4 times are increased in compare with similar systems. This system is used for registration of the local changes of arterial blood saturation with oxygen under effect of low intensity laser radiation. It is shown that the photodissociation of oxyhemoglobin in cutaneous blood vessels play a dominant role in the mechanism of biostimulating and therapeutic effect of low intensity laser radiation. The results of experimental investigation in vivo the dependence of arterial oxygen blood saturation on temperature and the wavelength of laser radiation are presented. It is suggested that dosimetry for laser therapy could be base on regulation of local concentration of free oxygen in tissue.

  5. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. SU-F-SPS-06: Implementation of a Back-Projection Algorithm for 2D in Vivo Dosimetry with An EPID System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez Reyes, B; Rodriguez Perez, E; Sosa Aquino, M

    Purpose: To implement a back-projection algorithm for 2D dose reconstructions for in vivo dosimetry in radiation therapy using an Electronic Portal Imaging Device (EPID) based on amorphous silicon. Methods: An EPID system was used to calculate dose-response function, pixel sensitivity map, exponential scatter kernels and beam hardenig correction for the back-projection algorithm. All measurements were done with a 6 MV beam. A 2D dose reconstruction for an irradiated water phantom (30×30×30 cm{sup 3}) was done to verify the algorithm implementation. Gamma index evaluation between the 2D reconstructed dose and the calculated with a treatment planning system (TPS) was done. Results:more » A linear fit was found for the dose-response function. The pixel sensitivity map has a radial symmetry and was calculated with a profile of the pixel sensitivity variation. The parameters for the scatter kernels were determined only for a 6 MV beam. The primary dose was estimated applying the scatter kernel within EPID and scatter kernel within the patient. The beam hardening coefficient is σBH= 3.788×10{sup −4} cm{sup 2} and the effective linear attenuation coefficient is µAC= 0.06084 cm{sup −1}. The 95% of points evaluated had γ values not longer than the unity, with gamma criteria of ΔD = 3% and Δd = 3 mm, and within the 50% isodose surface. Conclusion: The use of EPID systems proved to be a fast tool for in vivo dosimetry, but the implementation is more complex that the elaborated for pre-treatment dose verification, therefore, a simplest method must be investigated. The accuracy of this method should be improved modifying the algorithm in order to compare lower isodose curves.« less

  7. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  8. SU-E-T-475: Improvements to Total Body Irradiation Dosimetry Efficiency with EBT3 Radiochromic Film and a Template System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Pope, D; Whitaker, M

    Purpose: Total Body Irradiation (TBI) treatments are mainly used in a preparative regimen for haematopoietic stem cell (or bone marrow) transplantation. Our standard regimen is a 12 Gy / 6 fraction bi-daily technique. To evaluate the delivered dose homogeneity to the patient, EBT3 Gafchromic film is positioned at the head, neck, chest, pelvis and groin for all fractions. A system has been developed to simply and accurately prepare and readout the films for patient dose assessment. Methods: A process involving easy preparation and analysis has been produced to minimise the time requirements for TBI dosimetry. One sheet of EBT3 filmmore » is used to prepare treatment dosimeters for all fractions, including calibration films, and an automated dose analysis system for easy evaluation and calculation of estimated in-vivo doses was developed. A desktop scanner is used with a dedicated TBI film template to accurately position the films for Image J analysis and extraction. Dental wax bolus and zip-lock bag holders are used to hold the EBT3 film in place during irradiation. Results: To adequately provide dosimetry information for a 6 fraction, TBI patient, only one sheet of Gafchromic EBT3 film is required. The dosimeters are cut, using a template, into 19 mm squares which are then placed between two 30 mm x 30 mm x 4.5 mm wax blocks for bolus. All packages are prepared before the first treatment fraction. The scanning and analysis process can be completed in less than 10 minutes after a 240 min development period. Results have shown that a high level of accuracy and reproducibility can be achieved using the template system provided. Conclusion: Gafchromic EBT3 film provides an adequate in-vivo dosimetry measure for TBI patients. Using a template based system on a dedicated desktop scanner, in-vivo results can be ascertained quickly and accurately.« less

  9. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu-Tsao, S.

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  11. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  12. WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M F; Yukihara, E; Schnell, E

    Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flatmore » field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr. Eduardo G. Yukihara also would like to thank the Alexander von Humboldt Foundation for his support at the DKFZ.« less

  13. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.« less

  14. Assessment of Cochlear Damage after Microwave Irradiation.

    DTIC Science & Technology

    1988-02-26

    dosimetry measurements. Mr. Thomas J. Watkins, Washington Uni- versity School of Medicine provided excellent technical assis- tance throughout the study... MATERIAL AND METHODS Subjects.................................................. 6 Microwave Exposure....................................... 6 Histological...Processing.................................. 9 Microscopic Evaluation................................... 9 RESU LTS Dosimetry

  15. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G. Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR-M3G: a new parallel 3-D radiation transport code / G. Longoni and S. L. Anderson.

  16. MO-FG-CAMPUS-TeP1-05: Rapid and Efficient 3D Dosimetry for End-To-End Patient-Specific QA of Rotational SBRT Deliveries Using a High-Resolution EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Han, B; Xing, L

    2016-06-15

    Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less

  17. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  18. Historic American engineering record. Nevada national security site, Bren Tower Complex. Written historical and descriptive data and field records

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Susan R.; Goldenberg, Nancy

    The BREN (Bare Reactor Experiment, Nevada) Tower Complex is significant for its role in the history of nuclear testing, radiation dosimetry studies, and early field testing of the Strategic Missile Defense System designs. At the time it was built in 1962, the 1,527 ft (465 m) BREN Tower was the tallest structure west of the Mississippi River and exceeded the height of the Empire State Building by 55 ft (17 m). It remains the tallest ever erected specifically for scientific purposes and was designed and built to facilitate the experimental dosimetry studies necessary for the development of accurate radiation dosemore » rates for the survivors of Hiroshima and Nagasaki. The tower was a key component of the Atomic Bomb Casualty Commission’s (ABCC) mission to predict the health effects of radiation exposure. Moved to its current location in 1966, the crucial dosimetry studies continued with Operation HENRE (High Energy Neutron Reactions Experiment). These experiments and the data they generated became the basis for a dosimetry system called the Tentative 1965 Dose or more commonly the T65D model. Used to estimate radiation doses received by individuals, the T65D model was applied until the mid-1980s when it was replaced by a new dosimetry system known as DS86 based on the Monte Carlo method of dose rate calculation. However, the BREN Tower data are still used for verification of the validity of the DS86 model. In addition to its importance in radiation heath effects research, the BREN Tower Complex is also significant for its role in the Brilliant Pebbles research project, a major component of the Strategic Defense Initiative popularly known as the “Star Wars” Initiative. Instigated under the Reagan Administration, the program’s purpose was to develop a system to shield the United States and allies from a ballistic missile attack. The centerpiece of the Strategic Defense System was space-based, kinetic-kill vehicles. In 1991, BREN Tower was used for the tether tests of the Brilliant Pebbles prototype vehicle at the earth’s surface prior to the more costly space testing program. The success of these tests established the Brilliant Pebbles program as an essential component of America’s space-based missile defense system even after the dismantling of the Soviet Union. Data from the Brilliant Pebbles research program continues to inspire current missile defense system research (Independent Working Group 2009).« less

  19. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    PubMed

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-06-15

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. SU-E-T-586: Optimal Determination of Tolerance Level for Radiation Dose Delivery Verification in An in Vivo Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Souri, S; Gill, G

    Purpose: To statistically determine the optimal tolerance level in the verification of delivery dose compared to the planned dose in an in vivo dosimetry system in radiotherapy. Methods: The LANDAUER MicroSTARii dosimetry system with screened nanoDots (optically stimulated luminescence dosimeters) was used for in vivo dose measurements. Ideally, the measured dose should match with the planned dose and falls within a normal distribution. Any deviation from the normal distribution may be redeemed as a mismatch, therefore a potential sign of the dose misadministration. Randomly mis-positioned nanoDots can yield a continuum background distribution. A percentage difference of the measured dose tomore » its corresponding planned dose (ΔD) can be used to analyze combined data sets for different patients. A model of a Gaussian plus a flat function was used to fit the ΔD distribution. Results: Total 434 nanoDot measurements for breast cancer patients were collected across a period of three months. The fit yields a Gaussian mean of 2.9% and a standard deviation (SD) of 5.3%. The observed shift of the mean from zero is attributed to the machine output bias and calibration of the dosimetry system. A pass interval of −2SD to +2SD was applied and a mismatch background was estimated to be 4.8%. With such a tolerance level, one can expect that 99.99% of patients should pass the verification and at most 0.011% might have a potential dose misadministration that may not be detected after 3 times of repeated measurements. After implementation, a number of new start breast cancer patients were monitored and the measured pass rate is consistent with the model prediction. Conclusion: It is feasible to implement an optimal tolerance level in order to maintain a low limit of potential dose misadministration while still to keep a relatively high pass rate in radiotherapy delivery verification.« less

  1. Method and means for radiation dosimetry

    DOEpatents

    Shulte, J. W.; Suttle, J. F.

    1960-10-18

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  2. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Schulte, J.W.; Suttle, J.F.

    1960-10-11

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  3. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response.

    PubMed

    Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola

    2009-01-01

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  4. Improvement and Analysis of the Radiation Response of RADFET Dosimeters

    DTIC Science & Technology

    1992-06-15

    TLD ), silicon p-i-n diode responses and silicon calorimetry (AWE Dosimetry Service). Intensive preparations were made by REM and the experiments were...SUB-GROUP dose: RADFET : tactical dosimetry silicon : metal-oxide- 0705 emiconductor (MOS) field effect transistor (FET) : silicon Idioxide space...1.1 Principle of a dosimetry system, based on the RADFET (radiation-sensitive field-effect transistor) (a) microscopic cross-section of chip (b) chip

  5. A method to improve the effectiveness of diode in vivo dosimetry.

    PubMed

    Alecu, R; Alecu, M; Ochran, T G

    1998-05-01

    A routine diode in vivo dosimetry program based on a combination of entrance and exit dose measurements was clinically implemented in the radiation oncology department of Grace Hospital, Detroit, in January 1995. The delivered dose has been monitored by taking weekly measurements. The calibration of the diodes and the in vivo dosimetry protocol for this new, more effective type of dose verification is presented. The problems encountered within the program are discussed along with our solutions.

  6. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry.

    PubMed

    Fernández-Varea, J M; Andreo, P; Tabata, T

    1996-07-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.

  7. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed. PMID:27088207

  8. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo phantom test the predicted patch absorbed dose was 4.23 Gy while the readout dose was evaluated to be 4.37 Gy, which corresponds to a 3.2% discrepancy. The dosimeter and densitometer pairing shows promise as an in vivo dosimetry system, especially for hypofractionated or MRI-guided radiotherapy treatments where higher doses are prescribed.

  9. SU-F-T-272: Patient Specific Quality Assurance of Prostate VMAT Plans with Portal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darko, J; Osei, E; University of Waterloo, Waterloo, ON

    Purpose: To evaluate the effectiveness of using the Portal Dosimetry (PD) method for patient specific quality assurance of prostate VMAT plans. Methods: As per institutional protocol all VMAT plans were measured using the Varian Portal Dosimetry (PD) method. A gamma evaluation criterion of 3%-3mm with a minimum area gamma pass rate (gamma <1) of 95% is used clinically for all plans. We retrospectively evaluated the portal dosimetry results for 170 prostate patients treated with VMAT technique. Three sets of criterions were adopted for re-evaluating the measurements; 3%-3mm, 2%-2mm and 1%-1mm. For all criterions two areas, Field+1cm and MLC-CIAO were analysed.Tomore » ascertain the effectiveness of the portal dosimetry technique in determining the delivery accuracy of prostate VMAT plans, 10 patients previously measured with portal dosimetry, were randomly selected and their measurements repeated using the ArcCHECK method. The same criterion used in the analysis of PD was used for the ArcCHECK measurements. Results: All patient plans reviewed met the institutional criteria for Area Gamma pass rate. Overall, the gamma pass rate (gamma <1) decreases for 3%-3mm, 2%-2mm and 1%-1mm criterion. For each criterion the pass rate was significantly reduced when the MLC-CIAO was used instead of FIELD+1cm. There was noticeable change in sensitivity for MLC-CIAO with 2%-2mm criteria and much more significant reduction at 1%-1mm. Comparable results were obtained for the ArcCHECK measurements. Although differences were observed between the clockwise verses the counter clockwise plans in both the PD and ArcCHECK measurements, this was not deemed to be statistically significant. Conclusion: This work demonstrates that Portal Dosimetry technique can be effectively used for quality assurance of VMAT plans. Results obtained show similar sensitivity compared to ArcCheck. To reveal certain delivery inaccuracies, the use of a combination of criterions may provide an effective way in improving the overall sensitivity of PD. Funding provided in part by the Prostate Ride for Dad, Kitchener-Waterloo, Canada.« less

  10. Introduction of a deformable x-ray CT polymer gel dosimetry system

    NASA Astrophysics Data System (ADS)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.

  11. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Q; Juang, T; Bache, S

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindricalmore » dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D dosimetry system shows promise, but further work is required to validate and investigate accuracy and artifacts. This work was supported by NIH R01CA100835.« less

  12. Alanine/EPR dosimetry applied to the verification of a total body irradiation protocol and treatment planning dose calculation using a humanoid phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeken, B.; Lelie, S.; Meijnders, P.

    2010-12-15

    Purpose: To avoid complications in total body irradiation (TBI), it is important to achieve a homogeneous dose distribution throughout the body and to deliver a correct dose to the lung which is an organ at risk. The purpose of this work was to validate the TBI dose protocol and to check the accuracy of the 3D dose calculations of the treatment planning system. Methods: Dosimetry based on alanine/electron paramagnetic resonance (EPR) was used to measure dose at numerous locations within an anthropomorphic phantom (Alderson) that was irradiated in a clinical TBI beam setup. The alanine EPR dosimetry system was calibratedmore » against water calorimetry in a Co-60 beam and the absorbed dose was determined by the use of ''dose-normalized amplitudes'' A{sub D}. The dose rate of the TBI beam was checked against a Farmer ionization chamber. The phantom measurements were compared to 3D dose calculations from a treatment planning system (Pinnacle) modeled for standard dose calculations. Results: Alanine dosimetry allowed accurate measurements which were in accordance with ionization chamber measurements. The combined relative standard measurement uncertainty in the Alderson phantom was U{sub r}(A{sub D})=0.6%. The humanoid phantom was irradiated to a reference dose of 10 Gy, limiting the lung dose to 7.5 Gy. The ratio of the average measured dose midplane in the craniocaudal direction to the reference dose was 1.001 with a spread of {+-}4.7% (1 sd). Dose to the lung was measured in 26 locations and found, in average, 1.8% lower than expected. Lung dose was homogeneous in the ventral-dorsal direction but a dose gradient of 0.10 Gy cm{sup -1} was observed in the craniocaudal direction midline within the lung lobe. 3D dose calculations (Pinnacle) were found, in average, 2% lower compared to dose measurements on the body axis and 3% lower for the lungs. Conclusions: The alanine/EPR dosimetry system allowed accurate dose measurements which enabled the authors to validate their TBI dose protocol. Dose calculations based on a collapsed cone convolution dose algorithm modeled for regular treatments are accurate within 3% and can further be improved when the algorithm is modeled for TBI.« less

  13. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B; Kanal, K; Dickinson, R

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structuredmore » Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides two-dimensional angulation dose maps for angiography/interventional procedures. Conclusion: REMS implementation has streamlined and consolidated the dosimetry data collection and analysis process at our institutions while eliminating manual entry error and providing immediate alerting and access to dosimetry data to both physicists and physicians. Brent Stewart has funded research through GE Healthcare.« less

  14. SU-C-201-02: Dosimetric Verification of SBRT with FFF-VMAT Using a 3-D Radiochromic/Optical-CT Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Y; Black, P; Wuu, C

    2016-06-15

    Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less

  15. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koren, S; Bragilovski, D; Tafo, A Guemnie

    Purpose: To evaluate the clinical feasibility of IntraBeam intra operative kV irradiation beam device for ocular conjunctiva treatments. The Intra-Beam system offers a 4.4 mm diameter needle applicator, that is not suitable for treatment of a large surface with limits access. We propose an adaptor that will answer to this clinical need and provide initial dosimetry. Methods: The dose distribution of the needle applicator is non uniform and hence not suitable for treatment of relatively large surfaces. We designed an adapter to the needle applicator that will filter the X-rays and produce a conformal dose distribution over the treatment areamore » while shielding surfaces to be spared. Dose distributions were simulated using FLUKA is a fully integrated particle physics Monte Carlo simulation package. Results: We designed a wedge applicator made of Polythermide window and stainless steel for collimating. We compare the dose distribution to that of the known needle and surface applicators. Conclusion: Initial dosimetry shows feasibility of this approach. While further refinements to the design may be warranted, the results support construction of a prototype and confirmation of the Monte Carlo dosimetry with measured data.« less

  17. Development of a Phase I/II Clinical Trial Using Sterotactic Body Radiation Therapy (SBRT) for the Treatment of Localized Prostate Carcinoma

    DTIC Science & Technology

    2006-07-01

    related to patient demographics and characteristics, treatment dosimetry (including a means for quality assurance evaluation), and capture of follow-up... dosimetry commonly includes a 10-30 percent higher central dose within the target. While wedges and other methods of modulation (including IMRT) may be...untoward toxicity owing to the extremely localized high dose dosimetry . 1.4 Who Would Benefit from this Treatment? As noted above, there are several

  18. Proceedings of a Workshop on the Protection of Personnel against Radiofrequency Electromagnetic Radiation Held at the Royal Air Force Establishment, Farnborough, United Kingdom, 6-8 April 1981

    DTIC Science & Technology

    1981-09-01

    setting and application of RFR safety standards, assessment of RFR levels in the military workplaces, RFR instrumentation and dosimetry , the medical...RADIOFREQUENCY BURN HAZARDS IN THE MF/HF BAND ................ ... 76 S. J. Rogers (U.K.) 3. RADIOFREQUENCY RADIATION INSTRUMENTATION AND DOSIMETRY ...97 B. Audone, L. Bolla, and G. Gerbi (Italy) RADIOFREQUENCY RADIATION DOSIMETRY : A REVIEW OF THEORETICAL METHODS AND EXPERIMENTAL RESULTS

  19. Implementation of alanine/EPR as transfer dosimetry system in a radiotherapy audit programme in Belgium.

    PubMed

    Schaeken, B; Cuypers, R; Lelie, S; Schroeyers, W; Schreurs, S; Janssens, H; Verellen, D

    2011-04-01

    A measurement procedure based on alanine/electron paramagnetic resonance (EPR) dosimetry was implemented successfully providing simple, stable, and accurate dose-to-water (D(w)) measurements. The correspondence between alanine and ionization chamber measurements in reference conditions was excellent. Alanine/EMR dosimetry might be a valuable alternative to thermoluminescent (TLD) and ionization chamber based measuring procedures in radiotherapy audits. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations, Revision 1

    DTIC Science & Technology

    2017-12-01

    dominates the photon emission. During the Hiroshima and Nagasaki bombings , the prompt radiation contributed from 40% to 70% of the free-in-air dose...Terms for the Initial Radiation. LA-UR-83-198. US-Japan Joint Workshop on the Reassessment of the A- Bomb Radiation Dosimetry in Hiroshima and Nagasaki...2005). Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki—Dosimetry System 2002. Hiroshima, Japan: Radiation Effects

  1. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    PubMed

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A model for calculating the costs of in vivo dosimetry and portal imaging in radiotherapy departments.

    PubMed

    Kesteloot, K; Dutreix, A; van der Schueren, E

    1993-08-01

    The costs of in vivo dosimetry and portal imaging in radiotherapy are estimated, on the basis of a detailed overview of the activities involved in both quality assurance techniques. These activities require the availability of equipment, the use of material and workload. The cost calculations allow to conclude that for most departments in vivo dosimetry with diodes will be a cheaper alternative than in vivo dosimetry with TLD-meters. Whether TLD measurements can be performed cheaper with an automatic reader (with a higher equipment cost, but lower workload) or with a semi-automatic reader (lower equipment cost, but higher workload), depends on the number of checks in the department. LSP-systems (with a very high equipment cost) as well as on-line imaging systems will be cheaper portal imaging techniques than conventional port films (with high material costs) for large departments, or for smaller departments that perform frequent volume checks.

  3. A novel process control method for a TT-300 E-Beam/X-Ray system

    NASA Astrophysics Data System (ADS)

    Mittendorfer, Josef; Gallnböck-Wagner, Bernhard

    2018-02-01

    This paper presents some aspects of the process control method for a TT-300 E-Beam/X-Ray system at Mediscan, Austria. The novelty of the approach is the seamless integration of routine monitoring dosimetry with process data. This allows to calculate a parametric dose for each production unit and consequently a fine grain and holistic process performance monitoring. Process performance is documented in process control charts for the analysis of individual runs as well as historic trending of runs of specific process categories over a specified time range.

  4. EPR-dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor

    2017-09-01

    This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.

  5. Interagency Dosimetry Project: Methods for Dosimetry Adjustment Based on Mode of Action

    EPA Science Inventory

    As the science of toxicology evolves, many laboratories are adding new testing protocols or assays in their programs directed at ascertaining mechanistic information on uptake and toxic action of chemicals. In response to the increasing complexity and comprehensiveness of these ...

  6. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  7. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of radiation therapy treatment through improved clinical dosimetry to investigate and understand the dosimetric challenges of modern radiation treatments to provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry to energise and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D and semi-3D dosimetry techniques We believe the conference program, with its excellent range of expert and specialist speakers, met these objectives. Thanks are due to all invited speakers for their participation, to the Local Organising Committee members for all their hard work in making the conference happen, particularly the small core administrative support group, and to the range of academic, organisation and commercial sponsors who generously supported the meeting. The Scientific Committee members are also thanked for reviewing the submitted manuscripts and for assisting in the editorial process. Finally, all who travelled to Sydney, Australia for the meeting are acknowledged for choosing to attend and contribute to making this a successful conference. Local Conference Organising Committee David Thwaites (Conference Convener) Clive Baldock Leanne Price Elizabeth Starkey May Whitaker Peter Greer Lois Holloway Phil Vial Robin Hill Conference Scientific Committee Sven Back (Sweden) Clive Baldock (Australia) Cheng-Shie Wuu (USA) Yves de Deene (Belgium) Simon Doran (UK) Geoffrey Ibbott (USA) Andrew Jirasek (Canada) Kevin Jordan (Canada) Martin Lepage (Canada) Mark Oldham (USA) Evangelos Pappas (Greece) John Schreiner (Canada) David Thwaites (Australia) David ThwaitesClive Baldock DirectorExecutive Dean Institute of Medical PhysicsFaculty of Science School of PhysicsMacquarie University University of SydneyNorth Ryde NSW 2006NSW 2109 AustraliaAustralia The PDF also contains the conference program.

  8. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2014-01-01

    The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier‐like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple‐channel dosimetry and specific film scan and evaluation methodologies. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:25207417

  9. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    PubMed

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. MO-D-BRD-01: Memorial to Bengt Bjarngard - Memorial Lecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I

    We lost a legendary medical physicist, Dr. Bengt Erik Bjarngard, to angiosarcoma an aggressive type of cancer. He devoted his life to providing improved methods of radiation treatment for this devastating disease over the last 36 years. Bengt was born in a rural village of Bjarnum in southern Sweden, located near forest and is known for its furniture making. He migrated to USA at the age of 35 and was recruited by Dr. Samuel Hellman to lead a group of physicists that became the “mecca of medical physics” known as the Joint Center of Radiation Therapy (JCRT) at Harvard Medicalmore » School in Boston. Bengt mentored some of the best physicists in the country, and many of our modern treatments go back to the early days of research at the JCRT. These accomplishments, dating from 1969–1989, include: dose optimization using computer control; soft wedges; stereotactic radiosurgery (SRS); total-body irradiation (TBI); CT-planning; and radiation dosimetry. Bengt worked at Brown University in Rhode Island and at the University of Pennsylvania in Philadelphia, where he provided major contributions in radiation dosimetry, specifically with the head scatter model. He advocated superior calculation algorithm through the Helax treatment planning system that was on par from most commercial systems. Bengt served as AAPM president in 1979 and was a recipient of the Coolidge Award in 1998. He had a lifelong love of nature, retiring in 2000 from the University of Pennsylvania to take care of his 200 acres of homestead forest in Maine. His legacy continues through his contributions to radiation dosimetry. This session, on small field dosimetry, is a small tribute to his memory. Further details can be found in his obituary in Med Phy, 41(4), 040801, 2014.« less

  11. A practical three-dimensional dosimetry system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less

  12. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 03: Energy dependence of a clinical probe-format calorimeter and its pertinence to absolute photon and electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less

  13. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentefour, El H., E-mail: hassan.bentefour@iba-group.com; Prieels, Damien; Tang, Shikui

    Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry. Methods: An anthropomorphic pelvic phantom is used to validate the clinical potential of the time-resolved dose method for range verification inmore » the case of prostrate treatment using range modulated anterior proton beams. The method uses a 3 × 4 matrix of 1 mm diodes mounted in water balloon which are read by an ADC system at 100 kHz. The method is first validated against beam range measurements by dose extinction measurements. The validation is first completed in water phantom and then in pelvic phantom for both open field and treatment field configurations. Later, the beam range results are compared with the water equivalent path length (WEPL) values computed from the treatment planning system XIO. Results: Beam range measurements from both time-resolved dose method and the dose extinction method agree with submillimeter precision in water phantom. For the pelvic phantom, when discarding two of the diodes that show sign of significant range mixing, the two methods agree with ±1 mm. Only a dose of 7 mGy is sufficient to achieve this result. The comparison to the computed WEPL by the treatment planning system (XIO) shows that XIO underestimates the protons beam range. Quantifying the exact XIO range underestimation depends on the strategy used to evaluate the WEPL results. To our best evaluation, XIO underestimates the treatment beam range between a minimum of 1.7% and maximum of 4.1%. Conclusions: Time-resolved dose measurement method satisfies the two basic requirements, WEPL accuracy and minimum dose, necessary for clinical use, thus, its potential for in-vivo protons range verification. Further development is needed, namely, devising a workflow that takes into account the limits imposed by proton range mixing and the susceptibility of the comparison of measured and expected WEPLs to errors on the detector positions. The methods may also be used for in-vivo dosimetry and could benefit various proton therapy treatments.« less

  14. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  15. Experimental active and passive dosimetry systems for the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Schneider, M. F.; Janni, J. F.; Ainsworth, G. C.

    1972-01-01

    Active and passive dosimetry instrumentation to measure absorbed dose, charged particle spectra, and linear energy transfer spectra inside the command module and orbital workshop on the Skylab program were developed and tested. The active dosimetry system consists of one integral unit employing both a tissue equivalent ionization chamber and silicon solid state detectors. The instrument measures dose rates from 0.2 millirad/hour to 25 rads/hour, linear energy transfer spectra from 2.8 to 42.4 Kev/micron, and the proton and alpha particle energy spectra from 0.5 to 75 Mev. The active dosimeter is equipped with a portable radiation sensor for use in astronaut on-body and spacecraft shielding surveys during passage of the Skylab through significant space radiations. Data are transmitted in real time or are recorded by onboard spacecraft tape recorder for rapid evaluation of the radiation levels. The passive dosimetry systems consist of twelve (12) hard-mounted assemblies, each containing a variety of passive radiation sensors which are recoverable at the end of the mission for analysis.

  16. Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients.

    PubMed

    Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-08-01

    A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  18. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    NASA Astrophysics Data System (ADS)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  19. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  20. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  1. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.

  2. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    NASA Astrophysics Data System (ADS)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining PCC of lymphocytes and CHO cells with FISH using PNA probes after 10 h and 24 h after irradiation, and, finally, calibration data of excess PCC fragments (Giemsa) to be used if human blood is available immediately after irradiation or within 24 h.

  3. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.

  4. Protocol for emergency EPR dosimetry in fingernails

    USDA-ARS?s Scientific Manuscript database

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  5. Toxicokinetic and Dosimetry Modeling Tools for Exposure Reconstruction: US EPA's Rapid Exposure and Dosimetry (RED) Project

    EPA Science Inventory

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide ...

  6. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    DTIC Science & Technology

    2010-05-01

    mammography," (2008). 4. H. M. Warren-Forward and L. Duggan, "Towards in vivo TLD dosimetry in mammography," Br J Radiol 77, 426-432 (2004). 5. X. Wu, G...thermoluminescent detectors ( TLDs ) were used in the experiments but, after consultation with experts in the field of radiation dosimetry , it was decided...prohibitively expensive to use TLDs for the various study setups and that the dosimetry results from one setup could be extended to similar setups that

  7. Strengths and Weaknesses of a Planar Whole-Body Method of 153Sm Dosimetry for Patients with Metastatic Osteosarcoma and Comparison with Three-Dimensional Dosimetry

    PubMed Central

    Plyku, Donika; Loeb, David M.; Prideaux, Andrew R.; Baechler, Sébastien; Wahl, Richard L.; Sgouros, George

    2015-01-01

    Abstract Purpose: Dosimetric accuracy depends directly upon the accuracy of the activity measurements in tumors and organs. The authors present the methods and results of a retrospective tumor dosimetry analysis in 14 patients with a total of 28 tumors treated with high activities of 153Sm-ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) for therapy of metastatic osteosarcoma using planar images and compare the results with three-dimensional dosimetry. Materials and Methods: Analysis of phantom data provided a complete set of parameters for dosimetric calculations, including buildup factor, attenuation coefficient, and camera dead-time compensation. The latter was obtained using a previously developed methodology that accounts for the relative motion of the camera and patient during whole-body (WB) imaging. Tumor activity values calculated from the anterior and posterior views of WB planar images of patients treated with 153Sm-EDTMP for pediatric osteosarcoma were compared with the geometric mean value. The mean activities were integrated over time and tumor-absorbed doses were calculated using the software package OLINDA/EXM. Results: The authors found that it was necessary to employ the dead-time correction algorithm to prevent measured tumor activity half-lives from often exceeding the physical decay half-life of 153Sm. Measured half-lives so long are unquestionably in error. Tumor-absorbed doses varied between 0.0022 and 0.27 cGy/MBq with an average of 0.065 cGy/MBq; however, a comparison with absorbed dose values derived from a three-dimensional analysis for the same tumors showed no correlation; moreover, the ratio of three-dimensional absorbed dose value to planar absorbed dose value was 2.19. From the anterior and posterior activity comparisons, the order of clinical uncertainty for activity and dose calculations from WB planar images, with the present methodology, is hypothesized to be about 70%. Conclusion: The dosimetric results from clinical patient data indicate that absolute planar dosimetry is unreliable and dosimetry using three-dimensional imaging is preferable, particularly for tumors, except perhaps for the most sophisticated planar methods. The relative activity and patient kinetics derived from planar imaging show a greater level of reliability than the dosimetry. PMID:26560193

  8. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have not yet been submitted to the ISO, and six more dosimetry standards are under development.

  9. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    PubMed Central

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  10. Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Hussien, Mohammad

    Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionization chamber (IC) array were compared with measurements using 0.125cm3 ion chamber, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes respectively. A methodology for prospectively deriving appropriate gamma index acceptance criteria for detector array systems, via simulation of deliberate changes and receiver operator characteristic (ROC) analysis, has been developed. Results: In the event of clinically relevant delivery introduced changes, the detector array systems evaluated are able to detect some of these changes if suitable gamma index passing criteria, such as 2%/2mm, are used. Different computational approaches can produce variability in the calculation of the gamma index between different software implementations. For the same passing criteria, different devices and software combinations exhibit varying levels of agreement with the Matlab predicted gamma index analysis. This work has found that it is suitable to use a detector array in a dosimetry audit of rotational radiotherapy in place of standard systems of dosimetry such as ion chambers, alanine and film. Comparisons between individual detectors within the 2D-Array against the corresponding ion chamber and alanine measurement showed a statistically significant concordance correlation coefficient (ρc>0.998, p<0.001) with mean difference of -1.1%±1.1% and -0.8%±1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was found that the 2D-Array was more likely to fail in planes where there was a dose discrepancy due to the absolute analysis performed. A follow-up analysis of the library of measured data during the audit found that additional metrics such as the mean gamma index or dose differences over regions of interest can be gleaned from the measured dose distributions. Conclusions: It is important to understand the response and limitations of the gamma index analysis combined with the equipment and software in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. A methodology for being able to prospectively ascertain appropriate gamma index acceptance criteria for the detector array system in use, via simulation of deliberate changes and ROC analysis, has been developed. It has been shown that setting appropriate tolerances can be achieved and should be performed as the methodology takes into account the configuration of the commercial system as well as the software implementation of the gamma index.

  11. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    PubMed Central

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  12. Radiotherapy dosimetry using a commercial OSL system.

    PubMed

    Viamonte, A; da Rosa, L A R; Buckley, L A; Cherpak, A; Cygler, J E

    2008-04-01

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  13. PET/CT image registration: preliminary tests for its application to clinical dosimetry in radiotherapy.

    PubMed

    Baños-Capilla, M C; García, M A; Bea, J; Pla, C; Larrea, L; López, E

    2007-06-01

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: deltax/ +/-sigma = 3.3 mm +/- 1.0 mm and /deltax/ +/-sigma = 3.6 mm +/- 1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: /deltax/ +/-sigma = 0.7 mm +/- 0.8 mm and /deltax/ +/-sigma = 0.3 mm 1.7 mm. We also noted that differences found for each of the fusion methods were similar for both the axial and helical CT image acquisition protocols.

  14. Dosimetric measurements and comparison studies in digital imaging system

    NASA Astrophysics Data System (ADS)

    Jung, Ji-Young; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Nam, Sora

    2008-03-01

    Number of radiologic exams using digital imaging systems has rapidly increased with advanced imaging technologies. However, it has not been paid attention to the radiation dose in clinical situations. It was the motivation to study radiation dosimetry in the DR system. The objective of this study was to measure beam quality and patient's dose using DR system and to compare them to both IEC standard and IAEA guidelines. The measured average dose for chest and abdomen was 1.376 mGy and 9.501 mGy, respectively, compared to 0.4 mGy and 10.0 mGy in IAEA guidelines. The results also indicated that the DR system has a lower radiation beam quality than that of the IEC standard. The results showed that the patients may be exposed higher radiation for chest exams and lower radiation for abdomen exams using DR system. IAEA Guidelines were prepared based on western people which may be different weight and height for patients compared them to Korean. In conclusion, a new guideline for acceptable DR dosimetry for Korean patients may need to be developed with further studies for large populations. We believe that this research greatly help to introduce the importance of the dosimetry in diagnostic radiology in Korea. And, a development of database for dosimetry in diagnostic radiology will become an opportunity of making aware of radiation safety of medical examination to patient.

  15. WE-F-201-03: Evaluate Clinical Cases Using Commercially Available Systems and Compare to TG-43 Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, L.

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  16. Preliminary thermoluminescence and optically stimulated luminescence investigation of commercial pharmaceutical preparations towards the drug sterilization dosimetry.

    PubMed

    Kazakis, Nikolaos A; Tsirliganis, Nestor C; Kitis, George

    2014-09-01

    Drug sterilization with ionizing radiation is a well-established technology and is gaining ground the last decades due to its numerous advantages. Identification of irradiated drugs would be interesting and, in this respect, the present work aims, for the first time to the authors' best knowledge, to explore whether OSL and TL can be employed as methods for post-sterilization dosimetry on commercial drugs, i.e., as tools for the detection of irradiated drugs. Five widely used drugs, i.e., Daktarin(®), Aspirin(®), Panadol(®), Brufen(®) and Procef(®), are used for this purpose. Preliminary findings are very promising towards the post-sterilization dosimetry and the use of commercial drugs for normal and/or accidental dosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Results from a Prototype Proton-CT Head Scanner

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.

    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.

  18. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  19. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry.

    PubMed

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2014-12-04

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by -0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery.

  20. Guidelines on the implementation of diode in vivo dosimetry programs for photon and electron external beam therapy.

    PubMed

    Alecu, R; Loomis, T; Alecu, J; Ochran, T

    1999-01-01

    Semiconductor diodes offer many advantages for clinical dosimetry: high sensitivity, real-time readout, simple instrumentation, robustness and air pressure independence. The feasibility and usefulness of in vivo dosimetry with diodes has been shown by numerous publications, but very few, if any, refer to the utilization of diodes in electron beam dosimetry. The purpose of this paper is to present our methods for implementing an effective IVD program for external beam therapy with photons and electrons and to evaluate a new type of diodes. Methods of deciding on reasonable action levels along with calibration procedures, established according to the type of measurements intended to be performed and the action limits, are discussed. Correction factors to account for nonreference clinical conditions for new types of diodes (designed for photon and electron beams) are presented and compared with those required by older models commercially available. The possibilities and limitations of each type of diode are presented, emphasizing the importance of using the appropriate diode for each task and energy range.

  1. MR and CT image fusion for postimplant analysis in permanent prostate seed implants.

    PubMed

    Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto

    2004-12-01

    To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.

  2. Advances in Inhalation Gas Dosimetry for Derivation of a Reference Concentration (RfC) and Use in Risk Assessment

    EPA Science Inventory

    This status report provides a review of advances in the state of the science for interspecies inhalation gas dosimetry related to extrathoracic (ET) or upper respiratory tract (URT), tracheobronchial (TB), pulmonary (PU), and extrarespiratory (systemic, SYS) effects.

  3. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    PubMed Central

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529

  4. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  5. SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y; Saleh, Z; Obcemea, C

    Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on amore » CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film dosimetry.« less

  6. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.

  7. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    EPA Pesticide Factsheets

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  8. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    NASA Astrophysics Data System (ADS)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  9. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    PubMed

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  10. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Titania; Grant, Ryan; Adamovics, John

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less

  11. SU-E-T-624: Quantitative Evaluation of 2D Versus 3D Dosimetry for Stereotactic Volumetric Modulated Arc Delivery Using COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vikraman, S; Karrthick, K; Rajesh, T

    2014-06-15

    Purpose: The purpose of this study was to evaluate quantitatively 2D versus 3D dosimetry for stereotactic volumetric modulated arc delivery using COMPASS with 2D array. Methods: Twenty-five patients CT images and RT structures of different sites like brain, head and neck, thorax, abdomen and spine were taken from Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in Cyberknife. For each patient, linac based VMAT stereotactic plans were generated in Monaco TPS v 3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20Gy/fraction.TPS calculated VMAT plan delivery accuracy was quantitatively evaluated withmore » COMPASS measured dose and calculated dose based on DVH metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using Multicube. Results: For each site, D{sub 9} {sub 5} was achieved with 100% of prescription dose with maximum 0.05SD. Conformity index (CI) was observed closer to 1.15 in all cases. Maximum deviation of 2.62 % was observed for D{sub 9} {sub 5} when compared TPS versus COMPASS measured. Considerable deviations were observed in head and neck cases compare to other sites. The maximum mean and standard deviation for D{sub 9} {sub 5}, average target dose and average gamma were -0.78±1.72, -1.10±1.373 and 0.39±0.086 respectively. Numbers of pixels passing 2D fluence verification were observed as a mean of 99.36% ±0.455 SD with 3% dose difference and 3mm DTA. For critical organs in head and neck cases, significant dose differences were observed in 3D dosimetry while the target doses were matched well within limit in both 2D and 3D dosimetry. Conclusion: The quantitative evaluations of 2D versus 3D dosimetry for stereotactic volumetric modulated plans showed the potential of highlighting the delivery errors. This study reveals that COMPASS 3D dosimetry is an effective tool for patient specific quality assurance compared to 2D fluence verification.« less

  12. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.

    PubMed

    Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M

    1998-06-01

    In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.

  13. Changes in Occupational Radiation Exposures after Incorporation of a Real-time Dosimetry System in the Interventional Radiology Suite.

    PubMed

    Poudel, Sashi; Weir, Lori; Dowling, Dawn; Medich, David C

    2016-08-01

    A statistical pilot study was retrospectively performed to analyze potential changes in occupational radiation exposures to Interventional Radiology (IR) staff at Lawrence General Hospital after implementation of the i2 Active Radiation Dosimetry System (Unfors RaySafe Inc, 6045 Cochran Road Cleveland, OH 44139-3302). In this study, the monthly OSL dosimetry records obtained during the eight-month period prior to i2 implementation were normalized to the number of procedures performed during each month and statistically compared to the normalized dosimetry records obtained for the 8-mo period after i2 implementation. The resulting statistics included calculation of the mean and standard deviation of the dose equivalences per procedure and included appropriate hypothesis tests to assess for statistically valid differences between the pre and post i2 study periods. Hypothesis testing was performed on three groups of staff present during an IR procedure: The first group included all members of the IR staff, the second group consisted of the IR radiologists, and the third group consisted of the IR technician staff. After implementing the i2 active dosimetry system, participating members of the Lawrence General IR staff had a reduction in the average dose equivalence per procedure of 43.1% ± 16.7% (p = 0.04). Similarly, Lawrence General IR radiologists had a 65.8% ± 33.6% (p=0.01) reduction while the technologists had a 45.0% ± 14.4% (p=0.03) reduction.

  14. SU-G-TeP4-02: A Method for Evaluating the Direct Impact of Failed IMRT QAs On Patient Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Butkus, M

    Purpose: We developed a method to calculate patient doses corresponding to IMRT QA measurements in order to determine and assess the actual dose delivered for plans with failed (or borderline) IMRT QA. This work demonstrates the feasibility of automatically computing delivered patient dose from portal dosimetry measurements in the Varian TPS system, which would provide a valuable and clinically viable IMRT QA tool for physicists and physicians. Methods: IMRT QA fluences were measured using portal dosimetry, processed using in-house matlab software, and imported back into Eclipse to calculate dose on the planning CT. To validate the proposed workflow, the Eclipsemore » calculated portal dose for a 5-field sliding window prostate boost plan was processed as described above. The resulting dose was compared to the planned dose and found to be within 0.5 Gy. Two IMRT QA results for the prostate boost plan (one that failed and one that passed) were processed and the resulting patient doses were evaluated. Results: The max dose difference between IMRT QA #1 and the original planned and approved dose is 4.5 Gy, while the difference between the planned and IMRT QA #2 dose is 4.0 Gy. The inferior portion of the PTV is slightly underdosed in both plans, and the superior portion is slightly overdosed. The patient dose resulting from IMRT QA #1 and #2 differs by only 0.5 Gy. With this new information, it may be argued that the evaluated plan alteration to obtain passing gamma analysis produced clinically irrelevant differences. Conclusion: Evaluation of the delivered QA dose on the planning CT provides valuable information about the clinical relevance of failed or borderline IMRT QAs. This particular workflow demonstrates the feasibility of pushing the measured IMRT QA portal dosimetry results directly back onto the patient planning CT within the Varian system.« less

  15. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  16. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    PubMed

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost Cerenkov-free scintillation dosimetry of brachytherapy β-sources. © 2017 American Association of Physicists in Medicine.

  17. GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis.

    PubMed

    Saur, Sigrun; Frengen, Jomar

    2008-07-01

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.

  18. Recommended improvements to the DS02 dosimetry system's calculation of organ doses and their potential advantages for the Radiation Effects Research Foundation.

    PubMed

    Cullings, Harry M

    2012-03-01

    The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.

  19. Inter-departmental dosimetry audits – development of methods and lessons learned

    PubMed Central

    Eaton, David J.; Bolton, Steve; Thomas, Russell A. S.; Clark, Catharine H.

    2015-01-01

    External dosimetry audits give confidence in the safe and accurate delivery of radiotherapy. In the United Kingdom, such audits have been performed for almost 30 years. From the start, they included clinically relevant conditions, as well as reference machine output. Recently, national audits have tested new or complex techniques, but these methods are then used in regional audits by a peer-to-peer approach. This local approach builds up the radiotherapy community, facilitates communication, and brings synergy to medical physics. PMID:26865753

  20. Dosimetry and microdosimetry using COTS ICs: A comparative study

    NASA Technical Reports Server (NTRS)

    Scheick, L.; Swift, G.; Guertin, S.; Roth, D.; McNulty, P.; Nguyen, D.

    2002-01-01

    A new method using an array of MOS transistors formeasuring dose absorbed from ionizing radiation is compared to previous dosimetric methods., The accuracy and precision of dosimetry based on COTS SRAMs, DRAMs, and WPROMs are compared and contrasted. Applications of these devices in various space missions will be discussed. TID results are presented for this summary and microdosimetricresults will be added to the full paper. Finally, an analysis of the optimal condition for a digital dosimeter will be presented.

  1. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code.

    PubMed

    Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A

    2015-03-01

    HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.

  2. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications.

    PubMed

    Hu, B; Wang, Y; Zealey, W

    2009-12-01

    A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established.

  3. Apollo experience report: Protection against radiation

    NASA Technical Reports Server (NTRS)

    English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.

    1973-01-01

    Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.

  4. Architectures and algorithms for digital image processing; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)

    1986-01-01

    The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.

  5. Perineal template techniques for interstitial implantation of gynecological cancers using the Paris system of dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, S.

    1990-09-01

    Since 1984, perineal template/needle techniques for interstitial implantation of gynecologic cancer-cervix, vagina, vulva-have been developed at the Peter MacCallum Cancer Institute. The Paris System of dosimetry has been used resulting in greater dose homogeneity, fewer needles and radioactive sources and considerable simplification and ease of implantation compared with comparable techniques developed in the United States. Principles and techniques of implantation are described in detail.

  6. CHAIRMAN'S WELCOME MESSAGE Chairman's message

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2010-11-01

    Every clinical physicist I have asked readily acknowledges the great desirability of a 3D dosimetry system for the verification of advanced radiation therapy treatments. An accurate and practical 3D dosimetry system would greatly strengthen the foundation of quality assurance in radiation therapy by enabling a rigorous and comprehensive whole system test. Such systems are now emerging, and the innovations and progress that led to them are remarkably captured in the proceedings of five prior DOSGEL conferences, the last three of which are freely available in the Journal of Physics: Conference Series. These meetings included a focus on the technical challenges of various approaches to 3D dosimetry. When considering plans for the present 6th meeting, the scientific committee recognized that the field has matured, and a broader focus was desirable, including a strengthening of the clinical and applications component, while preserving a strong technical component. There was also the desire to embrace a variety of other semi-3D techniques which have also recently emerged to implementation in the clinic. In accordance with these sentiments, the committee approved changing the name of the conference from the International Conference on Radiotherapy Gel Dosimetry (DOSGEL) to the International Conference on 3D Radiation Dosimetry (IC3DDose) and to the following objectives - Conference Objectives: 1. To provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry. 2. To elevate the quality of radiation therapy treatments (quality assurance QA) through improved clinical dosimetry. 3. To explore the dosimetric challenges posed by modern radiation treatment techniques 4. To energize and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D, and semi-3D dosimetry techniques The scientific program of the IC3DDose2010 meeting has been crafted to meet the objectives listed above, and we were fortunate that many leading speakers shared their experience and perspectives to help achieve these aims. On a more personal note it was a true pleasure to extend a warm welcome to all conference attendees. We have a very diverse group of clinical and research physicists from many parts of the world, and it is truly a pleasure to welcome you all. Finally I would like to acknowledge the many people who have made the meeting possible. Special thanks go to the Scientific Organizing Committee (listed opposite) who reviewed all the conference abstracts and participated in many planning conference calls, and meeting activities. The Local Organizing Committee shouldered a significant load finalizing the conference abstract book and ensuring smooth meeting logistics. We are also very grateful to our sponsors, both academic and industrial, whose support was vital to this meeting. Mark Oldham, PhD, FAAPM Associate Professor, Radiation Oncology and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA mark.oldham@duke.edu Chairman

  7. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi

    2010-06-15

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  9. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  10. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  11. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  12. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy.

    PubMed

    Kim, Michele M; Penjweini, Rozhin; Gemmell, Nathan R; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S; Hadfield, Robert H; Wilson, Brian C; Zhu, Timothy C

    2016-12-06

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³ O ₂])-to calculate the amount of reacted singlet oxygen ([¹ O ₂] rx ), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime ( τ Δ and τ t ), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹ O ₂] rx was compared to SOED-calculated [¹ O ₂] rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹ O ₂] rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.

  13. TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.

    PubMed

    Alvarez, P; Kry, S F; Stingo, F; Followill, D

    2017-11-01

    The Imaging and Radiation Oncology Core QA Center in Houston (IROC-H) performs remote dosimetry audits of more than 20,000 megavoltage photon and electron beams each year. Both a thermoluminescent dosimeter (TLD-100) and optically stimulated luminescent dosimeter (OSLD; nanoDot) system are commissioned for this task, with the OSLD system being predominant due to the more time-efficient read-out process. The measurement apparatus includes 3 TLD or 2 OSLD in an acrylic mini-phantom, which are irradiated by the institution under reference geometry. Dosimetry systems are calibrated based on the signal-to-dose conversion established with reference dosimeters irradiated in a Co-60 beam, using a reference dose of 300 cGy for TLD and 100 cGy for OSLD. The uncertainty in the dose determination is 1.3% for TLD and 1.6% for OSLD at the one sigma level. This accuracy allows for a tolerance of ±5% to be used.

  14. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  15. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.

    PubMed

    Mrčela, I; Bokulić, T; Izewska, J; Budanec, M; Fröbe, A; Kusić, Z

    2011-09-21

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  16. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in 60Co beams

    NASA Astrophysics Data System (ADS)

    Mrčela, I.; Bokulić, T.; Izewska, J.; Budanec, M.; Fröbe, A.; Kusić, Z.

    2011-09-01

    A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in 60Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.

  17. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less

  18. Dose assessment in environmental radiological protection: State of the art and perspectives.

    PubMed

    Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G

    2017-09-01

    Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, A; Andreozzi, J; Davis, S

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a watermore » tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.« less

  20. A technique for pediatric total skin electron irradiation

    PubMed Central

    2012-01-01

    Background Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Methods and Results Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Conclusion Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution. PMID:22433063

  1. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  2. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy.

    PubMed

    Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P

    2015-12-01

    Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

  3. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41more » standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).« less

  4. Dose perturbations due to in vivo dosimetry with diodes.

    PubMed

    Alecu, R; Feldmeier, J J; Alecu, M

    1997-03-01

    In vivo dosimetry performed with semiconductor detectors is a reliable method for patient dose control. The purpose of this study is to evaluate the perturbations introduced in the patient's absorbed dose distribution by three types of commercially available diodes (Isorad, Sun Nuclear Corp.; model 114200, 114300 and 114400) from the same company and to present possible solutions for minimizing this side-effect.

  5. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-01

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  6. Analysis of regional radiotherapy dosimetry audit data and recommendations for future audits

    PubMed Central

    Palmer, A; Mzenda, B; Kearton, J; Wills, R

    2011-01-01

    Objectives Regional interdepartmental dosimetry audits within the UK provide basic assurances of the dosimetric accuracy of radiotherapy treatments. Methods This work reviews several years of audit results from the South East Central audit group including megavoltage (MV) and kilovoltage (kV) photons, electrons and iodine-125 seeds. Results Apart from some minor systematic errors that were resolved, the results of all audits have been within protocol tolerances, confirming the long-term stability and agreement of basic radiation dosimetric parameters between centres in the audit region. There is some evidence of improvement in radiation dosimetry with the adoption of newer codes of practice. Conclusion The value of current audit methods and the limitations of peer-to-peer auditing is discussed, particularly the influence of the audit schedule on the results obtained, where no “gold standard” exists. Recommendations are made for future audits, including an essential requirement to maintain the monitoring of basic fundamental dosimetry, such as MV photon and electron output, but audits must also be developed to include new treatment technologies such as image-guided radiotherapy and address the most common sources of error in radiotherapy. PMID:21159805

  7. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Sen, A

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-Tmore » scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning on a day to day basis.« less

  8. A study of riders' noise exposure on Bay Area Rapid Transit trains.

    PubMed

    Dinno, Alexis; Powell, Cynthia; King, Margaret Mary

    2011-02-01

    Excessive noise exposure may present a hazard to hearing, cardiovascular, and psychosomatic health. Mass transit systems, such as the Bay Area Rapid Transit (BART) system, are potential sources of excessive noise. The purpose of this study was to characterize transit noise and riders' exposure to noise on the BART system using three dosimetry metrics. We made 268 dosimetry measurements on a convenience sample of 51 line segments. Dosimetry measures were modeled using linear and nonlinear multiple regression as functions of average velocity, tunnel enclosure, flooring, and wet weather conditions and presented visually on a map of the BART system. This study provides evidence of levels of hazardous levels of noise exposure in all three dosimetry metrics. L(eq) and L(max) measures indicate exposures well above ranges associated with increased cardiovascular and psychosomatic health risks in the published literature. L(peak) indicate acute exposures hazardous to adult hearing on about 1% of line segment rides and acute exposures hazardous to child hearing on about 2% of such rides. The noise to which passengers are exposed may be due to train-specific conditions (velocity and flooring), but also to rail conditions (velocity and tunnels). These findings may point at possible remediation (revised speed limits on longer segments and those segments enclosed by tunnels). The findings also suggest that specific rail segments could be improved for noise.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Lin, H; Darafsheh, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) designed for dosimetry of radiation therapy. Methods: The Exradin W1 Scintillator is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. The Cerenkov emissions were corrected using spectral separation. The optical signal was converted to electronic signal with a photodiode. We measured its dosimetry performance, including percentage depth dose, output factor, dose and dose rate linear response. We compared the dosimetry results with reference ion chamber measurements. Results: The dosimetry results of PSD agreemore » well with reference ion chamber measurements. For percentage depth dose, the differences between PSD and ion chamber results are on average 1.7±1.1% and 0.8±0.8% with a maximum of 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 2% from ion chamber results. The dose linear response is within 1% when dose is larger than 20 MU for both 6 MV and 15 MV. The dose rate linear response is within 1% for the entire dose rate used (100 MU/min to 600MU/min). Conclusions: The current design of PSD is feasible for the dosimtry measurement in radiation therapy. This combination of PSD and photodiode system could be extended to multichannel array detection of dose distribution. It might as well be used as range verification in proton therapy. The work is partially supported by: DOD (W81XWH-09-2-0174) and American Cancer Society (IRG-78-002-28)« less

  10. Challenges in Credentialing Institutions and Participants in Advanced Technology Multi-institutional Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, Geoffrey S.; Followill, David S.; Molineu, H. Andrea

    The Radiological Physics Center (RPC) has functioned continuously for 38 years to assure the National Cancer Institute and the cooperative groups that institutions participating in multi-institutional trials can be expected to deliver radiation treatments that are clinically comparable to those delivered by other institutions in the cooperative groups. To accomplish this, the RPC monitors the machine output, the dosimetry data used by the institutions, the calculation algorithms used for treatment planning, and the institutions' quality control procedures. The methods of monitoring include on-site dosimetry review by an RPC physicist and a variety of remote audit tools. The introduction of advancedmore » technology clinical trials has prompted several study groups to require participating institutions and personnel to become credentialed, to ensure their familiarity and capability with techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy, and brachytherapy. The RPC conducts a variety of credentialing activities, beginning with questionnaires to evaluate an institution's understanding of the protocol and their capabilities. Treatment-planning benchmarks are used to allow the institution to demonstrate their planning ability and to facilitate a review of the accuracy of treatment-planning systems under relevant conditions. The RPC also provides mailable anthropomorphic phantoms to verify tumor dose delivery for special treatment techniques. While conducting these reviews, the RPC has amassed a large amount of data describing the dosimetry at participating institutions. Representative data from the monitoring programs are discussed, and examples are presented of specific instances in which the RPC contributed to the discovery and resolution of dosimetry errors.« less

  11. Evaluation and clinical implementation of in vivo dosimetry for kV radiotherapy using radiochromic film and micro-silica bead thermoluminescent detectors.

    PubMed

    Palmer, Antony L; Jafari, Shakardokht M; Mone, Ioanna; Muscat, Sarah

    2017-10-01

    kV radiotherapy treatment calculations are based on flat, homogenous, full-scatter reference conditions. However, clinical treatments often include surface irregularities and inhomogeneities, causing uncertainty. Therefore, confirmation of actual delivered doses in vivo is valuable. The current study evaluates, and implements, radiochromic film and micro silica bead TLD for in vivo kV dosimetry. The kV energy and dose response of EBT3 film and silica bead TLD was established and uncertainty budgets determined. In vivo dosimetry measurements were made for a consecutive series of 30 patients using the two dosimetry systems. Energy dependent calibration factors were required for both dosimetry systems. The standard uncertainty estimate for in vivo measurement with film was 1.7% and for beads was 1.5%. The mean measured dose was -2.1% for film and -2.6% for beads compared to prescription. Deviations up to -9% were found in cases of large surface irregularity, or with underlying air cavities or bone. Dose shielding by beads could be clinically relevant at low kV energies and superficial depths. Both film and beads may be used to provide in vivo verification of delivered doses in kV radiotherapy, particularly for complex situations that are not well represented by standard reference condition calculations. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. TH-A-204-00: Key Dosimetry Data - Impact of New ICRU Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV xrays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less

  13. TH-A-204-01: Part I - Key Data for Ionizing-Radiation Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S.

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less

  14. WE-G-BRA-01: Patient Safety and Treatment Quality Improvement Through Incident Learning: Experience of a Non-Academic Proton Therapy Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Johnson, R; Zhao, L

    2015-06-15

    Purpose: Incident learning has been proven to improve patient safety and treatment quality in conventional radiation therapy. However, its application in proton therapy has not been reported yet to our knowledge. In this study, we report our experience in developing and implementation of an in-house incident learning system. Methods: An incident learning system was developed based on published principles and tailored for our clinical practice and available resource about 18 months ago. The system includes four layers of error detection and report: 1) dosimetry peer review; 2) physicist plan quality assurance (QA); 3) treatment delivery issue on call and record;more » and 4) other incident report. The first two layers of QA and report were mandatory for each treatment plan through easy-to-use spreadsheets that are only accessible by the dosimetry and physicist departments. The treatment delivery issues were recorded case by case by the on call physicist. All other incidents were reported through an online incident report system, which can be anonymous. The incident report includes near misses on planning and delivery, process deviation, machine issues, work flow and documentation. Periodic incident reviews were performed. Results: In total, about 116 errors were reported through dosimetry review, 137 errors through plan QA, 83 treatment issues through physics on call record, and 30 through the online incident report. Only 8 incidents (2.2%) were considered to have a clinical impact to patients, and the rest of errors were either detected before reaching patients or had negligible dosimetric impact (<5% dose variance). Personnel training & process improvements were implemented upon periodic incident review. Conclusion: An incident learning system can be helpful in personnel training, error reduction, and patient safety and treatment quality improvement. The system needs to be catered for each clinic’s practice and available resources. Incident and knowledge sharing among proton centers are encouraged.« less

  15. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies

    PubMed Central

    Izewska, Joanna; Wesolowska, Paulina; Azangwe, Godfrey; Followill, David S.; Thwaites, David I.; Arib, Mehenna; Stefanic, Amalia; Viegas, Claudio; Suming, Luo; Ekendahl, Daniela; Bulski, Wojciech; Georg, Dietmar

    2016-01-01

    Abstract The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP ‘Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques’ was conducted in 2009–2012 as an extension of previously developed audit programs. Material and methods. The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. Results. The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. Discussion. Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs. PMID:26934916

  16. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less

  17. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716

  18. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  19. SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chang, A

    Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less

  20. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  1. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  2. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, M; Wen, Z; Tailor, R

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in amore » Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.« less

  3. Optically stimulated luminescence (OSL) dosimetry in medicine.

    PubMed

    Yukihara, E G; McKeever, S W S

    2008-10-21

    This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.

  4. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  5. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  6. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2007-11-01

    of the focal spot. 2.1. Model for Reconstruction Space Transformation As illustrated in Figure 8, let A & B ( with reference frames FA & FB) be the two...simplex optimization method in MATLAB 7.0 with the search space being defined by the distortion modes from PCA. A linear combination of the modes would...arm is tracked with an X-ray fiducial system called FTRAC that is composed of optimally selected polynomial

  7. SU-C-BRD-06: Results From a 5 Patient in Vivo Rectal Wall Dosimetry Study Using Plastic Scintillation Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, L; Kudchadker, R; Lee, A

    Purpose: To evaluate the performance characteristics of plastic scintillation detectors (PSDs) in an in vivo environment for external beam radiation, and to establish the usefulness and ease of implementation of a PSD based in vivo dosimetry system for routine clinical use. Methods: A five patient IRB approved in vivo dosimetry study was performed. Five patients with prostate cancer were enrolled and PSDs were used to monitor rectal wall dose and verify the delivered dose for approximately two fractions each week over the course of their treatment (approximately fourteen fractions), resulting in a total of 142 in vivo measurements. A setmore » of two PSDs was fabricated for each patient. At each monitored fraction the PSDs were attached to the anterior surface of an endorectal balloon used to immobilize the patient's prostate during treatment. A CT scan was acquired with a CTon- rails linear accelerator to localize the detectors and to calculate the dose expected to be delivered to the detectors. Each PSD acquired data in 10 second intervals for the duration of the treatment. The deviation between expected and measured cumulative dose was calculated for each detector for each fraction, and averaged over each patient and the patient population as a whole. Results: The average difference between expected dose and measured dose ranged from -3.3% to 3.3% for individual patients, with standard deviations between 5.6% and 7.1% for four of the patients. The average difference for the entire population was -0.4% with a standard deviation of 2.8%. The detectors were well tolerated by the patients and the system did not interrupt the clinical workflow. Conclusion: PSDs perform well as in vivo dosimeters, exhibiting good accuracy and precision. This, combined with the practicability of using such a system, positions the PSD as a strong candidate for clinical in vivo dosimetry in the future. This work supported in part by the National Cancer Institute through an R01 grant (CA120198-01A2) and by the American Legion Auxiliary through the American Auxiliary Fellowship in Cancer Research.« less

  8. A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.

    PubMed

    Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-02-01

    To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Self-report and long-term field measures of MP3 player use: how accurate is self-report?

    PubMed

    Portnuff, C D F; Fligor, B J; Arehart, K H

    2013-02-01

    This study was designed to evaluate the usage patterns of portable listening device (PLD) listeners, and the relationships between self-report measures and long-term dosimetry measures of listening habits. This study used a descriptive correlational design. Participants (N = 52) were 18-29 year old men and women who completed surveys. A randomly assigned subset (N = 24) of participants had their listening monitored by dosimetry for one week. Median weekly noise doses reported and measured through dosimetry were low (9-93%), but 14.3% of participants reported exceeding a 100% noise dose weekly. When measured by dosimetry, 16.7% of participants exceeded a 100% noise dose weekly. The self-report question that best predicted the dosimetry-measured dose asked participants to report listening duration and usual listening level on a visual-analog scale. This study reports a novel dosimetry system that can provide accurate measures of PLD use over time. When not feasible, though, the self-report question described could provide a useful research or clinical tool to estimate exposure from PLD use. Among the participants in this study, a small but substantial percentage of PLD users incurred exposure from PLD use alone that increases their risk of music-induced hearing loss.

  10. TH-CD-BRA-02: 3D Remote Dosimetry for MRI-Guided Radiation Therapy: A Hybrid Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankine, L; The University of North Carolina at Chapel Hill, Chapel Hill, NC; Mein, S

    2016-06-15

    Purpose: To validate the dosimetric accuracy of a commercially available MR-IGRT system using a combination of 3D dosimetry measurements (with PRESAGE(R) radiochromic plastic and optical-CT readout) and an in-house developed GPU-accelerated PENELOPE Monte-Carlo dose calculation system. Methods: {sup 60}Co IMRT subject to a 0.35T lateral magnetic field has recently been commissioned in our institution following AAPM’s TG-119 recommendations. We performed PRESAGE(R) sensitivity studies in 4ml cuvettes to verify linearity, MR-compatibility, and energy-independence. Using 10cm diameter PRESAGE(R), we delivered an open calibration field to examine the percent depth dose and a symmetrical 3-field plan with three adjacent regions of varying dosemore » to determine uniformity within the dosimeter under a magnetic field. After initial testing, TG-119 plans were created in the TPS and then delivered to 14.5cm 2kg PRESAGE(R) dosimeters. Dose readout was performed via optical-CT at a second institution specializing in remote 3D dosimetry. Absolute dose was measured using an IBA CC01 ion chamber and the institution standard patient-specific QA methods were used to validate plan delivery. Calculated TG-119 plans were then compared with an independent Monte Carlo dose calculation (gPENELOPE). Results: PRESAGE(R) responds linearly (R{sup 2}=0.9996) to {sup 60}Co irradiation, in the presence of a 0.35T magnetic field, with a sensitivity of 0.0305(±0.003)cm{sup −1}Gy{sup −1}, within 1% of a 6MV non-MR linac irradiation (R{sup 2}=0.9991) with a sensitivity of 0.0302(±0.003)cm{sup −1}Gy{sup −1}. Analysis of TG-119 clinical plans using 3D-gamma (3%/3mm, 10% threshold) give passing rates of: HN 99.1%, prostate 98.0%, C-shape 90.8%, and multi-target 98.5%. The TPS agreed with gPENELOPE with a mean gamma passing rate of 98.4±1.5% (2%/2mm) with the z-score distributions following a standard normal distribution. Conclusion: We demonstrate for the first time that 3D remote dosimetry using both experimental and computational methods is a feasible and reliable approach to commissioning MR-IMRT, which is particularly useful for less specialized clinics in adopting this new treatment modality.« less

  11. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less

  12. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong

    2006-05-01

    Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had amore » significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.« less

  13. Field monitoring versus individual miner dosimetry of radon daughter products in mines.

    PubMed

    Domański, T; Kluszczyński, D; Olszewski, J; Chruscielewski, W

    1989-01-01

    The paper presents the results realised simultaneously by two different and independent systems of measurement of an assessment of miners' exposure to radon daughter products which naturally occur in the air of mines. The first one, called the Air Sampling System (ASS), was based on the field monitoring of radon progeny in air, the second one, called the Individual Dosimetry System (IDS), was based on the individual dosimeters worn by miners. Experimental comparison of these two systems has been conducted for six years in eleven Polish underground metal-ore mines. This study reveals that no correlation exists between the concentration and annual miners' exposures evaluated by the ASS and IDS. The ratio ASS/IDS for mine population varies from 11.0 to 0.14 in respect of annual concentration means, and in respect to annual exposures, this ratio varies from 4.5 to 0.14. The conclusion to be drawn from six years' observation and comparison of both systems is that correct and true evaluation of miners' exposure to radon progeny can be made only by the use of the Individual Dosimetry System, since the Air Sampling System is too sensitive and too dependent on the Strategy of sampling and its radiation.

  14. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Mei, G.T.

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.

  15. Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry Applications

    DTIC Science & Technology

    2005-01-01

    radiation protein biomarker studies using an in vivo murine radiation model. Male BALB/c mice were exposed to 25-cGy 60Co- gamma radiation. Dosimetry ...Csoke, I. Hejja, An on-board TLD system for dose monitor- ing on the International Space Station, Radiation Protection Dosimetry , 84(1-4 Pt1): 321-323...diagnostic information after exposure. Using an ex vivo model system of human peripheral lymphocytes as well as an in vivo murine model, we demonstrated

  16. Electromagnetic Heating in a Model of Frozen Red Blood Cells

    DTIC Science & Technology

    1988-10-18

    Evaluation of radio frequency energy deposition in a model of a standard blood bag was made using thermometric and thermographic dosimetry. The results...images corroborate the thermometric results, RECOMMENDATIONS The results of this study show the ability of an RF-coil irradiating... thermometric and thermographic dosimetry of RF-induced heating of the model. MATERIALS AND METHODS A standard, 800-ml (12 cm x 21 cm

  17. Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

    PubMed Central

    Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani

    2012-01-01

    Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  19. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  20. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M.

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  1. Solid state TL detectors for in vivo dosimetry in brachytherapy.

    PubMed

    Gambarini, G; Borroni, M; Grisotto, S; Maucione, A; Cerrotta, A; Fallai, C; Carrara, M

    2012-12-01

    In vivo dosimetry provides information about the actual dose delivered to the patient treated with radiotherapy and can be adopted within a routinary treatment quality assurance protocol. Aim of this study was to evaluate the feasibility of performing in vivo rectal dosimetry by placing thermoluminescence detectors directly on the transrectal ultrasound probe adopted for on-line treatment planning of high dose rate brachytherapy boosts of prostate cancer patients. A suitable protocol for TLD calibration has been set up. In vivo measurements resulted to be in good agreement with the calculated doses, showing that the proposed method is feasible and returns accurate results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.

    PubMed

    Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A

    2013-01-01

    The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.

  3. SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Warmington, L; Watanabe, Y

    Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less

  4. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  5. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  6. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy.

    PubMed

    Gustafsson, H; Lund, E; Olsson, S

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  7. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  8. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  9. Numerical assessment of low-frequency dosimetry from sampled magnetic fields

    NASA Astrophysics Data System (ADS)

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2018-01-01

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  10. Numerical assessment of low-frequency dosimetry from sampled magnetic fields.

    PubMed

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2017-12-29

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  11. Nondestructive Inspection (NDI) Facility Radiation Protection Survey for Homestead AFB, FL

    DTIC Science & Technology

    2012-10-31

    worker radiation dosimetry records, Bioenvironmental Engineering’s occupational safety records, NDI’s operating procedures/instructions, radiation...Nondestructive Inspection Methods (2) Air Force Manual 48-125, Personnel Ionizing Radiation Dosimetry (3) Air Force Occupational Safety and Health Standard...radiography 3. TLDs properly stored (AFMAN 48-125; T.O. 33B-1-1, 6.8.5.4.4) 4. TLDs returned to storage rack at the end

  12. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  13. In vivo proton dosimetry using a MOSFET detector in an anthropomorphic phantom with tissue inhomogeneity.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko

    2012-03-08

    When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.

  14. WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Parach, A

    Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less

  15. SU-F-BRE-13: Replacing Pre-Treatment Phantom QA with 3D In-Vivo Portal Dosimetry for IMRT Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, J; Vieira, S; Greco, C

    Purpose: Pre-treatment QA of individual treatment plans requires costly linac time and physics effort. Starting with IMRT breast treatments, we aim to replace pre-treatment QA with in-vivo portal dosimetry. Methods: Our IMRT breast cancer plans are routinely measured using the ArcCheck device (SunNuclear). 2D-Gamma analysis is performed with 3%/3mm criteria and the percentage of points with gamma<1 (nG1) is calculated within the 50% isodose surface. Following AAPM recommendations, plans with nG1<90% are approved; others need further inspection and might be rejected. For this study, we used invivo portal dosimetry (IPD) to measure the 3D back-projected dose of the first threemore » fractions for IMRT breast plans. Patient setup was online corrected before for all measured fractions. To reduce patient related uncertainties, the three IPD results were averaged and 3D-gamma analysis was applied with abovementioned criteria . For a subset of patients, phantom portal dosimetry (PPD) was also performed on a slab phantom. Results: Forty consecutive breast patients with plans that fitted the EPID were analysed. The average difference between planned and IPD dose in the reference point was −0.7+/−1.6% (1SD). Variation in nG1 between the 3 invivo fractions was about 6% (1SD). The average nG1 for IPD was 89+/−6%, worse than ArcCheck (95+/−3%). This can be explained by patient related factors such as changes in anatomy and/or model deficiencies due to e.g. inhomogeneities. For the 20 cases with PPD, mean nG1 was equal to ArcCheck values, which indicates that the two systems are equally accurate. These data therefore suggest that proper criteria for 3D invivo verification of breast treatments should be nG1>80% instead of nG1>90%, which, for our breast cases, would result in 5% (2/40) further inspections. Conclusion: First-fraction in-vivo portal dosimetry using new gamma-evaluation criteria will replace phantom measurements in our institution, saving resources and yielding 3D dosimetry of the actual patient treatment.« less

  16. Type Testing of Model 7200 Automatic TLD Reader.

    PubMed

    Malek Mohammadi, M; Hosseini Pooya, S M

    2017-04-20

    The type testing of measuring devices is one of the most important parts of a quality management system in a personal dosimetry services program. In this study, based upon the International Electrotechnical Commission (IEC) 62387 criteria, a reader-testing program was performed for a home-made personal thermoluminescent dosimetry (TLD) reader. The stability of the reader, the effects of light exposure, temperature and fluctuations of primary power supply on TLD read-outs as the main parameters were investigated in this program. Moreover, this study assesses some important criteria of dosimetry system including the non-linearity of response, reusability, after effect and overload that may include significant contribution in the performance of a reader. The results showed that the TLD reader met all requirements of the IEC for the reader tests by a large margin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A dual two dimensional electronic portal imaging device transit dosimetry model based on an empirical quadratic formalism

    PubMed Central

    Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A

    2015-01-01

    Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867

  18. Fast protocol for radiochromic film dosimetry using a cloud computing web application.

    PubMed

    Calvo-Ortega, Juan-Francisco; Pozo, Miquel; Moragues, Sandra; Casals, Joan

    2017-07-01

    To investigate the feasibility of a fast protocol for radiochromic film dosimetry to verify intensity-modulated radiotherapy (IMRT) plans. EBT3 film dosimetry was conducted in this study using the triple-channel method implemented in the cloud computing application (Radiochromic.com). We described a fast protocol for radiochromic film dosimetry to obtain measurement results within 1h. Ten IMRT plans were delivered to evaluate the feasibility of the fast protocol. The dose distribution of the verification film was derived at 15, 30, 45min using the fast protocol and also at 24h after completing the irradiation. The four dose maps obtained per plan were compared using global and local gamma index (5%/3mm) with the calculated one by the treatment planning system. Gamma passing rates obtained for 15, 30 and 45min post-exposure were compared with those obtained after 24h. Small differences respect to the 24h protocol were found in the gamma passing rates obtained for films digitized at 15min (global: 99.6%±0.9% vs. 99.7%±0.5%; local: 96.3%±3.4% vs. 96.3%±3.8%), at 30min (global: 99.5%±0.9% vs. 99.7%±0.5%; local: 96.5%±3.2% vs. 96.3±3.8%) and at 45min (global: 99.2%±1.5% vs. 99.7%±0.5%; local: 96.1%±3.8% vs. 96.3±3.8%). The fast protocol permits dosimetric results within 1h when IMRT plans are verified, with similar results as those reported by the standard 24h protocol. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, E; Caprile, P; Sanchez-Nieto, B

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It wasmore » found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.« less

  20. A TLD-based ten channel system for the spectrometry of bremsstrahlung generated by laser-matter interaction

    NASA Astrophysics Data System (ADS)

    Horst, Felix; Fehrenbacher, Georg; Radon, Torsten; Kozlova, Ekaterina; Rosmej, Olga; Czarnecki, Damian; Schrenk, Oliver; Breckow, Joachim; Zink, Klemens

    2015-05-01

    This work presents a thermoluminescence dosimetry based method for the measurement of bremsstrahlung spectra in the energy range from 30 keV to 100 MeV, resolved in ten different energy intervals and for the photon ambient dosimetry in ultrashort pulsed radiation fields as e.g. generated during operation of the PHELIX laser at the GSI Helmholtzzentrum für Schwerionenforschung. The method is a routine-oriented development by application of a multi-filter technique. The data analysis takes around 1 h. The spectral information is obtained by the unfolding of the response of ten thermoluminescence dosimeters with absorbers of different materials and thicknesses arranged as a stack each with a different response function to photon radiation. These response functions were simulated by the use of the Monte Carlo code FLUKA. An algorithm was developed to unfold bremsstrahlung spectra from the readings of the ten dosimeters. The method has been validated by measurements at a clinical electron linear accelerator (6 MV and 18 MV bremsstrahlung). First measurements at the PHELIX laser system were carried out in December 2013 and January 2014. Spectra with photon energies up to 10 MeV and mean energies up to 420 keV were observed at laser-intensities around 1019 W /cm2 on a titanium foil target. The measurement results imply that the steel walls of the target chamber might be an additional bright x-ray source.

  1. Dosimetry for photo-coagulation by the use of autofluorescence

    NASA Astrophysics Data System (ADS)

    Brodzinski, T.

    1989-01-01

    A basic problem when using lasers in medicine is that of dosimetry. The definition of the terms dose, effective value etc. will be dealt with in Chapter 2. This chapter is intended to give an insight into the problems of basic dosimetry and its technical realization within the field of photocoagulation, an established method used to treat the retina, or some skin diseases. Until now the coagulation process was assessed to be completed when the irradiated area became blanched. However in terms of dosimetry, it must be possible to predict or at least to monitor the biological effect using well-defined parameters for the laser or in achieving an objective measure for a feedback loop. In the case of coagulation, a prediction in this form is not possible. There are two ways of pro- ceeding further see Fig. 1. One can either determine the physical effect, i.e. temperature, by some kind of sensors, or even better, use some biological effect as a direct measure of the effective dose applied.

  2. TH-A-204-02: Part II - Worldwide Radiation Metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, M.

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less

  3. Considerations regarding the implementation of EPR dosimetry for the population in the vicinity of Semipalatinsk nuclear test site based on experience from other radiation accidents.

    PubMed

    Skvortsov, Valeriy; Ivannikov, Alexander; Tikunov, Dimitri; Stepanenko, Valeriy; Borysheva, Natalie; Orlenko, Sergey; Nalapko, Mikhail; Hoshi, Masaharu

    2006-02-01

    General aspects of applying the method of retrospective dose estimation by electron paramagnetic resonance spectroscopy of human tooth enamel (EPR dosimetry) to the population residing in the vicinity of the Semipalatinsk nuclear test site are analyzed and summarized. The analysis is based on the results obtained during 20 years of investigations conducted in the Medical Radiological Research Center regarding the development and practical application of this method for wide-scale dosimetrical investigation of populations exposed to radiation after the Chernobyl accident and other radiation accidents.

  4. The incidence of the different sources of noise on the uncertainty in radiochromic film dosimetry using single channel and multichannel methods

    NASA Astrophysics Data System (ADS)

    González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    2017-11-01

    The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.

  5. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  6. Edema and Seed Displacements Affect Intraoperative Permanent Prostate Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorp, Hendrik, E-mail: r.westendorp@radiotherapiegroep.nl; Nuver, Tonnis T.; Department of Radiation Oncology, Radiotherapiegroep Behandellocatie Deventer, Deventer

    Purpose: We sought to identify the intraoperative displacement patterns of seeds and to evaluate the correlation of intraoperative dosimetry with day 30 for permanent prostate brachytherapy. Methods and Materials: We analyzed the data from 699 patients. Intraoperative dosimetry was acquired using transrectal ultrasonography (TRUS) and C-arm cone beam computed tomography (CBCT). Intraoperative dosimetry (minimal dose to 40%-95% of the volume [D{sub 40}-D{sub 95}]) was compared with the day 30 dosimetry for both modalities. An additional edema-compensating comparison was performed for D{sub 90}. Stranded seeds were linked between TRUS and CBCT using an automatic and fast linking procedure. Displacement patterns weremore » analyzed for each seed implantation location. Results: On average, an intraoperative (TRUS to CBCT) D{sub 90} decline of 10.6% ± 7.4% was observed. Intraoperative CBCT D{sub 90} showed a greater correlation (R{sup 2} = 0.33) with respect to Day 30 than did TRUS (R{sup 2} = 0.17). Compensating for edema, the correlation increased to 0.41 for CBCT and 0.38 for TRUS. The mean absolute intraoperative seed displacement was 3.9 ± 2.0 mm. The largest seed displacements were observed near the rectal wall. The central and posterior seeds showed less caudal displacement than lateral and anterior seeds. Seeds that were implanted closer to the base showed more divergence than seeds close to the apex. Conclusions: Intraoperative CBCT D{sub 90} showed a greater correlation with the day 30 dosimetry than intraoperative TRUS. Edema seemed to cause most of the systematic difference between the intraoperative and day 30 dosimetry. Seeds near the rectal wall showed the most displacement, comparing TRUS and CBCT, probably because of TRUS probe–induced prostate deformation.« less

  7. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  8. UK guidance on the management of personal dosimetry systems for healthcare staff working at multiple organizations.

    PubMed

    Rogers, Andy; Chapple, Claire-Louise; Murray, Maria; Platton, David; Saunderson, John

    2017-11-01

    There has been concern expressed by the UK regulator, the Health & Safety Executive, regarding the management of occupation dose for healthcare radiation workers who work across multiple organizations. In response to this concern, the British Institute of Radiology led a working group of relevant professional bodies to develop guidance in this area. The guidance addresses issues of general system management that would apply to all personal dosimetry systems, regardless of whether or not the workers within that system work across organizational boundaries, along with exploring efficient strategies to comply with legislation where those workers do indeed work across organizational boundaries. For those specific instances, the guidance discusses both system requirements to enable organizations to co-operate (Ionising Radiation Regulations 1999 Regulation 15), as well as specific instances of staff exposure. This is broken down into three categories-low, medium and high risk. A suggested approach to each is given to guide employers and their radiation advisers in adopting sensible strategies for the monitoring of their staff and the subsequent sharing of dosimetry data to ensure overall compliance with both dose limits and optimization requirements.

  9. Characterization of an in vivo diode dosimetry system for clinical use

    PubMed Central

    Huang, Kai; Bice, William S.; Hidalgo‐Salvatierra, Oscar

    2003-01-01

    An in vivo dosimetry system that uses p‐type semiconductor diodes with buildup caps was characterized for clinical use on accelerators ranging in energy from 4 to 18 MV. The dose per pulse dependence was investigated. This was done by altering the source‐surface distance, field size, and wedge for photons. The off‐axis correction and effect of changing repetition rate were also investigated. A model was developed to fit the measured two‐dimensional diode correction factors. PACS number(s): 87.66.–a, 87.52.–g PMID:12777148

  10. Quality management system in the CIEMAT Radiation Dosimetry Service.

    PubMed

    Martín, R; Navarro, T; Romero, A M; López, M A

    2011-03-01

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible.

  11. Lead Exposures and Biological Responses in Military Weapons Systems. Effects of Long-Term Exposure Among U.S. Army Artillerymen

    DTIC Science & Technology

    1993-09-01

    64 Dosimetry Data Taken during XRF Measurements at ANL Procedure Thermoluminescent dosimeters ( TLDs ) were placed in various locations during a 1- or...measured in vivo by x-ray fluorescence spectrophotometry. The lead responses evaluated were increases in free erythrocyte porphyrin concentration...8 2.4.1 Instrument Design ..................................... 8 2.4.2 Dosimetry Evaluation .................................. 9

  12. TREE Simulation Facilities, Second Edition, Revision 2

    DTIC Science & Technology

    1979-01-01

    included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility

  13. A test of the IAEA code of practice for absorbed dose determination in photon and electron beams

    NASA Astrophysics Data System (ADS)

    Leitner, Arnold; Tiefenboeck, Wilhelm; Witzani, Josef; Strachotinsky, Christian

    1990-12-01

    The IAEA (International Atomic Energy Agency) code of practice TRS 277 gives recommendations for absorbed dose determination in high energy photon and electron beams based on the use of ionization chambers calibrated in terms of exposure of air kerma. The scope of the work was to test the code for cobalt 60 gamma radiation and for several radiation qualities at four different types of electron accelerators and to compare the ionization chamber dosimetry with ferrous sulphate dosimetry. The results show agreement between the two methods within about one per cent for all the investigated qualities. In addition the response of the TLD capsules of the IAEA/WHO TL dosimetry service was determined.

  14. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators.

    PubMed

    Beierholm, Anders R; Ottosson, Rickard O; Lindvold, Lars R; Behrens, Claus F; Andersen, Claus E

    2011-05-21

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.

  15. Air density correction in ionization dosimetry.

    PubMed

    Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M

    2004-05-21

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.

  16. Optimization of the double dosimetry algorithm for interventional cardiologists

    NASA Astrophysics Data System (ADS)

    Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena

    2014-11-01

    A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.

  17. SU-E-J-53: A Phantom Design to Assist Patient Position Verification System in Daily Image-Guided RT and Comprehensive QA Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Wu, H

    2015-06-15

    Purpose This study is to implement a homemade novel device with surface locking couch index to check daily radiograph (DR) function of adaPTInsight™, stereoscopic image guided system (SIGS), for proton therapy. The comprehensive daily QA checks of proton pencil beam output, field size, flatness and symmetry of spots and energy layers will be followed by using MatriXX dosimetry device. Methods The iBa MatriXX device was used to perform daily dosimetry which is also used to perform SIGS checks. A set of markers were attached to surface of MatriXX device in alignment of DRR of reconstructed CT images and daily DR.more » The novel device allows MatriXX to be fit into the cradle which was locked by couch index bars on couch surface. This will keep the MatriXX at same XY plane daily with exact coordinates. Couch height Z will be adjusted according to imaging to check isocenter-laser coincidence accuracy. Results adaPTInsight™ provides robotic couch to move in 6-degree coordinate system to align the dosimetry device to be within 1.0 mm / 1.0°. The daily constancy was tightened to be ± 0.5 mm / 0.3° compared to 1.0 mm / 1.0° before. For gantry at 0° and couch all 0° angles (@ Rt ARM 0 setting), offsets measured of the couch systems were ≤ 0.5° in roll, yaw and pitch dimensions. Conclusion Simplicity of novel device made daily image guided QA consistent with accuracy. The offset of the MatriXX isocenter-laser coincident was reproducible. Such easy task not only speeds up the setup, but it increases confidence level in detailed daily comprehensive measurements. The total SIGS alignment time has been shortened with less setup error. This device will enhance our experiences for the future QA when cone beam CT imaging modality becomes available at proton therapy center.« less

  18. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F; Sandison, G

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depthmore » of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam calibration is a critical component for achieving comparable accuracy.« less

  19. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.

  20. The effect of tandem-ovoid titanium applicator on points A, B, bladder, and rectum doses in gynecological brachytherapy using 192Ir

    PubMed Central

    Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani

    2018-01-01

    Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061

  1. Accuracy and efficiency of published film dosimetry techniques using a flat-bed scanner and EBT3 film.

    PubMed

    Spelleken, E; Crowe, S B; Sutherland, B; Challens, C; Kairn, T

    2018-03-01

    Gafchromic EBT3 film is widely used for patient specific quality assurance of complex treatment plans. Film dosimetry techniques commonly involve the use of transmission scanning to produce TIFF files, which are analysed using a non-linear calibration relationship between the dose and red channel net optical density (netOD). Numerous film calibration techniques featured in the literature have not been independently verified or evaluated. A range of previously published film dosimetry techniques were re-evaluated, to identify whether these methods produce better results than the commonly-used non-linear, netOD method. EBT3 film was irradiated at calibration doses between 0 and 4000 cGy and 25 pieces of film were irradiated at 200 cGy to evaluate uniformity. The film was scanned using two different scanners: The Epson Perfection V800 and the Epson Expression 10000XL. Calibration curves, uncertainty in the fit of the curve, overall uncertainty and uniformity were calculated following the methods described by the different calibration techniques. It was found that protocols based on a conventional film dosimetry technique produced results that were accurate and uniform to within 1%, while some of the unconventional techniques produced much higher uncertainties (> 25% for some techniques). Some of the uncommon methods produced reliable results when irradiated to the standard treatment doses (< 400 cGy), however none could be recommended as an efficient or accurate replacement for a common film analysis technique which uses transmission scanning, red colour channel analysis, netOD and a non-linear calibration curve for measuring doses up to 4000 cGy when using EBT3 film.

  2. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.

  3. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    PubMed

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a useful tool for the improvement of quality in radiotherapy. It succeeded to disseminate the IAEA TRS-398 protocol in nearly all radiotherapy centers achieving homogenization and consistency of dosimetry within the country. Also, it detected discrepancies in dosimetry and provided guidance and recommendations to eliminate sources of errors. Finally, it proved that quality assurance programs, periodic quality control tests, maintenance and service play an important role for achieving accuracy and safe operation in radiotherapy.

  5. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  6. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.

  7. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

    PubMed

    Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard

    2013-08-01

    Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

  8. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screeningmore » methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakaguchi, Yuji, E-mail: nkgc2003@yahoo.co.jp; Ono, Takeshi; Onitsuka, Ryota

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dosemore » reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital.« less

  10. Radiological and microwave Protection at NRL, January - December 1983

    DTIC Science & Technology

    1984-06-27

    reduced to background. 18 Surveys with TLD badges were made on pulsed electron beam machines in Buildings 101 and A68 throughout the year. The Gamble...calibration of radiation dosimetry systems required by the Laboratory’s radiological safety program, or by other Laboratory or Navy groups. The Section...provides consultation and assistance on dosimetry problems to the Staff, Laboratory, and Navy. The Section maintains and calibrates fixed-field radiac

  11. The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr

    2015-01-01

    The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.

  12. How feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?

    NASA Astrophysics Data System (ADS)

    Mein, S.; Rankine, L.; Miles, D.; Juang, T.; Cai, B.; Curcuru, A.; Mutic, S.; Fenoli, J.; Adamovics, J.; Li, H.; Oldham, M.

    2017-05-01

    To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MR-compatibility, and energy-independence. An open calibration field and symmetrical 3-field plans were delivered to 10cm diameter PRESAGE® to examine percent depth dose and response uniformity under a magnetic field. Evidence of non-linear dose response led to a large volume PRESAGE® study where small corrections were developed for temporally- and spatially-dependent behaviors observed between irradiation and delayed readout. TG-119 plans were created in the MRIdian® TPS and then delivered to 14.5cm 2kg PRESAGE® dosimeters. Through the domestic investigation of an off-site MRgRT system, a refined 3D remote dosimetry protocol is presented capable of validation of advanced MRgRT radiation treatments.

  13. A physical anthropomorphic phantom of a one year old child with real-time dosimetry

    NASA Astrophysics Data System (ADS)

    Bower, Mark William

    A physical heterogeneous phantom has been created with epoxy resin based tissue substitutes. The phantom is based on the Cristy and Eckerman mathematical phantom which in turn is a modification of the Medical Internal Radiation Dose (MIRD) model of a one-year-old child as presented by the Society of Nuclear Medicine. The Cristy and Eckerman mathematical phantom, and the physical phantom, are comprised of three different tissue types: bone, lung tissue and soft tissue. The bone tissue substitute is a homogenous mixture of bone tissues: active marrow, inactive marrow, trabecular bone, and cortical bone. Soft tissue organs are represented by a homogeneous soft tissue substitute at a particular location. Point doses were measured within the phantom with a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)- based Patient Dose Verification System modified from the original radiotherapy application. The system features multiple dosimeters that are used to monitor entrance or exit skin doses and intracavity doses in the phantom in real-time. Two different MOSFET devices were evaluated: the typical therapy MOSFET and a developmental MOSFET device that has an oxide layer twice as thick as the therapy MOSFET thus making it of higher sensitivity. The average sensitivity (free-in-air, including backscatter) of the 'high-sensitivity' MOSFET dosimeters ranged from 1.15×105 mV per C kg-1 (29.7 mV/R) to 1.38×105 mV per C kg-1 (35.7 mV/R) depending on the energy of the x-ray field. The integrated physical phantom was utilized to obtain point measurements of the absorbed dose from diagnostic x-ray examinations. Organ doses were calculated based on these point dose measurements. The phantom dosimetry system functioned well providing real-time measurement of the dose to particular organs. The system was less reliable at low doses where the main contribution to the dose was from scattered radiation. The system also was of limited utility for determining the absorbed dose in larger systems such as the skeleton. The point dose method of estimating the organ dose to large disperse organs such as this are of questionable accuracy since only a limited number of points are measured in a field with potentially large exposure variations. The MOSFET system was simple to use and considerably faster than traditional thermoluminescent dosimetry. The one-year-old simulated phantom with the real-time MOSFET dosimeters provides a method to easily evaluate the risk to a previously understudied population from diagnostic radiographic procedures.

  14. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  15. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Alpan, F. A.; Fischer, G.A.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less

  16. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less

  17. SU-E-T-120: Dosimetric Characteristics Study of NanoDotâ,,¢ for In-Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, A; Wasaye, A; Gohar, R

    Purpose: The purpose of the study was to analyze the dosimetric characteristics (energy dependence, reproducibility and dose linearity) of nanoDot™ optically stimulated luminescence dosimeters (OSLDs) and validate their potential use during in-vivo dosimetry, specifically TBI. The manufacturer stated accuracy is ±10% for standard nanoDot™. Methods: At AKUH, the InLight microStar OSL dosimetry system for patient in-vivo dosimetry is in use since 2012. Twenty-five standard nanoDot™ were used in the analysis. Sensitivity and reproducibility was tested in the first part with 6MV and 18 MV Varian x-ray beams. Each OSLD was irradiated to 100cGy dose at nominal SSD (100 cm). Allmore » the OSLDs were read 3 times for average reading. Dose linearity and calibration were also performed with same beams in common clinical dose range of 0 - 500 cGy. In addition, verification of TBI absolute dose at extended SSD (500cm) was also performed. Results: The reproducibility observed with the OSLD was better than the manufacturer stated limits. Measured doses vary less than ±2% in 19(76%) OSLDs, whereas less than ±3% in 6(24%) OSLDs. Their sensitivity was approximately 525 counts per cGy. Better agreement was observed between measurements, with a standard deviation of 1.8%. A linear dose response was observed with OSLDs for both 6 and 18MV beams in 0 - 500 cGy dose range. TBI measured doses at 500 cm SSD were also confirmed to be within ±0.5% and ±1.3% of the ion chamber measured doses for 6 and 18MV beams respectively. Conclusion: The dosimetric results demonstrate that nanoDot™ can be potentially used for in-vivo dosimetry verification in various clinical situations, with a high degree of accuracy and precision. In addition OSLDs exhibit better dose reproducibility with standard deviation of 1.8%. There was no significant difference in their response to 6 and 18MV beams. The dose response was also linear.« less

  18. Single photon detection and signal analysis for high sensitivity dosimetry based on optically stimulated luminescence with beryllium oxide

    NASA Astrophysics Data System (ADS)

    Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.

    2018-01-01

    Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.

  19. The work programme of EURADOS on internal and external dosimetry.

    PubMed

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  20. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    PubMed

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a check of the whole dosimetry chain for this type of brachytherapy afterloading system and can easily be performed by mail to any institution in the European area and elsewhere. Such an external audit can be an efficient QC method complementary to internal quality control as it can reveal some errors which are not observable by other means.

  1. The effect of tandem-ovoid titanium applicator on points A, B, bladder, and rectum doses in gynecological brachytherapy using 192Ir.

    PubMed

    Sadeghi, Mohammad Hosein; Sina, Sedigheh; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani

    2018-02-01

    The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy.

  2. Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation.

    PubMed

    Zahedifar, M; Sadeghi, E; Kashefi Biroon, M; Harooni, S; Almasifard, F

    2015-11-01

    Dy and Cu-doped SrF2 nanoparticles (NPs) were synthesized by using co-precipitation method and their possible application to solid state dosimetry were studied and compared to that of pure SrF2 NPs. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used for sample characterization. The highest thermoluminescence (TL) response of SrF2:Dy and SrF2:Cu NPs were found respectively at 0.5 and 0.7mol% of Dy and Cu impurities. Seven overlapping glow peaks at 384, 406, 421, 449, 569, 495, 508K and three component glow peaks at 381, 421 and 467K were identified respectively for SrF2:Dy and SrF2:Cu NPs employing Tm-Tstop and computerized glow curve deconvolution (CGCD) methods. The TL sensitivity of SrF2:Dy is approximately the same as that of LiF:Mg,Ti (TLD-100) cheeps. Linear dose response were observed for the SrF2:Dy and SrF2:Cu NPs up to the absorbed doses of 1kGy and 10kGy correspondingly. Regarding other dosimetry characteristics of the produced NPs such as fading, reproducibility and thermal treatment, Dy and Cu doped SrF2 NPs recommend for high dose TL dosimetry applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. In vivo proton dosimetry using a MOSFET detector in an anthropomorphic phantom with tissue inhomogeneity

    PubMed Central

    Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko

    2012-01-01

    When in vivo proton dosimetry is performed with a metal‐oxide semiconductor field‐effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth‐output curve for a mono‐energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMCMOSFET). The SMCMOSFET output value at an arbitrary point was compared with the value obtained by the conventional SMCPPIC, which calculates proton dose distributions by using the depth‐dose curve determined by a parallel‐plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMCPPIC results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector. PACS number: 87.56.‐v PMID:22402385

  4. The Mayak Worker Dosimetry System (MWDS-2013): Implementation of the Dose Calculations.

    PubMed

    Zhdanov, А; Vostrotin, V; Efimov, А; Birchall, A; Puncher, M

    2016-07-15

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate dosimetric assessment of the medical applications of ionizing radiation. In this paper, the aforementioned topics will be reviewed. The current status and the future trends in the implementation of the justification and optimization principles, pillars of the International System of Radiological Protection, in the medical applications of ionizing radiation will be discussed. Prospective views will be provided on the future of the system of radiological protection and on dosimetry issues in the medical applications of ionizing radiation.

  6. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojechko, C.; Ford, E. C., E-mail: eford@uw.edu

    Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma passmore » rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the patient’s position which can introduce large changes in the target dose coverage were not readily detected.« less

  7. Photosensitizer quantitation in vivo by flourescence microsampling

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Burke, Gregory C.; Lee, Claudia C.; Hoopes, P. Jack

    2000-06-01

    Photodynamic therapy can provide a reliable method of tumor destruction when the appropriate dosimetry is applied. Current dosimetry practice involves quantification of the drug and light doses applied to the tumor, but it would be desirable to monitor in vivo light and drug levels to provide the most accurate determination of dosimetry. In vivo measurements can be used to minimize variations in treatment response due to inter-animal variability, by providing animal-specific or patient-specific treatment planning. This study reports on the development of a micro-sampling method to measure fluorescence from tissue, which is not significantly affected by the tissue optical properties. The system measures fluorescence from the surface of a tissue, using a fiber bundle composed of individual 100 micron fibers which ar all spaced apart by 700 microns from one another at the tissue contact end. This design provides sampling of the fluorescence at multiple sites to increase the signal intensity, while maintaining a micro- sampling of the tissue volume just below the surface. The calibration studies here indicate that the 1/e sampling depth is near 60 microns when measured in optical phantoms, which are similar to typical tissue properties. The probe fluorescence signal is independent of blood concentration up to a maximum of 10% blood by volume, which is similar to most tumor tissue. Animal tests indicate that the sensitivity to drug concentration is essentially the same in when measured in murine liver and muscle tissues, both in vivo and ex vivo. These preliminary calibration results suggest that the probe can be used to measure photosensitizer uptake in vivo non- invasively and rapidly via conversion of fluorescence intensity to photosensitizer concentration.

  8. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  9. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.

    PubMed

    Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood

    2016-01-01

    Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.

  10. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study

    PubMed Central

    Baba, Misba H; Mohib-ul-Haq, M.; Khan, Aijaz A.

    2013-01-01

    Objective The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. Methodology The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.) Results The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. Conclusion The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery. PMID:23559901

  11. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  12. Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Nai-Kong V.; Modak, Shakeel; Lin, Yukang

    2004-08-31

    In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90.more » (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.« less

  13. SU-E-T-364: 6X FFF and 10X FFF Portal Dosimetry Output Factor Verification: Application for SRS/SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulam, M; Bellon, M; Gopal, A

    2014-06-01

    Purpose: To enhance portal dosimetry of high dose rate SRS/SBRT plan verifications with extensive imager measurement of output factors (OF). Methods: Electronic portal image dosimetry (EPID), implemented on the Varian Edge allows for acquisition of its two energies: 6X FFF and 10 FFF (1400 and 2400 MU/min, respectively) at source to imager distance (SID) =100cm without imager saturation. Square and rectangular aSi OF following EPID calibration were obtained. Data taken was similar to that obtained during beam commissioning (of almost all field sizes from 1×1 to 15×15 and 20×20 cm{sup 2}, [Trilogy] and [Edge], respectively) to construct a table usingmore » the OF tool for use in the Portal Dosimetry Prediction Algorithm (PDIP v11). The Trilogy 6x SRS 1000 MU/min EPID data were taken at 140 SID. The large number of OF were obtained for comparison to that obtained with diode detectors and ion chambers (cc13 for >3×3 field size). As Edge PDIP verification is currently ongoing, EPID measurements of three SRS/SBRT plans for the Trilogy were taken and compared to results obtained prior to these measurements. Results: The relative difference output factors of field sizes 2×2 and higher compared to commissioning data were (mean+/-SD, [range]): Edge 6X (−1.9+/−2.9%, [−5.9%,3.1%]), Edge 10X (−0.7+/−1.2%, [− 3.3%,0.8%] and Trilogy (0.03+/−0.5%, [−1.4%,1.1%]) with EPID over predicting. The results for the 140 SID showed excellent agreement throughout except at the 1×1 to 1×15 and 15×1 field sizes where differences were: −10.6%, −6.0% and −5.8%. The differences were also most pronounced for the 1×1 at 100 SID. They were −7.4% and −11.5% for 6X and 10X, respectively. The Gamma (3%, 1mm) for three clinical plans improved by 8.7+/−1.8%. Conclusion: Results indicate that imager output factor measurements at any SID of high dose rate SRS/SBRT are quite reliable for portal dosimetry plan verification except for the smallest fields. This work was not funded by Varian Oncology Systems. Some authors have other work partly funded by Varian Oncology Systems.« less

  14. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  15. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.

    2017-05-01

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  16. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study.

    PubMed

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B

    2017-05-07

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  17. Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms

    PubMed Central

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-01-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  18. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, M. S.

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less

  19. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2011-05-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.

  20. Modeling the Total Dose Radiation Effects of Hg(1-x)Cd(x)Te Photodiodes Using Numerical Device Simulators

    DTIC Science & Technology

    1994-01-01

    Dosimetry : Analysis of dosimetry in two dewar/liquid nitrogen systems. TIME Estimate: One hour for setup, irradiation and TLD reading/analysis. IV...point indicates both electron and hole trapping at the boundary ........................ 12 3.3 Relationship between current and dose for irradiated...peak value. Carriers are collected across the vertical junction within a diffusion length. Since the electron diffusion length is much larger than for

  1. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signalmore » characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.« less

  2. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA-Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-1) as well as the design of an improved follow on payload are presented.

  3. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA: Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.; hide

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-I) as well as the design of an improved follow on payload are presented.

  4. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Pasciak, A

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method,more » use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology. Film dosimetry is likely an unnecessary effort for these types of procedures.« less

  5. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological induction of bone cancer. In addition, new data are presented on the location of bone-marrow stem cells within the marrow cavities of trabecular bone of the pelvis. All results presented in this work may be applied to occupational exposures, but their greatest utility lies in dose assessments for alpha-emitters in molecular radiotherapy.

  6. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less

  7. THE MAYAK WORKER DOSIMETRY SYSTEM (MWDS-2013) FOR INTERNALLY DEPOSITED PLUTONIUM: AN OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchall, A.; Vostrotin, V.; Puncher, M.

    The Mayak Worker Dosimetry System (MWDS-2013) is a system for interpreting measurement data from Mayak workers from both internal and external sources. This paper is concerned with the calculation of annual organ doses for Mayak workers exposed to plutonium aerosols, where the measurement data consists mainly of activity of plutonium in urine samples. The system utilises the latest biokinetic and dosimetric models, and unlike its predecessors, takes explicit account of uncertainties in both the measurement data and model parameters. The aim of this paper is to describe the complete MWDS-2013 system (including model parameter values and their uncertainties) and themore » methodology used (including all the relevant equations) and the assumptions made. Where necessary, supplementary papers which justify specific assumptions are cited.« less

  8. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less

  9. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    PubMed

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Workshop Report on Atomic Bomb Dosimetry--Review of Dose Related Factors for the Evaluation of Exposures to Residual Radiation at Hiroshima and Nagasaki.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Bailiff, Ian K; Beck, Harold L; Belukha, Irina G; Cockayne, John E; Cullings, Harry M; Eckerman, Keith F; Granovskaya, Evgeniya; Grant, Eric J; Hoshi, Masaharu; Kaul, Dean C; Kryuchkov, Victor; Mannis, Daniel; Ohtaki, Megu; Otani, Keiko; Shinkarev, Sergey; Simon, Steven L; Spriggs, Gregory D; Stepanenko, Valeriy F; Stricklin, Daniela; Weiss, Joseph F; Weitz, Ronald L; Woda, Clemens; Worthington, Patricia R; Yamamoto, Keiko; Young, Robert W

    2015-12-01

    Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible radiation exposures to beta particles and to determine their significance plus the extent of the various residual radiation areas at Hiroshima and Nagasaki. Other suggestions for future residual radiation studies are included in this workshop report.

  11. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy.

    PubMed

    Bruza, Petr; Gollub, Sarah L; Andreozzi, Jacqueline M; Tendler, Irwin I; Williams, Benjamin B; Jarvis, Lesley A; Gladstone, David J; Pogue, Brian W

    2018-05-02

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  12. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    NASA Astrophysics Data System (ADS)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  13. Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.

    PubMed

    Kron, T

    1995-03-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).

  14. TU-D-201-03: Results of a Survey On the Implementation of the TG-51 Protocol and Associated Addendum On Reference Dosimetry of External Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G; Muir, B; Culberson, W

    Purpose: The working group on the review and extension of the TG-51 protocol (WGTG51) collected data from American Association of Physicists in Medicine (AAPM) members with respect to their current TG-51 and associated addendum usage in the interest of considering future protocol addenda and guidance on reference dosimetry best practices. This study reports an overview of this survey on dosimetry of external beams. Methods: Fourteen survey questions were developed by WGTG51 and released in November 2015. The questions collected information on reference dosimetry, beam quality specification, and ancillary calibration equipment. Results: Of the 190 submissions completed worldwide (U.S. 70%), 83%more » were AAPM members. Of the respondents, 33.5% implemented the TG-51 addendum, with the maximum calibration difference for any photon beam, with respect to the original TG-51 protocol, being <1% for 97.4% of responses. One major finding is that 81.8% of respondents used the same cylindrical ionization chamber for photon and electron dosimetry, implying that many clinics are foregoing the use of parallel-plate chambers. Other evidence suggests equivalent dosimetric results can be obtained with both cylindrical and parallel-plate chambers in electron beams. This, combined with users comfort with cylindrical chambers for electrons will likely impact recommendations put forward in an upcoming electron beam addendum to the TG-51 protocol. Data collected on ancillary equipment showed 58.2% (45.0%) of the thermometers (barometers) in use for beam calibration had NIST traceable calibration certificates, but 48.4% (42.7%) were never recalibrated. Conclusion: This survey provides a snapshot of TG-51 external beam reference dosimetry practice in radiotherapy centers. Findings demonstrate the rapid take-up of the TG-51 photon beam addendum and raise issues for the WGTG51 to focus on going forward, including guidelines on ancillary equipment and the choice of chamber for electron beam dosimetry.« less

  15. SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manger, R; Pawlicki, T; Kim, G

    2015-06-15

    Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed tomore » determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.« less

  16. EFFECTIVE DOSE IN TWO DIFFERENT DENTAL CBCT SYSTEMS: NEWTOM VGi AND PLANMECA 3D MID.

    PubMed

    Ghaedizirgar, Mohammad; Faghihi, Reza; Paydar, Reza; Sina, Sedigheh

    2017-11-01

    Cone beam computed tomography, CBCT, is a kind of CT scanner producing conical diverging X-rays, in which a large area of a two-dimensional detector is irradiated in each rotation. Different investigations have been performed on dosimetry of dental CBCT. As there is no special protocol for dental CBCT, CT scan protocols are used for dosimetry. The purpose of this study is measurement of dose to head and neck organs in two CBCT systems, i.e. Planmeca 3D Mid (PM) and NewTom VGi (NT), using thermoluminescence dosimetry and Rando phantom. The thermoluminescent dosimetry (TLD)-100 chips were put at the position of different organs of the head and neck. Two TLD-100 chips were inserted at each position, the dose values were measured for several different field sizes, i.e. 8 × 8, 12 × 8 and 15 × 15 cm2 for NewTom, and 10 × 10 and 20 × 17 cm2 for Planmeca systems. According to the results, the average effective dose in PM is much more than the NT system in the same field size, because of the greater mAs values. For routine imaging protocols used for NT, the effective dose values are 70, 73 and 121 µSv for 8 × 8, 12 × 8 and 15 × 15 cm2 field sizes, respectively. In PM, the effective dose in 10 × 10 cm2 and 17 × 20 cm2 is 259 and 341 µSv, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Gamma Knife surgery for arteriovenous malformations in the brain: integration of time-resolved contrast-enhanced magnetic resonance angiography into dosimetry planning. Technical note.

    PubMed

    Taschner, Christian A; Le Thuc, Vianney; Reyns, Nicolas; Gieseke, Juergen; Gauvrit, Jean-Yves; Pruvo, Jean-Pierre; Leclerc, Xavier

    2007-10-01

    The aim of this study was to develop an algorithm for the integration of time-resolved contrast-enhanced magnetic resonance (MR) angiography into dosimetry planning for Gamma Knife surgery (GKS) of arteriovenous malformations (AVMs) in the brain. Twelve patients harboring brain AVMs referred for GKS underwent intraarterial digital subtraction (DS) angiography and time-resolved MR angiography while wearing an externally applied cranial stereotactic frame. Time-resolved MR angiography was performed on a 1.5-tesla MR unit (Achieva, Philips Medical Systems) using contrast-enhanced 3D fast field echo sequencing with stochastic central k-space ordering. Postprocessing with interactive data language (Research Systems, Inc.) produced hybrid data sets containing dynamic angiographic information and the MR markers necessary for stereotactic transformation. Image files were sent to the Leksell GammaPlan system (Elekta) for dosimetry planning. Stereotactic transformation of the hybrid data sets containing the time-resolved MR angiography information with automatic detection of the MR markers was possible in all 12 cases. The stereotactic coordinates of vascular structures predefined from time-resolved MR angiography matched with DS angiography data in all cases. In 10 patients dosimetry planning could be performed based on time-resolved MR angiography data. In two patients, time-resolved MR angiography data alone were considered insufficient. The target volumes showed a notable shift of centers between modalities. Integration of time-resolved MR angiography data into the Leksell GammaPlan system for patients with brain AVMs is feasible. The proposed algorithm seems concise and sufficiently robust for clinical application. The quality of the time-resolved MR angiography sequencing needs further improvement.

  18. Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.

    2004-04-01

    There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. Themore » system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk.« less

  19. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone beam computed tomography or acquisition runs acquired at large primary gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±35% for embolization procedures. Reference air kerma can be used without modification to set notification limits and substantial radiation dose levels, provided the displayed reference air kerma is accurate. These results can reasonably be extended to similar procedures, including vascular and interventional oncology. Considering these results, film dosimetry is likely an unnecessary effort for these types of procedures when indirect dose metrics are available.« less

  20. Laboratory Services Guide

    DTIC Science & Technology

    1994-10-01

    dosimetry services using thermoluminescent dosimeters ( TLDs ) to meet 10 CFR 19, 20, 30-36, 40 and 70; to proNide dosimetry service for environmental...USAF Personnel Dosimetry Branch. Once it is determined that area or external dosimetry is necessary, request the number of TLDs required by FAX or letter... dosimetry , Request TLDs 2 - 4 weeks in advance and always designate a control badge. The Radiation Dosimetry Branch thanks you in advance for doing everything

  1. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, D; Yoon, S; Adamovics, J

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less

  2. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry

    PubMed Central

    Parker, Brent C.; Neck, Daniel W.; Henkelmann, Greg; Rosen, Isaac I.

    2010-01-01

    The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges. PACS number: 87.55.Qr

  3. Evaluation and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning.

    PubMed

    Palmer, Antony L; Bradley, David A; Nisbet, Andrew

    2015-03-08

    This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.

  4. A methodology for dosimetry audit of rotational radiotherapy using a commercial detector array.

    PubMed

    Hussein, Mohammad; Tsang, Yatman; Thomas, Russell A S; Gouldstone, Clare; Maughan, David; Snaith, Julia A D; Bolton, Steven C; Nisbet, Andrew; Clark, Catharine H

    2013-07-01

    To develop a methodology for the use of a commercial detector array in dosimetry audits of rotational radiotherapy. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionisation chamber (IC) array were compared with measurements using 0.125 cm(3) IC, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes, respectively. Comparisons between individual detectors within the 2D-Array against the corresponding IC and alanine measurement showed a statistically significant concordance correlation coefficient (both ρc>0.998, p<0.001) with mean difference of -1.1 ± 1.1% and -0.8 ± 1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was that the 2D-Array was more likely to fail planes where there was a dose discrepancy due to the absolute analysis performed. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  6. Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure

    DOEpatents

    Ruddy, Francis H.

    1988-01-01

    A method is described for detecting and correcting for isotope burn-in during-long term neutron dosimetry exposure. In one embodiment, duplicate pairs of solid state track recorder fissionable deposits are used, including a first, fissionable deposit of lower mass to quantify the number of fissions occuring during the exposure, and a second deposit of higher mass to quantify the number of atoms of for instance .sup.239 Pu by alpha counting. In a second embodiment, only one solid state track recorder fissionable deposit is used and the resulting higher track densities are counted with a scanning electron microscope. This method is also applicable to other burn-in interferences, e.g., .sup.233 U in .sup.232 Th or .sup.238 Pu in .sup.237 Np.

  7. Irradiation control parameters for computer-assisted laser photocoagulation of the retina

    NASA Astrophysics Data System (ADS)

    Naess, Espen; Molvik, Torstein; Barrett, Steven F.; Wright, Cameron H. G.; de Graaf, Peter W.

    2001-06-01

    A system for robotically assisted retinal surgery has been developed to rapidly and safely place lesions on the retina for photocoagulation therapy. This system provides real- time, motion stabilized lesion placement for typical irradiation times of 100 ms. The system consists of three main subsystems: a global, digital-based tracking subsystem; a fast, local analog tracking subsystem; and a confocal reflectance subsystem to control lesion parameters dynamically. We have reported on these subsystems in previous SPIE presentations. This paper concentrates on the development of the second hybrid system prototype. Considerable progress has been made toward reducing the footprint of the optical system, simplifying the user interface, fully characterizing the analog tracking system and using measurable lesion reflectance growth parameters to develop a noninvasive method to infer lesion depth. This method will allow dynamic control of laser dosimetry to provide similar lesions across the non-uniform retinal surface. These system improvements and progress toward a clinically significant system are covered in detail within this paper.

  8. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less

  9. Episcleral eye plaque dosimetry comparison for the Eye Physics EP917 using Plaque Simulator and Monte Carlo simulation

    PubMed Central

    Amoush, Ahmad; Wilkinson, Douglas A.

    2015-01-01

    This work is a comparative study of the dosimetry calculated by Plaque Simulator, a treatment planning system for eye plaque brachytherapy, to the dosimetry calculated using Monte Carlo simulation for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage  125I seeds. In addition, the dosimetry parameters Λ, gL(r), and F(r,θ) were calculated for the IsoAid Advantage model IAI‐125  125I seed and benchmarked against published data. Bebig Plaque Simulator (PS) v5.74 was used to calculate the central axis dose based on the AAPM Updated Task Group 43 (TG‐43U1) dose formalism. The calculated central axis dose from MC and PS was then compared. When the MC dosimetry parameters for the IsoAid Advantage  125I seed were compared with the consensus values, Λ agreed with the consensus value to within 2.3%. However, much larger differences were found between MC calculated gL(r) and F(r,θ) and the consensus values. The differences between MC‐calculated dosimetry parameters are much smaller when compared with recently published data. The differences between the calculated central axis absolute dose from MC and PS ranged from 5% to 10% for distances between 1 and 12 mm from the outer scleral surface. When the dosimetry parameters for the  125I seed from this study were used in PS, the calculated absolute central axis dose differences were reduced by 2.3% from depths of 4 to 12 mm from the outer scleral surface. We conclude that PS adequately models the central dose profile of this plaque using its defaults for the IsoAid model IAI‐125 at distances of 1 to 7 mm from the outer scleral surface. However, improved dose accuracy can be obtained by using updated dosimetry parameters for the IsoAid model IAI‐125  125I seed. PACS number: 87.55.K‐ PMID:26699577

  10. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.

    PubMed

    Aldelaijan, Saad; Devic, Slobodan

    2018-05-01

    Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract.

    PubMed

    Asgharian, B; Price, O T; Oldham, M; Chen, Lung-Chi; Saunders, E L; Gordon, T; Mikheev, V B; Minard, K R; Teeguarden, J G

    2014-12-01

    Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross-species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro- and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat and human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles.

  12. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy

    PubMed Central

    O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G

    2015-01-01

    This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212

  13. Design and Construction of an Optical Computed Tomography Scanner for Polymer Gel Dosimetry Application

    PubMed Central

    Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid

    2014-01-01

    Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377

  14. The view from the trenches: part 2-technical considerations for EPR screening.

    PubMed

    Nicolalde, Roberto J; Gougelet, Robert M; Rea, Michael; Williams, Benjamin B; Dong, Ruhong; Kmiec, Maciej M; Lesniewski, Piotr N; Swartz, Harold M

    2010-02-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders' feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders' recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods.

  15. Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times.

    PubMed

    De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G Allan; Yoshizumi, Terry T

    2008-08-01

    Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.

  16. Application of MOSFET Detectors for Dosimetry in Small Animal Radiography Using Short Exposure Times

    PubMed Central

    De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G. Allan; Yoshizumi, Terry T.

    2008-01-01

    Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies. PMID:18666818

  17. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.

    PubMed

    Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R

    2006-01-01

    At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.

  18. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  19. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, Sigrun; Frengen, Jomar; Department of Oncology and Radiotherapy, St. Olavs University Hospital, N-7006 Trondheim

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scansmore » of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.« less

  1. Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard.

    PubMed

    Carrier, Jean-François; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, André-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-07-15

    To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. For the clinical target volume (CTV) D(90) parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

  2. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  3. The ENEA neutron personal dosimetry service.

    PubMed

    Morelli, B; Mariotti, F; Fantuzzi, E

    2006-01-01

    The ENEA Radiation Protection Institute has been operating the only neutron personal dosimetry service in Italy since the 1970s. Since the 1980s the service has been based on PADC (poly allyl diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and (7)LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of H(p)(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed.

  4. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification.

    PubMed

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-11-21

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  5. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  6. Korean standard nuclear plant ex-vessel neutron dosimetry program Ulchin 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duo, J.I.; Chen, J.; Kulesza, J.A.

    2011-07-01

    A comprehensive ex-vessel neutron dosimetry (EVND) surveillance program has been deployed in 16 pressurized water reactors (PWR) in South Korea and EVND dosimetry sets have already been installed and analyzed in Westinghouse reactor designs. In this paper, the unique features of the design, training, and installation in the Korean standard nuclear plant (KSNP) Ulchin Unit 4 are presented. Ulchin Unit 4 Cycle 9 represents the first dosimetry analyzed from the EVND design deployed in KSNP plants: Yonggwang Units 3 through 6 and Ulchin Units 3 through 6. KSNP's cavity configuration precludes a conventional installation from the cavity floor. The solution,more » requiring the installation crew to access the cavity at an elevation of the active core, places a premium on rapid installation due to high area dose rates. Numerous geometrical features warranted the use of a detailed design in true 3D mechanical design software to control interferences. A full-size training mockup maximized the crew ability to correctly install the instrument in minimum time. The analysis of the first dosimetry set shows good agreements between measurement and calculation within the associated uncertainties. A complete EVND system has been successfully designed, installed, and analyzed for a KNSP plant. Current and future EVND analyses will continue supporting the successful operation of PWR units in South Korea. (authors)« less

  7. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  8. SU-E-T-486: In Vivo Skin Dosimetry Using the Exradin W1 Plastic Scintillation Detector for Passively Scattered Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsanea, F; Kudchadker, R; Usama, M

    Purpose: To evaluate the accuracy and usefulness of plastic scintillation detectors used for skin dosimetry of patients undergoing passive scatter proton therapy. Methods: Following an IRB approved protocol, six patients undergoing passively scattered proton beam therapy for prostate cancer were selected for in vivo skin dosimetry using the Exradin W1 plastic scintillator. The detector was calibrated on a Cobalt-60 unit, and phantom measurements in the proton beam with the W1 and a calibrated parallel plate ion chamber were used to account for the under-response due to high LET at energies used for treatment. Measurements made in a heated water tankmore » were used to account for temperature dependence. For in vivo measurements, the W1 is fixed to the patient’s skin with medical tape in the center of each of two laterally opposed treatment fields. Measurements will be performed once per week for each patient for the duration of treatment, for a total of thirty six measurements. The measured dose will be compared to the expected dose, extracted from the Eclipse treatment planning system. The average difference over all measurements and per-patient will be computed, as well as standard deviations. Results: The calibrated detector exhibited a 7% under-response in 225 and 250 MeV beams, and a 4% under-response when used at 37 °C (relative to the response at the calibration temperature of 20 °C). Patient measurements are ongoing. Conclusion: The Exradin W1 plastic scintillator detector is a strong candidate for in vivo skin dosimetry in passively scattered proton beams as PSDs are water equivalent and very small (2mm in diameter), permitting accurate measurements that do not perturb the delivered dose. This project was supported in part by award number CA182450 from the National Cancer Institute.« less

  9. A technique for pediatric total skin electron irradiation.

    PubMed

    Bao, Qinan; Hrycushko, Brian A; Dugas, Joseph P; Hager, Frederick H; Solberg, Timothy D

    2012-03-20

    Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution.

  10. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Fahimian, B; Pratx, G

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in amore » thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS grant.« less

  11. Characterization of MOSFET Dosimeter Angular Response Using a Spherical Phantom for Fluoroscopic Dosimetry.

    PubMed

    Wang, Chu; Hill, Kevin; Yoshizumi, Terry

    2016-01-01

    Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.

  12. Thermoluminescent dosimetry in veterinary diagnostic radiology.

    PubMed

    Hernández-Ruiz, L; Jimenez-Flores, Y; Rivera-Montalvo, T; Arias-Cisneros, L; Méndez-Aguilar, R E; Uribe-Izquierdo, P

    2012-12-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  14. Computational dosimetry for grounded and ungrounded human models due to contact current

    NASA Astrophysics Data System (ADS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  15. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient internal anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  16. An Investigation of Nonuniform Dose Deposition From an Electron Beam

    DTIC Science & Technology

    1994-08-01

    to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR

  17. Portal dosimetry for VMAT using integrated images obtained during treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedford, James L., E-mail: James.Bedford@icr.ac.uk; Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantommore » thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. Conclusions: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.« less

  18. Toward a real-time in vivo dosimetry system using plastic scintillation detectors

    PubMed Central

    Archambault, Louis; Briere, Tina M.; Pönisch, Falk; Beaulieu, Luc; Kuban, Deborah A.; Lee, Andrew; Beddar, Sam

    2010-01-01

    Purpose In this work, we present and validate a plastic scintillation detector (PSD) system designed for real-time multi-probe in vivo measurements. Methods and Materials The PSDs were built with a dose-sensitive volume of 0.4 mm3. PSDs were assembled into modular detector patches, each containing 5 closely packed PSDs. Continuous dose readings were performed every 150 ms, with a gap between consecutive readings of less than 0.3 ms. We first studied the effect of electron multiplication. We then assessed system performance in acrylic and anthropomorphic pelvic phantoms. Results The PSDs are compatible with clinical rectal balloons and are easily inserted into the anthropomorphic phantom. With an electron multiplication average gain factor of 40, a twofold increase in the signal-to-noise ratio was observed, making near real-time dosimetry feasible. Under calibration conditions, the PSDs agreed with ion chamber measurements to 0.08%. Precision, evaluated as a function of the total dose delivered, ranged from 2.3% at 2 cGy to 0.4% at 200 cGy. Conclusion Real-time PSD measurements are highly accurate and precise. These PSDs can be mounted onto rectal balloons, transforming these clinical devices into in vivo dose detectors without modifying current clinical practice. Real-time monitoring of the dose delivered near the rectum during prostate radiation therapy should help radiation oncologists protect this sensitive normal structure. PMID:20231074

  19. QA procedures needed for advanced RT techniques and its impact on treatment outcome

    NASA Astrophysics Data System (ADS)

    Knöös, T.

    2015-01-01

    The radiotherapy process is reviewed briefly and potential risks or pitfalls are identified. The focus is on modern advanced modalities in radiation therapy such as IMRT, VMAT, gating and tracking and also for the unknown to come. Existing methods, or quality controls (QC), or with better word barriers, are introduced at important steps of process with the purpose of prohibiting errors to continue through the process and thus avoiding an unwanted erroneous irradiation of the patient. The soft branch of quality assurance (QA) such as peer-review is also a major component of today's process and its safety. The importance of knowing your QCs is pointed out. The role of dosimetry method i.e. 3D-dosimetry is reviewed. Staff have to be working with awareness and alertness that can reduce most of the risks. Having comprehensive protocols known by all involved together with well-trained staff at the department with dedicated functions and responsibilities will further reduce the risk for unintended irradiations of patient. Having a well-designed QA system with the appropriate barriers have the possibility of producing high quality radiotherapy, which will also result in better outcome for the patients. The international head and neck trial illustrates very well the importance of accurate radiotherapy.

  20. Construction of dose response calibration curves for dicentrics and micronuclei for X radiation in a Serbian population.

    PubMed

    Pajic, J; Rakic, B; Jovicic, D; Milovanovic, A

    2014-10-01

    Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdizadeh, S; Sina, S; Karimipourfard, M

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapesmore » and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.« less

  2. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    PubMed

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  3. Preliminary thermoluminescence investigation of commercial pharmaceutical glass containers towards the sterilization dosimetry of liquid drugs.

    PubMed

    Kazakis, Nikolaos A; Tsirliganis, Nestor C; Kitis, George

    2015-11-01

    Drug sterilization with ionizing radiation is a well-established technology, which is constantly extending to several products due to its numerous advantages, since it allows the heat-free sterilization of heat-sensitive pharmaceutical preparations. In a previous study, the possibility to identify irradiated solid-state drugs by means of OSL and TL was examined with very promising findings. In the same respect, the present work aims, for the first time to the authors' best knowledge, to explore whether TL can be employed as a method for post-sterilization dosimetry on commercial liquid-state drugs, by studying the properties of their glass containers. Two different types of glass containers (bottle and ampoule) of two widely used liquid drugs, i.e., Hexalen® and Voltaren®, are used for this purpose. Both glass containers exhibit a linear TL dose response for doses up to 6kGy with a stable behavior through time, while no significant sensitization of the main peaks is observed. Thus, preliminary findings are very promising towards the post-sterilization dosimetry of liquid drugs and the use of the containers of commercial liquid drugs for normal and/or accidental dosimetry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, S; Maynard, M; Marshall, E

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletalmore » regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)« less

  5. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on these preliminary results, it is expected that Cherenkov light emission may prove to be a useful tool for radiation dosimetry with both research and clinical applications.

  6. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, E; Karaiskos, P; Zourari, K

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attachedmore » was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin brachytherapy. Research co-financed by the ESF and Greek funds through the Operational Program Education and Lifelong Learning Investing in Knowledge Society of the NSRF. Research Funding Program: Aristeia. Modus Medical Devices Inc. provided a TruView dosimeter batch and Nucletron, and Elekta company, provided access to Oncentra Brachy v4.5, for research purposes.« less

  7. Fiber optically coupled radioluminescence detectors: A short review of key strengths and weaknesses of BCF-60 and Al2O3:C scintillating-material based systems in radiotherapy dosimetry applications

    NASA Astrophysics Data System (ADS)

    Buranurak, S.; Andersen, C. E.

    2017-06-01

    Radiotherapy technologies have improved for several decades aiming to effectively destroy cancerous tissues without overdosing surrounding healthy tissues. In order to fulfil this requirement, accurate and precise dosimetry systems play an important role. Throughout the years, ionization chambers have been used as a standard detector for basic linear accelerator calibrations and reference dosimetry in hospitals. However, they are not ideal for all treatment modalities: and limitations and difficulties have been reported in case of (i) small treatment fields, (ii) strong magnetic field used in the new hybrid MRI LINAC/cobalt systems, and (iii) in vivo measurements due to safety-issues related to the high operating voltage. Fiber optically coupled luminescence detectors provide a promising supplement to ionization chambers by offering the capability of real-time in vivo dose monitoring with high time resolution. In particular, the all-optical nature of these detectors is an advantage for in vivo measurements due to the absence of high voltage supply or electrical wire that could cause harm to the patient or disturb the treatment. Basically, fiber-coupled luminescence detector systems function by radiation-induced generation of radioluminescence from a sub-mm size organic/inorganic phosphor. A thin optical fiber cable is used for guiding the radioluminescence to a photomultiplier tube or similar sensitive light detection systems. The measured light intensity is proportional to dose rate. Throughout the years, developments and research of the fiber detector systems have undergone in several groups worldwide. In this article, the in-house developed fiber detector systems based on two luminescence phosphors of (i) BCF-60 polystyrene-based organic plastic scintillator and (ii) carbon-doped aluminum oxide crystal (Al2O3:C) are reviewed with comparison to the same material-based systems reported in the literature. The potential use of these detectors for reference-class dosimetry in radiotherapy will be discussed with a particular emphasis on uses in small and large MV photon fields.

  8. The internal dosimetry code PLEIADES.

    PubMed

    Fell, T P; Phipps, A W; Smith, T J

    2007-01-01

    The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.

  9. Thermoluminescent chip detector for in vivo dosimetry in pelvis and head & neck cancer treatment.

    PubMed

    Leal, Marcela A; Viegas, Claudio; Viamonte, Alfredo; Campos, Anna; Braz, Delson; Clivland, Paul

    2010-01-01

    Our aim is to show the TL dosimetry as a confident QA method for radiotherapy treatments. Before in vivo entrance dose measurements using TLD-100 chips, ECLIPSE TPS-simulated treatments for a Rando anthropomorphic phantom, two for pelvis and one head & neck. In Vivo measurements results with (60)Co beam remained within +/-5% limits. Results for 6 and 15 MV are in conclusion. This is a National Cancer Institute/RJ/Brazil study under the 13.111-IAEA Coordinated Research Project. Copyright 2010. Published by Elsevier Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Sean L., E-mail: BerryS@MSKCC.org; Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York; Polvorosa, Cynthia

    Purpose: To prospectively evaluate a 2-dimensional transit dosimetry algorithm's performance on a patient population and to analyze the issues that would arise in a widespread clinical adoption of transit electronic portal imaging device (EPID) dosimetry. Methods and Materials: Eleven patients were enrolled on the protocol; 9 completed and were analyzed. Pretreatment intensity modulated radiation therapy (IMRT) patient-specific quality assurance was performed using a stringent local 3%, 3-mm γ criterion to verify that the planned fluence had been appropriately transferred to and delivered by the linear accelerator. Transit dosimetric EPID images were then acquired during treatment and compared offline with predictedmore » transit images using a global 5%, 3-mm γ criterion. Results: There were 288 transit images analyzed. The overall γ pass rate was 89.1% ± 9.8% (average ± 1 SD). For the subset of images for which the linear accelerator couch did not interfere with the measurement, the γ pass rate was 95.7% ± 2.4%. A case study is presented in which the transit dosimetry algorithm was able to identify that a lung patient's bilateral pleural effusion had resolved in the time between the planning CT scan and the treatment. Conclusions: The EPID transit dosimetry algorithm under consideration, previously described and verified in a phantom study, is feasible for use in treatment delivery verification for real patients. Two-dimensional EPID transit dosimetry can play an important role in indicating when a treatment delivery is inconsistent with the original plan.« less

  11. SU-F-P-15: Report On AAPM TG 178 Gamma Knife Dosimetry and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, S

    Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocolmore » modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers Conclusion: The full TG 178 report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics. Consultant to Elekta, Inc.« less

  12. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  13. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Two-dimensional dosimetry of radiotherapeutical proton beams using thermoluminescence foils.

    PubMed

    Czopyk, L; Klosowski, M; Olko, P; Swakon, J; Waligorski, M P R; Kajdrowicz, T; Cuttone, G; Cirrone, G A P; Di Rosa, F

    2007-01-01

    In modern radiation therapy such as intensity modulated radiation therapy or proton therapy, one is able to cover the target volume with improved dose conformation and to spare surrounding tissue with help of modern measurement techniques. Novel thermoluminescence dosimetry (TLD) foils, developed from the hot-pressed mixture of LiF:Mg,Cu,P (MCP TL) powder and ethylene-tetrafluoroethylene (ETFE) copolymer, have been applied for 2-D dosimetry of radiotherapeutical proton beams at INFN Catania and IFJ Krakow. A TLD reader with 70 mm heating plate and CCD camera was used to read the 2-D emission pattern of irradiated foils. The absorbed dose profiles were evaluated, taking into account correction factors specific for TLD such as dose and energy response. TLD foils were applied for measuring of dose distributions within an eye phantom and compared with predictions obtained from the MCNPX code and Eclipse Ocular Proton Planning (Varian Medical Systems) clinical radiotherapy planning system. We demonstrate the possibility of measuring 2-D dose distributions with point resolution of about 0.5 x 0.5 mm(2).

  15. SU-E-T-117: Analysis of the ArcCHECK Dosimetry Gamma Failure Using the 3DVH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S; Choi, W; Lee, H

    2015-06-15

    Purpose: To evaluate gamma analysis failure for the VMAT patient specific QA using ArcCHECK cylindrical phantom. The 3DVH system(Sun Nuclear, FL) was used to analyze the dose difference statistic between measured dose and treatment planning system calculated dose. Methods: Four case of gamma analysis failure were selected retrospectively. Our institution gamma analysis indexes were absolute dose, 3%/3mm and 90%pass rate in the ArcCHECK dosimetry. The collapsed cone convolution superposition (CCCS) dose calculation algorithm for VMAT was used. Dose delivery was performed with Elekta Agility. The A1SL(standard imaging, WI) and cavity plug were used for point dose measurement. Delivery QA plansmore » and images were used for 3DVH Reference data instead of patient plan and image. The measured data of ‘.txt’ file was used for comparison at diodes to acquire a global dose level. The,.acml’ file was used for AC-PDP and to calculated point dose. Results: The global dose of 3DVH was calculated as 1.10 Gy, 1.13, 1.01 and 0.2 Gy respectively. The global dose of 0.2 Gy case was induced by distance discrepancy. The TPS calculated point dose of was 2.33 Gy to 2.77 Gy and 3DVH calculated dose was 2.33 Gy to 2.68 Gy. The maximum dose differences were −2.83% and −3.1% for TPS vs. measured dose and TPS vs. 3DVH calculated respectively in the same case. The difference between measured and 3DVH was 0.1% in that case. The 3DVH gamma pass rate was 98% to 99.7%. Conclusion: We found the TPS calculation error by 3DVH calculation using ArcCHECK measured dose. It seemed that our CCCS algorithm RTP system over estimated at the central region and underestimated scattering at the peripheral diode detector point. The relative gamma analysis and point dose measurement would be recommended for VMAT DQA in the gamma failure case of ArcCHECK dosimetry.« less

  16. A novel method for dose distribution registration using fiducial marks made by a megavoltage beam in film dosimetry for intensity-modulated radiation therapy quality assurance.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Oonishi, Yuuichi; Mizote, Rika; Iramina, Hiraku; Kaneshige, Souichirou; Mizowaki, Takashi

    2015-06-01

    Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC). We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis. The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual). The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Preparation and thermoluminescent dosimetry features of high sensitivity LiF:Mg,Ce phosphor

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Zahedifar, M.; Sadeghi, E.

    2018-04-01

    Thermoluminescence (TL) kinetics and dosimetry features of newly produced LiF doped with Mg and Ce were investigated. Different contents of Mg (0-1 mol%) and Ce (0-2 mol%) were introduced in host material by melting method. The most TL sensitivity of the fabricated phosphor was obtained at 0.7 and 0.05 mol% concentrations of Mg and Ce impurities, respectively. The optimum pre-irradiation annealing regime of the synthesized LiF-based material was found at 350 °C for 10 min. Kinetic parameters of LiF:Mg,Ce dosimeter were obtained using different methods of computerized glow curve deconvolution (CGCD), initial rise (IR) and isothermal decay (ID). A good conformity are observed between the results obtained from different kinetic analysis methods. Other TL features such as fading, dose response and reusability were also examined.

  18. SU-F-T-565: Assessment of Dosimetric Accuracy for a 3D Gel-Based Dosimetry Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B; Lam, K; Moran, J

    Purpose: To assess the 3D dosimetric accuracy when using a mail-in service for square and stereotactic fields in a clinical environment. Methods: The 3D dosimetry mail-in service (3DDaaS), offered by Modus QA (London, ON), was used to measure dose distributions from a 6 MV beam of a Varian Clinac. Plastic jars filled with radiosensitive ClearView™ gel were received, CT scanned (for registration and density information), irradiated, and then mailed back to the manufacturer for optical CT readout. Three square field irradiations (2×2, 4×4, and 10×10 cm{sup 2}) were performed with jars immobilized in a water tank, and a composite small-fieldmore » stereotactic delivery was performed using an in-air holder. Dosimetric properties of the gel were quantified within the 25–50 Gy dose range using 3D optical attenuation (OA) distributions provided by the manufacturer. OA was normalized to 100% at the position of isocenter, which received 40Gy. Percentage depth dose, profiles, and 3D gamma distributions (3%/1mm criteria) were calculated to quantify feasibility for relative dosimetry. Results: Mean CT-measured density in the central (3×3×3) cm{sup 3} gel region was 40 ± 3 HU, indicating good homogeneity and near-water-equivalence. Measured and calculated central axis doses agreed to within ±3% in the 25–50 Gy dose range. For the square field irradiations, dose profiles agreed to within 1mm. Gamma analysis of the composite irradiation yielded 99.8%, 91.4%, and 79.1% passing rates for regions receiving at least 10, 5, and 2 Gy, respectively, indicating feasibility for use in high-dose regions. Absolute response varied by up to 16% between jars, indicating limitations for absolute dosimetry under the mail-in conditions. Conclusion: 3DDaaS is a novel near-water-equivalent dosimetry system accurate to within 3% dose and 1mm 3D spatial resolution, and is straightforward to use in a clinical setting. Future investigations are warranted to improve dosimeter response in low-dose regions. The authors would like to thank ModusQA (London, ON) for providing the gels and optical readouts used this work. This work was partially funded by NIH P01CA059827.« less

  19. Dose Deposition Profiles in Untreated Brick Material

    DOE PAGES

    O'Mara, Ryan; Hayes, Robert

    2018-04-01

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  20. Dose Deposition Profiles in Untreated Brick Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Mara, Ryan; Hayes, Robert

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  1. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, M; Jaffray, D; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MRmore » and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox Foundation Strategic Initiative for Excellence in Radiation Research for the 21st Century at CIHR and the Gifford Ontario Student Opportunity Trust Fund.« less

  2. SU-E-T-626: Accuracy of Dose Calculation Algorithms in MultiPlan Treatment Planning System in Presence of Heterogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, C; Huet, C; Barraux, V

    Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MCmore » algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.« less

  3. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  4. [The application of non-annealing thermoluminescent dosimetry (TLD)].

    PubMed

    Wu, J M; Chen, C S; Lan, R H

    1993-06-01

    Conventional use of Thermoluminescence (TL) in radiation dosimetry is very time-consuming. It requires repeating the procedures of preheating and annealing. In an attempt to simplify these procedures, we conducted an experiment of non-annealing TL dosimetry. This article reports the experiment's results. We adopted Lithium Fluoride (LiF) chip (TLD-100) in polystyrene under the exposure of Co-60, and the result was taken by HAR-SHAW-4000 TL reading system. The TL response was analyzed, including linearity, reproducibility and fading test. Because non-annealing TL response was greatly influenced by residual electron, TLD calibration curves were separated into two parts: (1) high dose region (HDR, 50-1500 cGy); (2) low dose region (LDR, 0-50 cGy). When TL dosimeters were exposed to a single high does (about 500 cGy), the HDR could be reproduced within 3% and fit a good linearity. For LDR, we had to give up the tail of glow curve in the high temperature region. We could then get good linearity and reproducibility. Furthermore, fading of non-annealing was apparently larger than annealing. We could control the fading of non-annealing was apparently larger than annealing. We could control the fading influence within 1% by taking the TL reading one hour after exposure. On the other hand, a combination of photon and electron exposure was also performed by non-annealing TL dosimetry. The results were compatible with Co-60 exposure in the same system.

  5. Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit.

    PubMed

    Gershkevitsh, Eduard; Pesznyak, Csilla; Petrovic, Borislava; Grezdo, Joseph; Chelminski, Krzysztof; do Carmo Lopes, Maria; Izewska, Joanna; Van Dyk, Jacob

    2014-05-01

    One of the newer audit modalities operated by the International Atomic Energy Agency (IAEA) involves audits of treatment planning systems (TPS) in radiotherapy. The main focus of the audit is the dosimetry verification of the delivery of a radiation treatment plan for three-dimensional (3D) conformal radiotherapy using high energy photon beams. The audit has been carried out in eight European countries - Estonia, Hungary, Latvia, Lithuania, Serbia, Slovakia, Poland and Portugal. The corresponding results are presented. The TPS audit reviews the dosimetry, treatment planning and radiotherapy delivery processes using the 'end-to-end' approach, i.e. following the pathway similar to that of the patient, through imaging, treatment planning and dose delivery. The audit is implemented at the national level with IAEA assistance. The national counterparts conduct the TPS audit at local radiotherapy centres through on-site visits. TPS calculated doses are compared with ion chamber measurements performed in an anthropomorphic phantom for eight test cases per algorithm/beam. A set of pre-defined agreement criteria is used to analyse the performance of TPSs. TPS audit was carried out in 60 radiotherapy centres. In total, 190 data sets (combination of algorithm and beam quality) have been collected and reviewed. Dosimetry problems requiring interventions were discovered in about 10% of datasets. In addition, suboptimal beam modelling in TPSs was discovered in a number of cases. The TPS audit project using the IAEA methodology has verified the treatment planning system calculations for 3D conformal radiotherapy in a group of radiotherapy centres in Europe. It contributed to achieving better understanding of the performance of TPSs and helped to resolve issues related to imaging, dosimetry and treatment planning.

  6. WE-EF-BRA-04: Evaluation of Dosimetric Uncertainties in Individualized Targeted Radionuclide Therapy (TRT) Treatment Planning Using Pre-Clinical Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besemer, A; Bednarz, J B; Grudzinski, J

    2015-06-15

    Purpose: Dosimetry for targeted radionuclide therapy (TRT) is moving away from conventional model-based methods towards patient-specific approaches. To address this need, a Monte Carlo (MC) dosimetry platform was developed to estimate patient-specific therapeutic 3D dose distributions based on pre-treatment imaging. However, because a standard practice for patient-specific internal dosimetry has not yet been established, there are many sources of dosimetric uncertainties. The goal of this work was to quantify the sensitivity of various parameters on MC dose estimations. Methods: The ‘diapeutic’ agent, CLR1404, was used as a proof-of-principle compound in this work. CLR1404 can be radiolabeled with either {sup 124}Imore » for PET imaging or {sup 131}I for radiotherapy or SPECT imaging. PET/CT images of 5 mice were acquired out to 240 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose (AD) distribution was calculated using a Geant4-based MC dosimetry platform. A series of sensitivity studies were performed. The variables that were investigated included the PET/CT voxel resolution, partial volume corrections (PVC), material segmentation, inter-observer contouring variability, and the pre-treatment image acquisition frequency. Results: Resampling the PET/CT voxel size between 0.2–0.8 mm resulted in up to a 13% variation in the mean AD. Application of the PVC increased the mean AD by 0.5–11.2%. Less than 1% differences in ROI mean AD were observed between the tissue segmentation schemes using 4 and 27 different material compositions. Inter-observer contouring variability led to up to a 20% CoV (stdev/mean) in the mean AD between the users. Varying the number and frequency of pre-treatment images used resulted in changes in mean AD up to 176% compared to the case using all 12 images. Conclusion: Voxel resolution, contour segmentation, the image acquisition protocol most significantly impacted patient-specific TRT dosimetry. Further work is needed to develop a standard protocol that optimizes accuracy and efficiency for patient-specific internal dosimetry. BT and JG are affiliated with Cellectar Biosciences which owns the licensing rights to CLR1404 and related compounds.« less

  7. SU-E-T-02: 90Y Microspheres Dosimetry Calculation with Voxel-S-Value Method: A Simple Use in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneru, F; Gracia, M; Gallardo, N

    2015-06-15

    Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less

  8. Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS.

    PubMed

    Shiiba, Takuro; Kuga, Naoya; Kuroiwa, Yasuyoshi; Sato, Tatsuhiko

    2017-10-01

    We assessed the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels (DPKs) calculated using the particle and heavy ion transport code system (PHITS) for patient-specific dosimetry in targeted radionuclide treatment (TRT) and compared our data with published data. All mono-energetic and beta-emitting isotope DPKs calculated using PHITS, both in water and compact bone, were in good agreement with those in literature using other MC codes. PHITS provided reliable mono-energetic electron and beta-emitting isotope scaled DPKs for patient-specific dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Image analysis methods for assessing levels of image plane nonuniformity and stochastic noise in a magnetic resonance image of a homogeneous phantom.

    PubMed

    Magnusson, P; Olsson, L E

    2000-08-01

    Magnetic response image plane nonuniformity and stochastic noise are properties that greatly influence the outcome of quantitative magnetic resonance imaging (MRI) evaluations such as gel dosimetry measurements using MRI. To study these properties, robust and accurate image analysis methods are required. New nonuniformity level assessment methods were designed, since previous methods were found to be insufficiently robust and accurate. The new and previously reported nonuniformity level assessment methods were analyzed with respect to, for example, insensitivity to stochastic noise; and previously reported stochastic noise level assessment methods with respect to insensitivity to nonuniformity. Using the same image data, different methods were found to assess significantly different levels of nonuniformity. Nonuniformity levels obtained using methods that count pixels in an intensity interval, and obtained using methods that use only intensity values, were found not to be comparable. The latter were found preferable, since they assess the quantity intrinsically sought. A new method which calculates a deviation image, with every pixel representing the deviation from a reference intensity, was least sensitive to stochastic noise. Furthermore, unlike any other analyzed method, it includes all intensity variations across the phantom area and allows for studies of nonuniformity shapes. This new method was designed for accurate studies of nonuniformities in gel dosimetry measurements, but could also be used with benefit in quality assurance and acceptance testing of MRI, scintillation camera, and computer tomography systems. The stochastic noise level was found to be greatly method dependent. Two methods were found to be insensitive to nonuniformity and also simple to use in practice. One method assesses the stochastic noise level as the average of the levels at five different positions within the phantom area, and the other assesses the stochastic noise in a region outside the phantom area.

  10. SU-F-P-55: Testicular Scatter Dose Determination During Prostate SBRT with and Without Pelvic Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venencia, C; Garrigo, E; Castro Pena, P

    Purpose: The elective irradiation of pelvis lymph node for prostate cancer is still controversial. Including pelvic lymph node as part of the planning target volume could increase the testicular scatter dose, which could have a clinical impact. The objective of this work was to measure testicular scatter dose for prostate SBRT treatment with and without pelvic lymph nodes using TLD dosimetry. Methods: A 6MV beam (1000UM/min) produce by a Novalis TX (BrainLAB-VARIAN) equipped HDMLC was used. Treatment plan were done using iPlan v4.5.3 (BrainLAB) treatment planning system with sliding windows IMRT technique. Prostate SBRT plan (PLAN-1) uses 9 beams withmore » a dose prescription (D95%) of 4000cGy in 5 fractions. Prostate with lymph nodes SBRT plan (PLAN-2) uses 11 beams with a dose prescription (D95%) of 4000cGy to the prostate and 2500cGy to the lymph node in 5 fractions. An anthropomorphic pelvic phantom with a testicular volume was used. Phantom was positioned using ExacTrac IGRT system. Phosphor TLDs LiF:Mg, Ti (TLD700 Harshaw) were positioned in the anterior, posterior and inferior portion of the testicle. Two set of TLD measurements was done for each treatment plan. TLD in vivo dosimetry was done in one patient for each treatment plan. Results: The average phantom scatter doses per fraction for the PLAN-1 were 10.9±1cGy (anterior), 7.8±1cGy (inferior) and 10.7±1cGy (posterior) which represent an average total dose of 48±1cGy (1.2% of prostate dose prescription). The doses for PLAN-2 plan were 17.7±1cGy (anterior), 11±1cGy (inferior) and 13.3±1cGy (posterior) which represent an average total dose of 70.1±1cGy (1.8% of prostate dose prescription). The average dose for in vivo patient dosimetry was 60±1cGy for PLAN-1 and 85±1cGy for PLAN-2. Conclusion: Phantom and in vivo dosimetry shows that the pelvic lymph node irradiation with SBRT slightly increases the testicular scatter dose, which could have a clinical impact.« less

  11. Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Wevrett, J.; Fenwick, A.; Scuffham, J.; Nisbet, A.

    2017-11-01

    Within the field of molecular radiotherapy, there is a significant need for standardisation in dosimetry, in both quantitative imaging and dosimetry calculations. Currently, there are a wide range of techniques used by different clinical centres and as a result there is no means to compare patient doses between centres. To help address this need, a 3 year project was funded by the European Metrology Research Programme, and a number of clinical centres were involved in the project. One of the required outcomes of the project was to develop a calibration protocol for three dimensional quantitative imaging of volumes of interest. Two radionuclides were selected as being of particular interest: iodine-131 (131I, used to treat thyroid disorders) and lutetium-177 (177Lu, used to treat neuroendocrine tumours). A small volume of activity within a scatter medium (water), representing a lesion within a patient body, was chosen as the calibration method. To ensure ease of use in clinical centres, an "off-the-shelf" solution was proposed - to avoid the need for in-house manufacturing. The BIODEX elliptical Jaszczak phantom and 16 ml fillable sphere were selected. The protocol was developed for use on SPECT/CT gamma cameras only, where the CT dataset would be used to correct the imaging data for attenuation of the emitted photons within the phantom. The protocol corrects for scatter of emitted photons using the triple energy window correction technique utilised by most clinical systems. A number of clinical systems were tested in the development of this protocol, covering the major manufacturers of gamma camera generally used in Europe. Initial imaging was performed with 131I and 177Lu at a number of clinical centres, but due to time constraints in the project, some acquisitions were performed with 177Lu only. The protocol is relatively simplistic, and does not account for the effects of dead-time in high activity patients, the presence of background activity surrounding volumes of interest or the partial volume effect of imaging lesions smaller than 16 ml. The development of this simple protocol demonstrates that it is possible to produce a standardised quantitative imaging protocol for molecular radiotherapy dosimetry. However, the protocol needs further development to expand it to incorporate other radionuclides, and to account for the effects that have been disregarded in this initial version.

  12. Aircraft crew radiation workplaces: comparison of measured and calculated ambient dose equivalent rate data using the EURADOS in-flight radiation data base.

    PubMed

    Beck, Peter; Bartlett, David; Lindborg, Lennart; McAulay, Ian; Schnuer, Klaus; Schraube, Hans; Spurny, Frantisek

    2006-01-01

    In May 2000, the chairman of the European Radiation Dosimetry Group (EURADOS) invited a number of experts with experience of cosmic radiation dosimetry to form a working group (WG 5) on aircraft crew dosimetry. Three observers from the Article 31 Group of Experts as well as one observer from the Joint Aviation Authorities (JAA) were also appointed. The European Commission funded the meetings. Full meetings were organised in January 2001 and in November 2001. An editorial group, who are the authors of this publication, started late in 2002 to finalise a draft report, which was submitted to the Article 31 Group of Experts in June 2003. The methods and data reported are the product of the work of 26 research institutes from the EU, USA and Canada. Some of the work was supported by contracts with the European Commission, Directorate General XII, Science, Research and Development. A first overview of the EC report was published late in 2004. In this publication we focus on a comparison of measured and calculated ambient dose rate data using the EURADOS In-Flight Data Base. The evaluation of results obtained by different methods and groups, and comparison of measurement results and the results of calculations were performed in terms of the operational quantity ambient dose equivalent, H*(10). Aspects of measurement uncertainty are reported also. The paper discusses the estimation of annual doses for given flight hours and gives an outline of further research needed in the field of aircraft crew dosimetry, such as the influence of solar particle events.

  13. High throughput film dosimetry in homogeneous and heterogeneous media for a small animal irradiator

    PubMed Central

    Wack, L.; Ngwa, W.; Tryggestad, E.; Tsiamas, P.; Berbeco, R.; Ng, S.K.; Hesser, J.

    2013-01-01

    Purpose We have established a high-throughput Gafchromic film dosimetry protocol for narrow kilo-voltage beams in homogeneous and heterogeneous media for small-animal radiotherapy applications. The kV beam characterization is based on extensive Gafchromic film dosimetry data acquired in homogeneous and heterogeneous media. An empirical model is used for parameterization of depth and off-axis dependence of measured data. Methods We have modified previously published methods of film dosimetry to suit the specific tasks of the study. Unlike film protocols used in previous studies, our protocol employs simultaneous multichannel scanning and analysis of up to nine Gafchromic films per scan. A scanner and background correction were implemented to improve accuracy of the measurements. Measurements were taken in homogeneous and inhomogeneous phantoms at 220 kVp and a field size of 5 × 5 mm2. The results were compared against Monte Carlo simulations. Results Dose differences caused by variations in background signal were effectively removed by the corrections applied. Measurements in homogeneous phantoms were used to empirically characterize beam data in homogeneous and heterogeneous media. Film measurements in inhomogeneous phantoms and their empirical parameterization differed by about 2%–3%. The model differed from MC by about 1% (water, lung) to 7% (bone). Good agreement was found for measured and modelled off-axis ratios. Conclusions EBT2 films are a valuable tool for characterization of narrow kV beams, though care must be taken to eliminate disturbances caused by varying background signals. The usefulness of the empirical beam model in interpretation and parameterization of film data was demonstrated. PMID:23510532

  14. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR can only be properly accounted for by image-based, patient-specific treatment planning, as has been common in external beam radiation therapy for many years. MINERVA offers 3D Monte Carlo-based MTR treatment planning as its first integrated operational capability. The new MINERVA system will ultimately incorporate capabilities for a comprehensive list of radiation therapies. In progress are modules for external beam photon-electron therapy and boron neutron capture therapy (BNCT). Brachytherapy and proton therapy are planned. Through the open application programming interface (API), other groups can add their own modules and share them with the community.

  15. SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, A; Wu, Q; Adamson, J

    Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placedmore » on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.« less

  16. A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy.

    PubMed

    Fuangrod, Todsaporn; Greer, Peter B; Simpson, John; Zwan, Benjamin J; Middleton, Richard H

    2017-03-13

    Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.

  17. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  18. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  19. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  20. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  1. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  2. FERRET-SAND II physics-dosimetry analysis for N Reactor Pressure Tubes 2954, 3053 and 1165 using a WIMS calculated input spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.

    1988-05-01

    This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less

  3. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    NASA Astrophysics Data System (ADS)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  4. Clinical EPR: Unique Opportunities and Some Challenges

    PubMed Central

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  5. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/optical-CT 3D dosimetry system

    PubMed Central

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-01-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2–3.6% for PRESAGE®, and 1.6–3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence. PMID:20134082

  6. Optimization of the Temporal Pattern of Applied Radiation Dose: Implication for the Treatment of Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    environment II.A: Characterization of dosimetry in IMRT radiobiological experiment phantom using TLDs and film. (7-10 mos.) Objectives: 1... dosimetry with TLDs and film. (8-10 mos.) 4. Analysis of measured dosimetry with TLDs and film compared to predicted dosimetry from treatment...cells were). Dosimetry in the phantom was assessed with film and monitor units were calculated accordingly to deliver the desired dose. Once in

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.

    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterialsmore » or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.« less

  8. Dosimetry of UV radiation with special respect to presence of photosensitizers or other chemical agents

    NASA Astrophysics Data System (ADS)

    Ronto, Gyorgyi; Csik, Gabriella; Gaspar, S.

    1994-02-01

    A method has been developed for measuring the biologically effective dose (BED) of solar radiation. The method applies phage T7 as a biosensor in a monitoring system. The work presents a series of dose measurements caused by direct and global irradiation. Comparisons are made of the results obtained in the same time in different places in Hungary in 1992 and 1993. A doubling of the measured BED was found which can not be explained with the ozone depletion only. An interpretation of phage T7 dose as well as transformation of the results into MED are presented. The influence of the photosensitization as an additive damage is discussed as well.

  9. On the effective point of measurement in megavoltage photon beams.

    PubMed

    Kawrakow, Iwan

    2006-06-01

    This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6 times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within +/- 0.5%.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, M.

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  11. In vivo diode dosimetry vs. computerized tomography and digitally reconstructed radiographs for critical organ dose calculation in high-dose-rate brachytherapy of cervical cancer.

    PubMed

    Hassouna, Ashraf H; Bahadur, Yasir A; Constantinescu, Camelia; El Sayed, Mohamed E; Naseem, Hussain; Naga, Adly F

    2011-01-01

    To investigate the correlation between the dose predicted by the treatment planning system using digitally reconstructed radiographs or three-dimensional (3D)-reconstructed CT images and the dose measured by semiconductor detectors, under clinical conditions of high-dose-rate brachytherapy of the cervix uteri. Thirty-two intracavitary brachytherapy applications were performed for 12 patients with cancer of the cervix uteri. The prescribed dose to Point A was 7 Gy. Dose was calculated for both International Commissioning on Radiation Units and Measurements (ICRU) bladder and rectal points based on digitally reconstructed radiographs and for 3D CT images-based volumetric calculation of the bladder and rectum. In vivo diode dosimetry was performed for the bladder and rectum. The ICRU reference point and the volumes of 1, 2, and 5cm(3) received 3.6±0.9, 5.6±2.0, 5.1±1.7, 4.3±1.4 and 5.0±1.2, 5.3±1.3, 4.9±1.1, and 4.2±0.9 Gy for the bladder and rectum, respectively. The ratio of the 1cm(3) and the ICRU reference point dose to the diode dose was 1.8±0.7 and 1.2±0.5 for the bladder and 1.9±0.6 and 1.7±0.5 for the rectum, respectively. 3D image-based dose calculation is the most accurate and reliable method to evaluate the dose given to critical organs. In vivo diode dosimetry is an important method of quality assurance, but clinical decisions should be made based on 3D-reconstructed CT image calculations. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Improved photoacoustic dosimetry for retinal laser surgery

    NASA Astrophysics Data System (ADS)

    Dufour, Suzie; Brown, Robert B.; Gallant, Pascal; Mermut, Ozzy

    2018-02-01

    Lasers are employed for numerous medical interventions by exploiting ablative, disruptive or thermal effects. In ocular procedures, lasers have been used for decades to treat diseases such as diabetic retinopathy, macular edema and aged related macular degeneration via photocoagulation of retinal tissues. Although laser photocoagulation is well established in today's practice, efforts to improve clinical outcomes by reducing the collateral damage from thermal diffusion is leading to novel treatments using shorter (μs) laser pulses (e.g. selective retinal therapy) which result in physical rather than thermal damage. However, for these new techniques to be widely utilized, a method is required to ensure safe but sufficient dosage has been applied, since no visible effects can be seen by ophthalmoscopy directly post treatment. Photoacoustic feedback presents an attractive solution, as the signal is dependent directly on absorbed dosage. Here, we present a method that takes advantage of temporal pulse formatting technology to minimize variation in absorbed dose in ophthalmic laser treatment and provide intelligent dosimetry feedback based on photoacoustic (PA) response. This method tailors the pulse to match the frequency response of the sample and/or detection chain. Depending on the system, this may include the absorbing particle size, the laser beam diameter, the laser pulse duration, tissue acoustic properties and the acoustic detector frequency response. A significant improvement (<7x) of photoacoustic signal-to-noise ratio over equivalent traditional pulse formats have been achieved, while spectral analysis of the detected signal provides indications of cavitation events and other sample properties.

  13. THE VIEW FROM THE TRENCHES: PART 2–TECHNICAL CONSIDERATIONS FOR EPR SCREENING

    PubMed Central

    Nicolalde, Roberto J.; Gougelet, Robert M.; Rea, Michael; Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej M.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders’ feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders’ recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods. PMID:20065674

  14. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  15. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  16. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    PubMed

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of the Pool Critical Assembly Benchmark with Explicitly-Modeled Geometry using MCNP6

    DOE PAGES

    Kulesza, Joel A.; Martz, Roger Lee

    2017-03-01

    Despite being one of the most widely used benchmarks for qualifying light water reactor (LWR) radiation transport methods and data, no benchmark calculation of the Oak Ridge National Laboratory (ORNL) Pool Critical Assembly (PCA) pressure vessel wall benchmark facility (PVWBF) using MCNP6 with explicitly modeled core geometry exists. As such, this paper provides results for such an analysis. First, a criticality calculation is used to construct the fixed source term. Next, ADVANTG-generated variance reduction parameters are used within the final MCNP6 fixed source calculations. These calculations provide unadjusted dosimetry results using three sets of dosimetry reaction cross sections of varyingmore » ages (those packaged with MCNP6, from the IRDF-2002 multi-group library, and from the ACE-formatted IRDFF v1.05 library). These results are then compared to two different sets of measured reaction rates. The comparison agrees in an overall sense within 2% and on a specific reaction- and dosimetry location-basis within 5%. Except for the neptunium dosimetry, the individual foil raw calculation-to-experiment comparisons usually agree within 10% but is typically greater than unity. Finally, in the course of developing these calculations, geometry that has previously not been completely specified is provided herein for the convenience of future analysts.« less

  18. Determination of the active volumes of solid-state photon-beam dosimetry detectors using the PTB proton microbeam.

    PubMed

    Poppinga, Daniela; Delfs, Bjoern; Meyners, Jutta; Langner, Frank; Giesen, Ulrich; Harder, Dietrich; Poppe, Bjoern; Looe, Hui K

    2018-05-04

    This study aims at the experimental determination of the diameters and thicknesses of the active volumes of solid-state photon-beam detectors for clinical dosimetry. The 10 MeV proton microbeam of the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig) was used to examine two synthetic diamond detectors, type microDiamond (PTW Freiburg, Germany), and the silicon detectors Diode E (PTW Freiburg, Germany) and Razor Diode (Iba Dosimetry, Germany). The knowledge of the dimensions of their active volumes is essential for their Monte Carlo simulation and their applications in small-field photon-beam dosimetry. The diameter of the active detector volume was determined from the detector current profile recorded by radially scanning the proton microbeam across the detector. The thickness of the active detector volume was determined from the detector's electrical current, the number of protons incident per time interval and their mean stopping power in the active volume. The mean energy of the protons entering this volume was assessed by comparing the measured and the simulated influence of the thickness of a stack of aluminum preabsorber foils on the detector signal. For all detector types investigated, the diameters measured for the active volume closely agreed with the manufacturers' data. For the silicon Diode E detector, the thickness determined for the active volume agreed with the manufacturer's data, while for the microDiamond detectors and the Razor Diode, the thicknesses measured slightly exceeded those stated by the manufacturers. The PTB microbeam facility was used to analyze the diameters and thicknesses of the active volumes of photon dosimetry detectors for the first time. A new method of determining the thickness values with an uncertainty of ±10% was applied. The results appear useful for further consolidating detailed geometrical knowledge of the solid-state detectors investigated, which are used in clinical small-field photon-beam dosimetry. © 2018 American Association of Physicists in Medicine.

  19. WE-E-18A-04: Precision In-Vivo Dosimetry Using Optically Stimulated Luminescence Dosimeters and a Pulsed-Stimulating Dose Reader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Herrick, A; Hoke, S

    Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from themore » calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer is 4%. Following the proposed approach, it can be controlled to 2%.« less

  20. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafermore » high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.« less

  1. Polynomial Chaos decomposition applied to stochastic dosimetry: study of the influence of the magnetic field orientation on the pregnant woman exposure at 50 Hz.

    PubMed

    Liorni, I; Parazzini, M; Fiocchi, S; Guadagnin, V; Ravazzani, P

    2014-01-01

    Polynomial Chaos (PC) is a decomposition method used to build a meta-model, which approximates the unknown response of a model. In this paper the PC method is applied to the stochastic dosimetry to assess the variability of human exposure due to the change of the orientation of the B-field vector respect to the human body. In detail, the analysis of the pregnant woman exposure at 7 months of gestational age is carried out, to build-up a statistical meta-model of the induced electric field for each fetal tissue and in the fetal whole-body by means of the PC expansion as a function of the B-field orientation, considering a uniform exposure at 50 Hz.

  2. Radiographic film dosimetry of proton beams for depth‐dose constancy check and beam profile measurement

    PubMed Central

    Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in‐phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off‐axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread‐out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5 mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was reproducible within 10%. These large discrepancies were identified to have been contributed by film processor uncertainty across a layer of film and the misalignment of film edge to the frontal phantom surface. The deviations could drop from 5 to 2 mm in SOBP and from 10% to 4.5% at 5 cm depth in a well‐controlled processor condition (i.e., warm up). In addition to the validation of the calibration method done by the DD measurements, the concurrent film and IC measurement independently validated the model by showing the constancy of depth‐dependent calibration factors. For profile measurement, the film showed good agreement with ion chamber measurement. In agreement with the experimental findings, computationally obtained ratio of film dose to water dose assisted understanding of the trend of the film response by revealing relatively large and small variances of the response for DD and beam profile measurements, respectively. Conclusions are as follows. For proton beams, radiographic film proved to offer accurate beam profile measurements. The adaptive calibration method proposed in this study was validated. Using the method, film dosimetry could offer reasonably accurate DD constancy checks, when provided with a well‐controlled processor condition. Although the processor warming up can promote a uniform processing across a single layer of the film, the processing remains as a challenge. PACS number: 87 PMID:26103499

  3. Poster - 24: Characterization of the energy dependence of high-sensitivity MCP-N TLD and Al2O3:C OSLD in-vivo dosimetry systems for 40–100 kVp energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, Yannick; Kuznetsova, Svetlana; Barajas, E

    Purpose: To characterize the energy dependence of high-sensitivity MCP-N TLD and Al{sub 2}O{sub 3}:C OSLD dosimetry systems at low (40–100 kVp) energies for in-vivo dosimetry. Methods: We assessed the variation of response with energy of two detectors in the 40–100 kVp energy range: high-sensitivity MCP-N TLDs (LiF:Mg,Cu,P) and OSLDs (Al{sub 2}O{sub 3}:C). The detectors were irradiated with an XRad 320ix biological irradiator under reference conditions. The delivered dose was 10 cGy for 7 beam qualities ranging from 40–100 kVp, 1.7–4.0 mm Al, and effective energies 26.9–37.9 keV. Both sets of detectors were also irradiated under reference conditions at 6 MVmore » using a Varian Clinac 21Ex to assess the change in response from high-energy beams. Results: The MCP-N high-sensitivity TLDs were relatively insensitive to energies in the kV range, as their response varied by ±5%, i.e. well within the reproducibility limits of these detectors. However, the OSLDs exhibited a linearly-decreasing response with energy with a response 18.7% higher at 40 kVp than at 100 kVp for the same nominal dose. Compared to the 6 MV beams used in conventional radiotherapy, OSLDs responded 3.3–3.9 times higher depending on beam quality while the MCP-N TLD response was unchanged within experimental uncertainty. Conclusions: Unlike the more commonly used TLD-100, the high-sensitivity MCP-N TLDs exhibit little to no energy response. OSLDs are shown to be highly energy-dependent, both from MV to kV and within the kV range.« less

  4. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L; Qian, J; Gonzales, R

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less

  5. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    PubMed

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Around Semipalatinsk nuclear test site: progress of dose estimations relevant to the consequences of nuclear tests (a summary of 3rd Dosimetry Workshop on the Semipalatinsk nuclear test site area, RIRBM, Hiroshima University, Hiroshima, 9-11 of March, 2005).

    PubMed

    Stepanenko, Valeriy F; Hoshi, Masaharu; Bailiff, Ian K; Ivannikov, Alexander I; Toyoda, Shin; Yamamoto, Masayoshi; Simon, Steven L; Matsuo, Masatsugu; Kawano, Noriyuki; Zhumadilov, Zhaxybay; Sasaki, Masao S; Rosenson, Rafail I; Apsalikov, Kazbek N

    2006-02-01

    The paper is an analytical overview of the main results presented at the 3rd Dosimetry Workshop in Hiroshima(9-11 of March 2005), where different aspects of the dose reconstruction around the Semipalatinsk nuclear test site(SNTS) were discussed and summarized. The results of the international intercomparison of the retrospective luminescence dosimetry(RLD) method for Dolon' village(Kazakhstan) were presented at the Workshop and good concurrence between dose estimations by different laboratories from 6 countries (Japan, Russia, USA, Germany, Finland and UK) was pointed out. The accumulated dose values in brick for a common depth of 10mm depth obtained independently by all participating laboratories were in good agreement for all four brick samples from Dolon' village, Kazakhstan, with the average value of the local gamma dose due to fallout (near the sampling locations) being about 220 mGy(background dose has been subtracted).Furthermore, using a conversion factor of about 2 to obtain the free-in-air dose, a value of local dose approximately 440 mGy is obtained, which supports the results of external dose calculations for Dolon': recently published soil contamination data, archive information and new models were used for refining dose calculations and the external dose in air for Dolon village was estimated to be about 500 mGy. The results of electron spin resonance(ESR) dosimetry with tooth enamel have demonstrated the notable progress in application of ESR dosimetry to the problems of dose reconstruction around the Semipalatinsk nuclear test site. At the present moment, dose estimates by the ESR method have become more consistent with calculated values and with retrospective luminescence dosimetry data, but differences between ESR dose estimates and RLD/calculation data were noted. For example mean ESR dose for eligible tooth samples from Dolon' village was estimated to be about 140 mGy(above background dose), which is less than dose values obtained by RLD and calculations. A possible explanation of the differences between ESR and RLD/calculations doses is the following: for interpretation of ESR data the "shielding and behaviour" factors for investigated persons should be taken into account. The "upper level" of the combination of "shielding and behaviour" factors of dose reduction for inhabitants of Dolon' village of about 0.28 was obtained by comparing the individual ESR tooth enamel dose estimates with the calculated mean dose for this settlement. The biological dosimetry data related to the settlements near SNTS were presented at the Workshop. A higher incidence of unstable chromosome aberrations, micronucleus in lymphocytes, nuclear abnormalities of thyroid follicular cells, T-cell receptor mutations in peripheral blood were found for exposed areas (Dolon', Sarjal) in comparison with unexposed ones(Kokpekty). The significant greater frequency of stable translocations (results of analyses of chromosome aberrations in lymphocytes by the FISH technique) was demonstrated for Dolon' village in comparison with Chekoman(unexposed village). The elevated level of stable translocations in Dolon' corresponds to a dose of about 180 mSv, which is close to the results of ESR dosimetry for this village. The importance of investigating specific morphological types of thyroid nodules for thyroid dosimetry studies was pointed out. In general the 3rd Dosimetry Workshop has demonstrated remarkable progress in developing an international level of common approaches for retrospective dose estimations around the SNTS and in understanding the tasks for the future joint work in this direction. In the framework of a special session the problems of developing a database and registry in order to support epidemiological studies around SNTS were discussed. The results of investigation of psychological consequences of nuclear tests, which are expressed in the form of verbal behaviour, were presented at this session as well.

  7. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the differences was analyzed. The average difference between the measured and the calculated dose with the lens applicator was 16.8 % ± 10.4 % with a micro MOSFET dosimeter and 16.6 % ± 10.9% with a standard MOSFET dosimeter. The average difference without the lens applicator was 35.9% ± 41.5% with micro MOSFET dosimeter and 42.9% ± 52.2% with standard MOSFET dosimeter. The maximum difference with micro MOSFET dosimeter was 46% with the applicator and 188.4% without the applicator. For the standard MOSFET dosimeter, the maximum difference was 44.4% with the applicator and 246.4% without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured dose during in-vivo measurement for the eye lens as compared to in-vivo measurement at the surface of the eyelid. Learning Objectives: To understand limitations of dose calculation with commercial treatment planning system for eye lens during radiotherapy To learn about current in-vivo dosimetry methods for eye lens in the clinic To understand limitations of in-vivo dosimetry for eye lens during radiotherapy Di Zhang is an employee of Toshiba America Medical Systems.« less

  8. The Latin American Biological Dosimetry Network (LBDNet).

    PubMed

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  10. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.

    PubMed

    Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C

    1982-11-01

    Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.

  11. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.

    PubMed

    Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y

    2006-01-01

    To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.

  12. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  13. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037

  14. Experimental method of in-vivo dosimetry without build-up device on the skin for external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Nam, Jiho; Lee, Jayoung; Park, Dahl; Baek, Cheol-Ha; Kim, Wontaek; Ki, Yongkan; Kim, Dongwon

    2015-06-01

    Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists.

  15. Determination of U, Th and K in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-11-01

    Knowledge of the content of natural radionuclides in bricks can be important in some cases in dosimetry and application of ionizing radiation. Dosimetry of naturally occurring radionuclides in matter (NORM) in general is one of them, the other one, related to radiation protection, is radon exposure evaluation, and finally, it is needed for the thermoluminescence (TL) dating method. The internal dose rate inside bricks is caused mostly by contributions of the natural radionuclides 238U, 232Th, radionuclides of their decay chains, and 40K. The decay chain of 235U is usually much less important. The concentrations of 238U, 232Th and 40K were measured by various methods, namely by gamma-ray spectrometry, X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA) which was used as a reference method. These methods were compared from the point of view of accuracy, limit of detection (LOD), amount of sample needed and sample handling, time demands, and instrument availability.

  16. Computer Aided Dosimetry and Verification of Exposure to Radiation

    NASA Astrophysics Data System (ADS)

    Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise

    2002-06-01

    In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)

  17. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    PubMed

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  18. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.

    PubMed

    Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas

    2014-03-01

    (64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision (predicted value: 0.0252 mSv/Mbq, Observed value: 0.0315 mSv/MBq) thus validating our approach for human dosimetry estimation. Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of (64)Cu-DOTA-AE105. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.

  20. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

Top