Science.gov

Sample records for dot interfacial layer

  1. Influence of interfacial oxide on the optical properties of single layer CdTe/CdS quantum dots in porous silicon scaffolds

    SciTech Connect

    Gaur, Girija; Fleetwood, Daniel M.; Weller, Robert A.; Reed, Robert A.; Weiss, Sharon M.; Koktysh, Dmitry S.

    2015-08-10

    Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ∼0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (∼16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO{sub 2}) frameworks (∼78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.

  2. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.

    PubMed

    Shen, Chao; Fichou, Denis; Wang, Qing

    2016-04-20

    Quantum-dot-sensitized solar cells (QDSCs) are promising solar-energy-conversion devices, as low-cost alternatives to the prevailing photovoltaic technologies. Compared with molecular dyes, nanocrystalline quantum dot (QD) light absorbers exhibit higher molar extinction coefficients and a tunable photoresponse. However, the power-conversion efficiencies (PCEs) of QDSCs are generally below 9.5 %, far behind their molecular sensitizer counterparts (up to 13 %). These low PCEs have been attributed to a large free-energy loss during sensitizer regeneration, energy loss during the charge-carrier transport and transfer processes, and inefficient charge separation at the QD/electrolyte interfaces, and various interfacial engineering strategies for enhancing the PCE and cell stability have been reported. Herein, we review recent progress in the interfacial engineering of QDSCs and discuss future prospects for the development of highly efficient and stable QDSCs.

  3. Modeling interfacial charge transport of quantum dots using cyclic voltammetry

    NASA Astrophysics Data System (ADS)

    Tobias, Andrew K.; Jones, Marcus

    2011-10-01

    Quantum dot applications are numerous and range from photovoltaic devices and lasers, to bio labeling. Complexities in the electronic band structure of quantum dots create the necessity for analysis techniques that can accurately and reproducibly provide their absolute band energies. Cyclic voltammetry (CV) is a novel candidate for these studies and has the potential to become a useful tool in engineering new nanocrystal technology, by providing information necessary for predicting and modeling interfacial charge transfer to and from quantum dots. Advancing from previous reports of nanocrystal CV, a carbon paste electrode was utilized in an attempt to increase measured current by ensuring intimate contact between nanocrystals and the electrode. Our goal was to investigate band energies and model nanocrystal-molecule electron transfer systems.

  4. Interfacial Layer Optimization in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Litofsky, Joshua; Lafalce, Evan; Jiang, Xiaomei

    2014-03-01

    Organic photovoltaic devices (OPVs) based on benchmark π - conjugated polymer polythiophene and electron acceptor PCBM are made up of a sandwich-like structure of multifunctional layers. Interfacial layers (IL) facilitate charge transport between the charge generation layer and the electrodes and enhance charge extraction. Optimizing the IL thus provides one mean of maximizing the efficiency of OPVs. Various electron transport layers such as ZnO and LiF were used, and hole transport layers included PEDOT:PSS and V2O5. Two different device architectures were explored: conventional structure with ITO serving as an anode and inverted structure when ITO acts as a cathode. Using various deposition techniques, we worked to optimize IL thickness and film formation methods. By analyzing device shunt and series resistances using a standard diode equation, we were able to identify the optimal parameters for device performance. The combination of thin IL with electrodes of appropriate work function yielded much better results compared to the control device with no IL. We can use these results and techniques to further optimize future OPV devices based on other novel material systems. This work was supported by the NSF REU grant # DMR-1263066: REU Site in Applied Physics at USF.

  5. Review of interfacial layer's effect on thermal conductivity in nanofluid

    NASA Astrophysics Data System (ADS)

    Kotia, Ankit; Borkakoti, Sheeba; Deval, Piyush; Ghosh, Subrata Kumar

    2017-01-01

    An ordered liquid layer around the particle-liquid interface is called as interfacial layer. It has been observed that interfacial layer is an essential parameter for determining the effective thermal conductivity of nanofluids. The review attempts to summarize the prominent articles related to interfacial layer effect on the thermal conductivity of nanofluids. First section of the paper discusses about various experimental approaches used to describe the effect of interfacial layer. Second section deals with about the mathematical models and assumed values regarding the thickness of interfacial layer by several authors. A review of previous works featuring mathematical investigations and experimental approaches seem to be suggesting that, interfacial layer have dominating effect on the effective thermal conductivity of the nanofluids. Third section of the paper deals with various mathematical models available in open literature for interfacial layer thermal conductivity. In the last section, models for effective thermal conductivity of the nanofluids considering the interfacial layer and percentage deviations in the predictions of mathematical models have been discussed.

  6. Interfacial Stability in a Two-Layer Benard Problem.

    DTIC Science & Technology

    1985-04-01

    STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS

  7. Tailored interfacial rheology for gastric stable adsorption layers.

    PubMed

    Scheuble, N; Geue, T; Windhab, E J; Fischer, P

    2014-08-11

    Human lipid digestion begins at the interface of oil and water by interfacial adsorption of lipases. Tailoring the available surface area for lipase activity can lead to specific lipid sensing in the body, thus, tailored satiety hormone release. In this study we present biopolymer layers at the MCT-oil/water interface with different stabilities under human gastric environment (37 °C, pH 2, pepsin). Physicochemical changes and enzymatic degradation of interfacial layers were monitored online by interfacial shear rheology. We show the weakening of β-lactoglobulin (β-lg) layers at body temperature and acidification and their hydrolysis by pepsin. If sufficient concentrations of nanocrystalline cellulose (NCC) are given to an existing β-lg layer, this weakening is buffered and the proteolysis delayed. A synergistic, composite layer is formed by adding methylated NCC to the β-lg layer. This layer thermogels at body temperature and resists hydrolysis by pepsin. Coexistence of these two emulsifiers at the air/water interface is evidenced by neutron reflectometry measurements, where morphological information are extracted. The utilized layers and their analysis provide knowledge of physicochemical changes during in vitro digestion of interfaces, which promote functional food formulations.

  8. Drop impact on liquid film: dynamics of interfacial gas layer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2016-11-01

    Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.

  9. Enhancement of photoluminescence in ZnS/ZnO quantum dots interfacial heterostructures

    SciTech Connect

    Rajalakshmi, M.; Sohila, S.; Ramesh, R.; Bhalerao, G.M.

    2012-09-15

    Highlights: ► ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. ► Interfacial heterostructure formation of ZnS/ZnO QDs is seen in HRTEM. ► Enormous enhancement of UV emission (∼10 times) in ZnS/ZnO QDs heterostructure is observed. ► Phonon confinement effect is seen in the Raman spectrum. -- Abstract: ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. HRTEM image showed small nanocrystals of size 4 nm and the magnified image of single quantum dot shows interfacial heterostructure formation. The optical absorption spectrum shows a blue shift of 0.19 and 0.23 eV for ZnO and ZnS QDs, respectively. This is due to the confinement of charge carries within the nanostructures. Enormous enhancement in UV emission (10 times) is reported which is attributed to interfacial heterostructure formation. Raman spectrum shows phonons of wurtzite ZnS and ZnO. Phonon confinement effect is seen in the Raman spectrum wherein LO phonon peaks of ZnS and ZnO are shifted towards lower wavenumber side and are broadened.

  10. Role of a nucleation layer in suppressing interfacial pitting in

    NASA Astrophysics Data System (ADS)

    Ballal, A. K.; Salamanca-Riba, L.; Partin, D. L.; Heremans, J.; Green, L.; Fuller, B. K.

    1993-04-01

    In this work, we investigate the role of a low temperature nucleation layer on the interfacial properties of InAs epilayers grown on (100) semi-insulating InP substrates using a two-step metalorganic chemical vapor deposition method. Cross-sectional and plan-view transmission electron microscopy studies were carried out on InAs films of nearly equal total film thicknesses but for different thicknesses of a nucleation layer of InAs deposited at low temperature on the substrate. Our studies show that thermal etchpits are created at the interface between the InAs film, and the InP substrate for thin nucleation layer thicknesses. This is because the low temperature nucleation layer of InAs does not cover completely the surface of the InP substrate. Hence, when the temperature is raised to deposit the bulk of the InAs film, severe thermal pitting is observed at the interface. These thermal etchpits are sources of threading dislocations. To obtain high quality InAs films and suppress interfacial pitting there is an optimum thickness of the nucleation layer. Also, our studies show that there is a relationship between the density of defects in the film and the thickness of the nucleation layer. This in turn relates to the variation of the electronic properties of the InAs films. We have observed that for all nucleation layer thicknesses, the density of threading dislocations is higher close to the interface than at the free surface of the film.

  11. Organic photovoltaic device with interfacial layer and method of fabricating same

    DOEpatents

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  12. Hydroxyl-Terminated CuInS2-Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells.

    PubMed

    Chen, Hui; Chao, Pengjie; Han, Dengbao; Wang, Huan; Miao, Jingsheng; Zhong, Haizheng; Meng, Hong; He, Feng

    2017-03-01

    The use of interfacial modifiers on cathode or anode layers can effectively reduce the recombination loss and thus have potential to enhance the device performance of polymer solar cells. In this work, we demonstrated that hydroxyl-terminated CuInS2-based quantum dots could be potential cathode interfacial modifiers on ZnO layer for inverted polymer solar cells. By casting of a thin film of CuInS2-based quantum dots onto ZnO layer, the controlled devices show obvious enhancements of open-circuit voltage, short-circuit current, and fill factor. With an optimized interfacial layer with ∼7 nm thickness, an improvement of power conversion efficiency up to 16% is obtained and the optimized power conversion efficiency of PTB7-based (PTB7: poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl

  13. The effect of chain rigidity on the interfacial layer thickness and dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.

    There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.

  14. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    PubMed

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  15. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  16. Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1976-01-01

    Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs.

  17. Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Jin, Yakang; Liu, Xuefeng; Liu, Zilong; Lu, Shuangfang; Xue, Qingzhong

    2016-04-01

    A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore-throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media.

  18. Effect of interfacial states on the binding energies of electrons and holes in InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Zunger, Alex

    1998-09-01

    The interface between an InAs quantum dot and its GaAs cap in ``self-assembled'' nanostructures is nonhomogeneously strained. We show that this strain can lead to localization of a GaAs-derived X1c-type interfacial electron state. As hydrostatic pressure is applied, this state in the GaAs barrier turns into the conduction-band minimum of the InAs/GaAs dot system. Strain splits the degeneracy of this X1c state and is predicted to cause electrons to localize in the GaAs barrier above the pyramidal tip. Calculation (present work) or measurement (Itskevich et al.) of the emission energy from this state to the hole state can provide the hole binding energy, Δ(h)dot. Combining this with the zero-pressure electron-hole recombination energy gives the electron binding energy, Δ(e)dot. Our calculations show Δ(h)dot~270 meV (weakly pressure dependent) and Δ(e)dot~100 meV at P=0. The measured values are Δ(h)dot~235 meV (weakly pressure dependent) and Δ(e)dot~50 meV at P=0. We examine the discrepancy between these values in the light of wave-function localization and the pressure dependence of the hole binding energy.

  19. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  20. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOEpatents

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  1. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    DOE PAGES

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; ...

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations.more » The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi2O2 layer and [Fe0.5Mn0.5]O6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.« less

  2. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    SciTech Connect

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L.; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations. The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi2O2 layer and [Fe0.5Mn0.5]O6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.

  3. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

    PubMed

    Kamat, Prashant V

    2012-11-20

    The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye

  4. Optimization of Residual Stresses in MMC's Using Compensating/Compliant Interfacial Layers. Part 2: OPTCOMP User's Guide

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1994-01-01

    A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.

  5. Optimization of residual stresses in MMC's using compensating/compliant interfacial layers. Part 2: OPTCOMP user's guide

    NASA Astrophysics Data System (ADS)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1994-05-01

    A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.

  6. Probing nonlinear rheology layer-by-layer in interfacial hydration water

    PubMed Central

    Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, QHwan; An, Sangmin; Jhe, Wonho

    2015-01-01

    Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 106 s−1 shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10−6 s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water. PMID:26644571

  7. Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots.

    PubMed

    Wu, Kaifeng; Liang, Guijie; Shang, Qiongyi; Ren, Yueping; Kong, Degui; Lian, Tianquan

    2015-10-14

    Recently reported colloidal lead halide perovskite quantum dots (QDs) with tunable photoluminescence (PL) wavelengths covering the whole visible spectrum and exceptionally high PL quantum yields (QYs, 50-90%) constitute a new family of functional materials with potential applications in light-harvesting and -emitting devices. By transient absorption spectroscopy, we show that the high PL QYs (∼79%) can be attributed to negligible electron or hole trapping pathways in CsPbBr3 QDs: ∼94% of lowest excitonic states decayed with a single-exponential time constant of 4.5 ± 0.2 ns. Furthermore, excitons in CsPbBr3 QDs can be efficiently dissociated in the presence of electron or hole acceptors. The half-lives of electron transfer (ET) to benzoquinone and subsequent charge recombination are 65 ± 5 ps and 2.6 ± 0.4 ns, respectively. The half-lives for hole transfer (HT) to phenothiazine and the subsequent charge recombination are 49 ± 6 ps and 1.0 ± 0.2 ns, respectively. The lack of electron and hole traps and fast interfacial ET and HT rates are key properties that may enable the development of efficient lead halide perovskite QDs-based light-harvesting and -emitting devices.

  8. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    SciTech Connect

    Sarpi, B.; Daineche, R.; Girardeaux, C.; Bertoglio, M.; Derivaux, F.; Vizzini, S.; Biberian, J. P.; Hemeryck, A.

    2015-01-12

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicide interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.

  9. Self-healing sandwich structures incorporating an interfacial layer with vascular network

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Peters, Kara; Li, Yulong

    2013-02-01

    A self-healing capability specifically targeted for sandwich composite laminates based on interfacial layers with built-in vascular networks is presented. The self-healing occurs at the facesheet-core interface through an additional interfacial layer to seal facesheet cracks and rebond facesheet-core regions. The efficacy of introducing the self-healing system at the facesheet-core interface is evaluated through four-point bend and edgewise compression testing of representative foam core sandwich composite specimens with impact induced damage. The self-healing interfacial layer partially restored the specific initial stiffness, doubling the residual initial stiffness as compared to the control specimen after the impact event. The restoration of the ultimate specific skin strength was less successful. The results also highlight the critical challenge in self-healing of sandwich composites, which is to rebond facesheets which have separated from the core material.

  10. Interfacial interactions between polyethylene matrix and clay layers in polyethylene/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Abu-Zurayk, R.

    2015-10-01

    Polyethylene/clay nanocomposites were prepared as blown films using different formulae (clay contents (4 and 6 wt%) and compatibilizer/clay ratio (1/2, 1.0, 2.0)). Structure and mechanical behaviour were tested. It was found that blown film extrusion process decreased the tactoids size and consequently enhanced the exfoliation degree of the clay layers inside the polymer matrix, which is due to the elongational stress during extrusion. Addition of clay had some effects on mechanical behaviour. There was an increase of yield strength (max 32%). Yield strength is related to the interfacial interaction between the polymer and the clay layers in the nanocomposites, which would be enhanced by enhancing the compatibility between polymer and clay layers. Correlation analysis showed good correlation between compatibility and interfacial interaction parameters, and between parameters of interfacial interaction, structure and yield strength.

  11. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure

    SciTech Connect

    Jagannadham, K.

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

  12. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  13. Mass spectrometry of interfacial layers during fast aqueous aerosol/ozone gas reactions of atmospheric interest

    NASA Astrophysics Data System (ADS)

    Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi, A. J.

    2008-04-01

    The oxidations of sulfite and iodide in the interfacial layers of aqueous microdroplets exposed to O 3(g) for 1 ms are investigated by online mass spectrometry of the electrostatically ejected anions. S(IV) oxidation losses in Na 2SO 3 microdroplets are proportional to [S(IV)] [O 3(g)] up to ˜90% conversion. I - is more abundant than HSO3- in the interfacial layers of equimolar (Na 2SO 3 + NaI) microdroplets and ˜3 times more reactive than HSO3- toward O 3(aq) in bulk solution, but it is converted withminimalloss to I3- and IO3- plus a persistent ISO3- intermediate. These observations reveal unanticipated interfacial gradients, reactivity patterns and transport phenomena that had not been taken into account in previous treatments of fast gas-liquid reactions.

  14. Water adsorption in interfacial silane layers by neutron reflection

    SciTech Connect

    Kent, M.S.; McNamara, W.F.; Domeier, L.; Wong, A.P.Y.; Wu, W.L.

    1997-03-01

    It is well known that water plays an important role in the degradation of adhesive strength between a wide variety of materials. It is also well established that silane coupling agents can provide excellent bond durability in aqueous environments. However, the detrimental effects of interfacial water are not limited to adhesive failure. The present study was motivated by concerns in the printed circuit board industry regarding the loss of electrical resistance, as well as adhesive failure, which may arise from water at epoxy/silane/E-glass interphases. The commercial silane finish used in this study provides excellent adhesive strength between epoxy and E-glass, and remarkable bond durability even after extensive conditioning in boiling water or a pressure cooker. However, circuit boards with this finish do not perform well in insulation resistance testing following such conditioning. The goal of this work is to develop a detailed understanding of the mechanism by which water interacts with a resin/silane interphase, with a focus on the consequences for both electrical resistance and adhesion. The present report focuses on the measurement of profiles of adsorbed moisture by neutron reflection.

  15. Mechanisms governing the interfacial delamination of thermal barrier coating system with double ceramic layers

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Fan, Xueling; Wang, T. J.

    2016-05-01

    A systematic study of factors affecting the interfacial delamination of thermal barrier coating system (TBCs) with double ceramic layers (DCL) is presented. Crack driving forces for delaminations at two weak interfaces are examined. The results show that a thicker outermost ceramic layer can induce dramatic increase in crack driving force and make the interface between two ceramic coatings become more prone to delamination. The behavior is shown to be more prominent in TBCs with stiffer outmost coating. The thickness ratio of two ceramic layers is an important parameter for controlling the failure mechanisms and determining the lifetime of DCL TBCs under inservice condition. By accounting for the influences of thickness ratio of two ceramic layers and interfacial fracture toughnesses of two involved interfaces, the fracture mechanism map of DCL TBCs has been constructed, in which different failure mechanisms are identified. The results quanlitatively agree with the aviliable experimental data.

  16. Molecular dynamics simulation aiming at interfacial characteristics of polymer chains on nanotubes with different layers

    NASA Astrophysics Data System (ADS)

    Li, Kun; Gu, Boqin; Zhu, Wanfu

    2017-03-01

    A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.

  17. Optimization of residual stresses in MMC's through the variation of interfacial layer architectures and processing parameters

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.

  18. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    PubMed Central

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-01-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition. PMID:27527905

  19. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    PubMed

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  20. Interfacial double layer mediated electrochemical growth of thin-walled platinum nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiu; Kim, Sang Min; Cho, Sanghyun; Jang, Hee-Jeong; Liu, Lichun; Park, Sungho

    2017-01-01

    This work demonstrates that thin-walled platinum nanotubes can be readily synthesized by controlling the interfacial double layer in alumina nanochannels. The gradient distribution of ions in nanochannels enables the creation of Pt nanotubes with walls as thin as 5 nm at the top end when using a solution containing polyvinylpyrrolidone (PVP) and chloroplatinic acid (H2PtCl6) under the influence of an electric potential in nanochannels. The highly efficient formation of thin-walled Pt nanotubes is a result of the concentration gradient of {{{{PtCl}}}6}2- and a thick double layer, which was caused by the low concentration of Pt precursors and the enhanced surface charge density induced by protonated PVP steric adsorption. This well-controlled synthesis reveals that the interfacial double layer is a useful tool to tailor the structure of nanomaterials in a nanoscale space, and holds promise in the construction of more complex functional nanostructures.

  1. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry.

  2. Carrier dynamics in InAs/AlAs quantum dots: lack in carrier transfer from wetting layer to quantum dots.

    PubMed

    Shamirzaev, T S; Abramkin, D S; Nenashev, A V; Zhuravlev, K S; Trojánek, F; Dzurnák, B; Malý, P

    2010-04-16

    Structures with self-assembled InAs quantum dots (QDs) embedded in an AlAs matrix have been studied by steady-state and transient photoluminescence. It has been shown that in contrast to InAs/GaAs QD systems carriers are mainly captured by quantum dots directly from the AlAs matrix, while transfer of carriers captured by the wetting layer far away from QDs to the QDs is suppressed. At low temperatures the carriers captured by the wetting layer are localized by potential fluctuations at the wetting layer interface, while at high temperatures the carriers are delocalized but captured by nonradiative centers located in the wetting layer.

  3. Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.

    1992-01-01

    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.

  4. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    PubMed Central

    2017-01-01

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities and areal capacities. PMID:28280780

  5. Interfacial modulus mapping of layered dental ceramics using nanoindentation

    PubMed Central

    Bushby, Andrew J; P'ng, Ken MY; Wilson, Rory M

    2016-01-01

    PURPOSE The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load – partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X – ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces. PMID:28018566

  6. Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment

    NASA Astrophysics Data System (ADS)

    Bacca, Mattia; Booth, Jamie A.; Turner, Kimberly L.; McMeeking, Robert M.

    2016-11-01

    Bio-inspired fibrillar adhesives rely on the utilization of short-range intermolecular forces harnessed by intimate contact at fibril tips. The combined adhesive strength of multiple fibrils can only be utilized if equal load sharing (ELS) is obtained at detachment. Previous investigations have highlighted that mechanical coupling of fibrils through a compliant backing layer gives rise to load concentration and the nucleation and propagation of interfacial flaws. However, misalignment of the adhesive and contacting surface has not been considered in theoretical treatments of load sharing with backing layer interactions. Alignment imperfections are difficult to avoid for a flat-on-flat interfacial configuration. In this work we demonstrate that interfacial misalignment can significantly alter load sharing and the kinematics of detachment in a model adhesive system. Load sharing regimes dominated by backing layer interactions and misalignment are revealed, the transition between which is controlled by the misalignment angle, fibril separation, and fibril compliance. In the regime dominated by misalignment, backing layer deformation can counteract misalignment giving rise to improved load sharing when compared to an identical fibrillar array with a rigid backing layer. This result challenges the conventional belief that stiffer (and thinner) backing layers consistently reduce load concentration among fibrils. Finally, we obtain analytically the fibril compliance distribution required to harness backing layer interactions to obtain ELS. Through fibril compliance optimization, ELS can be obtained even with misalignment. However, since misalignment is typically not deterministic, it is of greater practical significance that the array optimized for perfect alignment exhibits load sharing superior to that of a homogeneous array subject to misalignment. These results inform the design of fibrillar arrays with graded compliance capable of exhibiting improved load sharing

  7. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoOx) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoOx interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoOx/CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  8. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    SciTech Connect

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-12-09

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO{sub 2}. Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO{sub 2} as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO{sub 2}. Dominant interfacial recombination pathways such as electron capture by TiO{sub 2} surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO{sub 2}, allowing electronic transport at TiO{sub 2}/h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO{sub 2}/CdSe interface.

  9. Interfacial-layers-free Ga2O3(Gd2O3)/Ge MOS Diodes

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Lin, T. D.; Lee, K. Y.; Huang, M. L.; Tung, L. T.; Hong, M.; Kwo, J.

    2008-03-01

    High κ dielectric Ga2O3(Gd2O3) films were deposited directly on Ge by Molecular-Beam-Epitaxy without the employment of GeON interfacial layer. Excellent electrical properties, such as a high κ value of 14.5, a low leakage current density of only 3x10-9 A/cm^2 at Vfb+1V, and well-behaved CV characteristics, were demonstrated, even being subjected to a 500^oC annealing in N2 ambient for 5 min. An abrupt Ga2O3(Gd2O3)/Ge interface without any interfacial layer was revealed by high-resolution transmission electron microscopy as well as in-situ x-ray photoelectron spectroscopy (XPS). Detailed XPS studies indicate that the oxide/Ge interface consists of mainly Ge-O-Gd bonding, distinctly different from that of native oxide. Furthermore, the 500^oC annealing did not change the chemical bonding, implying a great thermodynamic stability of the hetero-structure. The outstanding electrical and thermodynamic properties qualified Ga2O3(Gd2O3) as a promising dielectric for Ge and proved the GeON interfacial layer to be unnecessary.

  10. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid

    PubMed Central

    Pal, Rajinder

    2014-01-01

    Nanofluids are becoming increasingly popular as heat transfer fluids in a variety of industrial applications, due to their enhanced heat transfer characteristics. The thermal conductivity of nanofluids is usually found to be much larger than that predicted from the classical models, such as the Maxwell model. The key mechanism of enhancement of thermal conductivity of dilute nanofluids is the solvation of nanoparticles with a layer of matrix liquid. As of now, little is known quantitatively about the thermal conductivity of the interfacial layers surrounding the nanoparticles. In this article, a novel method is presented to determine the thermal conductivity of the interfacial layers of the nanoparticles. The proposed method allows the estimation of the thermal conductivity of interfacial layers based on the combined measurements of the intrinsic viscosity and intrinsic thermal conductivity of a bulk nanofluid. From the measured intrinsic viscosity of the nanofluid, the thickness of the interfacial layer is estimated. Using the known interfacial layer thickness along with the measured intrinsic thermal conductivity of the nanofluid, the thermal conductivity of the interfacial layer is estimated. The proposed method is validated by simulation and experimental results.

  11. Optimization of Residual Stresses in MMC's through Process Parameter Control and the use of Heterogeneous Compensating/Compliant Interfacial Layers. OPTCOMP2 User's Guide

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.

  12. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    SciTech Connect

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol; Han, Dong-Soo; Kim, June-Seo Swagten, Henk J. M.

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  13. Interfacial magnetic anisotropy of Co90Zr10 on Pt layer.

    PubMed

    Kil, Joon Pyo; Bae, Gi Yeol; Suh, Dong Ik; Choi, Won Joon; Noh, Jae Sung; Park, Wanjun

    2014-11-01

    Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (K(u)) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (K(i)) as the directly related parameters to switching and thermal stability, are estimated as 1.64 erg/cm2 from CoZr/Pt multilayered system.

  14. Electrical properties of the amorphous interfacial layer between Al electrodes and epitaxial NiO films

    SciTech Connect

    Hyuck Jang, Jae; Kwon, Ji-Hwan; Kim, Miyoung; Ran Lee, Seung; Char, Kookrin

    2012-04-23

    The amorphous interfacial layer (a-IL) between Al electrode and epitaxial NiO films were studied using electron energy-loss spectroscopy (EELS) and energy-dispersive x-ray spectroscopy. Two distinct properties were found in the a-IL, i.e., a lower metallic and an upper insulating layer. EELS results revealed that the metallic Ni atoms were responsible for the conducting nature of the lower oxide amorphous layer. The resistance behavior of Al/a-IL/epi-NiO was changed from a high to a low resistance state after forming process. The resistance change could be explained by the formation of a nanocrystalline metal alloy in the insulating amorphous layer.

  15. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film

    NASA Astrophysics Data System (ADS)

    Li, Hongchao; Tang, Ningxin; Yang, Hongzhi; Leng, Xian; Zou, Jianpeng

    2015-11-01

    We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO2) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO2 nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO2 nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO2 nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35-45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO2 nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  16. The effect of skin-depth interfacial defect layer in perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Gebremichael, Bizuneh; Mola, Genene Tessema

    2016-08-01

    The hole transport buffer layer (HTL) known as PEDOT:PSS is found to be sensitive to polar solvents often used in the preparation of solution-processed perovskite-based solar cell. We employed {CH}3 {NH}3 {PbI}3 perovskite absorber sandwiched between two charge transport layers to analyze the effect of precursor solvent. By introducing skin-depth interfacial defect layer (IDL) on PEDOT:PSS film we studied the overall performance of the devices using one-dimensional device simulator. Both enhanced conductivity and variations in valence band offset (VBO) of IDL were considered to analyze device performance. A power conversion efficiency (PCE) of the devices was found to grow by 35 % due to increased conductivity of IDL by a factor of 1000. Furthermore, we noted a drastic reduction in PCE of the device by reducing the work function of IDL by more than 0.3eV . The thickness of interfacial defect layer was also analyzed and found to decrease the PCE of the devices by 18 % for fourfold increase in IDL thickness. The analysis was remarkably reproduced the experimentally generated device parameters and will help to understand the underlying physical process in perovskite-based solar cell.

  17. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers.

    PubMed

    Zhao, Xin; Zhao, Jingwen; Lin, Zhi Yuan William; Pan, Guoqing; Zhu, Yueqi; Cheng, Yingsheng; Cui, Wenguo

    2015-06-01

    Implantable tissue engineering scaffolds with temporally programmable multi-drug release are recognized as promising tools to improve therapeutic effects. A good example would be one that exhibits initial anti-inflammatory and long-term anti-tumor activities after tumor resection. In this study, a new strategy for self-coated interfacial layer on drug-loaded mesoporous silica nanoparticles (MSNs) based on mussel-mimetic catecholamine polymer (polydopamine, PDA) layer was developed between inorganic and organic matrix for controlling drug release. When the interface PDA coated MSNs were encapsulated in electrospun poly(L-lactide) (PLLA) fibers, the release rates of drugs located inside/outside the interfacial layer could be finely controlled, with short-term release of anti-inflammation ibuprofen (IBU) for 30 days in absence of interfacial interactions and sustained long-term release of doxorubicin (DOX) for 90 days in presence of interfacial interactions to inhibit potential tumor recurrence. The DOX@MSN-PDA/IBU/PLLA hybrid fibrous scaffolds were further found to inhibit proliferation of inflammatory macrophages and cancerous HeLa cells, while supporting the normal stromal fibroblast adhesion and proliferation at different release stages. These results have suggested that the interfacial obstruction layer at the organic/inorganic phase was able to control the release of drugs inside (slow)/outside (rapid) the interfacial layer in a programmable manner. We believe such interface polymer strategy will find applications in where temporally controlled multi-drug delivery is needed.

  18. Layered double hydroxides as carriers for quantum dots@silica nanospheres.

    PubMed

    Stoica, Georgiana; Castelló Serrano, Iván; Figuerola, Albert; Ugarte, Irati; Pacios, Roberto; Palomares, Emilio

    2012-09-07

    Quantum dot-hydrotalcite layered nanoplatforms were successfully prepared following a one-pot synthesis. The process is very fast and a priori delamination of hydrotalcite is not a prerequisite for the intercalation of quantum dots. The novel materials were extensively characterized by X-ray diffraction, thermogravimetry, infrared spectroscopy, transmission electron microscopy, true color fluorescence microscopy, photoluminescence, and nitrogen adsorption. The quantum dot-hydrotalcite nanomaterials display extremely high stability in mimicking physiological media such as saline serum (pH 5.5) and PBS (pH 7.2). Yet, quantum dot release from the solid structure is noted. In order to prevent the leaking of quantum dots we have developed a novel strategy which consists of using tailor made double layered hydrotalcites as protecting shells for quantum dots embedded into silica nanospheres without changing either the materials or the optical properties.

  19. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  20. Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqiang; Gong, Xiangxiang; Qu, Yun; Han, Jie

    2016-08-01

    A modified interfacial polymerization of aniline is developed to fabricate hydrophobic and adhesive polyaniline (PANI) layer of rectangular microtubes on the glass substrate. The modified method uses pentanol as an organic medium to dissolve aniline monomer, with the water film of oxidant and surfactant on the glass substrate as water phase. The effects of some synthetic parameters (such as monomer concentration, alcohol molecular structure and surfactant type) on the morphology of PANI layer are studied for better understanding the fabrication of PANI nanostructures on the film. The alcohol molecular structure plays key role for the supermolecular assembly of PANI chains into nanostructures, while the surfactant may direct the array and deposition of these nanostructures on the glass substrate. The formation reason of PANI rectangular sub-microtubes is roughly interpreted according to our previous works. Wettability experiment indicates that the as-prepared PANI layer exhibits excellent hydrophobicity and high adhesive properties to water drop.

  1. Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses.

    PubMed

    Gyulai, G; Pénzes, Cs B; Mohai, M; Lohner, T; Petrik, P; Kurunczi, S; Kiss, É

    2011-10-15

    Biodegradable polyesters such as poly(lactic-co-glycolic acid) copolymers (PLGA) are preferred materials for drug carrier systems although their surface hydrophobicity greatly limits their use in controlled drug delivery. PLGA thin films on a solid support blended with PEG-containing compound (Pluronic) were used as model systems to study the interfacial interactions with aqueous media. Degree of surface hydrophilization was assessed by wettability, and X-ray photoelectron spectroscopy (XPS) measurements. Protein adsorption behavior was investigated by in situ spectroscopic ellipsometry. The degree of protein adsorption showed a good correlation with the hydrophilicity, and surface composition. Unexpectedly, the layer thickness was found to have a great impact on the interfacial characteristics of the polymer films in the investigated regime (20-200 nm). Thick layers presented higher hydrophilicity and great resistance to protein adsorption. That special behavior was explained as the result of the swelling of the polymer film combined with the partial dissolution of Pluronic from the layer. This finding might promote the rational design of surface modified biocompatible nanoparticles.

  2. Interface states of Ag/(110)GaAs Schottky diodes without and with interfacial layers

    SciTech Connect

    Platen, W.; Schmutzler, H.; Kohl, D.; Brauchle, K.; Wolter, K.

    1988-07-01

    GaAs(110) faces with different preparations: ultrahigh vacuum (UHV) cleaved, polished and etched, polished and sputtered: are prepared as Schottky diodes by the deposition of Ag. Diodes based on UHV-cleaved faces do show homogeneously distributed EL2 and EL5 states in deep level transient spectroscopy (DLTS). On polished and etched samples an additional interface state (IS) distribution with a density of 9 x 10/sup 11/ eV/sup -1/ cm/sup -2/ at the DLTS maximum appears. These states can be caused by defects at the oxidic interfacial layer. Polishing and sputtering also evokes the IS distribution. The absence of a DLTS signal from metal-induced gap states (MIGS) which pin the Fermi level at 0.49 eV above the valence-band maximum is related to the absence of an interfacial layer in the UHV prepared Schottky diodes. The sputter process increases the electron density in a thin layer below the interface by an As excess. The corresponding smaller extent of the barrier causes an additional electron emission via tunneling processes from the IS distribution. Furthermore, a near-interface state, EL6 (V/sub Ga/-V/sub As/), shows up. Its concentration at the interface attains N/sub EL6/ = 2.5 x 10/sup 16/ cm/sup -3/ comparable to the shallow donor concentration.

  3. Thermal conduction in polymeric nanofluids under mean field approximation: role of interfacial adsorption layers

    NASA Astrophysics Data System (ADS)

    Nisha, M. R.; Philip, J.

    2013-07-01

    Polymeric nanofluids of TiO2/PVA (polyvinyl alcohol) and Cu/PVA have been prepared by dispersing nanoparticles of TiO2 or metallic copper in PVA. The thermal diffusivities and thermal conductivities of these nanofluids have been measured as a function of particle loading following a thermal wave interference technique in a thermal wave resonant cavity. It is found that in both cases thermal conductivity increases with particle concentration, with Cu/PVA nanofluids showing a much larger increase. The results have been compared with the corresponding values calculated following different theoretical models. Comparison of the results with model-based calculations shows that the thermal conductivity variations in these nanofluids are within the framework of the classical mean field theory including the formation of thin interfacial adsorption layers around nanoparticles. Although the molecular weight of PVA is very high, it is found that the adsorption layer thickness is limited by the hydrodynamic radius of the nanoparticles. It is found that particle clustering followed by interfacial layering accounts for the larger increase in thermal conductivity found for Cu/PVA compared to TiO2/PVA.

  4. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Kim, Seojin; Park, Hanok; Yoo, Dong Jin; Leel, Soo-Hyoung

    2014-11-01

    Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers.

  5. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  6. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    PubMed Central

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM. PMID:26656721

  7. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  8. Two-layer synchronized ternary quantum-dot cellular automata wire crossings.

    PubMed

    Bajec, Iztok Lebar; Pečar, Primož

    2012-04-16

    : Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.

  9. Mechanism of interfacial layer suppression after performing surface Al(CH3)3 pretreatment during atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Xu, Min; Zhang, Chi; Ding, Shi-Jin; Lu, Hong-Liang; Chen, Wei; Sun, Qing-Qing; Zhang, David Wei; Wang, Li-Kang

    2006-11-01

    During atomic layer deposition of high permittivity (high-k) metal oxide gate dielectrics, an interfacial layer (IL) containing SiOx between high-k dielectric and Si substrate is almost unavoidable. However, an Al(CH3)3 (TMA) pretreatment for 3600s on H-terminated silicon surface can effectively reduce the interfacial layer from 1.7to0.5nm during atomic layer deposition of aluminum oxide. Interestingly, the surface TMA pretreatment increases the thickness of the initial IL during atomic layer deposition, but it greatly suppresses the final IL after 35 growth cycles. A reasonable mechanism is proposed based on the steric hindrance effect cofunctioning with the interfacial Al catalyzing effect.

  10. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  11. Formation of alternating interfacial layers in Au-12Ge/Ni joints

    PubMed Central

    Lin, Shih-kang; Tsai, Ming-yueh; Tsai, Ping-chun; Hsu, Bo-hsun

    2014-01-01

    Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300°C and 400°C. For the reactions at 300°C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon – the formation of (Au,Ni,Ge)/NiGe alternating layers – was observed for the reactions at 400°C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/···/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper. PMID:24690992

  12. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices.

    PubMed

    F Cauduro, André L; Dos Reis, Roberto; Chen, Gong; Schmid, Andreas K; Méthivier, Christophe; Rubahn, Horst-Günter; Bossard-Giannesini, Léo; Cruguel, Hervé; Witkowski, Nadine; Madsen, Morten

    2017-03-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We report on a work function increase of almost 2 eV after inducing in situ crystallization of the films at 500 °C, resulting in the formation of a single crystalline α-MoO3 overlaid by substoichiometric and highly disordered nanoaggregates. The surface nanoaggregates possess various electronic properties, such as a work function ranging from 5.5 eV up to 6.2 eV, as determined from low-energy electron microscopy studies. The crystalline underlayer possesses a work function greater than 6.3 eV, up to 6.9 eV, characteristic of a very clean and nearly defect-free MoO3. By combining electronic spectroscopies together with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers.

  13. Interfacial Layer Control by Dry Cleaning Technology for Polycrystalline and Single Crystalline Silicon Growth.

    PubMed

    Im, Dong-Hyun; Kong-Soo Lee; Kang, Yoongoo; Jeong, Myoungho; Park, Kwang Wuk; Lee, Soon-Gun; Ma, Jin-Won; Kim, Youngseok; Kim, Bonghyun; Im, Ki-Vin; Lim, Hanjin; Lee, Jeong Yong

    2016-05-01

    Native oxide removal prior to poly-Si contact and epitaxial growth of Si is the most critical technology to ensure process and device performances of poly-Si plugs and selective epitaxial growth (SEG) layers for DRAM, flash memory, and logic device. Recently, dry cleaning process for interfacial oxide removal has attracted a world-wide attention due to its superior passivation properties to conventional wet cleaning processes. In this study, we investigated the surface states of Si substrate during and after dry cleaning process, and the role of atomic elements including fluorine and hydrogen on the properties of subsequent deposited silicon layer using SIMS, XPS, and TEM analysis. The controlling of residual fluorine on the Si surface after dry cleaning is a key factor for clean interface. The mechanism of native oxide re-growth caused by residual fluorine after dry cleaning is proposed based on analytical results.

  14. Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces.

    PubMed

    Dasgupta, Neil P; Jung, Hee Joon; Trejo, Orlando; McDowell, Matthew T; Hryciw, Aaron; Brongersma, Mark; Sinclair, Robert; Prinz, Fritz B

    2011-03-09

    Quantum dots provide unique advantages in the design of novel optoelectronic devices owing to the ability to tune their properties as a function of size. Here we demonstrate a new technique for fabrication of quantum dots during the nucleation stage of atomic layer deposition (ALD) of PbS. Islands with sub-10 nm diameters were observed during the initial ALD cycles by transmission electron microscopy, and in situ observations of the coalescence and sublimation behavior of these islands show the possibility of further modifying the size and density of dots by annealing. The ALD process can be used to cover high-aspect-ratio nanostructures, as demonstrated by the uniform coating of a Si nanowire array with a single layer of PbS quantum dots. Photoluminescence measurements on the quantum dot/nanowire composites show a blue shift when the number of ALD cycles is decreased, suggesting a route to fabricate unique three-dimensional nanostructured devices such as solar cells.

  15. Charge Transfer as a Probe for the Interfacial Properties of Quantum Dot-Ligand Complexes

    NASA Astrophysics Data System (ADS)

    Weinberg, David Joseph

    This dissertation describes the study of charge transfer interactions between colloidal quantum dots (QDs) and molecular redox partners in the context of both fundamental investigations of charge recombination mechanisms in nanocrystal-molecule systems, and as a technique to probe the properties of the QD ligand shell. Charge separation in a system of CdS nanocrystals and organic hole acceptors results in the formation of a spin-correlated radical ion pair. Interrogating this photogenerated species with EPR and magnetic field effect transient absorption techniques reveals that the charge recombination dynamics of this donor-acceptor system are dictated by the radical pair intersystem crossing mechanism on the nanosecond timescale. These experiments also indicate that the photoinjected electron localizes at a CdS QD surface trap state, and the coupling between the electron and hole in this spin-correlated system is low. Additional studies involving the CdS QDs and organic hole acceptors are proposed which would investigate the exchange of charge and energy within the nanocrystal organic adlayer. Collisional charge transfer interactions between substituted benzoquinone molecules and PbS QDs coated with mixed monolayers of oleic acid and perfluorodecanethiol are monitored via photoluminescence and transient absorption spectroscopies. These experiments reveal that partially fluorinated ligand shells are less permeable to solution phase molecules and offer greater protection of the nanocrystal surface than their aliphatic counterparts. Only a small amount of fluorinated surfactant ( 20% surface coverage) is necessary to profoundly change the permeability of the ligand shell, and the protective nature of these fluorinated molecules is likely a combination of the molecular volume and oleophobicity of these ligands. Follow up work is discussed which would elucidate the influence of solvent and extent of surfactant fluorination on the permeability of these ligand shells, as

  16. Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Aidi; Dong, Chaoqing; Li, Liang; Yin, Jinjin; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2015-10-01

    Semiconductor quantum dots (QDs) are very important optical nanomaterials with a wide range of potential applications. However, blinking behavior of single QD is an intrinsic drawback for some biological and photoelectric applications based on single-particle emission. Herein we present a rational strategy for fabrication of non-blinking (Zn)CuInS/ZnS QDs in organic phase through in situ interfacial alloying approach. This new strategy includes three steps: synthesis of CuInS QDs, eliminating the interior traps of QDs by forming graded (Zn)CuInS alloyed QDs, modifying the surface traps of QDs by introducing ZnS shells onto (Zn)CuInS QDs using alkylthiols as sulfur source and surface ligands. The suppressed blinking mechanism was mainly attributed to modifying QDs traps from interior to exterior via a step-by-step modification. Non-blinking QDs show high quantum yield, symmetric emission spectra and excellent crystallinity, and will enable applications from biology to optoelectronics that were previously hindered by blinking behavior of traditional QDs.

  17. Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach

    PubMed Central

    Zhang, Aidi; Dong, Chaoqing; Li, Liang; Yin, Jinjin; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2015-01-01

    Semiconductor quantum dots (QDs) are very important optical nanomaterials with a wide range of potential applications. However, blinking behavior of single QD is an intrinsic drawback for some biological and photoelectric applications based on single-particle emission. Herein we present a rational strategy for fabrication of non-blinking (Zn)CuInS/ZnS QDs in organic phase through in situ interfacial alloying approach. This new strategy includes three steps: synthesis of CuInS QDs, eliminating the interior traps of QDs by forming graded (Zn)CuInS alloyed QDs, modifying the surface traps of QDs by introducing ZnS shells onto (Zn)CuInS QDs using alkylthiols as sulfur source and surface ligands. The suppressed blinking mechanism was mainly attributed to modifying QDs traps from interior to exterior via a step-by-step modification. Non-blinking QDs show high quantum yield, symmetric emission spectra and excellent crystallinity, and will enable applications from biology to optoelectronics that were previously hindered by blinking behavior of traditional QDs. PMID:26458511

  18. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    PubMed

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers.

  19. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    SciTech Connect

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-05-30

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  20. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    NASA Astrophysics Data System (ADS)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-08-01

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte - electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  1. Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Duan, Fei

    2016-12-01

    We investigate interfacial stability of an evaporating viscous liquid layer above/below a horizontal heated substrate in the framework of a long-wave model that accounts for surface tension, positive/negative gravity, and evaporation effects of mass loss and vapor recoil. With the time-dependent linear stability analysis, it is found that the interface instability is enhanced by vapor recoil with time using an effective growth rate. The destabilizing mechanism of vapor thrust competes with the stabilizing surface tension, and the effects of the latter are not asymptotically negligible near rupture, reflected by a rescaled effective interfacial pressure. A two-dimensional nonlinear evolution is investigated for the quasi-equilibrium evaporating layers with different evaporative conditions for Rayleigh-Taylor unstable and sessile layers. For weak mass loss and strong vapor recoil, the well-defined capillary ridges emerge around a deepening narrow valley with increasing wavelength under a positive gravity, while, on the basis of initial condition, main and secondary droplets are either coalesced partially or separated by a sharp dry-out point under a negative gravity. The rupture location depends strongly on the characteristics of a given initial condition, except for the random perturbation. For both the cases, an increase in the modified evaporation number tends to reduce the rupture time tr and droplet thickness remarkably. Similarity analysis along with numerical strategy is presented for the final stage of touch-down dynamics, determined by a physical balance between the vapor recoil and capillary force. The evaporation-driven rupture with a significant vapor recoil and negligible mass loss is shown to contain a countably infinite number of similarity solutions whose horizontal and vertical length scales behave as (tr - t)1/2 and (tr - t)1/3. The first similarity solution represents a stable single-point rupture.

  2. Optical properties of few layered graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Pratap Choudhary, Raghvendra; Shukla, Shobha; Vaibhav, Kumar; Bhagwan Pawar, Pranav; Saxena, Sumit

    2015-09-01

    Quantum dots provide a unique opportunity to study the confinement effects of electronic wave function on the properties of materials. We have investigated the optical properties of graphene quantum dots synthesized using ultra-fast light-matter interactions followed by one step reduction process. Atomic-scale morphological information suggests the presence of both zigzag and armchair edges in these quantum dots. Optical characterizations were performed using absorption, photoluminescence, and infrared spectroscopy. A shift in the emission spectrum and disappearance of n → π* transition in the absorption spectrum on reduction of the ablated samples confirmed the formation of graphene quantum dots. First principles calculations are in good agreement with the experimentally reported infrared data.

  3. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.

    PubMed

    Yan, Kai; Lee, Hyun-Wook; Gao, Teng; Zheng, Guangyuan; Yao, Hongbin; Wang, Haotian; Lu, Zhenda; Zhou, Yu; Liang, Zheng; Liu, Zhongfan; Chu, Steven; Cui, Yi

    2014-10-08

    Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu metal current collectors. Lithium ions were able to penetrate through the point and line defects of the 2D layers during the electrochemical deposition, leading to sandwiched lithium metal between ultrathin 2D layers and Cu. The 2D layers afford an excellent interfacial protection of Li metal due to their remarkable chemical stability as well as mechanical strength and flexibility, resulting from the strong intralayer bonds and ultrathin thickness. Smooth Li metal deposition without dendritic and mossy Li formation was realized. We showed stable cycling over 50 cycles with Coulombic efficiency ∼97% in organic carbonate electrolyte with current density and areal capacity up to the practical value of 2.0 mA/cm(2)and 5.0 mAh/cm(2), respectively, which is a significant improvement over the unprotected electrodes in the same electrolyte.

  4. HEMA inhibits interfacial nano-layering of the functional monomer MDP.

    PubMed

    Yoshida, Y; Yoshihara, K; Hayakawa, S; Nagaoka, N; Okihara, T; Matsumoto, T; Minagi, S; Osaka, A; Van Landuyt, K; Van Meerbeek, B

    2012-11-01

    Previous research showed that the functional monomer 10-methacryloxydecyl dihydrogen phosphate (MDP) ionically bonds to hydroxyapatite (HAp) and forms a nano-layered structure at the interface with HAp-based substrates. Such hydrophobic nano-layering is considered to contribute to the long-term durability of the bond to tooth tissue. However, dental adhesives are complex mixtures usually containing different monomers. This study investigated the effect of the monomer 2-hydroxyethylmethacrylate (HEMA) on the chemical interaction of MDP with HAp by x-ray diffraction (XRD), nuclear magnetic resonance (NMR), and quartz crystal microbalance (QCM). We examined the chemical interaction of 5 experimental MDP solutions with increasing concentrations of HEMA. XRD revealed that addition of HEMA inhibits nano-layering at the interface, while NMR confirmed that MDP remained adsorbed onto the HAp surface. QCM confirmed this adsorption of MDP to HAp, as well as revealed that the demineralization rate of HAp by MDP was reduced by HEMA. It was concluded that even though the adsorption of MDP to HAp was not hindered, addition of HEMA inhibited interfacial nano-layering. Potential consequences with regard to bond durability necessitate further research.

  5. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  6. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  7. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  8. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  9. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers.

    PubMed

    Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Lin, Yen-Fu; Yamamoto, Mahito; Duan, Xiangfeng; Tsukagoshi, Kazuhito

    2014-12-23

    Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.

  10. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    NASA Astrophysics Data System (ADS)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  12. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    SciTech Connect

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  13. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  14. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  15. Structure and vibrational dynamics of interfacial Sn layers in Sn/Si multilayers

    NASA Astrophysics Data System (ADS)

    Cuenya, B. Roldan; Keune, W.; Sturhahn, W.; Toellner, T. S.; Hu, M. Y.

    2001-12-01

    The structure and vibrational dynamics of room-temperature-grown nanoscale Sn/amorphous (a-)Si multilayers have been studied by x-ray diffraction, Raman scattering, 119Sn Mössbauer spectroscopy, and 119Sn nuclear-resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation. With increasing Sn-layer thickness, the formation of β-Sn was observed, except at the Sn/Si interfaces, where a 10-Å-thick metastable pure amorphous-α-Sn-like layer remains stabilized. By means of NRIXS we have measured the Sn-projected vibrational density of states (VDOS) in these multilayers (in particular, at the interfaces), and in 500-Å-thick epitaxial α-Sn films on InSb(001) as a reference. Further, the Sn-specific Lamb-Mössbauer factor (f factor), mean kinetic energy per atom, mean atomic force constant, and vibrational entropy per atom were obtained. The VDOS of the amorphous-α-Sn-like interface layer is observed to be distinctly different from that of (bulk) α-Sn and β-Sn, and its prominent vibrational energies are found to scale with those of amorphous Ge and Si. The observed small difference in vibrational entropy (ΔS/kB=+0.17+/-0.05 per atom) between α-Sn and interfacial amorphous-α-like Sn does not account for the stability of the latter phase.

  16. Specific effects of Ca(2+) ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability.

    PubMed

    Braunschweig, Björn; Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang

    2016-07-06

    β-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.

  17. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer

    SciTech Connect

    Sun, Yanming; Takacs, Christopher J.; Cowan, Sarah R.; Seo, Jung Hwa; Gong, Xiong; Roy, Anshuman; Heeger, Alan J.

    2011-04-05

    The use of molybdenum oxide as the anode interfacial layer in conventional bulk heterojunction polymer solar cells leads to an improved power conversion efficiency and also dramatically increases the device stability. This indicates that the engineering of improved anode interface materials is an important method by which to fabricate efficient and stable polymer solar cells.

  18. Electrical and Structural Characteristics of High-k Gate Dielectrics with Epitaxial Si3N4 Interfacial Layer on Si(111)

    NASA Astrophysics Data System (ADS)

    Sim, Hyunjun; Samantaray, Chandan B.; Lee, Taeho; Yeom, Hanwoong; Hwang, Hyunsang

    2004-12-01

    In this study, the electrical and structural characteristics of Gd2O3 gate dielectrics with an epitaxial Si3N4 interfacial layer grown on Si(111) were investigated. Compared with control Gd2O3 gate dielectrics deposited on HF-last treated Si (111), the Gd2O3 gate dielectrics with an epitaxial Si3N4 interfacial layer exhibited excellent electrical characteristics such as low leakage current density and low interface state density. These characteristics are due to a high-quality interfacial layer formation on Si. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the structures of the gate dielectrics and interfacial layer. High-k gate dielectrics with an epitaxial Si3N4 interfacial layer have considerable potential for future use in sub-0.1 μm metal oxide semiconductor field-effect transistors (MOSFETs).

  19. Magneto-optical response of layers of semiconductor quantum dots and nanorings

    NASA Astrophysics Data System (ADS)

    Voskoboynikov, O.; Wijers, C. M. J.; Liu, J. L.; Lee, C. P.

    2005-06-01

    In this paper a comparative theoretical study was made of the magneto-optical response of square lattices of nanoobjects (dots and rings). Expressions for both the polarizability of the individual objects as their mutual electromagnetic interactions (for a lattice in vacuum) was derived. The quantum-mechanical part of the derivation is based upon the commonly used envelope function approximation. The description is suited to investigate the optical response of these layers in a narrow region near the interband transitions onset, particularly when the contribution of individual level pairs can be separately observed. A remarkable distinction between clearly quantum-mechanical and classical electromagnetic behavior was found in the shape and volume dependence of the polarizability of the dots and rings. This optical response of a single plane of quantum dots and nanorings was explored as a function of frequency, magnetic field, and angle of incidence. Although the reflectance of these layer systems is not very strong, the ellipsometric angles are large. For these isolated dot-ring systems they are of the order of magnitude of degrees. For the ring systems a full oscillation of the optical Bohm-Ahronov effect could be isolated. Layers of dots do not display any remarkable magnetic field dependence. Both type of systems, dots and rings, exhibit an outspoken angular-dependent dichroism of quantum-mechanical origin.

  20. Interfacial diffusion behavior in Ni-BaTiO 3 MLCCs with ultra-thin active layers

    NASA Astrophysics Data System (ADS)

    Gong, Huiling; Wang, Xiaohui; Tian, Zhibin; Zhang, Hui; Li, Longtu

    2014-03-01

    The interfacial structure and diffusion behavior between the dielectric layers (BaTiO3) and internal electrode layers (Ni) in X5R-type multilayer ceramic capacitors (MLCCs, from -55°C to 85°C, at a temperature capacitance coefficient within ±15%) with ultra-thin active layers ( T = 1-3 µm) have been investigated by several microstructural techniques (SEM/TEM/HRTEM) with energy-dispersive x-ray spectroscopy (EDS). In the MLCC samples with different active layer thicknesses (1-3 µm), weak interfacial diffusion was observed between BaTiO3 and Ni. It was also found that the diffusion capability of Ni into the BaTiO3 layer was stronger than that of BaTiO3 to the Ni electrode, which indicated that the diffusion of Ni was the dominant factor for the interfacial diffusion behavior in the ultra-thin layered MLCCs. The mechanism of Ni diffusion is discussed in this study as well.

  1. Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Zhao, Weisheng; Qiao, Junfeng; Su, Li; Zhou, Jiaqi; Yang, Hongxin; Zhang, Qianfan; Zhang, Youguang; Grezes, Cecile; Amiri, Pedram Khalili; Wang, Kang L.

    2017-02-01

    Magnetic tunnel junction based on the CoFeB/MgO/CoFeB structures is of great interest due to its application in the spin-transfer-torque magnetic random access memory (STT-MRAM). Large interfacial perpendicular magnetic anisotropy (PMA) is required to achieve high thermal stability. Here, we use the first-principles calculations to investigate the magnetic anisotropy energy (MAE) of the MgO/CoFe/capping layer structures, where the capping materials include 5d metals Hf, Ta, Re, Os, Ir, Pt, and Au and 6p metals Tl, Pb, and Bi. We demonstrate that it is feasible to enhance PMA by using proper capping materials. Relatively large PMA is found in the structures with the capping materials of Hf, Ta, Os, Ir, and Pb. More importantly, the MgO/CoFe/Bi structure gives rise to giant PMA (6.09 mJ/m2), which is about three times larger than that of the MgO/CoFe/Ta structure. The origin of the MAE is elucidated by examining the contributions to MAE from each atomic layer and orbital. These findings provide a comprehensive understanding of the PMA and point towards the possibility to achieve the advanced-node STT-MRAM with high thermal stability.

  2. Layer-by-Layer Assembly of Stable Aqueous Quantum Dots for Luminescent Planar Plate.

    PubMed

    Zhang, Xuejing; Zhou, Changhua; Zang, Shuaipu; Shen, Huaibin; Dai, Pengpeng; Zhang, Xintong; Li, Lin Song

    2015-07-15

    This work reports the fabrication of a luminescent planar plate based on stable aqueous quantum dots (QDs) and poly(diallyldimethylammonium chloride) (PDDA) via a layer-by-layer (LBL) assembly technique. Preparation of aqueous QDs with facile monoalkyl maleate amphiphilic surfactants as the coating agent is conducted by a robust and efficient phase-transfer method. The as-prepared aqueous QDs exhibit bright emission, and their surface has very large negative zeta potential values, which are useful for electrostatic LBL assembly. Red, green, and blue luminescent planar plates are successfully fabricated via LBL assembly of the monocolor QDs, respectively. Through accurately adjusting the relative proportion of each monocolor luminescent component, we obtain an inspiring luminescent planar plate, which emits bright white light with a color coordinate of (0.3509, 0.3483), a correlated color temperature (CCT) of 4766 K, and a high color rendering index (CRI, Ra) of 89.5 under the irradiation of UV light. Therefore, this paper reports a facile process for the design and preparation of luminescent planar plates, which have potential applications in display and solid-state lighting devices.

  3. Interface investigation of the alcohol-/water-soluble conjugated polymer PFN as cathode interfacial layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shu; Wang, Rui; Ying Mao, Hong; He, Zhicai; Wu, Hongbin; Chen, Wei; Cao, Yong

    2013-09-01

    In this work, in situ ultraviolet photoelectron spectroscopy measurements were used to investigate the working mechanism of an alcohol-/water-soluble conjugated polymer poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode interfacial layer in organic solar cells from the view of interfacial energy level alignment. Fullerene (C60) was chosen as the model acceptor material in contact with PFN as well as two other cathode interfacial layers ZnO and TiO2 in the configuration of an inverted solar cell structure. Significant charge transfer between PFN modified ITO (indium tin oxide) electrode and C60 is observed due to the low work function of PFN. This results in the Fermi level of the substrate pinned very close to the lowest unoccupied molecular orbital of C60 as well as an additional electric field at the cathode/acceptor interface. Both of them facilitate the electron extraction from the acceptor C60 to the ITO cathode, as confirmed by the electrical measurements of the electron-only devices with PFN modification. The better electron extraction originated from the Fermi level pinning and the additional interface electric field are believed to contribute to the efficiency enhancement of the inverted organic solar cells employing PFN as cathode interfacial layer.

  4. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    NASA Astrophysics Data System (ADS)

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad

    2014-06-01

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  5. Investigations of segregation phenomena in highly strained Mn-doped Ge wetting layers and Ge quantum dots embedded in silicon

    SciTech Connect

    Prestat, E. Porret, C.; Favre-Nicolin, V.; Tainoff, D.; Boukhari, M.; Bayle-Guillemaud, P.; Jamet, M.; Barski, A.

    2014-03-10

    In this Letter, we investigate manganese diffusion and the formation of Mn precipitates in highly strained, few monolayer thick, Mn-doped Ge wetting layers and nanometric size Ge quantum dot heterostructures embedded in silicon. We show that in this Ge(Mn)/Si system manganese always precipitates and that the size and the position of Mn clusters (precipitates) depend on the growth temperature. At high growth temperature, manganese strongly diffuses from germanium to silicon, whereas decreasing the growth temperature reduces the manganese diffusion. In the germanium quantum dots layers, Mn precipitates are detected, not only in partially relaxed quantum dots but also in fully strained germanium wetting layers between the dots.

  6. Study of heterostructures with a combined In(Ga)As/GaAs quantum dot/quantum well layer and a Mn δ layer

    SciTech Connect

    Pavlova, E. D. Gorshkov, A. P.; Bobrov, A. I.; Malekhonova, N. V.; Zvonkov, B. N.

    2013-12-15

    Using high-resolution transmission electron microscopy and photoelectric spectroscopy methods, the effect of Mn δ layer embedding and GaAs coating layer growth techniques in structures with In(Ga)As/GaAs quantum dots and wells on their structural and optoelectronic characteristics is studied. It is shown that the low-temperature GaAs coating layer in a structure with a Mn δ layer is structurally inhomogeneous and can cause a decrease in the quantum-dot photosensitivity.

  7. Closing the loop in the boundary layer: water slippage, interfacial viscosity and wettability

    NASA Astrophysics Data System (ADS)

    Riedo, Elisa; Ortiz-Young, Deborah; Chiu, Hsiang-Chih; Voïtchovsky, Kislon; Kim, Suenne

    2013-03-01

    Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here, we present experiments showing that the interfacial viscosity of water depends drastically on the wetting properties of the confining surfaces. By using an atomic force microscope (AFM), we have measured the lateral viscous force experienced in water by a nano-size AFM tip while it is sheared in parallel to a smooth solid surface, as a function of the tip-surface distance. The viscous force curves, FL(d), have been measured for five surfaces with various wettabilities. In particular, the experiments indicate that in water lower forces are required to shear a tip very close to a slippery non-wetting surface, yielding to a lower effective viscosity. A modified form of the Newtonian definition of viscosity, which includes slippage, is used to successfully predict the measured shear forces in the boundary layer as a function of surface wettability, and slippage. We prove that this effect is general and can be applied in different contexts such as in explaining the relationship between dissipation and surface wettability for a nano-tip vibrating in proximity of a surface in water. DOE (DE-FG02-06ER46293)/NSF (DMR-0120967 and DMR-0706031)

  8. Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer.

    PubMed

    Liu, Kai; Pei, Allen; Lee, Hye Ryoung; Kong, Biao; Liu, Nian; Lin, Dingchang; Liu, Yayuan; Liu, Chong; Hsu, Po-Chun; Bao, Zhenan; Cui, Yi

    2017-04-05

    Lithium metal is an attractive anode for the next generation of high energy density lithium-ion batteries due to its high specific capacity (3,860 mAh g(-1)) and lowest overall anode potential. However, the key issue is that the static solid electrolyte interphase cannot match the dynamic volume changes of the Li anode, resulting in side reactions, dendrite growth, and poor electrodeposition behavior, which prevent its practical applications. Here, we show that the "solid-liquid" hybrid behavior of a dynamically cross-linked polymer enables its use as an excellent adaptive interfacial layer for Li metal anodes. The dynamic polymer can reversibly switch between its "liquid" and "solid" properties in response to the rate of lithium growth to provide uniform surface coverage and dendrite suppression, respectively, thereby enabling the stable operation of lithium metal electrodes. We believe that this example of engineering an adaptive Li/electrolyte interface brings about a new and promising way to address the intrinsic problems of lithium metal anodes.

  9. Self-Doping, O2-Stable, n-Type Interfacial Layer for Organic Electronics

    SciTech Connect

    Reilly, T. H. III; Hains, A. W.; Chen, H. Y.; Gregg, B. A.

    2012-04-01

    Solid films of a water-soluble dicationic perylene diimide salt, perylene bis(2-ethyltrimethylammonium hydroxide imide), Petma{sup +}OH{sup -}, are strongly doped n-type by dehydration and reversibly de-doped by hydration. The hydrated films consist almost entirely of the neutral perylene diimide, PDI, while the dehydrated films contain {approx}50% PDI anions. The conductivity increases by five orders of magnitude upon dehydration, probably limited by film roughness, while the work function decreases by 0.74 V, consistent with an n-type doping density increase of {approx}12 orders of magnitude. Remarkably, the PDI anions are stable in dry air up to 120 C. The work function of the doped film, {phi} (3.96 V vs. vacuum), is unusually negative for an O{sub 2}-stable contact. Petma{sup +} OH{sup -} is also characterized as an interfacial layer, IFL, in two different types of organic photovoltaic cells. Results are comparable to state of the art cesium carbonate IFLs, but may improve if film morphology can be better controlled. The films are stable and reversible over many months in air and light. The mechanism of this unusual self-doping process may involve the change in relative potentials of the ions in the film caused by their deshielding and compaction as water is removed, leading to charge transfer when dry.

  10. Interfacial dynamics in pressure-driven two-layer laminar channel flow with high viscosity ratios.

    PubMed

    Matar, O K; Lawrence, C J; Sisoev, G M

    2007-05-01

    The large-scale dynamics of an interface separating two immiscible fluids in a channel is studied in the case of large viscosity contrasts. A long-wave analysis in conjunction with the Kármán-Polhausen method to approximate the velocity profile in the less viscous fluid is used to derive a single equation for the interface. This equation accounts for the presence of interfacial stress, capillarity, and viscous retardation as well as inertia in the less viscous fluid layer where the flow is considered to be quasistatic; the equation is shown to reduce to a Benney-type equation and the Kuramoto-Sivashinskiy equation in the relevant limits. The solutions of this equation are parametrized by an initial thickness ratio h0 and a dimensionless parameter S , which measures the relative significance of inertial to capillary forces. A parametric continuation technique is employed, which reveals that nonuniqueness of periodic solutions is possible in certain regions of (h0,S) space. Transient numerical simulations are also reported, whose results demonstrate good agreement with the bifurcation structure obtained from the parametric continuation results.

  11. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  12. Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory

    SciTech Connect

    Kim, Young Rae; Jo, Yong Eun; Sung, Yeo Hyun; Won, Ui Yeon; Shin, Yong Seon; Kang, Won Tae; Yu, Woo Jong E-mail: micco21@skku.edu; Lee, Young Hee E-mail: micco21@skku.edu

    2015-03-09

    In this study, we have demonstrated nonvolatile memory devices using graphene quantum-dots (GQDs) trap layers with indium zinc oxide (IZO) semiconductor channel. The Fermi-level of GQD was effectively modulated by tunneling electrons near the Dirac point because of limited density of states and weak electrostatic screening in monolayer graphene. As a result, large gate modulation was driven in IZO channel to achieve a subthreshold swing of 5.21 V/dec (300 nm SiO{sub 2} gate insulator), while Au quantum-dots memory shows 15.52 V/dec because of strong electrostatic screening in metal quantum-dots. Together, discrete charge traps of GQDs enable stable performance in the endurance test beyond 800 cycles of programming and erasing. Our study suggests the exciting potential of GQD trap layers to be used for a highly promising material in non-volatile memory devices.

  13. Dithiapyrannylidenes as efficient hole collection interfacial layers in organic solar cells.

    PubMed

    Berny, Stéphane; Tortech, Ludovic; Véber, Michelle; Fichou, Denis

    2010-11-01

    One inherent limitation to the efficiency of photovoltaic solar cells based on polymer/fullerene bulk heterojunctions (BHJs) is the accumulation of positive charges at the anodic interface. The unsymmetrical charge collection of holes and electrons dramatically decreases the short-circuit current. Interfacial layers (IFLs) such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) have no effect on the unbalanced electron/hole transport across the BHJ. We report here on the use of dithiapyrannylidenes (DITPY), a new class of planar quinoid compounds, as efficient hole-transporting/electron-blocking layers in organic solar cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) BHJs. Inserting a 15-nm-thick IFL of 4,4'-bis(diphenyl-2,6-thiapyrannylidene) (DITPY-Ph(4)) between the indium-tin oxide electrode and the P3HT:PCBM BHJ prevents detrimental space-charge effects and favors recombination-limited currents. Current-sensing atomic force microscopy reveals a drastic increase of the hole-carrying pathways in DITPY-Ph(4) compared to PEDOT:PSS. In ambient conditions, photovoltaic cells using DITPY-Ph(4) exhibit an 8% increase in the current density, although the conversion efficiency remains slightly lower compared to PEDOT:PSS-based devices. Finally, we present a detailed analysis of the photocurrent generation, showing that DITPY-Ph(4) IFLs induce a transition from unproductive space-charge-limited currents to recombination-limited currents.

  14. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    NASA Astrophysics Data System (ADS)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  15. Improvement in the breakdown endurance of high-κ dielectric by utilizing stacking technology and adding sufficient interfacial layer.

    PubMed

    Pang, Chin-Sheng; Hwu, Jenn-Gwo

    2014-01-01

    Improvement in the time-zero dielectric breakdown (TZDB) endurance of metal-oxide-semiconductor (MOS) capacitor with stacking structure of Al/HfO2/SiO2/Si is demonstrated in this work. The misalignment of the conduction paths between two stacking layers is believed to be effective to increase the breakdown field of the devices. Meanwhile, the resistance of the dielectric after breakdown for device with stacking structure would be less than that of without stacking structure due to a higher breakdown field and larger breakdown power. In addition, the role of interfacial layer (IL) in the control of the interface trap density (D it) and device reliability is also analyzed. Device with a thicker IL introduces a higher breakdown field and also a lower D it. High-resolution transmission electron microscopy (HRTEM) of the samples with different IL thicknesses is provided to confirm that IL is needed for good interfacial property.

  16. Facile synthesis and optical properties of colloidal silica microspheres encapsulating a quantum dot layer.

    PubMed

    Cho, Myungje; Lim, Kipil; Woo, Kyoungja

    2010-08-14

    We present colloidal silica microspheres encapsulating a homogeneous quantum dot layer at radial equidistance from the centre by utilizing electrostatic interaction between surface-engineered silica microspheres and QDs. The microspheres show dramatically enhanced optical absorption and emission with an appropriate silica shell thickness.

  17. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  18. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    DOE PAGES

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; ...

    2016-05-30

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less

  19. Interfacial Layer Growth Condition Dependent Electrical Conduction in HfO2/SiO2 Heterostructured Thin Films

    SciTech Connect

    Sahoo, S. K.; Misra, D.

    2012-01-01

    The electrical conduction mechanism contributing to the leakage current at different field regions has been studied in this work. The current-voltage (I-V) measurement of TiN/HfO{sub 2}/SiO{sub 2}/P-Si nMOS capacitor has been taken for two different interfacial layer (SiO{sub 2}) growth conditions such as in situ steam grown (ISSG) and chemical processes. It is observed that Poole-Frenkel mechanism is the dominant conduction mechanism in high field region whereas Ohmic conduction is dominant in the low field region. Also it is seen that the gate leakage current is reduced for the devices having chemically grown interfacial layer compared to that of ISSG devices. Both trap energy level ({phi}{sub t}) and activation energy (E{sub a}) increase in the chemically grown interfacial layer devices for the Poole-Frenkel and Ohmic conduction mechanisms respectively in comparison to ISSG devices. Trap energy level ({phi}{sub t}) of {approx} 0.2 eV, obtained from Poole-Frenkel mechanism indicates that the doubly ionized oxygen vacancies (V{sup 2-}) are the active defects and are contributing to the leakage current in these devices.

  20. The CdSe/CdS Quantum Dots Luminescence Enhancement Near Silica Layer with the Ion-Synthesized Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shamilov, R. R.; Galyametdinov, Yu G.; Nugaeva, A. A.; Nuzhdin, V. I.; Valeev, V. F.; Stepanov, A. L.

    2016-08-01

    Photoluminescence characteristics of hybrid quantum dots CdSe/CdS deposited on the surface of silica containing the layer of ion-synthesized silver nanoparticles were studied. The quenching or enhancement of the luminescence depending on distance between silver nanoparticles and quantum dots layers was detected. The optimal spacer layer and excitation waveleghth for the highest intensity of their photoluminescence in the plasmon field of metal nanoparticles was defined.

  1. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  2. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate

    SciTech Connect

    Pan, Chien-Cheng; Lin, Kwang-Lung

    2011-05-15

    To illustrate the interfacial reaction mechanism, the Sn-Zn[Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (wt%)] solder was reflowed on Cu substrate at 250 deg. C for 15 s followed by immediate quench in liquid nitrogen. The frozen interfacial microstructure was investigated with high resolution transmission electron microscope. An amorphous double layer was formed at the interface which consists of a 5 nm pure Cu region and a Cu-Zn diffusion region. Nanocrystalline intermetallic compound (IMC) Cu{sub 5}Zn{sub 8} were observed in the Cu-Zn diffusion region. These nanocrystalline IMCs are suggested to form via a homogeneous nucleation process.

  3. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-02

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

  4. A detailed investigation of the impact of varying number of dot layers in strain-coupled multistacked InAs/GaAs quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Panda, Debiprasad; Balgarkashi, Akshay; Shetty, Saikalash; Ghadi, Hemant; Chakrabarti, Subhananda

    2016-09-01

    Strain-coupled InAs quantum dot (QD) heterostructures has been compared in terms of their optical properties, with varying the number of stacks. Each structure consists of seed layer dots (2.5 monolayer of InAs) with a capping layer of 6.5nm GaAs followed by active layer dots (2.1 monolayer of InAs). The active layer QD with the capping layer is repeated by one, two, four, and six times in bilayer, trilayer, pentalayer, and heptalayer samples, respectively. Thickness of the GaAs spacer layer in between active layer QD stacks is different for each structure. A red shift in photoluminescence (PL) emission was obtained for the strain-coupled multi-stack samples compared to the conventional uncoupled one. This is due to the formation of larger dot size in coupled structures. We also observed a monomodal dot distribution till the pentalayer sample, but after that a bimodal distribution was found, which may be due to the enhancement of strain as we further increase the stacks. Compared to an uncoupled sample, all coupled samples exhibited lower full width at half maximum (FWHM) values (uncoupled-35.89nm, bilayer-32.83nm, trilayer-30.17nm, pentalayer-68.91nm, and heptalayer-67.55nm) which attributes to homogeneous dot size distribution. Higher activation energies were measured in coupled samples compared to the conventional uncoupled one. Trilayer sample claimed the highest PL activation energy of 303.42meV, whereas the uncoupled sample has only 243.89meV. This increased activation energy in the coupled structures will be helpful for lower dark current in the devices.

  5. Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films

    NASA Astrophysics Data System (ADS)

    Ayub, Ambreen; Shakoor, Abdul; Elahi, Asmat; Rizvi, Tasneem Zahra

    2015-08-01

    Two organic-inorganic hybrid films of intrinsically conducting polymer; polyaniline and cadmium selenide quantum dots were prepared. One by layer-by-layer deposition of polyaniline and cadmium selenide films on PEDOT-PSS/ITO coated glass substrate (ITO/PEDOT-PSS/PANI/CdSe) and other by depositing polyaniline-cadmium selenide quantum dots composite film on the same substrate (ITO/PEDOT-PSS/PANI-CdSe) using spin coating technique. Pure polyaniline, cadmium selenide quantum dots and their composites thus obtained were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV/VIS/NIR absorption spectroscopy. The surface morphologies were studied by Scanning Electron Microscopy (SEM). The diode performance parameters were compared and contrasted for the two devices obtained by different deposition routes. J-V characteristics of these devices showed a rectifying contact with Al metal, however with variation in performance parameters like barrier height, ideality factor and reverse saturation current the ITO/PEDOT-PSS/PANI-CdSe/Al device exhibited better diode performance as compared to ITO/PEDOT-PSS/PANI/CdSe/Al device.

  6. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer

    PubMed Central

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J.

    2016-01-01

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack. PMID:27279454

  7. Structure of the interfacial layer in blends of elastomers with different polarities and ozone resistance

    NASA Astrophysics Data System (ADS)

    Livanova, N. M.; Popov, A. A.; Shershnev, V. A.; Zaikov, G. E.

    2014-05-01

    The effects of isomers of butadiene units, the ratio of comonomers in ethylene-propylene-diene terpolymers, and the degree of isotacticity of propylene units on the intensity of interfacial interaction in blends and ozone resistence of covulcanisates with butadiene-nitrile rubbers have been analyzed.

  8. Interfacial quality improvement of Cu(In,Ga)Se2 thin film solar cells by Cu-depletion layer formation

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahito; Toki, Soma; Sugiura, Hiroki; Nakada, Kazuyoshi; Yamada, Akira

    2016-09-01

    Se irradiation with time, t Se, was introduced after the second stage of a three-stage process to control the Cu2Se layer during Cu(In,Ga)Se2 (CIGS) deposition. Open circuit voltage and fill factor of CIGS solar cells could be improved by introducing Se irradiation. We concluded that the control of the Cu2Se layer led to the formation of a Cu-depletion CIGS layer (CDL), which improved conversion efficiency owing to suppression of interfacial recombination by a valence band offset formed between CIGS and the CDL. Finally, highest efficiency of 19.8% was achieved with t Se of 5 min. This very simple and new technique is promising for the improvement of photovoltaic performance.

  9. Multiferroic heterostructures of Fe3O4/PMN-PT prepared by atomic layer deposition for enhanced interfacial magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Zhang, Le; Zhou, Ziyao; Peng, Bin; Wang, Chenying; Lin, Qijing; Jiang, Zhuang-De; Ren, Wei; Ye, Zuo-Guang

    2017-02-01

    In this work, multiferroic heterostructures have been prepared by in situ growing oxide magnetic films on ferroelectric single crystal substrates using atomic layer deposition (ALD). Strong interfacial mechanical coupling between the magnetic and ferroelectric phases has been created, arising from the formation of chemical bonds at the interface due to the nature of layer-by-layer self-limiting growth mechanism of the ALD technique. An enhanced magnetoelectric (ME) coupling has been achieved, which allows an electric field to robustly switch magnetic anisotropy up to 780 Oe. In addition, electrical impulse non-volatile tuning of magnetism has also been realized through partially coupled ferroelectric/ferroelastic domain switching. The ALD growth of magnetic oxide films onto ferroelectric substrates provides an effective platform for the preparation of multiferroic heterostructures at low temperatures with an improved ME coupling, demonstrating a great potential for applications in 3D spintronics, microelectronics and data storages.

  10. Microstructural Healing with Interfacial Reaction Layers on the Adhesive Strength Enhancement of Plasma-Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Yang, Chung-Wei; Lui, Truan-Sheng

    The effect of hydrothermal crystallization and adding reinforced intermediate layers on improving the tensile adhesion of plasma-sprayed HA coatings (HAC) was investigated. The experimental results show that the index of crystallinity (IOC) and phase purity of hydrothermally-treated HAC (HT-HAC) are increased by the low-temperature hydrothermal treatment. The microstructural healing effect with nano-size HA crystallites is significant to diminish the defects and prevent mechanical strength degradation for the HT-HAC. XPS analysis demonstrates that hydrothermal crystallization helps to promote the interfacial Ti-OH chemical reaction. HA composite coatings with CP-Ti and ZrO2 intermediate layers provide another strengthening effect compared with the hydrothermal-heating method. The inter-diffusion of Ca results in a chemical bonding at the HA/ZrO2 interface, which results in the increase of the adhesive strength of composite coatings. The fracture behavior is different between the crystallization-induced HAC and the composite coatings. The HT-HAC remains on the substrate with an evident cohesive failure. The adhesive failure occurred at HA/intermediate layers for composite coatings. Failures with less percentage area of interfacial fracture are indicative of a higher strength of a coating.

  11. UV-treated graphene oxide as anode interfacial layers for P3HT : PCBM solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-En; Tsai, Cheng-Wei; Pei, Zingway; Lin, Tsung-Wu; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2015-06-01

    Solution-processable graphene oxide (GO) ultrathin films were introduced as anode interfacial layers (AILs) for polymer solar cells (PSCs). The photovoltaic performance of PSCs containing thermal- and UV-treated GO was comparable to that of PSCs with conventional poly(3,4-ethyledioxythiphene):poly(styrenesulfonate) AILs. UV treatment induced the surface activation of GO; an increase in the work function of UV-treated GO improved the energy band alignment at the GO/poly(3-hexylthiophene) interface, which accounted for the efficient hole collection and photovoltaic performance of PSCs with treated GO.

  12. Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire

    NASA Astrophysics Data System (ADS)

    Galyametdinov, Yu. G.; Shamilov, R. R.; Nuzhdin, V. I.; Valeev, V. F.; Stepanov, A. L.

    2016-11-01

    We study the characteristics of the luminescence of composite films based on polymethyl methacrylate with CdSe quantum dots deposited from solution onto the surface of a sapphire substrate containing a preliminarily formed layer with ion-synthesized silver nanoparticles. The sapphire layer with silver nanoparticles exhibits selective plasmon absorption in the visible spectral range with a peak at 463 nm. Enhancement in the exciton luminescence intensity of quantum dots with a peak at 590 nm is observed upon excitation at wavelengths lying in the region of plasmon resonance of metal nanoparticles, as well as luminescence quenching for quantum dots located in the vicinity of silver nanoparticles.

  13. Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

    PubMed Central

    2011-01-01

    In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits. PMID:27502681

  14. The role of MoS2 as an interfacial layer in graphene/silicon solar cells.

    PubMed

    Jiao, Kejia; Duan, Chunyang; Wu, Xiaofeng; Chen, Jiayuan; Wang, Yu; Chen, Yunfa

    2015-03-28

    The role of MoS2 as an effective interfacial layer in graphene/silicon solar cells is systematically investigated by varying MoS2 film annealing temperature and thickness. It is found that the power conversion efficiency (PCE) is increased by ∼100% from ∼2.3% to ∼4.4% with 80 °C annealed MoS2 film whereas it drops significantly to ∼0.6% with 200 °C annealed MoS2 film. The results are well explained based on the device energy band diagram. That is, the incorporation of MoS2(80) films leads to the formation of type II structure, facilitating hole transport; while valence band mismatch is formed with MoS2(200) films due to the increase in the work function of MoS2. Besides, the PCE increases gradually with decreasing MoS2 film thickness, and "saturates" at about 2 nm. The PCE can be further enhanced to ∼6.6% with the aid of silicon surface passivation. Our work demonstrates that MoS2 is an excellent interfacial layer to improve the PCE with low-temperature annealing (80 °C in air), which may be helpful in developing efficient and low-cost G/Si solar cells.

  15. Electrical characterization of thulium silicate interfacial layers for integration in high-k/metal gate CMOS technology

    NASA Astrophysics Data System (ADS)

    Dentoni Litta, Eugenio; Hellström, Per-Erik; Henkel, Christoph; Östling, Mikael

    2014-08-01

    This work presents a characterization of the electrical properties of thulium silicate thin films, within the scope of a possible application as IL (interfacial layer) in scaled high-k/metal gate CMOS technology. Silicate formation is investigated over a wide temperature range (500-900 °C) through integration in MOS capacitor structures and analysis of the resulting electrical properties. The results are compared to those obtained from equivalent devices integrating lanthanum silicate interfacial layers. The thulium silicate IL is formed through a gate-last CMOS-compatible process flow, providing IL EOT of 0.1-0.3 nm at low formation temperature and interface state density at flatband condition below 2 × 1011 cm-2 eV-1. The effects of a possible integration in a gate-first process flow with a maximum thermal budget of 1000 °C are also evaluated, achieving an IL EOT of 0.2-0.5 nm, an interface state density at flatband condition ∼1 × 1011 cm-2 eV-1 and a reduction in gate leakage current density of one order of magnitude compared to the same stack without IL.

  16. Interfacial Fast Release Layer in Monodisperse Poly (lactic-co-glycolic acid) Microspheres Accelerates the Drug Release.

    PubMed

    Wu, Jun; Zhao, Xiaoli; Yeung, Kelvin W K; To, Michael K T

    2016-01-01

    Understanding microstructural evolutions of drug delivery devices during drug release process is essential for revealing the drug release mechanisms and controlling the drug release profiles. In this study, monodisperse poly (lactic-co-glycolic acid) microspheres in different diameters were fabricated by microfluidics in order to find out the relationships between the microstructural evolutions and the drug release profiles. It was found that poly (lactic-co-glycolic acid) microspheres underwent significant size expansion which took place from the periphery to the center, resulting in the formation of interfacial fast release layers. At the same time, inner pores were created and the diffusion rate was increased so that the early stage drug release was accelerated. Due to the different expansion rates, small poly (lactic-co-glycolic acid) microspheres tendered to follow homogeneous drug release while large poly (lactic-co-glycolic acid) microspheres tendered to follow heterogeneous drug release. This study suggests that the size expansion and the occurrence of interfacial fast release layer were important mechanisms for early stage drug release of poly (lactic-co-glycolic acid) microspheres.

  17. Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens.

    PubMed

    Xiang, Yun; Zhang, Haixia; Jiang, Bingying; Chai, Yaqin; Yuan, Ruo

    2011-06-01

    The preparation and use of a new class of signal amplification label, quantum dot (QD) layer-by-layer (LBL) assembled polystyrene microsphere composite, for amplified ultrasensitive electronic detection of uropathogen-specific DNA sequences is described. The target DNA is sandwiched between the capture probes immobilized on the magnetic beads and the signaling probes conjugated to the QD LBL assembled polystyrene beads. Because of the dramatic signal amplification by the numerous QDs involved in each single DNA binding event, subfemtomolar level detection of uropathogen-specific DNA sequences is achieved, which makes our strategy among the most sensitive electronic approach for nucleic acid-based monitoring of pathogens. Our signal amplified detection scheme could be readily expanded to monitor other important biomolecules (e.g., proteins, peptides, amino acids, cells, etc.) in ultralow levels and thus holds great potential for early diagnosis of disease biomarkers.

  18. InAs/GaAs quantum dot solar cell with an AlAs cap layer

    NASA Astrophysics Data System (ADS)

    Tutu, F. K.; Lam, P.; Wu, J.; Miyashita, N.; Okada, Y.; Lee, K.-H.; Ekins-Daukes, N. J.; Wilson, J.; Liu, H.

    2013-04-01

    We report the effects of the deposition of an AlAs cap layer (CL) over InAs quantum dots (QDs) on the performance of QD solar cells (QDSCs). The growth of AlAs CL over InAs QDs led to the elimination of the wetting layer absorption and hence the enhancement of the open-current voltage, Voc, of a 20-layer InAs/GaAs QDSC from 0.69 V to 0.79 V. Despite a slight reduction in short-circuit current, Jsc, for the QDSC with AlAs CL, the enhancement of the Voc is enough to ensure that its efficiency is higher than the QDSC without AlAs CL.

  19. Tuning the dead-layer behavior of La0.67Sr0.33MnO3/SrTiO3 via interfacial engineering

    NASA Astrophysics Data System (ADS)

    Peng, R.; Xu, H. C.; Xia, M.; Zhao, J. F.; Xie, X.; Xu, D. F.; Xie, B. P.; Feng, D. L.

    2014-02-01

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La0.67Sr0.33MnO3/SrTiO3 grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La0.67Sr0.33MnO3, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, which can be explained by a simplified electrostatic model.

  20. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    NASA Technical Reports Server (NTRS)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  1. Single active-layer structured dual-function devices using hybrid polymer-quantum dots.

    PubMed

    Son, Dong-Ick; Park, Dong-Hee; Ie, Sang-Yub; Choi, Won-Kook; Choi, Ji-Won; Li, Fushan; Kim, Tae-Whan

    2008-10-01

    We demonstrate hybrid polymer-quantum dot dual-function devices with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum dots dispersed with poly N-vinylcarbazole (PVK) and 1,3,5-tirs-(N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on an indium-tin-oxide (ITO)/glass substrate by using a simple spin-coating technique. The dual-function devices are composed of light-emitting diodes (LED) on the top side and nonvolatile organic bistable memory devices (OBD) on the bottom side and can show electroluminescence (EL) along with electrical bistability concurrently. Both the functionality of LEDs and OBDs can be successfully achieved by adding an electron transport layer (ETL) TPBi to the OBD to attain an LED in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and the LiF/Al electrode. Through transmission electron microscopy (TEM) study, it is revealed that CdSe/ZnS QDs distributed on the interface of the hole transport layer (HTL) and ETL significantly take part in the electroluminescence process rather than those existing at the outer surface of the ETL.

  2. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    PubMed

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10(15) m(-2) is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  3. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the

  4. The effects of strain and spacer layer in CdSe/CdS/ZnS and CdSe/ZnS/CdS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Pisheh, Hadi S.; Gheshlaghi, Negar; Ünlü, Hilmi

    2017-01-01

    The effects of lattice mismatch induced interface strain on the structural, optical and dielectric properties of CdSe based Cd(Zn)S shell and Cd(Zn)S/Zn(Cd)S multishell quantum dots (QDs) is studied. Introducing Zn(Cd)S spacer layer to the CdSe/Cd(Zn)S core/shell structure is found to influence induced interfacial strain through changing the lattice parameter, band gap and band offset of core/shell nanostructure. Lattice parameter of spacer layer affected by outer shell, changes the interface strain in the core region. Theoretically obtained strain in the core/shell(multishell) is used in the effective mass approximation (EMA) to determine the capped core diameter. We show that introducing ZnS spacer layer to the CdSe/CdS core/shell QDs rises the amount of strain and cause more decrease in the core size in CdSe/ZnS/CdS. Furthermore, CdS sandwiched between CdSe/ZnS decreases the amount of strain in crystal and suppresses the size decrease of the core in the CdSe/ZnS. Good agreement is found between the strain included EMA core size predictions in core/shell and multishell and observed size image from transmission electron microscopy (TEM) measurements of bare CdSe core nanocrystals.

  5. Processing and characterization of stable, pH-sensitive layer-by-layer modified colloidal quantum dots.

    PubMed

    Nagaraja, Ashvin T; Sooresh, Aishwarya; Meissner, Kenith E; McShane, Michael J

    2013-07-23

    Quantum Dots (QDs) stabilized with dihydrolipoic acid (DHLA) were used as a template for layer-by-layer (LbL) modification to study the effect on the QD optical properties. We studied several different polyelectrolytes to determine that large quantities of monodisperse DHLA-QDs could only be obtained with the weak polyelectrolyte pair of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). The key to this success was the development of a two-step method to split the LbL process into adsorption and centrifugation phases, which require different pH solutions for optimum success. Solution pH is highlighted as an important factor to achieve sufficient QD surface coverage and QD recovery during wash cycles. We optimized the process to scale up synthesis by introducing a solvent precipitation step before ultracentrifugation that, when coupled with the correct pH conditions, results in a mean QD recovery of 86-90% after three wash cycles. We found that adsorption of PAH had a negligible effect on the quantum yield and lifetime but an additional layer of PAA resulted in a substantial decrease in both quantum yield and lifetime that could not be recovered by the addition of more layers. The PAH coating provides a protective coating that extends DHLA-QDs stability, prevents photo-oxidation mediated aggregation, alleviates concerns over batch variability, and results in pH-dependent emission.

  6. Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: insights into high efficiency for photocatalytic solar water splitting.

    PubMed

    Ma, Zuju; Sa, Rongjian; Li, Qiaohong; Wu, Kechen

    2016-01-14

    New metal-free carbon nanodot/carbon nitride (C3N4) nanocomposites have shown to exhibit high efficiency for photocatalytic solar water splitting. (J. Liu, et al., Science, 2015, 347, 970) However, the mechanism underlying the ultrahigh performance of these nanocomposites and consequently the possibilities for further improvements are not at present clear. In this work, we performed hybrid functional calculations and included long-range dispersion corrections to accurately characterize the interfacial electron coupling of the graphene quantum dot-graphitic carbon nitride composites (Gdot/g-C3N4). The results revealed that the band gap of Gdot/g-C3N4 could be engineered by changing the lateral size of Gdots. In particular, the C24H12/g-C3N4 composites present an ideal band gap of 1.92 eV to harvest a large part of solar light. More interestingly, a type-II heterojunction is formed at the interface of the Gdot/g-C3N4 composites, a desirable feature for enhanced photocatalytic activity. The charge redistribution at the interface leads to strong electron depletion above the Gdot sheet and electron accumulation below the g-C3N4 monolayer, potentially facilitating the separation of H2O oxidation and reduction reactions. Furthermore, we suggested that the photocatalytic performance of the Gdot/g-C3N4 nanocomposites can be further improved by decreasing the thickness of Gdots and tuning the size of Gdots.

  7. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  8. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer

    NASA Astrophysics Data System (ADS)

    Klinkert, T.; Theys, B.; Patriarche, G.; Jubault, M.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D.

    2016-10-01

    Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

  9. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer.

    PubMed

    Klinkert, T; Theys, B; Patriarche, G; Jubault, M; Donsanti, F; Guillemoles, J-F; Lincot, D

    2016-10-21

    Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

  10. Interfacial layer growth condition dependent carrier transport mechanisms in HfO2/SiO2 gate stacks

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Misra, D.

    2012-06-01

    The temperature and field dependent leakage current in HfO2/SiO2 gate stack for in situ steam grown and chemical interfacial layers (ILs) are studied in the temperature range of 20 °C to 105 °C. Poole-Frenkel mechanism in high field whereas Ohmic conduction in low field region are dominant for both devices. Leakage current decreases whereas both trap energy level (ϕt) and activation energy (Ea) increase for chemically grown IL devices. The trap level energy, (ϕt) ˜ 0.2 eV, indicates that doubly charged oxygen vacancies (V2-) are the active electron traps which contribute to the leakage current in these gate stacks.

  11. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisen; Wu, Tao; Wang, Qi; Pan, Haihua; Tang, Ruikang

    2014-01-01

    The interactions between proteins/peptides and materials are crucial to research and development in many biomedical engineering fields. The energetics of such interactions are key in the evaluation of new proteins/peptides and materials. Much research has recently focused on the quality of free energy profiles by Jarzynski's equality, a widely used equation in biosystems. In the present work, considerable discrepancies were observed between the results obtained by Jarzynski's equality and those derived by umbrella sampling in biomaterial-water model systems. Detailed analyses confirm that such discrepancies turn up only when the target molecule moves in the high-density water layer on a material surface. Then a hybrid scheme was adopted based on this observation. The agreement between the results of the hybrid scheme and umbrella sampling confirms the former observation, which indicates an approach to a fast and accurate estimation of adsorption free energy for large biomaterial interfacial systems.

  12. Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer

    NASA Astrophysics Data System (ADS)

    Wenyu, Yuan; Jingping, Xu; Lu, Liu; Yong, Huang; Zhixiang, Cheng

    2016-05-01

    The interfacial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2 · eV-1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb + 1 V), a small capacitance equivalent thickness (1.11 nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x < 2) are formed on the Ge surface during NH3-plasma treatment than the N2-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NH3-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NH3-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge. Project supported by the National Natural Science Foundation of China (Nos. 6127411261176100, 61404055).

  13. Role of the wetting layer in the enhanced responsivity of InAs/GaAsSb quantum dot infrared photodetectors

    SciTech Connect

    Guzmán, Álvaro Yamamoto, Kenji; Ulloa, J. M.; Hierro, Adrian; Llorens, J. M.

    2015-07-06

    InAs/GaAs{sub 1−x}Sb{sub x} Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain and hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.

  14. Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO3.

    PubMed

    Petach, Trevor A; Mehta, Apurva; Marks, Ronald; Johnson, Bart; Toney, Michael F; Goldhaber-Gordon, David

    2016-04-26

    One prominent structural feature of ionic liquids near surfaces is formation of alternating layers of anions and cations. However, how this layering responds to an applied potential is poorly understood. We focus on the structure of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (BMPY-FAP) near the surface of a strontium titanate (SrTiO3) electric double-layer transistor. Using X-ray reflectivity, we show that at positive bias the individual layers in the ionic liquid double layer thicken and the layering persists further away from the interface. We model the reflectivity using a modified distorted crystal model with alternating cation and anion layers, which allows us to extract the charge density and the potential near the surface. We find that the charge density is strongly oscillatory with and without applied potential and that with an applied gate bias of 4.5 V the first two layers become significantly more cation rich than at zero bias, accumulating about 2.5 × 10(13) cm(-2) excess charge density.

  15. Versatile electron-collecting interfacial layer by in situ growth of silver nanoparticles in nonconjugated polyelectrolyte aqueous solution for polymer solar cells.

    PubMed

    Yuan, Kai; Chen, Lie; Chen, Yiwang

    2014-10-02

    Novel PEIE-Ag composites by in situ growth of silver nanoparticles in poly(ethylenimine)-ethoxylated (PEIE) aqueous solution are explored as an efficient interfacial layer for improving inverted polymer solar cells (PSCs) performance. The hybrid PEIE-Ag interfacial material is simple to fabricate only via ultraviolet irradiation with good water-solubility and unique film formation. The generated Ag nanoparticles can anchor in the PEIE polymer chains to form a conductive continuous interpenetrating network structure. Combining of the advantages of PEIE and Ag nanoparticles, the PEIE-Ag shows enhanced charge transport, electron selective and collection, and improved light-harvesting, mainly due to the surface plasmon resonance effect, better energy alignment induced by the formation of ideal dipole layer, as well as the improved conductivity. These distinguished interfacial properties result in the power conversion efficiency of inverted PSCs based on poly[4,8-bis(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[2-(2-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl] (PBDTTT-C-T) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) photoactive layer substantially improved up to 7.66% from 6.11%. Moreover, the device performance is insensitively dependent on the thickness of the PEIE-Ag interfacial layer, broadening the thicknesses selection window for interfacial materials. These results demonstrate that PEIE-Ag is a potential interfacial material compatible with roll-to-roll techniques and suitable for printed electronic devices.

  16. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    PubMed

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  17. Pseudopotential Calculations of Band Gaps and Band Edges of Short-Period (InAs)n/(GaSb)m Superlattices with Different Substrates, Layer Orientations and Interfacial Bonds

    SciTech Connect

    Piquini, P.; Zunger, A.; Magri, R.

    2008-01-01

    The band edges and band gaps of (InAs){sub n}/(GaSb){sub m} (n,m=1,20) superlattices have been theoretically studied through the plane-wave empirical pseudopotential method for different situations: (i) different substrates, GaSb and InAs; (ii) different point group symmetries, C{sub 2v} and D{sub 2d}; and (iii) different growth directions, (001) and (110). We find that (a) the band gaps for the (001) C{sub 2v} superlattices on a GaSb substrate exhibit a nonmonotonic behavior as a function of the GaSb barrier thickness when the number of (InAs){sub n} layers exceed n=5; (b) substrate effects: compared with the GaSb substrate, the different strain field generated by the InAs substrate leads to a larger variation of the band gaps for the (001) C{sub 2v} superlattices as a function of the InAs well thickness; (c) effect of the type of interfacial bonds: the In-Sb bonds at the interfaces of the (001) D{sub 2d} superlattices partially pin the band edge states, reducing the influence of the confinement effects on electrons and holes, and lowering the band gaps as compared to the (001) C{sub 2v} case. The valence band maximum of the (001) D{sub 2d} superlattices with Ga-As bonds at the interfaces are shifted down, increasing the band gaps as compared to the (001) C{sub 2v} case; (d) effect of layer orientation: the presence of In-Sb bonds at both interfaces of the (110) superlattices pin the band edge states and reduces the band gaps, as compared to the (001) C{sub 2v} case. An anticrossing between the electron and hole levels in the (110) superlattices, for thin GaSb and thick InAs layers, leads to an increase of the band gaps, as a function of the InAs thickness; (e) superlattices vs random alloys: the comparison between the band edges and band gaps of the superlattices on a GaSb substrate and those for random alloys, lattice matched to a GaSb substrate, as a function of the In composition, shows that the random alloys present almost always higher band gaps and give a

  18. Effects of ultrathin AlAs interfacial layer on the structure and optical properties of GaInP epilayer grown on germanium

    NASA Astrophysics Data System (ADS)

    Jia, S. P.; Chen, G. F.; He, W.; Dai, P.; Chen, J. X.; Lu, S. L.; Yang, H.

    2014-10-01

    Structure and optical properties of GaInP epilayer with the ultrathin interfacial layers grown on germanium by metal-organic vapor-phase epitaxy (MOVPE) were characterized by high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), Raman as well as surface morphology measurement. A five angstroms (5 Å) AlAs interfacial layer results in the decrease of PL intensity arising from the emission of [Ge(Ga,In) - V(Ga,In)] complex. With the incorporation of AlAs interfacial layer, an increased ordered degree of GaInP epilayer is observed. On the basis of the combination of step-terrace-reconstruction (STR) mode with the dimer-induced-stress model, a CuPt-B type ordering of GaInP which is related to AlAs reconstruction with 2× periodicity process is proposed to explain this effect. Long range order occurs as a consequence of the minimization of the strain energy with increased interfacial layer thickness from 5 Å to 5 nm.

  19. Effect of interfacial layers on physical and electrical properties of dinaphtho[2,3-b:2‧,3‧-d]thiophene organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2017-03-01

    We fabricated hexyl-substituted dinaphtho[2,3-b:2‧,3‧-d]thiophene (C6-DNT-V) organic thin-film transistors (OTFTs) with different interfacial layers. The interfacial layers comprised various types of polymers, polyimide, self-assembled monolayers, and high-κ materials. We investigated the effect of interfacial layers on the physical and electrical properties of C6-DNT-V OTFTs. The relationships between mobility and contact angle, threshold voltage and contact angle, on/off ratio and contact angle, mobility and X-ray diffraction intensity, and mobility and dielectric constant were investigated. We found that the contact angle strongly affected the threshold voltage, and the correlation coefficient was calculated to be 0.88. This is due to the fact that use of interfacial layers on the dielectric surface changes the contact angle and hence the surface energy. The altered surface energy will contribute to a change in the grain boundary of C6-DNT-V and affect the shift in threshold voltage. The relationships between other properties showed correlation coefficients of lower than 0.51.

  20. Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers

    SciTech Connect

    Chauhan, K. N.; Riffe, D. M.; Everett, E. A.; Kim, D. J.; Yang, H.; Shen, F. K.

    2013-05-28

    Using 800 nm, 25-fs pulses from a mode locked Ti:Al{sub 2}O{sub 3} laser, we have measured the ultrafast optical reflectivity of MBE-grown, single-layer In{sub 0.4}Ga{sub 0.6}As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with initial InGaAs thickness and annealing temperature. With increasing excited carrier density, the capture rate decreases; this slowing of the dynamics is attributed to Pauli state blocking within the InGaAs quantum layer.

  1. Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process.

    PubMed

    Ghafari-Gousheh, Soroush; Nedjad, Syamak Hossein; Khalil-Allafi, Jafar

    2015-11-01

    Severe plastic deformation (SPD) processing has shown very effective in promotion of mechanical properties of metals and alloys. In this study, the results of investigating mechanical properties and also inter-layer bond performance of accumulative roll bonded high purity titanium (HP-Ti) strips are presented. High purity titanium plates were severely deformed by use of a combination of cold rolling (CR) to a thickness reduction of approximately 87% and then accumulative roll bonding (ARB) for three cycles (N=3) at ambient temperature. Optical and scanning electron microscopy, tensile testing, and hardness measurements were conducted. The ARB strips exhibited lower tensile strength and ductility in comparison to cold rolled one which can basically be attributed to the poor function of the latest bonds established in the centerlines of the strips. Fractographic examinations revealed the interfacial de-bonding along the centerline between the layers having undergone roll bonding for just one cycle. It was while the interfaces having experienced roll bonding for more cycles showed much higher resistance against delaminating.

  2. Formation of carbonaceous nano-layers under high interfacial pressures during lubrication with mineral and bio-based oils

    SciTech Connect

    Baltrus, John P.

    2014-01-01

    In order to better protect steel surfaces against wear under high loads, understanding of chemical reactions between lubricants and metal at high interfacial pressures and elevated temperatures needs to be improved. Solutions at 5 to 20 wt. % of zinc di-2-ethylhexyl dithio phosphate (ZDDP) and chlorinated paraffins (CP) in inhibited paraffinic mineral oil (IPMO) and inhibited soy bean oil (ISBO) were compared on a Twist Compression Tribotester (TCT) at 200 MPa. Microscopy of wear tracks after 10 seconds tribotesting showed much smoother surface profiles than those of unworn areas. X-ray photoelectron spectroscopy (XPS) coupled with Ar-ion sputtering demonstrated that additive solutions in ISBO formed 2–3 times thicker carbon-containing nano-layers compared to IPMO. The amounts of Cl, S or P were unexpectedly low and detectable only on the top surface with less than 5 nm penetration. CP blends in IPMO formed more inorganic chlorides than those in ISBO. It can be concluded that base oils are primarily responsible for the thickness of carbonaceous nano-layers during early stages of severe boundary lubrication, while CP or ZDDP additive contributions are important, but less significant.

  3. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    NASA Astrophysics Data System (ADS)

    Coppola, Sara; Vespini, Veronica; Olivieri, Federico; Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro

    2017-03-01

    Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  4. Asymmetric Stark shift in an impurity doped dome-shaped quantum dot with wetting layer

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.; Cristea, M.; Bejan, D.

    2017-02-01

    The effects of vertical electric field and donor impurity on the electronic properties of the dome-shaped InAs/GaAs quantum dot coupled to its wetting layer were investigated. The dependence of the electron density, energy and Stark shift of the S-, P- and WL-states on the applied electric field was studied with and without impurity. The S- and P-states have no significant qualitative changes in the shape of the wave functions with increasing the electric field, except that they become slightly shifted due to the competition between the field action and the quantum confinement. The wave function of the WL-state is strongly modified in polarized structures. Our results reveal that the Stark shift of electron energies can be fitted with a quadratic dependence on the electric field, the linear and quadratic terms corresponding to the dipole moment and static electron polarizability. Their estimated values reasonable agree with those calculated.

  5. Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong

    2016-06-01

    ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.

  6. A moving contact line as a rheometer for nanometric interfacial layers

    PubMed Central

    Lhermerout, Romain; Perrin, Hugo; Rolley, Etienne; Andreotti, Bruno; Davitt, Kristina

    2016-01-01

    How a liquid drop sits or moves depends on the physical and mechanical properties of the underlying substrate. This can be seen in the hysteresis of the contact angle made by a drop on a solid, which is known to originate from surface heterogeneities, and in the slowing of droplet motion on deformable solids. Here, we show how a moving contact line can be used to characterize a molecularly thin polymer layer on a solid. We find that the hysteresis depends on the polymerization index and can be optimized to be vanishingly small (<0.07°). The mechanical properties are quantitatively deduced from the microscopic contact angle, which is proportional to the speed of the contact line and the Rouse relaxation time divided by the layer thickness, in agreement with theory. Our work opens the prospect of measuring the properties of functionalized interfaces in microfluidic and biomedical applications that are otherwise inaccessible. PMID:27562022

  7. A moving contact line as a rheometer for nanometric interfacial layers

    NASA Astrophysics Data System (ADS)

    Lhermerout, Romain; Perrin, Hugo; Rolley, Etienne; Andreotti, Bruno; Davitt, Kristina

    2016-08-01

    How a liquid drop sits or moves depends on the physical and mechanical properties of the underlying substrate. This can be seen in the hysteresis of the contact angle made by a drop on a solid, which is known to originate from surface heterogeneities, and in the slowing of droplet motion on deformable solids. Here, we show how a moving contact line can be used to characterize a molecularly thin polymer layer on a solid. We find that the hysteresis depends on the polymerization index and can be optimized to be vanishingly small (<0.07°). The mechanical properties are quantitatively deduced from the microscopic contact angle, which is proportional to the speed of the contact line and the Rouse relaxation time divided by the layer thickness, in agreement with theory. Our work opens the prospect of measuring the properties of functionalized interfaces in microfluidic and biomedical applications that are otherwise inaccessible.

  8. New concepts on the interfacial friction behavior between flat steel ribbon layers

    SciTech Connect

    Zheng, J.; Zhu, G.

    1995-11-01

    Flat steel ribbon wound pressure vessels are widely used in chemical, petrochemical, and other industries. However, no satisfactory theoretical formulae are available to estimate the additional strengthening induced by the friction between the layers. Effective normal stress in the ribbon wide direction and shear stress are new concepts for describing such strengthening effect. These concepts are analyzed further to obtain expressions for both axial and circumferential bursting pressure, and stresses of the vessel. Comparison with one set of experimental results shows excellent agreement.

  9. The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Asemi, M.; Ghanaatshoar, M.

    2016-09-01

    In the present study, to enhance the power conversion efficiency of the DSSCs, we introduce MgO insulating layers at the interface between TiO2 and electrolyte to decrease charge recombination rate by suppressing the electron transfer from TiO2 to the electrolyte. The thickness of the MgO layer plays a vital role in the kinetics of dye-sensitized solar cells and affects their overall efficiency. The cell with optimized thickness of MgO layer exhibits the highest conversion efficiency ( η = 5.12 %) with a high short-circuit current density (18.15 mA/cm2) and open-circuit voltage (0.571 V). Open-circuit voltage decay measurement results verify the improvement of the electrons lifetime in the DSSCs fabricated with surface-modified photoanodes due to the retarding the charge recombination. In order to explore the reasons for the J SC improvement, incident photon-to-current conversion efficiency measurement was taken. Our results show that the enhancement in the photoinjected electron lifetime can contribute to an increase in the electron collection efficiency, leading to the improved J SC value. Furthermore, the enhancement in the photoinjected electron recombination rate is also demonstrated by electrochemical impedance spectroscopy.

  10. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  11. Running interfacial waves in a two-layer fluid system subject to longitudinal vibrations.

    PubMed

    Goldobin, D S; Pimenova, A V; Kovalevskaya, K V; Lyubimov, D V; Lyubimova, T P

    2015-05-01

    We study the waves at the interface between two thin horizontal layers of immiscible fluids subject to high-frequency horizontal vibrations. Previously, the variational principle for energy functional, which can be adopted for treatment of quasistationary states of free interface in fluid dynamical systems subject to vibrations, revealed the existence of standing periodic waves and solitons in this system. However, this approach does not provide regular means for dealing with evolutionary problems: neither stability problems nor ones associated with propagating waves. In this work, we rigorously derive the evolution equations for long waves in the system, which turn out to be identical to the plus (or good) Boussinesq equation. With these equations one can find all the time-independent-profile solitary waves (standing solitons are a specific case of these propagating waves), which exist below the linear instability threshold; the standing and slow solitons are always unstable while fast solitons are stable. Depending on initial perturbations, unstable solitons either grow in an explosive manner, which means layer rupture in a finite time, or falls apart into stable solitons. The results are derived within the long-wave approximation as the linear stability analysis for the flat-interface state [D.V. Lyubimov and A.A. Cherepanov, Fluid Dynamics 21, 849 (1986)] reveals the instabilities of thin layers to be long wavelength.

  12. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    SciTech Connect

    Marstell, Roderick J.; Strandwitz, Nicholas C.

    2015-11-14

    We report the differences in the passivation and electronic properties of aluminum oxide (Al{sub 2}O{sub 3}) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Q{sub f} {sub Traditional} = −8.1 × 10{sup 11 }cm{sup −2} and Q{sub f} {sub NHALD} = −3.6 × 10{sup 12 }cm{sup −2}), and a larger degree of chemical passivation than NHALD films (density of interface trap states, D{sub it} {sub Traditional} = 5.4 × 10{sup 11 }eV{sup −1 }cm{sup −2} and D{sub it} {sub NHALD} = 2.9 × 10{sup 12 }eV{sup −1 }cm{sup −2}). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased D{sub it} for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τ{sub Traditional} = 2.2 × 10{sup −9} s and τ{sub NHALD} = 1.7 × 10{sup −7} s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  13. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Du, Lin; Maroudas, Dimitrios

    2016-07-01

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of "QD pairs" or "double QDs" and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  14. Photoelectrochemical Performance of Quantum dot-Sensitized TiO2 Nanotube Arrays: a Study of Surface Modification by Atomic Layer Deposition Coating.

    PubMed

    Zhou, Quan; Zhou, Junchen; Zeng, Min; Wang, Guizhen; Chen, Yongjun; Lin, Shiwei

    2017-12-01

    Although CdS and PbS quantum dot-sensitized TiO2 nanotube arrays (TNTAs/QDs) show photocatalytic activity in the visible-light region, the low internal quantum efficiency and the slow interfacial hole transfer rate limit their applications. This work modified the surface of the TNTAs/QDs photoelectrodes with metal-oxide overlayers by atomic layer deposition (ALD), such as coating Al2O3, TiO2, and ZnO. The ALD deposition of all these overlayers can apparently enhance the photoelectrochemical performance of the TNTAs/QDs. Under simulated solar illumination, the maximum photocurrent densities of the TNTAs/QDs with 10 cycles ZnO, 25 cycles TiO2, and 30 cycles Al2O3 overlayers are 5.0, 4.3, and 5.6 mA/cm(2) at 1.0 V (vs. SCE), respectively. The photoelectrode with Al2O3 overlayer coating presents the superior performance, whose photocurrent density is 37 times and 1.6 times higher than those of the TNTAs and TNTAs/QDs, respectively. Systematic examination of the effects of various metal-oxide overlayers on the photoelectrochemical performance indicates that the enhancement by TiO2 and ZnO overcoatings can only ascribed to the decrease of the interfacial charge transfer impedance, besides which Al2O3 coating can passivate the surface states and facilitate the charge transfer kinetics. These results could be helpful to develop high-performance photoelectrodes in the photoelectrochemical applications.

  15. Propagation regimes of interfacial solitary waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Kurkina, O. E.; Kurkin, A. A.; Rouvinskaya, E. A.; Soomere, T.

    2015-01-01

    Long weakly nonlinear finite-amplitude internal waves in a fluid consisting of three inviscid immiscible layers of arbitrary thickness and constant densities (stable configuration, Boussinesq approximation) bounded by a horizontal rigid bottom from below and by a rigid lid at the surface are described up to the second order of perturbation theory in small parameters of nonlinearity and dispersion. First, a pair of alternatives of appropriate KdV-type equations with the coefficients depending on the parameters of the fluid (layer positions and thickness, density jumps) are derived for the displacements of both modes of internal waves and for each interface between the layers. These equations are integrable for a very limited set of coefficients and do not allow for proper description of several near-critical cases when certain coefficients vanish. A more specific equation allowing for a variety of solitonic solutions and capable of resolving most of near-critical situations is derived by means of the introduction of another small parameter that describes the properties of the medium and rescaling of the ratio of small parameters. This procedure leads to a pair of implicitly interrelated alternatives of Gardner equation (KdV-type equations with combined nonlinearity) for the two interfaces. We present a detailed analysis of the relationships for the solutions for the disturbances at both interfaces and various regimes of the appearance and propagation properties of soliton solutions to these equations depending on the combinations of the parameters of the fluid. It is shown both the quadratic and the cubic nonlinear terms vanish for several realistic configurations of such a fluid.

  16. Propagation regimes of interfacial solitary waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Kurkina, O. E.; Kurkin, A. A.; Rouvinskaya, E. A.; Soomere, T.

    2015-03-01

    Long weakly nonlinear finite-amplitude internal waves in a fluid consisting of three inviscid layers of arbitrary thickness and constant densities (stable configuration, Boussinesq approximation) bounded by a horizontal rigid bottom from below and by a rigid lid at the surface are described up to the second order of perturbation theory in small parameters of nonlinearity and dispersion. First, a pair of alternatives of appropriate KdV-type equations with the coefficients depending on the parameters of the fluid (layer positions and thickness, density jumps) are derived for the displacements of both modes of internal waves and for each interface between the layers. These equations are integrable for a very limited set of coefficients and do not allow for proper description of several near-critical cases when certain coefficients vanish. A more specific equation allowing for a variety of solitonic solutions and capable of resolving most near-critical situations is derived by means of the introduction of another small parameter that describes the properties of the medium and rescaling of the ratio of small parameters. This procedure leads to a pair of implicitly interrelated alternatives of Gardner equations (KdV-type equations with combined nonlinearity) for the two interfaces. We present a detailed analysis of the relationships for the solutions for the disturbances at both interfaces and various regimes of the appearance and propagation properties of soliton solutions to these equations depending on the combinations of the parameters of the fluid. It is shown that both the quadratic and the cubic nonlinear terms vanish for several realistic configurations of such a fluid.

  17. Multiple moving interfacial cracks between two dissimilar piezoelectric layers under electromechanical loading

    NASA Astrophysics Data System (ADS)

    Nourazar, Mahsa; Ayatollahi, Mojtaba

    2016-07-01

    The dynamic problem of several moving cracks at the interface between two dissimilar piezoelectric materials is analyzed. The combined out-of-plane mechanical and in-plane electrical loads are applied to the layers. Fourier transforms are used to reduce the problem to a system of singular integral equations with simple Cauchy kernel. The integral equations are solved numerically by converting to a system of linear algebraic equations and by using a collocation technique. The results presented consist of the stress intensity factors and the electric displacement intensity factors. It is found that generally the field intensity factors increase with increasing crack propagation speed.

  18. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  19. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  20. Contrasting suspended covers reveal the impact of an artificial monolayer on heat transfer processes at the interfacial boundary layer.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N

    2015-01-01

    The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This 'dual property' may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.

  1. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  2. The Impact of the Ocean Thermal Skin Layer on Air-Sea Interfacial Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Wong, E.

    2015-12-01

    The upper ocean heat content has been observed to be increasing over the past few decades much of which has been attributed to anthropogenic effects resulting in an increase in greenhouse gases thereby increasing the amounts of incoming longwave (LWin) radiation impinging onto the ocean's surface. However, the penetration depth of LWin extends to micrometer scales, where the ocean's thermal skin layer (TSL) exists, and does not directly heat the upper few meters of the ocean thereby raising the conundrum of how does the upper ocean warm with increasing levels of infrared (IR) radiation. The TSL consists of a strong temperature gradient on the aqueous side of the interface that sustains the upward heat flux by molecular conduction. As such, we hypothesize the heat lost through the air-sea interface which is controlled by the TSL, modulates the amount of heat stored in the upper few meters of the ocean. An analysis of properties of the retrieved TSL profiles from a shipboard IR spectrometer with heat fluxes (specifically LWin) and wind speeds from two cruises limited to night-time data are presented. We also show a comparison between these properties with current published viscous layer models. The results indicate that the data have an inherent wind speed dependence with net flux thereby requiring a segregation of the data into wind speed bins to acknowledge the effects of wind-driven shear in the analysis. The temperature differences derived from the models indicates that at low wind speeds (<2 m/s), where wind-driven shear effects are negligible and buoyancy effects dominate, the TSL profile's gradient is decreasing with increased LWin which leads to a lowered net heat flux and is in agreement with our hypothesis. However our field results show an opposite effect (higher gradient at higher LWin) which is believed to be due to the formation of a thicker TSL at low winds. The presence of a thicker TSL suggests that more of the vertical temperature gradient lies

  3. Organic/inorganic hybrid pn-junction between copper phthalocyanine and CdSe quantum dot layers as solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Guchhait, Asim; Pal, Amlan J.

    2012-08-01

    We have introduced an organic/inorganic hybrid pn-junction for solar cell applications. Layers of II-VI quantum dots and a metal-phthalocyanine in sequence have been used as n- and p-type materials, respectively, to form a junction. The film of quantum dots has been formed through a layer-by-layer process by replacing the long-chain ligands of the nanoparticles in each ultrathin layer or a monolayer with short-chain ones so that interparticle distance becomes small leading to a decrease in resistance of the quantum dot layer. With indium tin oxide and Au as electrodes, we have formed an inverted sandwiched structure. These electrodes formed ohmic contacts with the neighboring materials. From the current-voltage characteristics of the hybrid heterostructure, we have inferred formation of a depletion region at the pn-junction that played a key role in charge separation and correspondingly a photocurrent in the external circuit. For comparison, we have also formed and characterized Schottky devices based on components of the pn-junction keeping the electrode combination same. From capacitance-voltage characteristics, we have observed that the depletion region of the hybrid pn-junction was much wider as compared to that in Schottky devices based on components of the junction.

  4. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes

    PubMed Central

    Chen, Guanxiong; Wu, Shuilin; Hui, Liwei; Zhao, Yuan; Ye, Jianglin; Tan, Ziqi; Zeng, Wencong; Tao, Zhuchen; Yang, Lihua; Zhu, Yanwu

    2016-01-01

    It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly. CQDs are fabricated by rupturing C60 by KOH activation with a production yield of ~15 wt.%. The CQDs obtained have an average height of 1.14 nm and an average lateral size of 7.48 nm, and are highly soluble in water. By packaging annealed CQD assembly to high density (1.23 g cm−3) electrodes in supercapacitors, a high volumetric capacitance of 157.4 F cm−3 and a high areal capacitance of 0.66 F cm−2 (normalized to the loading area of electrodes) are demonstrated in 6 M KOH aqueous electrolyte with a good rate capability. PMID:26754463

  5. Cu2O quantum dots emitting visible light grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lee, Min Young; Kim, Soo-Hyun; Park, Il-Kyu

    2016-11-01

    This paper reports the fabrication of the Cu2O quantum dots (QDs) emitting a controlled wavelength in the visible spectral range prepared by atomic layer deposition (ALD). Cu2O thin film layers formed on the Al2O3 surface showed large density of islands via Volmer-Weber growth mode, which resulting in QD formation. As the number of ALD cycles was increased from 60 to 480, the spatial density and mean diameter of the Cu2O QDs increased systematically from 4.02 × 1011/cm2 to 2.56×1012/cm2 and from 2.1 to 3.2 nm, respectively. The absorption spectral results indicated that the electron energy transition in the Cu2O QDs was a direct process with the optical band gaps decreasing from 2.71 to 2.15 eV with increasing QD size from 2.1 to 3.2 nm because of the quantum confinement effect. The Cu2O QDs showed broad emission peaks composed of multiple elementary emission spectra corresponding to the Cu2O QD ensembles with a different size distribution. As the size of Cu2O QDs decreased, the shoulder peaks at the higher energy side developed due to the quantum confinement effect.

  6. Growth of ultrathin GaSb layer on GaAs using metal-organic chemical vapor deposition with Sb interfacial treatment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Jen; Ha, Minh-Thien-Huu; Hsu, Ching-Yi; Lin, Yueh-Chin; Chang, Sheng-Po; Chang, Shoou-Jinn; Chang, Edward Yi

    2016-09-01

    GaSb epitaxial layers were directly grown on GaAs substrates by metal-organic chemical vapor deposition involving Sb interfacial treatment with optimized growth temperature and V/III ratio. The interfacial treatment effectively reduces the surface energy and strain energy difference, resulting in a quasi-2D growth mode. When the GaSb layer was grown at 520 °C, the strain induced by lattice mismatch was accommodated by 90° dislocations with a period of 5.67 nm. By optimizing the V/III ratio, the surface roughness of the ultrathin GaSb/GaAs heterostructure was reduced, resulting in a reduced carrier scattering and improved electronic properties.

  7. [Research on the Highly Stable White LED with CdSe/ZnS Quantum Dot as Light Conversion Layer].

    PubMed

    Cao, Jin; Zhou, Jie; Xie, Jing-weil; Chen, An-ping; Zhang, Xuel; Yin, Lu-qiao; Zhang, Jian-hua

    2016-02-01

    In accordance with the one-step synthesis, in this paper, we synthesized 510, 550 and 630 nm three emission peaks CdSe/ZnS core-shell quantum dots with high stability and high quantum yield whose quantum yield were 82%, 98% and 97%. We used the quantum dot material to replace the phosphor material, and mixed QDs with the silicone uniformly, then dispersed the QDs/silicone composites onto the blue InGaN LEDs to fabricate the QDs-WLEDs. By successively adding different colors of quantum dots for the preparation of quantum dot light converting layer, We investigated that how does the ratio of the three kind of quantum dots whose peaks were 510, 550 and 630 nm effect on the properties of the white LED devices. This paper also studied the mechanism of energy conversion between different colors of quantum dots. We also utilized the mechanism that the quantum dots effect on the white spectrum and color coordinates; we got the results of the optimization of the white device and the ratio of three-color quantum dots. The results show that when the quantum dot ratio is 24:7:10, white LED devices with high stability and high efficiency can be obtained, in the current range of 20-200 mA, the range of color temperature is from 4 607 to 5 920 K, the CIE-1931 coordinates is from (0.355 1,0.348 3) to (0.323 4, 0.336 1), the color rendering index is from 77. 6 to 84. 2, and the highest power efficiency of the devices achieves to 31.69 lm · W⁻¹ @ 20 mA. In addition, in order to further investigate the reason of stable device performance, We studied the effects of time, temperature, UV treatment on the stability of CdSe/ZnS QDs/silicone light conversion material, the results show that the excellent stability of the devices attributes to the stability of the one-step synthesis of core-shell structure of the quantum dot material, the final optimized device is a low-power high-quality white light source and the device has good application prospects in the field of standard white

  8. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups

    NASA Astrophysics Data System (ADS)

    He, Shao-jian; Wang, Yi-qing; Feng, Yi-ping; Liu, Qing-sheng; Zhang, Li-qun

    2010-03-01

    A great variety of polymer/layered silicate (PLS) nanocomposites have been reported, however, there are few exfoliated PLS nanocomposites and their inorganic-organic interfaces are still a great problem, especially for the elastomers. In this research, a kind of exfoliated elastomer/silicate layer nanocompound was prepared and proved by XRD and TEM, in which 10 phr Na + -montmorillonite was dispersed in butadiene-styrene-vinyl pyridine rubber by latex compounding method with acidic flocculants. Moreover, a dynamic mechanical thermal analyzer (DMTA) suggested a strong interfacial interaction (interaction parameter BH = 4.91) between the silicate layers and macromolecules in addition to the weak inorganic-organic interfacial interaction, and solid state 15N NMR indicated the formation of a strong ionic interface through the acidifying pyridine. Subsequently, a remarkable improvement of the dispersing morphology, mechanical performance and gas barrier property appeared, compared to that using calcium ion flocculants. This supports the formation of an exfoliated structure and an improved interfacial interaction.

  9. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups.

    PubMed

    He, Shao-jian; Wang, Yi-qing; Feng, Yi-ping; Liu, Qing-sheng; Zhang, Li-qun

    2010-03-19

    A great variety of polymer/layered silicate (PLS) nanocomposites have been reported, however, there are few exfoliated PLS nanocomposites and their inorganic-organic interfaces are still a great problem, especially for the elastomers. In this research, a kind of exfoliated elastomer/silicate layer nanocompound was prepared and proved by XRD and TEM, in which 10 phr Na(+)-montmorillonite was dispersed in butadiene-styrene-vinyl pyridine rubber by latex compounding method with acidic flocculants. Moreover, a dynamic mechanical thermal analyzer (DMTA) suggested a strong interfacial interaction (interaction parameter B(H) = 4.91) between the silicate layers and macromolecules in addition to the weak inorganic-organic interfacial interaction, and solid state (15)N NMR indicated the formation of a strong ionic interface through the acidifying pyridine. Subsequently, a remarkable improvement of the dispersing morphology, mechanical performance and gas barrier property appeared, compared to that using calcium ion flocculants. This supports the formation of an exfoliated structure and an improved interfacial interaction.

  10. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Prass, Sebastian; Hasanpour, Sadegh; Sow, Pradeep Kumar; Phillion, André B.; Mérida, Walter

    2016-07-01

    The interfacial morphology between the catalyst layer (CL) and micro porous layer (MPL) influences the performance of proton exchange membrane fuel cells (PEMFCs). Here we report a direct method to investigate the CL-MPL interfacial morphology of stacked and compressed gas diffusion layer (GDL with MPL)-catalyst coated membrane (CCM) assemblies. The area, origin and dimensions of interfacial gaps are studied with high-resolution X-ray micro computed tomography (X-μCT). The projected gap area (fraction of the CL-MPL interface separated by gaps) is higher for GDL-CCM assemblies with large differences in the surface roughness between CL and MPL but reduces with increasing compression and similarity in roughness. Relatively large continuous gaps are found in proximity to cracks in the MPL. These are hypothesized to form due to the presence of large pores on the surface of the GDL. Smaller gaps are induced by the surface roughness features throughout the CL-MPL interface. By modification of the pore sizes on the GDL surface serving as substrate for the MPL, the number and dimension of MPL crack induced gaps can be manipulated. Moreover, adjusting the CL and MPL surface roughness parameters to achieve similar orders of roughness can improve the surface mating characteristics of these two components.

  11. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes.

    PubMed

    Merlin, Jenny; Duval, Jérôme F L

    2012-04-07

    We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The

  12. Effect with high density nano dot type storage layer structure on 20 nm planar NAND flash memory characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo

    2014-01-01

    The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.

  13. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    SciTech Connect

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; Chen, Jia-Shiang; Sutter, Eli; Sutter, Peter; Cotlet, Mircea

    2016-03-31

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  14. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    DOE PAGES

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; ...

    2016-03-31

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  15. Enhancing the performances of P3HT:PCBM – MoS3 based H2-evolving photocathodes with interfacial layers

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-01-01

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner, as they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photo-electrochemical cells, we combined a noble metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly-(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al\\Ti interfacial layers led to an increase of the photocurrent up to 8 mA cm−2 at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the HER onset potential, a value close to the open circuit potential of the P3HT:PCBM solar cell. A 50 nm thick C60 layer also works as interfacial layer, with current density reaching 1 mA cm−2 at RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a non-photoactive electrode with identical catalyst as dark electrode, respectively. They provide different information especially for the differentiation of the role of the photogenerating layer and the role of the catalyst. Best results were obtained with the Al\\Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64 % and 2.05 % respectively. PMID:26151685

  16. Anisotropic Polar Magneto-Optic Kerr Effect of Ultrathin Fe/GaAs(001) Layers due to Interfacial Spin-Orbit Interaction.

    PubMed

    Buchner, M; Högl, P; Putz, S; Gmitra, M; Günther, S; Schoen, M A W; Kronseder, M; Schuh, D; Bougeard, D; Fabian, J; Back, C H

    2016-10-07

    We report the observation of the anisotropic polar magneto-optical Kerr effect in thin layers of epitaxial Fe/GaAs(001) at room temperature. A clear twofold symmetry of the Kerr rotation angle depending on the orientation of the linear polarization of the probing laser beam with respect to the crystallographic directions of the sample is detected for ultrathin magnetic films saturated out of the film plane. The amplitude of the anisotropy decreases with increasing Fe film thickness, suggesting that the interfacial region is the origin of the anisotropy. The twofold symmetry is fully reproduced by model calculations based on an interference of interfacial Bychkov-Rashba and Dresselhaus spin-orbit coupling.

  17. Anisotropic Polar Magneto-Optic Kerr Effect of Ultrathin Fe /GaAs (001 ) Layers due to Interfacial Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Buchner, M.; Högl, P.; Putz, S.; Gmitra, M.; Günther, S.; Schoen, M. A. W.; Kronseder, M.; Schuh, D.; Bougeard, D.; Fabian, J.; Back, C. H.

    2016-10-01

    We report the observation of the anisotropic polar magneto-optical Kerr effect in thin layers of epitaxial Fe /GaAs (001 ) at room temperature. A clear twofold symmetry of the Kerr rotation angle depending on the orientation of the linear polarization of the probing laser beam with respect to the crystallographic directions of the sample is detected for ultrathin magnetic films saturated out of the film plane. The amplitude of the anisotropy decreases with increasing Fe film thickness, suggesting that the interfacial region is the origin of the anisotropy. The twofold symmetry is fully reproduced by model calculations based on an interference of interfacial Bychkov-Rashba and Dresselhaus spin-orbit coupling.

  18. Studies on frequency and gate voltage effects on the dielectric properties of Au/n-Si (110) structure with PVA-nickel acetate composite film interfacial layer

    NASA Astrophysics Data System (ADS)

    Tunç, T.; Gökçen, M.; Uslu, İ.

    2012-11-01

    The admittance technique was used in order to investigate the frequency dependence of dielectric constant ( ɛ'), dielectric loss ( ɛ″), dielectric loss tangent (tan δ), the ac electrical conductivity ( σ ac), and the electric modulus of PVA (Ni-doped) structure. Experimental results revealed that the values of ɛ' , ɛ″, (tan δ), σ ac and the electric modulus show fairly large frequency and gate bias dispersion due to the interface charges and polarization. The σ ac is found to increase with both increasing frequency and voltage. It can be concluded that the interface charges and interfacial polarization have strong influence on the dielectric properties of metal-polymer-semiconductor (MIS) structures especially at low frequencies and in depletion and accumulation regions. The results of this study indicate that the ɛ' values of Au/PVA/n-Si with Nickel-doped PVA interfacial layer are quite higher compared to those with pure and other dopant/mixture's of PVA.

  19. Effect of atomic layer deposition growth temperature on the interfacial characteristics of HfO{sub 2}/p-GaAs metal-oxide-semiconductor capacitors

    SciTech Connect

    Liu, C.; Zhang, Y. M.; Zhang, Y. M.; Lv, H. L.

    2014-12-14

    The effect of atomic layer deposition (ALD) growth temperature on the interfacial characteristics of p-GaAs MOS capacitors with ALD HfO{sub 2} high-k dielectric using tetrakis(ethylmethyl)amino halfnium precursor is investigated in this study. Using the combination of capacitance-voltage (C-V) and X-ray photoelectron spectroscopy (XPS) measurements, ALD growth temperature is found to play a large role in controlling the reaction between interfacial oxides and precursor and ultimately determining the interface properties. The reduction of surface oxides is observed to be insignificant for ALD at 200 °C, while markedly pronounced for growth at 300 °C. The corresponding C-V characteristics are also shown to be ALD temperature dependent and match well with the XPS results. Thus, proper ALD process is crucial in optimizing the interface quality.

  20. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage

    NASA Astrophysics Data System (ADS)

    Jing, Mingjun; Wang, Chiwei; Hou, Hongshuai; Wu, Zhibin; Zhu, Yirong; Yang, Yingchang; Jia, Xinnan; Zhang, Yan; Ji, Xiaobo

    2015-12-01

    A green and one-step method of electrochemical alternating voltage has been utilized to form NiO quantum dots/graphene flakes (NiO-dots/Gh) for supercapacitor applications. NiO quantum dots (∼3 nm) are uniformly deposited on few-layer graphene surfaces by oxygen functional groups on graphene surface that is naturally utilized to bridge NiO and graphene through Ni-O-C bands, which exhibits outstanding specific capacitance 1181.1 F g-1 at a current density of 2.1 A g-1 and rate behavior 66.2% at 42 A g-1 as NiO dots can be fleetly wired up to current collector through the underlying graphene two-dimensional layers. The NiO-dots/Gh composite is further undertaken in asymmetric supercapacitors with high energy density (27.3 Wh kg-1 at 1562.6 W kg-1).

  1. Role of interfacial layer on complementary resistive switching in the TiN/HfO{sub x}/TiN resistive memory device

    SciTech Connect

    Zhang, H. Z.; Ang, D. S. Gu, C. J.; Yew, K. S.; Wang, X. P.; Lo, G. Q.

    2014-12-01

    The role of the bottom interfacial layer (IL) in enabling stable complementary resistive switching (CRS) in the TiN/HfO{sub x}/IL/TiN resistive memory device is revealed. Stable CRS is obtained for the TiN/HfO{sub x}/IL/TiN device, where a bottom IL comprising Hf and Ti sub-oxides resulted from the oxidation of TiN during the initial stages of atomic-layer deposition of HfO{sub x} layer. In the TiN/HfO{sub x}/Pt device, where formation of the bottom IL is suppressed by the inert Pt metal, no CRS is observed. Oxygen-ion exchange between IL and the conductive path in HfO{sub x} layer is proposed to have caused the complementary bipolar switching behavior observed in the TiN/HfO{sub x}/IL/TiN device.

  2. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  3. Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy

    SciTech Connect

    Antonova, Irina V.; Nebogatikova, Nadezhda A.; Prinz, Victor Ya.

    2014-05-12

    Arrays of graphene or few-layer graphene quantum dots (QDs) embedded in a partially fluorinated graphene matrix were created by chemical functionalization of layers. Charge transient spectroscopy employed for investigation of obtained QD systems (size 20–70 nm) has allowed us to examine the QD energy spectra and the time of carrier emission (or charge relaxation) from QDs as a function of film thickness. It was found that the characteristic time of carrier emission from QDs decreased markedly (by about four orders of magnitude) on increasing the QD thickness from one graphene monolayer to 3 nm. Daylight-assisted measurements also demonstrate a strong decrease of the carrier emission time.

  4. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, Ilke; Aydemir, Umut; Altındal, Şemsettin

    2010-09-01

    The forward bias current-voltage (I-V) characteristics of Au/n-Si Schottky barrier diodes (SBDs) with Zn doped poly(vinyl alcohol) (PVA:Zn) interfacial layer have been investigated in the wide temperature range of 80-400 K. The conventional Richardson plot of the ln(Io/T2) versus q /kT has two linear regions: the first region (200-400 K) and the second region (80-170 K). The values of activation energy (Ea) and Richardson constant (A∗) were obtained from this plot and especially the values of A∗ are much lower than the known theoretical value for n-type Si. Also the value of Ea is almost equal to the half of the band gap energy of Si. Therefore, the Φap versus q /2kT plot was drawn to obtain the evidence of a Gaussian distribution (GD) of barrier heights (BHs) and it shows two linear region similar to ln(Io)/T2 versus q /kT plot. The analysis of I-V data based on thermionic emission of the Au/PVA:Zn/n-Si SBDs has revealed the existence of double GD with mean BH values (Φ¯B0) of 1.06 eV and 0.86 eV with standard deviation (σ ) of 0.110 eV and 0.087 V, respectively. Thus, we modified ln(Io/T2)-(qσ)2/2(kT)2 versus q /kT plot for two temperature regions (200-400 K and 80-170 K) and it gives renewed mean BHs Φ¯B0 values as 1.06 eV and 0.85 eV with Richardson constant (A∗) values 121 A/cm2 K2 and 80.4 A/cm2 K2, respectively. This obtained value of A∗=121 A/cm2 K2 is very close to the known theoretical value of 120 A/cm2 K2 for n-type Si.

  5. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  6. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer

    NASA Astrophysics Data System (ADS)

    He, Shaojian; Li, Shusheng; Wang, Fuzhi; Wang, Andrew Y.; Lin, Jun; Tan, Zhan'ao

    2013-05-01

    Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m-2 and 0.67 cd A-1 for the yellow emission at 580 nm, and 7842 cd m-2 and 1.49 cd A-1 for the red emission at 610 nm, respectively.

  7. Performance enhancement of GaN metal–semiconductor–metal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metal–semiconductor–metal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360 nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  8. Effects of oxide electron transport layer on quantum dots light emitting diode with an organic/inorganic hybrid structure

    NASA Astrophysics Data System (ADS)

    Kim, Jiwan; Park, Yu Jin; Kim, Yohan; Kim, Yong-Hoon; Han, Chul Jong; Han, Jeong In; Oh, Min Suk

    2013-11-01

    We report on the effects of an oxide semiconductor as an electron transport layer (ETL) on a quantum dots light emitting diode (QD-LED). To improve the properties of QD-LED, we optimized the process parameters for the deposition and post-annealing steps of an oxide ETL. When zinc tin oxide (ZTO) was deposited by radio-frequency magnetron sputtering in a gas mixture of argon and oxygen (Ar : O2 = 2 : 1) and then annealed under 760 Torr O2 for 10 min, our QD-LED showed improved luminescence characteristics. Additionally, to overcome the problem of non-uniform luminescence, we optimized the concentration and process conditions of colloidal quantum dot materials. Finally, we fabricated QD-LED devices with luminescence of 4,874 cd/m2 and luminous efficiency of 2.68 cd/A.

  9. The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures.

    PubMed

    Seravalli, L; Trevisi, G; Frigeri, P; Franchi, S; Geddo, M; Guizzetti, G

    2009-07-08

    We report on a photoluminescence and photoreflectance study of metamorphic InAs/InGaAs quantum dot strain-engineered structures with and without additional InAlAs barriers intended to limit the carrier escape from the embedded quantum dots. From: (1) the substantial correspondence of the activation energies for thermal quenching of photoluminescence and the differences between wetting layer and quantum dot transition energies and (2) the unique capability of photoreflectance of assessing the confined nature of the escape states, we confidently identify the wetting layer states as the final ones of the process of carrier thermal escape from quantum dots, which is responsible for the photoluminescence quenching. Consistently, by studying structures with additional InAlAs barriers, we show that a significant reduction of the photoluminescence quenching can be obtained by the increase of the energy separation between wetting layers and quantum dot states that results from the insertion of enhanced barriers. These results provide useful indications on the light emission quenching in metamorphic quantum dot strain-engineered structures; such indications allow us to obtain light emission at room temperature in the 1.55 microm range and beyond by quantum dot nanostructures grown on GaAs substrates.

  10. Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

    DOE PAGES

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...

    2016-08-01

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used heremore » leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less

  11. Influence of an MgO interfacial layer on the properties of Pb(Zr,Ti)O3/ZnO ferroelectric-semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Walker, Brandon; Pradhan, Aswini K.

    2014-05-01

    We report on the study of high quality Pb(Zr,Ti)O3 thin films grown by radio-frequency magnetron sputtering on (0 0 0 1) ZnO with an MgO interfacial seed layer. A systematic investigation of the heterostructures has been performed by x-ray diffraction, atomic force microscopy (AFM) and ultraviolet-visible spectroscopy for the structural and optical properties, along with the electrical characterization and simulation. (0 1 1)-oriented perovskite phase was observed in Pb(Zr,Ti)O3 thin films which used the MgO seed layer, whereas the pyrochlore phase was dominant in the films deposited directly on ZnO. The surface morphology measured by AFM indicated that the introduction of the MgO interfacial seed layer promoted formation of a smooth surface and uniform grain structures in the thin films. The transmission spectra also showed an increase of the optical transmittance measured by ultraviolet-visible spectroscopy. The capacitance-voltage measurements exhibited butterfly-shaped capacitance curves which bear a resemblance to those of the typical metal-ferroelectric-metal structures. The characteristics of the polarization versus electric field were investigated by a simulation to understand the behaviour of the hysteresis loops in this metal-ferroelectric-insulator-semiconductor structure.

  12. Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokun; Hu, Long; Deng, Hui; Qiao, Keke; Hu, Chao; Liu, Zhiyong; Yuan, Shengjie; Khan, Jahangeer; Li, Dengbing; Tang, Jiang; Song, Haisheng; Cheng, Chun

    2017-04-01

    Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V oc of 18%, J sc of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.

  13. Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Lai, Kuei-Chang; Wu, Pei-Yu; Chen, Chih-Ming; Wei, Tzu-Chien; Wu, Chung-Han; Feng, Shien-Ping

    2016-10-01

    Front-side metallization of a Si wafer was carried out using electroless deposition of nickel-phosphorus (Ni-P) catalyzed by polyvinylpyrrolidone-capped palladium nanoclusters (PVP-nPd). A 3-[2-(2-Aminoethylamino)ethylamino] propyl-trimethoxysilane (ETAS) layer was covalently bonded on the Si surface as bridge linker to the Pd cores of PVP-nPd clusters for improving adhesion between the Ni-P layer and the Si surface. To investigate the effects of an interfacial ETAS layer on the Ni silicide formation at the Ni-P/Si contact, the Ni-P-coated Si samples were thermally annealed via rapid thermal annealing (RTA) from 500°C to 900°C for 2 min. To compare with the ETAS sample, the sputtered Ni layer on Si and electroless Ni-P layer on ion-Pd-catalyzed Si (both are standard processes) were also investigated. The microstructural characterizations for the Ni-P or Ni layer deposited on the Si wafer were performed using x-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. Our results showed that the ETAS layer acted as a barrier to slow the atomic diffusion of Ni toward the Si side. Although the formation of Ni silicides required a higher annealing temperature, the adhesion strength and contact resistivity measurements of annealed Ni-P/Si contacts showed satisfactory results, which were essential to the device performance and reliability during thermal annealing.

  14. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  15. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  16. Effective passivation and high-performance metal-oxide-semiconductor devices using ultra-high-vacuum deposited high- κ dielectrics on Ge without interfacial layers

    NASA Astrophysics Data System (ADS)

    Chu, L. K.; Chu, R. L.; Lin, T. D.; Lee, W. C.; Lin, C. A.; Huang, M. L.; Lee, Y. J.; Kwo, J.; Hong, M.

    2010-09-01

    Without using any interfacial passivation layers, high- κ dielectric Y 2O 3, HfO 2, and Ga 2O 3(Gd 2O 3) [GGO], by electron beam evaporation in ultra-high-vacuum (UHV), have been directly deposited on Ge substrate. Comprehensive investigations have been carried out to study the oxide/Ge interfaces chemically, structurally, and electronically: hetero-structures of all the studied oxides on Ge are highly thermally stable with annealing to 500 °C, and their interfaces remain atomically sharp. The electrical analyses have been conducted on metal-oxide-semiconductor (MOS) devices, i.e. MOS capacitors (MOSCAPs) and MOS field-effect-transistors (MOSFETs). Dielectrics constants of the Y 2O 3, HfO 2, and GGO have been extracted to be ˜17, 20, and 13-15, respectively, indicating no interfacial layer formation with 500 °C annealing. A low interfacial density of states ( Dits), as low as 3 × 10 11 cm -2 eV -1, has been achieved for GGO/Ge near mid-gap along with a high Fermi-level movement efficiency as high as 80%. The GGO/Ge pMOSFETs with TiN as the metal gate have yielded very high-performances, in terms of 496 μA/μm, 178 μS/μm, and 389 cm 2/V s in saturation drain current density, maximum transconductance, and effective hole mobility, respectively. The gate width and gate length of the MOSFET are 10 μm and 1 μm.

  17. High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering.

    PubMed

    Huang, Qianqian; Pan, Jiangyong; Zhang, Yuning; Chen, Jing; Tao, Zhi; He, Chao; Zhou, Kaifeng; Tu, Yan; Lei, Wei

    2016-11-14

    Here, we report on the hybrid hole transport materials 4,4'-bis-(carbazole-9-yl)biphenyl (CBP) or poly-N-vinylcarbazole (PVK) doped into poly(4-butyl-phenyl-diphenyl-amine) (Poly-TPD) as the hybrid hole transport layer (HTL) to tailor the energy band alignment between hole injection layer (HIL) and quantum dot (QD) light emitting layer in order to realize efficient quantum dot light emitting diodes (QLEDs) in all solution-processed fabrication. Compared to the pristine Poly-TPD based device, it is found that the electroluminescence (EL) performance of QLEDs can be significantly improved by 1.5 fold via addition of CBP into Poly-TPD, which can be attributed to the lowered highest occupied molecular orbital (HOMO) level of Poly-TPD to reduce the energy barrier between HTL and valance band (VB) of QDs. Thus, after doping small molecules into polymer under optimized proportion (Poly-TPD:CBP = 2:1 by weight), the hole transport rate can be balanced, facilitating the carrier injection from HTL to QDs and enhancing the efficiency of QLEDs. As a result, a maximum luminance, a maximum current efficiency and a maximum power efficiency of 7600 cd/m2, 5.41 cd/A and 4.25 lm/W can be obtained based on this variety of hybrid HTL employed QLEDs.

  18. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    PubMed

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  19. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  20. Investigation and optimization of intraband electromagnetically induced transparency in strained InAs quantum dot/wetting layer structures

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Rezaei, G.

    2016-01-01

    In this work, effects of the shape and size on the optical properties and optimization of the intersubband electromagnetically induced transparency in the Infra-red region of three-dimensional strained truncated pyramid-shaped InAs/GaAs quantum dot (QD) were investigated in detail. More precisely, within the density matrix approach, the probe absorption and group velocity along with the refractive index of the medium were studied with respect to their dependence on the dephasing rates and the Rabi frequencies of the probe and coupling fields for different QD heights and wetting layer (WL) thicknesses. It is found that the slow-down factors, group index, and absorption coefficient are inversely proportional to the width of the transparency window and proportional to the depth of the transparency window. The optimized transparency window can be achieved by varying the dot height and the WL thickness such that the tall dots with thin WL thickness induce significant enhancements at a fixed resonant peak position of Rabi frequency of the coupling field. The physical reasons behind these interesting phenomena were also explained based on the polarized features of intersubband transitions.

  1. Efficient Nonvolatile Rewritable Memories Based on Three-Dimensionally Confined Au Quantum Dots Embedded in Ultrathin Polyimide Layers

    NASA Astrophysics Data System (ADS)

    Wu, Chaoxing; Li, Fushan; Guo, Tailiang; Qu, Bo; Chen, Zhijian; Gong, Qihuang

    2011-03-01

    The electrical properties of a nonvolatile organic bistable device (OBD) utilizing Au quantum dots (QDs) sandwiched between two thin insulating polyimide layers were investigated. Current-voltage (I-V) measurements on the device at room temperature showed a current bistability due to the existence of the Au QDs. The maximum ON/OFF ratio of the current bistability in the OBD was 1 ×108, the largest value ever reported for a stable OBD. The device has excellent endurance and retention ability in ambient conditions. The electrical properties and operating mechanisms for the device are analyzed on the basis of the I-V results.

  2. Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyi; Chen, Yonghai; Zhou, Guanyu; Tang, Chenguang; Wang, Zhanguo

    2012-10-01

    For InAs/GaAs(001) quantum dot (QD) system, the wetting layer (WL) evolution and its temperature dependence were studied using reflectance difference spectroscopy and were analyzed with a rate equation model. WL thicknesses showed a monotonic increase at relatively low growth temperatures but showed an initial increase and then decrease at higher temperatures, which were unexpected from a thermodynamic understanding. By adopting a rate equation model, the temperature dependence of QD formation rate was assigned as the origin of different WL evolutions. A brief discussion on the indium desorption was given. Those results gave hints of the kinetic aspects of QD self-assembly.

  3. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  4. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  5. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOEpatents

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  6. Temperature Dependent Border Trap Response Produced by a Defective Interfacial Oxide Layer in Al2O3/InGaAs Gate Stacks.

    PubMed

    Tang, Kechao; Meng, Andrew C; Droopad, Ravi; McIntyre, Paul C

    2016-11-09

    Intentional oxidation of an As2-decapped (100) In0.57Ga0.43As substrate by additional H2O dosing during initial Al2O3 gate dielectric atomic layer deposition (ALD) increases the interface trap density (Dit), lowers the band edge photoluminescence (PL) intensity, and generates Ga-oxide detected by X-ray photoelectron spectroscopy (XPS). Aberration-corrected high resolution transmission electron microscopy (TEM) reveals formation of an amorphous interfacial layer which is distinct from the Al2O3 dielectric and which is not present without the additional H2O dosing. Observation of a temperature dependent border trap response, associated with the frequency dispersion of the accumulation capacitance and conductance of metal-oxide-semiconductor (MOS) structures, is found to be correlated with the presence of this defective interfacial layer. MOS capacitors prepared with additional H2O dosing show a notable decrease (∼20%) of accumulation dispersion over 5 kHz to 500 kHz when the measurement temperature decreases from room temperature to 77 K, while capacitors prepared with an abrupt Al2O3/InGaAs interface display little change (<2%) with temperature. Similar temperature-dependent border trap response is also observed when the (100) InGaAs surface is treated with a previously reported HCl(aq) wet cleaning procedure prior to Al2O3 ALD. These results point out the sensitivity of the temperature dependence of the border trap response in metal oxide/III-V MOS gate stacks to the presence of processing-induced interface oxide layers, which alter the dynamics of carrier trapping at defects that are not located at the semiconductor interface.

  7. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots.

    PubMed

    Tang, Libin; Ji, Rongbin; Li, Xueming; Bai, Gongxun; Liu, Chao Ping; Hao, Jianhua; Lin, Jingyu; Jiang, Hongxing; Teng, Kar Seng; Yang, Zhibin; Lau, Shu Ping

    2014-06-24

    Material that can emit broad spectral wavelengths covering deep ultraviolet, visible, and near-infrared is highly desirable. It can lead to important applications such as broadband modulators, photodetectors, solar cells, bioimaging, and fiber communications. However, there is currently no material that meets such desirable requirement. Here, we report the layered structure of nitrogen-doped graphene quantum dots (N-GQDs) which possess broadband emission ranging from 300 to >1000 nm. The broadband emission is attributed to the layered structure of the N-GQDs that contains a large conjugated system and provides extensive delocalized π electrons. In addition, a broadband photodetector with responsivity as high as 325 V/W is demonstrated by coating N-GQDs onto interdigital gold electrodes. The unusual negative photocurrent is observed which is attributed to the trapping sites induced by the self-passivated surface states in the N-GQDs.

  8. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    SciTech Connect

    Peng, R.; Xu, H. C.; Xia, M.; Zhao, J. F.; Xie, X.; Xu, D. F.; Xie, B. P. Feng, D. L.

    2014-02-24

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, which can be explained by a simplified electrostatic model.

  9. Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men

    2016-10-01

    Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).

  10. Defect characterization of proton irradiated GaAs pn-junction diodes with layers of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Schmieder, Kenneth J.; Hubbard, Seth M.; Forbes, David V.; Warner, Jeffrey H.; Ohshima, Takeshi; Walters, Robert J.

    2016-05-01

    In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p+n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiated with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.

  11. Structural and electrical characteristics of ALD-HfO2/n-Si gate stack with SiON interfacial layer for advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Gupta, Richa; Rajput, Renu; Prasher, Rakesh; Vaid, Rakesh

    2016-09-01

    We report the fabrication of an ultra-thin silicon oxynitride (SiON) as an interfacial layer (IL) for n-Si/ALD-HfO2 gate stack with reduced leakage current. The XRD, AFM, FTIR, FESEM and EDAX characterizations have been performed for structural and morphological studies. Electrical parameters such as dielectric constant (K), interface trap density (Dit), leakage current density (J), effective oxide charge (Qeff), barrier height (Φbo), ideality factor (ƞ), breakdown-voltage (Vbr) and series resistance (Rs) were extracted through C-V, G-V and I-V measurements. The determined values of K, Dit, J, Qeff, Φbo, ƞ, Vbr and Rs are 14.4, 0.5 × 10 11 eV-1 cm-2, 2.2 × 10-9 A/cm2, 0.3 × 1013 cm-2, 0.42, 2.1, -0.33 and 14.5 MΩ respectively. SiON growth prior to HfO2 deposition has curtailed the problem of high leakage current density and interfacial traps due to sufficient amount of N2 incorporated at the interface.

  12. HfO2 gate dielectric on Ge (1 1 1) with ultrathin nitride interfacial layer formed by rapid thermal NH3 treatment

    NASA Astrophysics Data System (ADS)

    Agrawal, Khushabu S.; Patil, Vilas S.; Khairnar, Anil G.; Mahajan, Ashok M.

    2016-02-01

    Interfacial properties of the ALD deposited HfO2 over the surface nitrided germanium substrate have been studied. The formation of GeON (∼1.7 nm) was confirmed by X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron spectroscopy (HRTEM) over the germanium surface. The effect of post deposition annealing temperature was investigated to study the interfacial and electrical properties of hafnium oxide/germanium oxynitride gate stacks. The high-k MOS devices with ultrathin GeON layer shows the good electrical characteristics including higher k value ∼18, smaller equivalent oxide thickness (EOT) around 1.5 nm and smaller hysteresis value less than 170 mV. The Qeff and Dit values are somewhat greater due to the (1 1 1) orientation of the germanium and may be due to the presence of nitrogen at the interface. The Fowler-Northeim (FN) tunneling of Ge MOS devices has been studied. The barrier height ΦB extracted from the plot is ∼1 eV.

  13. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells.

    PubMed

    Gharibzadeh, Saba; Nejand, Bahram Abdollahi; Moshaii, Ahmad; Mohammadian, Nasim; Alizadeh, Amir Hossein; Mohammadpour, Rahele; Ahmadi, Vahid; Alizadeh, Abdolali

    2016-08-09

    A simple and practical approach is introduced for the deposition of CuI as an inexpensive inorganic hole-transport material (HTM) for the fabrication of low cost perovskite solar cells (PSCs) by gas-solid phase transformation of Cu to CuI. The method provides a uniform and well-controlled CuI layer with large grains and good compactness that prevents the direct connection between the contact electrodes. Solar cells prepared with CuI as the HTM with Au electrodes displays an exceptionally high short-circuit current density of 32 mA cm(-2) , owing to an interfacial species formed between the perovskite and the Cu resulting in a long wavelength contribution to the incident photon-to-electron conversion efficiency (IPCE), and an overall power conversion efficiency (PCE) of 7.4 %. The growth of crystalline and uniform CuI on a low roughness perovskite layer leads to remarkably high charge extraction in the cells, which originates from the high hole mobility of CuI in addition to a large number of contact points between CuI and the perovskite layer. In addition, the solvent-free method has no damaging side effect on the perovskite layer, which makes it an appropriate method for large scale applications of CuI in perovskite solar cells.

  14. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition.

    PubMed

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-12-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  15. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Sun, Long; Lu, Hong-Liang; Chen, Hong-Yan; Wang, Tao; Ji, Xin-Ming; Liu, Wen-Jun; Zhao, Dongxu; Devi, Anjana; Ding, Shi-Jin; Zhang, David Wei

    2017-02-01

    The influences of annealing temperature in N2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-Al bonding state can be detected in the 900 °C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  16. Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer

    NASA Astrophysics Data System (ADS)

    Vasilopoulou, Maria; Palilis, Leonidas C.; Georgiadou, Dimitra G.; Kennou, Stella; Kostis, Ioannis; Davazoglou, Dimitris; Argitis, Panagiotis

    2012-01-01

    In this letter, highly efficient hole injection was demonstrated in hole only devices based on organic semiconductors with different highest occupied molecular orbital level and transport properties. The barrierless hole injection was achieved by using a substoichiometric MoOx thin film (consisting of 65% Mo+6 and 35% Mo+5) as a higly effective anode interfacial layer. The current in these devices was found to be space charge limited, achieved due to the formation of highly efficient anode ohmic contact via the excellent band alignment through occupied gap states at the ITO/MoOx and MoOx/organic semiconductor modified interface. Quite remarkably, the efficiency of hole injection was found to be almost independent of the MoOx thickness, which is indicative of perfect band alignment at the anode interface.

  17. Enhanced Performance of Quantum Dot-Based Light-Emitting Diodes with Gold Nanoparticle-Doped Hole Injection Layer

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Lin, Qingli; Wang, Hongzhe; Wang, Lei; Zhang, Fengjuan; Du, Zuliang; Shen, Huaibin; Li, Lin Song

    2016-08-01

    In this paper, the performance of quantum dot-based light-emitting diodes (QLEDs) comprising ZnCdSe/ZnS core-shell QDs as an emitting layer were enhanced by employing Au-doped poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) hole injection layer (HIL). By varying the concentration and dimension of Au nanoparticle (NP) dopants in PEDOT:PSS, the optimal devices were obtained with ~22-nm-sized Au NP dopant at the concentration with an optical density (OD) of 0.21. Highly bright green QLEDs with a maximum external quantum efficiency (EQE) of 8.2 % and a current efficiency of 29.1 cd/A exhibit 80 % improvement compared with devices without Au NP dopants. The improved performance may be attributed to the significant increase in the hole injection rate as a result of the introduction of Au NPs and the good matching between the resonance frequency of the localized surface plasmon resonance (LSPR) generated by the Au NPs and the emission band of QD layer, as well as the suppressed Auger recombination of QD layer due to the LSPR-induced near-field enhanced radiative recombination rate of excitons. These results are helpful for fabricating high-performance QD-based applications, such as full-color displays and solid-state lighting.

  18. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer.

    PubMed

    He, Shaojian; Li, Shusheng; Wang, Fuzhi; Wang, Andrew Y; Lin, Jun; Tan, Zhan'ao

    2013-05-03

    Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m(-2) and 0.67 cd A(-1) for the yellow emission at 580 nm, and 7842 cd m(-2) and 1.49 cd A(-1) for the red emission at 610 nm, respectively.

  19. High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers.

    PubMed

    Li, Ping; Wang, Gang; Cai, Lun; Ding, Baofu; Zhou, Dachen; Hu, Yi; Zhang, Yujun; Xiang, Jin; Wan, Keming; Chen, Lijia; Alameh, Kamal; Song, Qunliang

    2014-11-21

    In this work, we investigate the effect of the thickness of the polyethylenimine ethoxylated (PEIE) interface layer on the performance of two types of polymer solar cells based on inverted poly(3-hexylthiophene) (P3HT):phenyl C61-butryric acid methyl ester (PCBM) and thieno[3,4-b]thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Maximum power conversion efficiencies of 4.18% and 7.40% were achieved at a 5.02 nm thick PEIE interface layer, for the above-mentioned solar cell types, respectively. The optimized PEIE layer provides a strong enough dipole for the best charge collection while maintaining charge tunneling ability. Optical transmittance and atomic force microscopy measurements indicate that all PEIE films have the same high transmittance and smooth surface morphology, ruling out the influence of the PEIE layer on these two parameters. The measured external quantum efficiencies for the devices with thick PEIE layers are quite similar to those of the optimized devices, indicating the poor charge collection ability of thick PEIE layers. The relatively low performance of devices with a PEIE layer of thickness less than 5 nm is the result of a weak dipole and partial coverage of the PEIE layer on ITO.

  20. Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Su; Lee, Dong Uk; Kim, Eun Kyu; Choi, Won Jun

    2015-11-01

    We report an effect of photoelectric conversion efficiency (PCE) by space layer doping in InAs/GaAs quantum dot solar cells (QDSC) and δ-doped QDSC grown by molecular beam epitaxy. The PCEs of QDSC and δ-doped QDSC without anti-reflection coating were 10.8% and 4.3%, respectively. The QDSC had about four electrons per QD, and its ideality factor was temperature-independent, which implies that recombination of electron-hole pairs is suppressed by strong potential barriers around charged dots. From the deep level transient spectroscopy measurements, four defect levels, including QD with the activation energy ranges from 0.08 eV to 0.50 eV below GaAs conduction band edge, appeared. Especially, the M1 defect (Ec-0.14 eV) was newly formed in δ-doped QDSC and its density was higher than those of M3 (Ec-0.35 eV) and M4 (Ec-0.50 eV) levels in QDSC. These results suggest that the photo-carriers recombining at M1 defect might be responsible for the reduction of PCE in δ-doped QDSC.

  1. Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells

    SciTech Connect

    Lee, Kyoung Su; Lee, Dong Uk; Kim, Eun Kyu; Choi, Won Jun

    2015-11-16

    We report an effect of photoelectric conversion efficiency (PCE) by space layer doping in InAs/GaAs quantum dot solar cells (QDSC) and δ-doped QDSC grown by molecular beam epitaxy. The PCEs of QDSC and δ-doped QDSC without anti-reflection coating were 10.8% and 4.3%, respectively. The QDSC had about four electrons per QD, and its ideality factor was temperature-independent, which implies that recombination of electron-hole pairs is suppressed by strong potential barriers around charged dots. From the deep level transient spectroscopy measurements, four defect levels, including QD with the activation energy ranges from 0.08 eV to 0.50 eV below GaAs conduction band edge, appeared. Especially, the M1 defect (E{sub c}-0.14 eV) was newly formed in δ-doped QDSC and its density was higher than those of M3 (E{sub c}-0.35 eV) and M4 (E{sub c}-0.50 eV) levels in QDSC. These results suggest that the photo-carriers recombining at M1 defect might be responsible for the reduction of PCE in δ-doped QDSC.

  2. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    SciTech Connect

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  3. MgO-hybridized TiO2 interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu

    2014-02-01

    Interfacial modification of a thin TiO2 compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO2/hole conductor/metal counter electrode. The Mg(CH3COO)2 treatment was employed to introduce a MgO-TiO2 CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH3COO)2. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm-2. The electrical impedance spectroscopy showed that the charge-transfer resistance (Rct) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low Rct of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  4. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO{sub 2} on AlGaN

    SciTech Connect

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Liu, Zhi Hong

    2015-09-15

    Atomic layer deposition (ALD) of ZrO{sub 2} on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO{sub 2} and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications.

  5. Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production.

    PubMed

    Li, Jian; Gao, Xin; Liu, Bin; Feng, Qingliang; Li, Xu-Bing; Huang, Mao-Yong; Liu, Zhongfan; Zhang, Jin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-03-30

    Graphdiyne (GDY), a novel large π-conjugated carbon material, for the first time, is introduced as the hole transfer layer into a photoelectrochemical water splitting cell (PEC). Raman and ultraviolet photoelectron spectroscopic studies indicate the existence of relatively strong π-π interactions between GDY and 4-mercaptopyridine surface-functionalized CdSe quantum dots, beneficial to the hole transportation and enhancement of the photocurrent performance. Upon exposure to a Xe lamp, the integrated photocathode produces a current density of nearly -70 μA cm(-2) at a potential of 0 V vs NHE in neutral aqueous solution. Simultaneously, the photocathode evolves H2 with 90 ± 5% faradic efficiency over three times and exhibits good stability within 12 h. All of the results indicate that GDY is a promising hole transfer material to fabricate a PEC device for water splitting by solar energy.

  6. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  7. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata.

    PubMed

    Bahar, Ali Newaz; Waheed, Sajjad

    2016-01-01

    The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.

  8. Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures

    SciTech Connect

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    2013-11-14

    In this work, we calculate the two-dimensional quantum energy system of the In(Ga)As wetting layer that arises in InAs/InGaAs/GaAs metamorphic quantum dot structures. Model calculations were carried on the basis of realistic material parameters taking in consideration their dependence on the strain relaxation of the metamorphic buffer; results of the calculations were validated against available literature data. Model results confirmed previous hypothesis on the extrinsic nature of the disappearance of wetting layer emission in metamorphic structures with high In composition. We also show how, by adjusting InGaAs metamorphic buffer parameters, it could be possible: (i) to spatially separate carriers confined in quantum dots from wetting layer carriers, (ii) to create an hybrid 0D-2D system, by tuning quantum dot and wetting layer levels. These results are interesting not only for the engineering of quantum dot structures but also for other applications of metamorphic structures, as the two design parameters of the metamorphic InGaAs buffer (thickness and composition) provide additional degrees of freedom to control properties of interest.

  9. Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects

    SciTech Connect

    Kosemura, Daisuke Mizukami, Yuki; Takei, Munehisa; Numasawa, Yohichiroh; Ogura, Atsushi; Ohshita, Yoshio

    2014-01-15

    100-nm-thick nanocrystalline silicon (nano-Si)-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL) measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ∼ 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

  10. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  11. Perovskite photovoltaics featuring solution-processable TiO2 as an interfacial electron-transporting layer display to improve performance and stability

    NASA Astrophysics Data System (ADS)

    Yu, Yang-Yen; Chiang, Rih-Sheng; Hsu, Hsiang-Lin; Yang, Chun-Chen; Chen, Chih-Ping

    2014-09-01

    In this study we used solution-processable crystalline TiO2 nanoparticles as an interfacial modified layer between the active layer and aluminum cathode to fabricate CH3NH3PbI3/PCBM-based planar heterojunction perovskite photovoltaic (PPV) devices. We optimized the performance of the PPV device prepared without TiO2 by varying the preheating temperature of the indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT) substrate, obtaining a power conversion efficiency (PCE) of 6.3% under simulated AM 1.5 G irradiation (100 mW cm-2). After incorporating the TiO2 layer, we obtained a much higher PCE of 7.0%. The TiO2-containing PPV device exhibited extremely high stability (retaining ~96% of its PCE after 1000 h) under long-term storage in a dark N2-filled glove box; the unencapsulated device retained approximately 80% of its original efficiency (T80) after 1 week under ambient conditions (ISOS-D-1; defined as 23 °C/50% RH). In contrast, the normal device was sensitive to ambient conditions with a value of T80 at only 3 h. We attributed the improved device performance (PCE, stability) to the enhanced electron transporting, hole blocking, and barrier properties arising from the presence of the TiO2 layer.In this study we used solution-processable crystalline TiO2 nanoparticles as an interfacial modified layer between the active layer and aluminum cathode to fabricate CH3NH3PbI3/PCBM-based planar heterojunction perovskite photovoltaic (PPV) devices. We optimized the performance of the PPV device prepared without TiO2 by varying the preheating temperature of the indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT) substrate, obtaining a power conversion efficiency (PCE) of 6.3% under simulated AM 1.5 G irradiation (100 mW cm-2). After incorporating the TiO2 layer, we obtained a much higher PCE of 7.0%. The TiO2-containing PPV device exhibited extremely high stability (retaining ~96% of its PCE after 1000 h) under long-term storage in a dark N2-filled

  12. Electrochemiluminescence detection of reduced and oxidized glutathione ratio by quantum dot-layered double hydroxide film.

    PubMed

    Yu, Yingchang; Shi, Jingjing; Zhao, Xiaocen; Yuan, Zhiqin; Lu, Chao; Lu, Jun

    2016-05-23

    The ratio of reduced and oxidized glutathione (GSH/GSSG ratio) is a greater first indication of disease risk than the total concentration of GSH. However, the interferences from thiolated biomolecules, especially cysteine (Cys), make the accurate detection of GSH/GSSG ratio a technical problem. In this work, we successfully used a mixture of quantum dots (QDs) and ZnAl-LDH nanosheets to fabricate a high electrochemiluminescence resonance energy transfer (ERET) efficiency sensor for GSH from the disturbances of amino acids, especially Cys and GSSG. The mechanisms of high ERET efficiency and selectivity were well investigated with spectroscopy analysis and theoretical calculation. The results showed that the interaction force between ZnAl-LDH nanosheets and molecules proved a long-range-ordered space and selective transmission for molecules. On the basis of these interesting phenomena, we successfully measured the GSH/GSSG ratio in whole blood and serum samples.

  13. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.

    PubMed

    Courtright, Brett A E; Jenekhe, Samson A

    2015-12-02

    We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.

  14. Interfacial chemical reaction and multiple gap state formation on three layer cathode in organic light-emitting diode: Ca/BaF{sub 2}/Alq{sub 3}

    SciTech Connect

    Kim, Tae Gun; Kim, Jeong Won; Lee, Hyunbok; Yi, Yeonjin; Lee, Seung Mi

    2015-07-14

    A three layer cathode is a promising stack structure for long lifetime and high efficiency in organic light-emitting diodes. The interfacial chemical reactions and their effects on electronic structures for alkaline-earth metal (Ca, Ba)/Alq{sub 3} [tris(8-hydroxyquinolinato)aluminum] and Ca/BaF{sub 2}/Alq{sub 3} are investigated using in-situ X-ray and ultraviolet photoelectron spectroscopy, as well as molecular model calculation. The BaF{sub 2} interlayer initially prevents direct contact between Alq{sub 3} and the reactive Ca metal, but it is dissociated into Ba and CaF{sub 2} by the addition of Ca. As the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with the underlying Alq{sub 3}. This series of chemical reactions takes place irrespective of the BaF{sub 2} buffer layer thickness as long as the Ca overlayer thickness is sufficient. The interface reaction between the alkaline-earth metal and Alq{sub 3} generates two energetically separated gap states in a sequential manner. This phenomenon is explained by step-by-step charge transfer from the alkaline-earth metal to the lowest unoccupied molecular orbital states of Alq{sub 3}, forming new occupied states below the Fermi level.

  15. Spin scattering asymmetric coefficients and enhanced specific interfacial resistance of fully epitaxial current-perpendicular-to-plane giant magnetoresistance spin valves using alternate monatomic layered [Fe/Co]n and a Ag spacer layer

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.

    2011-04-01

    Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, βF and γF/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 °C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (ΔRA > 3 mΩμm2 and MR ratio ˜5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of βF and γF/N were 0.80 and 0.84 ± 0.02, respectively, from the Valet-Fert theory analysis of ΔRA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.

  16. Current-perpendicular-to-the-plane magnetoresistance from large interfacial spin-dependent scattering between Co50Fe50 magnetic layer and In-Zn-O conductive oxide spacer layer

    NASA Astrophysics Data System (ADS)

    Nakatani, T. M.; Childress, J. R.

    2015-06-01

    We have investigated electrically conductive indium-zinc-oxide (IZO) deposited by magnetron sputtering as spacer layer for current-perpendicular-to-the-plane giant magnetoresistance sensor devices. Spin-valves with a Co50Fe50/IZO/Co50Fe50 trilayer showed resistance-area product (RA) ranging from 110 to 250 mΩ μm2, significantly larger than all-metal structures with Ag or Cu spacers (˜40 mΩ μm2). Magnetoresistance ratios (ΔR/R) of 2.5% to 5.5% depending on the IZO spacer thickness (1.5-6.0 nm), corresponding to ΔRA values from 3 to 13 mΩ μm2, were obtained. The values of ΔRA with the IZO spacers and Co50Fe50 magnetic layers were significantly larger than those with conventional metal spacers and Co50Fe50 magnetic layers (˜1-2 mΩ μm2). The dependence of ΔRA on the magnetic layer thickness suggests that the larger ΔRA obtained with IZO spacer is due to a large interfacial spin-dependent scattering caused by the large specific resistance at the Co50Fe50/IZO interface. From structural characterization by TEM and the observed dependence of the RA dispersion on device size, the electric current flowing through the IZO spacer is thought to be laterally uniform, similar to normal metal spacers.

  17. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO{sub 2} electron blocking layer

    SciTech Connect

    Mo, Xiaoming; Long, Hao; Wang, Haoning; Chen, Zhao; Wan, Jiawei; Liu, Yuping; Fang, Guojia; Li, Songzhan; Feng, Yamin; Ouyang, Yifang

    2014-08-11

    We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO{sub 2} electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ∼110 to ∼54 nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO{sub 2} EBL. The electroluminescence of the ZnO QDs/HfO{sub 2}/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO{sub 2} thickness. The Gaussian fitting revealed that the great enhancement of the Zn{sub i}-related emission at ∼414 nm whereas the deep suppression of the interfacial recombination at ∼477 nm should be the main reason for the spectral narrowing effect.

  18. Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

    PubMed

    Tetsuka, Hiroyuki; Nagoya, Akihiro; Tamura, Shin-Ichi

    2016-12-01

    A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivity in the deep ultraviolet region of ca. 2.3 × 10(6) A W(-1) and ca. 5.5 × 10(13) Jones without the application of a backgate voltage. The high level of photoresponsivity persists into the near-infrared region (ca. 3.4 × 10(2) A W(-1) and 8.0 × 10(9) Jones). In addition, application in flexible photodetectors is demonstrated by the construction of a structure on a polyethylene terephthalate (PET) substrate. We further show the feasibility of using our flexible photodetectors towards the practical application of infrared photoreflectors. Together with the potential application of flexible photodetectors and infrared photoreflectors, the proposed hybrid photodetectors have potential for use in future graphene-based optoelectronic devices.

  19. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    NASA Astrophysics Data System (ADS)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  20. Resistive switching memory based on three-dimensionally confined Ag quantum dots embedded in ultra thin polyimide layers.

    PubMed

    Wu, Chaoxing; Li, Fushan; Guo, Tailiang

    2013-02-01

    Resistive switching memory devices based on three-dimensionally confined Ag quantum dots (QDs) embedded in polyimide (PI) layers were fabricated by using spin-coating and thermal evaporation. The Ag QDs embedded in PI layer were distributed uniformly with sizes of approximately 4-6 nm and with surface density of approximately 1.25 x 10(11) cm(-2). The electrical properties of the Ag/PI (10 nm)/Ag QDs/PI (10 nm)/Ag devices were investigated at room temperature. Current-voltage (I-V) measurements on the devices showed a counterclockwise electrical hysteresis behavior with reliable and reproducible resistive switching to the existence of the Ag QDs. The memory device transformed from its original high-resistance state to low-resistance state under positive bias, and regained its original high-resistance state under negative bias. The maximum ON/OFF ratio of the current bistability was 1 x 10(4). The device also revealed excellent endurance ability at ambient conditions. The possible operating mechanisms concerning the interaction between Ag QDs and PI matrix for the resistance-transform phenomenon were analyzed on the basis of the I-V results.

  1. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    PubMed Central

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  2. The Organic-Oxide Interfacial Layer on the Studies of Organic Electronics (Light-Emitting Diodes and Solar Cells)

    DTIC Science & Technology

    2008-10-09

    glass substrate and the active layer, which account for an enhanced device performance. 3. "Effects of film treatment on the performance of poly(3...as lithium fluoride (LiF) (ə nm) [3, 17, 18] and cesium carbonate (Cs2CO3), [19] ionomers [20] or organic salts that contain Li or calcium (Ca) ions...PLEDs. The device configuration, as shown in Fig. 1, comprises indium-tin-oxide (ITO)/ glass substrate as the anode, poly(3,4-ethylenedioxythiophene

  3. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots

    NASA Astrophysics Data System (ADS)

    Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S.; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-07-01

    Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ~1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells.Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and

  4. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  5. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  6. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.

    PubMed

    Higgins, Luke J; Marocico, Cristian A; Karanikolas, Vasilios D; Bell, Alan P; Gough, John J; Murphy, Graham P; Parbrook, Peter J; Bradley, A Louise

    2016-10-27

    A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a ∼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ∼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of ∼1.7 the competing quenching by the array, with an array emission factor of ∼0.7, results in only an overall gain of ∼14% in the QD emission. The QD emission was enhanced by ∼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of ∼1.4.

  7. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer.

    PubMed

    Tan, Mein Jin; Zhong, Shu; Li, Jun; Chen, Zhikuan; Chen, Wei

    2013-06-12

    In this work, efficient bulk heterojunction (BHJ) organic solar cells (OSC) in inverted configuration have been demonstrated. Power conversion efficiency (PCE) of 3.7% is reported for OSC employing silver top electrodes, molybdenum trioxide (MoO3) as the hole-transport interlayer (HTL), active layer comprising of poly-3-hexylthiophene (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as well as a nanocrystalline solution-synthesized zinc oxide (ZnO) nanoparticle (NP) film as the electron-transport layer (ETL). By using solution-processable ZnO crystalline NPs as ETL, we can eliminate the typical high temperature processing/annealing step, which is widely adopted in the conventional ZnO ETL fabrication process via the sol-gel method. Such highly crystalline ZnO NP films can enhance charge collection at the electrodes. It is also found that inverted OSCs exhibit greater air stability and lifetime performance compared to the OSC employing the normal structure.

  8. Evolution of CuO poly-crystalline layers to coherent single-crystalline dots on ZnO nanorods upon annealing

    NASA Astrophysics Data System (ADS)

    Wang, Ruey-Chi; Hou, Yuan-Ru; Chen, Yi-Wen

    2017-02-01

    ZnO/CuO p-n heterojunctions have attracted much attention for device applications, but coherent junctions, which are crucial for controlling electrical properties, still remain a challenge due to different crystal structure. In this work, CuO single-crystalline dots are coherently synthesized on ZnO nanorods by using a proposed two-step process. Transmission electron microscopy images confirm the formation of CuO coherent dots on single-crystalline ZnO nanorods upon annealing the nanorods covered with a poly-crystalline CuxO layer. The coherent dots exhibit two types of epitaxial orientations: CuO [002] ǀǀ ZnO [ 10 1 bar 1 ], CuO [111] ǀǀ ZnO [0002], and CuO [002] ǀǀ ZnO [ 10 1 bar 1 bar ], CuO [111] ǀǀ ZnO [ 000 2 bar ]. As the thickness of the as-deposited CuxO layer increases from 10 to 30 nm, the aspect ratio of the resulting CuO dots decreases from 0.43 to 0.21, approaching a film-like morphology. This work provides a route to prepare CuO coherent single-crystalline structures on ZnO, which is one step further toward fabricating excellent CuO/ZnO nanodevices.

  9. Interfacial effects of the Cu2O nano-dots decorated Co3O4 nanorods array and its photocatalytic activity for cleaving organic molecules

    NASA Astrophysics Data System (ADS)

    Qiu, X. P.; Yu, J. S.; Xu, H. M.; Chen, W. X.; Hu, W.; Chen, G. L.

    2016-09-01

    A heterogeneous nanocomposite catalyst constructed by the Co3O4 nanorods decorated with the Cu2O quantum dots (QDs) were successfully synthesized via a simple hydrothermal method followed by an oxidation-reduction processing. The fabricated Cu2O/Co3O4 nanocomposite was characterized by the SEM, TEM, XPS, XRD, UV-vis and PL, and the (2 2 0) and (3 1 1) facets of the Co3O4 were exposed. Compared with the original Co3O4 nanorods with an average diameter of 350 nm, a substantial decrease in the band gap was observed after doping the nanorods with the Cu2O QDs (average diameter of 5 nm). Such a dramatic decrease in the band gap indicated a significant enhancement of the photocatalytic activities under visible light. The methylene blue (MB) dye and the phenol were used as model organic pollutants, and the Cu2O/Co3O4 nanocomposite catalyst exhibited both high catalytic activity and good recycling stability. The catalytic activities of the Cu2O/Co3O4/potassium monopersulfate triple salt (PMS) system for cleaving the MB and the phenol were dependent on the dosages of the Cu2O QDs, and the calculated degradation rates achieved by 7.0 wt% Cu2O/Co3O4 nanocomposite catalyst were about 11.3 and 1.8 times than that of the pristine Co3O4 nanorod catalyst for the MB and the phenol, respectively. The reactive species of rad O2- and the holes were determined to be the main active species for the phenol photocatalytic degradation by the 7 wt% Cu2O/Co3O4/PMS system and the 7 wt% Cu2O/Co3O4/H2O2 system, respectively.

  10. Steep subthreshold swing of pentacene-based organic field-effect transistor with nitrogen-doped LaB6 interfacial layer

    NASA Astrophysics Data System (ADS)

    Maeda, Yasutaka; Ohmi, Shun-ichiro

    2017-04-01

    A pentacene-based organic field-effect transistor (OFET) is necessary to work at a low operation voltage and a steep subthreshold swing. The subthreshold swing of pentacene-based OFET was markedly improved by introducing a nitrogen-doped LaB6 interfacial layer (N-doped LaB6 IL) although charge-injection-type hysteresis was observed in I D–V G characteristics. In this study, the thickness dependence of N-doped LaB6 IL for p-type pentacene-based OFET was investigated. A 1.2–2.7-nm-thick N-doped LaB6 IL was deposited on an SiO2 gate insulator by RF sputtering at an RF power of 20–30 W. It was found that a 1.2-nm-thick N-doped LaB6 IL realized a steep subthreshold swing of 75 mV/dec with a mobility of 0.26 cm2/(V·s) for p-type pentacene-based OFET.

  11. Low interfacial trap density and high-temperature thermal stability in atomic layer deposited single crystal Y2O3/n-GaAs(001)

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsun; Fu, Chien-Hua; Lin, Keng-Yung; Chen, Kuan-Hsiung; Chang, Tsong-Wen; Raynien Kwo, J.; Hong, Minghwei

    2016-08-01

    A low interfacial trap density (D it) of 2.2 × 1011 eV-1 cm-2 has been achieved with an atomic layer deposited (ALD) single crystal Y2O3 epitaxially on n-GaAs(001), along with a small frequency dispersion of 10.3% (2.6%/decade) at the accumulation region in the capacitance-voltage (C-V) curves. The D it and frequency dispersion in the C-V curves in this work are the lowest among all of the reported ALD-oxides on n-type GaAs(001). The D it was measured using the conductance-voltage (G-V) and quasi-static C-V (QSCV) methods. Moreover, the heterostructure was thermally stable with rapid annealing at 900 °C under various durations in He and N2, which has not been achieved in the heterostructures of ALD-Al2O3 or HfO2 on GaAs.

  12. Composition of interfacial layers in complex food emulsions before and after aeration: effect of egg to milk protein ratio.

    PubMed

    Martinet, V; Valentini, C; Casalinho, J; Schorsch, C; Vaslin, S; Courthaudon, J-L

    2005-01-01

    Whipped emulsions were prepared at pilot scale from fresh milk, whole egg, and other ingredients, for example, sugars and stabilizers (starch, polysaccharides). Egg content was varied: 4 recipes were studied differing in their egg to milk protein ratio (0, 0.25, 0.38, and 0.68). Protein and fat contents were kept constant by adjusting the recipes with skim-milk powder and fresh cream. Emulsions were prepared by high-pressure homogenization and whipped on a pilot plant. Particle-size distribution determined by laser-light scattering showed an extensive aggregation of fat globules in both mix and whipped emulsions, regardless of recipe. Amount of protein adsorbed at the oil-water interface and protein composition of adsorbed layer were determined after isolation of fat globules. Protein load is strongly increased by the presence of egg in formula. Values obtained for the whipped emulsions were dramatically lower than those obtained for the mix by a factor of 2 to 3. Sodium dodecyl sulfate-PAGE indicated a preferential adsorption of egg proteins over milk proteins at the oil-water interface, regardless of recipe. This phenomenon was more marked in aerated than in unaerated emulsions, showing evidence for desorption of some milk proteins during whipping. Egg proteins stabilize mainly the fat globule surface and ensure emulsion stability before whipping. Air bubble size distribution in whipped emulsions was measured after 15 d storage. When the egg to milk protein ratio is decreased to 0.25, large air cells appear in whipped emulsions during storage, indicating mousse destabilization. The present work allows linking the protein composition of adsorbed layers at the fat globule surface to mousse formula and mousse stability.

  13. A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite.

    PubMed

    Karimi, B; Ramezanzadeh, B

    2017-05-01

    The reinforcement effect of graphene oxide nanosheets on the mechanical properties of an epoxy coating has been extensively studied. However, the effect of graphene oxide quantum dot (GOQD) as a new unique carbon based nanomaterial (with lateral dimension of 5-6nm and thickness of one carbon atom) on the mechanical properties of epoxy coating has not been reported and compared with GO yet. So this study aims at fabrication of a high-performance polymer composite with unique mechanical properties using GOQD nanosheets. GO and GOQD were obtained through two different strategies of "top-down" synthesis from an expandable graphite by a modified Hummers' method and an easy "bottom-up" method by carbonizing citric acid, respectively. The morphology, size distribution, microstructure and chemistry of the GO and GOQD were compared by utilizing X-ray diffraction (XRD) analysis, atomic force microscopy (AFM), high resolution-transmission electron microscopy (HR-TEM), high resolution field-emission scanning electron microscopy (FE-SEM), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS). Results obtained from these analyses confirmed successful synthesize of GOQD and GO nanosheets. The reinforcement effect of GO and GOQD nanosheets on the mechanical properties of the epoxy coating was studied by dynamic mechanical thermal analysis (DMTA) and tensile test. It was found that the GOQD could remarkably enhance the energy of break, Young's modulus, tensile stress and interfacial interactions compared to the neat epoxy and the one reinforced with GO nanosheets. GOQD improved the fracture toughness by factor of 175% and 700% compared to the GO/Epoxy and neat epoxy, respectively.

  14. Exact Solution to Stationary Onset of Convection Due to Surface Tension Variation in a Multicomponent Fluid Layer With Interfacial Deformation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; McCaughan, Frances E.

    1998-01-01

    Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.

  15. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    PubMed Central

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-01-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944

  16. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    DOE PAGES

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; ...

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high asmore » 301 mAh g–1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g–1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.« less

  17. Influence of Metal Contacts on Graphene Transport Characteristics and Its Removal with Nano-carbon Interfacial Layer

    NASA Astrophysics Data System (ADS)

    Kanda, Akinobu; Ito, Yu; Katakura, Kenta; Sonoda, Hiroki; Higuchi, Shoma; Tomori, Hikari; Ootuka, Youiti

    Graphene is a promising candidate for the next-generation electronic material. While considerable effort has been devoted to achieve higher mobility in graphene films, relatively little attention has been paid to the effect of metal contacts, which are indispensable to the electric devices. At a graphene/metal interface, mainly due to the difference in work functions, carriers are injected from the metal to graphene. The resulting shift of local Dirac point is not limited at the graphene/metal interface but extends into the graphene channel. This carrier doping affects more significantly the performance of graphene field effect devices with shorter channel, as well as may conceal Dirac physics at the graphene/metal interface. Here, we experimentally investigate the channel length dependence of graphene transport properties in a wide gate-voltage range and extract the effect of metal contact. Several metal species are investigated. We reveal the origin of electron-hole asymmetry and the effect of the chemical interaction between graphene and metal, and derive the effective work function of graphene (4.93 eV). Furthermore, we succeed in reducing the influence of metal contact by inserting a thin nano-carbon layer (amorphous carbon or multilayer graphene (MLG)) at the interface.

  18. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    SciTech Connect

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley; Hy, Sunny

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g–1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g–1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.

  19. Carbon Quantum Dots/TiOx Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19.

    PubMed

    Li, Hao; Shi, Weina; Huang, Wenchao; Yao, En-Ping; Han, Junbo; Chen, Zhifan; Liu, Shuangshuang; Shen, Yan; Wang, Mingkui; Yang, Yang

    2017-03-06

    In planar n-i-p heterojunction perovskite solar cells, the electron transport layer (ETL) plays important roles in charge extraction and determine the morphology of the perovskite film. Here, we report a solution-processed carbon quantum dots (CQDs)/TiO2 composite that has negligible absorption in the visible spectral range, a very attractive feature for perovskite solar cells. Using this novel CQDs/TiO2 ETL in conjunction with a planar n-i-p heterojunction, we achieved an unprecedented efficiency of ∼19% under standard illumination test conditions. It was found that a CQDs/TiO2 combination increases both the open circuit voltage and short-circuits current density as compared to using TiO2 alone. Various advanced spectroscopic characterizations including ultrafast spectroscopy, ultraviolet photoelectron spectroscopy, and electronic impedance spectroscopy elucidate that the CQDs increases the electronic coupling between the CH3NH3PbI3-xClx and TiO2 ETL interface as well as energy levers that contribute to electron extraction.

  20. Effect of high-pressure H{sub 2}O treatment on elimination of interfacial GeO{sub X} layer between ZrO{sub 2} and Ge stack

    SciTech Connect

    Huang, Chen-Shuo; Liu, Po-Tsun

    2011-08-22

    This investigation demonstrates the effect of high-pressure H{sub 2}O treatment on the elimination of the interfacial germanium suboxide (GeO{sub X}) layer between ZrO{sub 2} and Ge. The formation of GeO{sub X} interlayer increases the gate-leakage current and worsen the controllability of the gate during deposition or thermal cycles. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy reveal that high-pressure H{sub 2}O treatment eliminates the interfacial GeO{sub X} layer. The physical mechanism involves the oxidation of non-oxidized Zr with H{sub 2}O and the reduction of GeO{sub X} by H{sub 2}. Treatment with H{sub 2}O reduces the gate-leakage current of a ZrO{sub 2}/Ge capacitor by a factor of 1000.

  1. Current-perpendicular-to-the-plane magnetoresistance from large interfacial spin-dependent scattering between Co{sub 50}Fe{sub 50} magnetic layer and In-Zn-O conductive oxide spacer layer

    SciTech Connect

    Nakatani, T. M. Childress, J. R.

    2015-06-28

    We have investigated electrically conductive indium-zinc-oxide (IZO) deposited by magnetron sputtering as spacer layer for current-perpendicular-to-the-plane giant magnetoresistance sensor devices. Spin-valves with a Co{sub 50}Fe{sub 50}/IZO/Co{sub 50}Fe{sub 50} trilayer showed resistance-area product (RA) ranging from 110 to 250 mΩ μm{sup 2}, significantly larger than all-metal structures with Ag or Cu spacers (∼40 mΩ μm{sup 2}). Magnetoresistance ratios (ΔR/R) of 2.5% to 5.5% depending on the IZO spacer thickness (1.5–6.0 nm), corresponding to ΔRA values from 3 to 13 mΩ μm{sup 2}, were obtained. The values of ΔRA with the IZO spacers and Co{sub 50}Fe{sub 50} magnetic layers were significantly larger than those with conventional metal spacers and Co{sub 50}Fe{sub 50} magnetic layers (∼1–2 mΩ μm{sup 2}). The dependence of ΔRA on the magnetic layer thickness suggests that the larger ΔRA obtained with IZO spacer is due to a large interfacial spin-dependent scattering caused by the large specific resistance at the Co{sub 50}Fe{sub 50}/IZO interface. From structural characterization by TEM and the observed dependence of the RA dispersion on device size, the electric current flowing through the IZO spacer is thought to be laterally uniform, similar to normal metal spacers.

  2. A Resonance-Shifting Hybrid n-Type Layer for Boosting Near-Infrared Response in Highly Efficient Colloidal Quantum Dots Solar Cells.

    PubMed

    Baek, Se-Woong; Song, Jung Hoon; Choi, Woong; Song, Hyunjoon; Jeong, Sohee; Lee, Jung-Yong

    2015-12-22

    A new configuration of a plasmonic quantum dots solar structure is proposed. Gold-silver core-shell metal nanoparticles (Au@Ag NCs) are incorporated into the TiO2 layer (Au@Ag NCs-HL) of PbS-based solar cells. The TiO2 layer enables the Au@Ag NCs to have broad plasmonic responses and the external quantum efficiency and absorption of the plasmonic devices are significantly enhanced. The electrical performance of the solar cells is also improved.

  3. Understanding the interfacial phenomena of a 4.7 V and 55 °C Li-ion battery with Li-rich layered oxide cathode and grap2hite anode and its correlation to high-energy cycling performance

    NASA Astrophysics Data System (ADS)

    Pham, Hieu Quang; Hwang, Eui-Hyung; Kwon, Young-Gil; Song, Seung-Wan

    2016-08-01

    Research progress of high-energy performance and interfacial phenomena of Li1.13Mn0.463Ni0.203Co0.203O2 cathode and graphite anode in a 55 °C full-cell under an aggressive charge cut-off voltage to 4.7 V (4.75 V vs. Li/Li+) is reported. Although anodic instability of conventional electrolyte is the critical issue on high-voltage and high-temperature cell operation, interfacial phenomena and the solution to performance improvement have not been reported. Surface spectroscopic evidence revealed that structural degradation of both cathode and anode materials, instability of surface film at cathode, and metal-dissolution from cathode and -deposition at anode, and a rise of interfacial resistance with high-voltage cycling in 55 °C conventional electrolyte are resolved by the formation of a stable surface film with organic/inorganic mixtures at cathode and solid electrolyte interphase (SEI) at anode using blended additives of fluorinated linear carbonate and vinylene carbonate. As a result, significantly improved cycling stability of 77% capacity retention delivering 227-174 mAhg-1 after 50 cycles is obtained, corresponding to 819-609 Wh per kg of cathode active material. Interfacial stabilization approach would pave the way of controlling the performance and safety, and widening the practical application of Li-rich layered oxide cathode materials and high-voltage electrolyte materials in various high-energy density Li-ion batteries.

  4. Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers.

    PubMed

    Tual, A; Bourles, E; Barey, P; Houdoux, A; Desprairies, M; Courthaudon, J-L

    2006-03-15

    Dairy foams were manufactured on a pilot plant with various sucrose ester contents. Oil-in-water emulsions were produced by high-pressure homogenisation of anhydrous milk fat (20 wt%) with an aqueous phase containing skim milk powder (6.5 wt%), sucrose (15 wt%), hydrocolloids (2 wt%), and sucrose esters. Sucrose ester content was varied from 0 to 0.35 wt%. Firmness and stability of dairy foams were determined. The fraction of protein associated with emulsion fat droplets and the compression isotherms of those droplets were determined as a function of sucrose ester content. With less than 0.1 wt% sucrose ester, no foam could be produced. The most firm and stable foams were obtained with ca. 0.1 wt% sucrose ester. The fraction of protein associated with emulsion droplets suddenly falls from 60% at a sucrose ester content lower than 0.1125% down to ca. 10-20% for higher surfactant content. Compression isotherms of emulsion droplets at the air-water interface show that, in the presence of surfactant, emulsion droplets disrupt and spread at the interface whilst without surfactant they become dispersed. This means that the presence of sucrose ester causes some destabilisation of fat droplet interfacial layers. There is hence an optimal sucrose ester content that allows some destabilisation of the oil-water interface without concomitant protein displacement from that interface. Consequently, with the recipe and manufacturing process used to produce dairy foams, there exists a compromise in sucrose ester content with regards to manufacture and shelf-life of dairy foams.

  5. Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices

    NASA Astrophysics Data System (ADS)

    Akin, Seçkİn; Sönmezoğlu, Savaş

    2015-09-01

    The current study presents the interface-state and electrical properties of silicon (Si)-based metal-oxide-semiconductor (MOS) devices using copper-doped titanium dioxide (Cu:TiO2) nanoparticles for possible applications as an interfacial layer in scaled high-k/metal gate MOSFET technology. The structural properties of the Cu:TiO2 nanoparticles have been obtained by means of X-ray diffraction (XRD), UV-Vis-NIR spectrometry, atomic force microscopy, and scanning electron microscopy measurements; they were compared with pure TiO2 thin film. With the incorporation of Cu, rutile-dominated anatase/rutile multiphase crystalline was revealed by XRD analysis. To understand the nature of this structure, the electronic parameters controlling the device performance were calculated using current-voltage ( I- V), capacitance-voltage ( C- V), and conductance-voltage ( G- V) measurements. The ideality factor ( n) was 1.21 for the Al/Cu:TiO2/ p-Si MOS device, while the barrier height ϕ b was 0.75 eV with semi-log I- V characteristics. This is in good agreement with 0.78 eV measured by the Norde model. Possible reasons for the deviation of the ideality factor from unity have been addressed. From the C- V measurements, the values of diffusion potential, barrier height, and carrier concentration were extracted as 0.67, 0.98 eV, and 8.73 × 1013 cm-3, respectively. Our results encourage further work to develop process steps that would allow the Cu-doped TiO2 film/Si interface to play a major role in microelectronic applications.

  6. Effect of passivation layer grown by atomic layer deposition and sputtering processes on Si quantum dot superlattice to generate high photocurrent for high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Maksudur Rahman, Mohammad; Higo, Akio; Sekhar, Halubai; Erman Syazwan, Mohd; Hoshi, Yusuke; Usami, Noritaka; Samukawa, Seiji

    2016-03-01

    The effect of passivation films on a Si quantum dot superlattice (QDSL) was investigated to generate high photocurrent in solar-cell applications. Three types of passivation films, sputter-grown amorphous silicon carbide (a-SiC), hydrogenated a-SiC (a-SiC:H), and atomic-layer-deposited aluminum oxide (ALD-Al2O3), were used to passivate the Si QDSLs containing a stack of four 4 nm Si nanodisks (NDs) and 2 nm silicon carbide (SiC) films fabricated by neutral beam etching (NBE). Because of the high surface-to-volume ratio typically present in quantum Si-NDs formed in the top-down NBE process, there is a tendency to form larger surface dangling bonds on untreated Si-ND surfaces as well as to have short distance (<10 nm) between high-aspect-ratio nanopillars of stacked 4 nm Si-NDs/2 nm SiC films, which conventionally sputter SiC films cannot uniformly cover. Therefore, we optimized the passivation techniques with an ALD-Al2O3 film. Scanning electron microscopy (SEM) analysis helped to explain the surface morphology before and after the passivation of the QDSLs. After the completion of the passivation process, the quality of the top surface films of the QDSLs was analyzed from the surface roughness by atomic force microscopy (AFM) analysis, which revealed that ALD-Al2O3 passivated films had the smallest roughness (RMS) of 1.09 nm with respect to sputter-grown a-SiC (RMS: 1.75 nm) and a-SiC:H (RMS: 1.54 nm) films. Conductive atomic force microscopy (CAFM) revealed that ALD-Al2O3 passivation decreased the surface-leakage current as a result of proper passivation of side-wall surface defects in the QDSLs. The carrier transport characteristics were extracted from the QDSLs using the photovoltaic (PV) properties of p++/i/n+ solar cells, where the QDSLs consisted of different passivation layers acting as intermediate layers (i-layers) between the high-doping-density p++ Si (1 × 1020 cm-3) and n+ Si (1 × 1019 cm-3) substrates. High-doping-density p++ Si acted as a hole

  7. InGaP-based InGaAs quantum dot solar cells with GaAs spacer layer fabricated using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Takeda, A.; Oshima, R.; Matsubara, K.; Niki, S.; Okano, Y.

    2012-09-01

    We report InGaP-based multistacked InGaAs quantum dot (QD) solar cells with GaAs spacer layers. We obtain a highly stacked and well-aligned InGaAs QD structure with GaAs spacer layers in an InGaP matrix grown by solid-source molecular beam epitaxy. The photoluminescence intensity of the InGaAs QDs in the InGaP matrix increases as the number of QD layers increases, which indicates the growth of a high-quality InGaP-based multistacked InGaAs QD structure. The short-circuit current density and the conversion efficiency of the InGaP-based QD solar cells increase as the number of InGaAs QD layers increases.

  8. Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers.

    PubMed

    Salhi, A; Rainò, G; Fortunato, L; Tasco, V; Martiradonna, L; Todaro, M T; De Giorgi, M; Cingolani, R; Passaseo, A; Luna, E; Trampert, A; De Vittorio, M

    2008-07-09

    The authors have recently demonstrated the enhancement of the quantum dot laser modal gain, linearly scaling with the number of stacked QD layers. These results allowed the achievement of multi-quantum dot (MQD) lasers, the zero-dimensional counterpart of MQW lasers, with a modal gain as high as 42 cm(-1), in a seven-layer structure. A detailed investigation of the structural and optical properties was performed on laser structures with three, five and seven QD layers. Such an investigation clearly shows that the high uniformity of QD layer features is responsible for the linear increase of the modal gain and its high value.

  9. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al{sub 2}O{sub 3} atomic layer deposition

    SciTech Connect

    Hu, Chen; Gassenq, Alban; Chen, Hongtao; Roelkens, Günther; Justo, Yolanda; Hens, Zeger; Devloo-Casier, Kilian; Detavernier, Christophe

    2014-10-27

    A PbS colloidal quantum dot photoconductor with Al{sub 2}O{sub 3} atomic layer deposition (ALD) passivation for air-stable operation is presented. Two different types of inorganic ligands for the quantum dots, S{sup 2−} and OH{sup −}, are investigated. PbS/S{sup 2−} photoconductors with a cut-off wavelength up to 2.4 μm are obtained, and a responsivity up to 50 A/W at 1550 nm is reported. The corresponding specific detectivity is ∼3.4 × 10{sup 8} Jones at 230 K. The 3-dB bandwidth of the PbS/S{sup 2−} and PbS/OH{sup −} photodetectors is 40 Hz and 11 Hz, respectively.

  10. Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

    SciTech Connect

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; Nielsen, E.; Bethke, D.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.; Wanke, M. C.

    2016-08-01

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

  11. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  12. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1-xZrxO2/Al2O3 thin film stacks

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Tapily, Kandabara; Consiglio, Steven; Clark, Robert D.; Wajda, Cory S.; Leusink, Gert J.; Woll, Arthur R.; Diebold, Alain C.

    2016-09-01

    Using a five-step atomic layer deposition (ALD)-anneal (DADA) process, with 20 ALD cycles of metalorganic precursors followed by 40 s of rapid thermal annealing at 1073 K, we have developed highly crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films (<7 nm) on ˜1 nm ALD Al2O3 passivated Ge and Si substrates for applications in higher-k dielectric metal oxide semiconductor field effect transistors below 10 nm technology node. By applying synchrotron grazing incidence x-ray d-spacing maps, x-ray photoelectron spectroscopy (XPS), and angle-resolved XPS, we have identified a monoclinic to tetragonal phase transition with increasing ZrO2 content, elucidated the role of the Ge vs Si substrates in complete tetragonal phase formation (CTPF), and determined the interfacial characteristics of these technologically relevant films. The ZrO2 concentration required for CTPF is lower on Ge than on Si substrates (x ˜ 0.5 vs. x ˜ 0.86), which we attribute as arising from the growth of an ultra-thin layer of metal germanates between the Hf1-xZrxO2 and Al2O3/Ge, possibly during the first deposition and annealing cycle. Due to Ge-induced tetragonal phase stabilization, the interfacial metal germanates could act as a template for the subsequent preferential growth of the tetragonal Hf1-xZrxO2 phase following bottom-up crystallization during the DADA ALD process. We surmise that the interfacial metal germanate layer also function as a diffusion barrier limiting excessive Ge uptake into the dielectric film. An ALD Al2O3 passivation layer of thickness ≥1.5 nm is required to minimize Ge diffusion for developing highly conformal and textured HfO2 based higher-k dielectrics on Ge substrates using the DADA ALD process.

  13. Inverted InP quantum dot light-emitting diodes using low-temperature solution-processed metal-oxide as an electron transport layer

    NASA Astrophysics Data System (ADS)

    Jang, Ilwan; Kim, Jiwan; Ippen, Christian; Greco, Tonino; Oh, Min Suk; Lee, Jeongno; Kim, Won Keun; Wedel, Armin; Jong Han, Chul; Park, Sung Kyu

    2015-02-01

    The present work shows the inverted InP quantum dot light-emitting diodes (QD-LEDs) with inorganic metal oxide layers. In the inverted structure of ITO/ZnO/InP QDs/CBP/MoO3/Al, a sol-gel derived ZnO film was used as an electron transport layer (ETL) and MoO3 was used as a hole injection layer (HIL). In contrary to high annealing temperature (>200 °C) for conventional ZnO films, low temperature annealing (˜150 °C) was performed for sol-gel derived ZnO film. The performance of the inverted QD-LEDs was efficiently improved by optimization of the annealing time and temperature of ZnO ETL. The current efficiency was significantly improved about 215% by lowering annealing temperature of ZnO ETL.

  14. Investigation of the energy spectra and the electron-hole alignment of the InAs/GaAs quantum dots with an ultrathin cap layer

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey P.; Volkova, Natalia S.; Istomin, Leonid A.; Zdoroveishev, Anton V.; Levichev, Sergey

    2016-08-01

    The effects of indium composition and the thickness of the combined InGaAs/GaAs thin cap layer on the energy spectra and relative electron-hole alignment of InAs quantum dots (QDs) grown by metal organic vapor phase epitaxy (MOVPE) are investigated by photoelectrical spectroscopy in a semiconductor/electrolyte system. In structures with InAs QDs and an InGaAs strain reducing layer, the shift of the hole's wave function to the QDs' top was revealed, which indicates In enrichment of the area near the top of QD'. In structures with an ultrathin GaAs cap layer a change of the sign of the built-in dipole moment was observed. This is explained by coupling effects of quantum-confined electrons with surface states.

  15. Improving Charge Transport in PbS Quantum Dot to Al:ZnO Layer by Changing the Size of Quantum Dots in Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Abdollahian, Parinaz

    2016-11-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT&PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm2 and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  16. Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1- x(001) and SixGe1- x(110).

    PubMed

    Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C

    2017-02-07

    Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.

  17. Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1- x(001) and SixGe1- x(110)

    NASA Astrophysics Data System (ADS)

    Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C.; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.

    2017-02-01

    Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.

  18. Delayed emission from InGaAs/GaAs quantum dots grown by migration-enhanced epitaxy due to carrier localization in a wetting layer

    NASA Astrophysics Data System (ADS)

    An, C. S.; Jang, Y. D.; Lee, H.; Lee, D.; Song, J. D.; Choi, W. J.

    2013-05-01

    Wetting layer (WL) photoluminescence (PL) at 10 K dominated the PL spectra of low-density quantum dots (QDs) grown by migration-enhanced epitaxy (MEE), even at very low excitation powers. Long PL rise time at the ground state (GS) of QDs was observed, when carriers are generated in the WL, indicating suppressed carrier capture from the WL into the QDs. Fluctuations in the WL thickness due to WL thinning in the MEE-grown QDs produced strong localization effects. Temperature dependence of the WL PL intensity and the GS PL rise time agreed well with this interpretation.

  19. Photoluminescence of Composite Films of Poly( N-Vinylcarbazole) with CdSe/CdS Core/Shell Quantum Dots Located Near the Layer of Silver Nanoparticles on a Dielectric Material

    NASA Astrophysics Data System (ADS)

    Shamilov, R. R.; Nuzhdin, V. I.; Valeev, V. F.; Galyametdinov, Yu. G.; Stepanov, A. L.

    2015-11-01

    Photoluminescence of the composite layers of poly(N-vinylcarbazole) with CdSe/CdS core/shell quantum dots deposited on quartz glass with ion-synthesized silver nanoparticles was studied. The nanoparticles included in the quartz glass showed local surface plasmon resonance. Excitation of the composite luminescence in the spectral region of the plasmon resonance absorption resulted in an increase of the emission intensity of the polymer and quantum dots located in the near field of the silver nanoparticles. It was shown that luminescence enhancement of poly(N-vinylcarbazole) and the quantum dots occurs under excitation at different wavelengths specific to each component of the composite material.

  20. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  1. Interfacial and near interfacial crack growth phenomena in metal bonded alumina

    SciTech Connect

    Kruzic, Jamie Joseph

    2001-01-01

    Metal/ceramic interfaces can be found in many engineering applications including microelectronic packaging, multi-layered films, coatings, joints, and composite materials. In order to design reliable engineering systems that contain metal/ceramic interfaces, a comprehensive understanding of interfacial and near interfacial failure mechanisms is necessary.

  2. Supramolecular interfacial architectures for biosensing

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Yao, Danfeng; Christensen, Danica; Neumann, Thomas; Sinner, Eva-Kathrin; Knoll, Wolfgang

    2004-12-01

    This contribution summarizes some of our efforts in designing, assembling and functionally characterizing supramolecular interfacial architectures for bio-affinity studies and for biosensor development. All the surface interaction studies will be based on the recently introduced novel sensor platforms involving surface plasmon fluorescence spectroscopy (SPFS) and -microscopy (SPFM). Emphasis will be put on documenting the distance-dependence of fluorescence intensity at the metal-dielectric interface and utilizing this principle to optimize the conformation/orientation of the interfacial supra-molecular sensor coatings. This is exemplified by a number of examples, including a layer-by-layer assembly system, antibody-antigen interactions, oligonucleotide-oligonucleotide, and oligonucleotide-PCR amplicon hybridization. For practical sensing purposes, a three-dimensionally extended surface coating is then employed to overcome the fluorescence quenching problem on a planar matrix. A commercial dextran layer is shown to be an optimized matrix for SPFS, with an example of a protein-binding study.

  3. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.

    PubMed

    Chen, Cong; Cheng, Yu; Jin, Junjie; Dai, Qilin; Song, Hongwei

    2016-10-15

    Co-sensitization by using two or more sensitizers with complementary absorption spectra to expand the spectral response range is an effective approach to enhance device performance of quantum dot sensitized solar cells (QDSSCs). To improve the light-harvesting in the visible/near-infrared (NIR) region, organic dye zinc phthalocyanine (ZnPc) was combined with CdS/CdSe quantum dots (QDs) for co-sensitized solar cells based on ZnO inverse opals (IOs) as photoanode. The resulting co-sensitized device shows an efficient panchromatic spectral response feature to ∼750nm and presents an overall conversion efficiency of 4.01%, which is superior to that of the individual ZnPc-sensitized solar cells and CdS/CdSe-sensitized solar cells. Meanwhile, an Au nanoparticles/graphene oxide (Au NPs/GO) composite layer was successfully prepared to modify Cu2S counter electrode for the co-sensitized solar cells. Reducing the carrier recombination process by GO and catalytic process of Au NPs leads to increased power conversion efficiency(PCE) from 4.01 to 4.60% and sustainable stability remains ∼85% of its original value after 60min light exposure. In this paper, introduction of the organic dyes as co-sensitizer and Au NPs/GO as counter electrode modified layer has been proved to be an effective route to improve the performance of QDSSCs.

  4. Large Memory Effect and High Carrier Mobility of Organic Field-Effect Transistors Using Semiconductor Colloidal Nano-Dots Dispersed in Polymer Buffer Layers

    NASA Astrophysics Data System (ADS)

    Kajimoto, Kaori; Kurokawa, Atsushi; Uno, Kazuyuki; Tanaka, Ichiro

    2011-02-01

    We fabricated organic memory field-effect transistors (FETs) using PbS colloidal nano-dots (NDs) dispersed in thin poly(methyl methacrylate) (PMMA) layers inserted between gate insulators (SiO2) and pentacene active layers as floating gates. The colloidal NDs were dispersed in chloroform solution with PMMA, and spin-coated on SiO2 surfaces. The fabricated memory FETs showed significantly large threshold voltage shifts of 64.5 V at maximum after a writing voltage of 100 V was applied to their control gates, and a maximum carrier mobility of 0.36 cm2 V-1 s-1, which was comparable to that of reference pentacene FETs without colloidal NDs, was obtained because of the improved crystallinity of the pentacene films.

  5. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jang, Ilwan; Kim, Jiwan; Park, Chang Jun; Ippen, Christian; Greco, Tonino; Oh, Min Suk; Lee, Jeongno; Kim, Won Keun; Wedel, Armin; Han, Chul Jong; Park, Sung Kyu

    2015-11-01

    The present work shows the effect of ethanolamine surface treatment on inverted InP quantum dot light-emitting diodes (QD-LEDs) with inorganic metal oxide layers. In the inverted structure of ITO/ZnO/InP QDs/CBP/MoO3/Al, a sol-gel derived ZnO film was used as an electron transport layer (ETL) and MoO3 was used as a hole injection layer (HIL). First, ethanolamine was treated as a surface modifier on top of the ZnO electron transport layer. The optical performance of the QD-LED device was improved by the ethanolamine surface treatment. Second, low temperature annealing (<200°C) was performed on the ZnO sol-gel electron transport layer, followed by an investigation of the effect of the ZnO annealing temperature. The efficiency of the inverted QD-LEDs was significantly enhanced (more than 3-fold) by optimization of the ZnO annealing temperature. [Figure not available: see fulltext.

  6. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    PubMed

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2).

  7. Synchrotron radiation photoemission study of interfacial electronic structure of HfO2 on In0.53Ga0.47As(001)-4 × 2 from atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pi, T. W.; Lin, T. D.; Lin, H. Y.; Chang, Y. C.; Wertheim, G. K.; Kwo, J.; Hong, M.

    2014-01-01

    The growth of a passivating layer on a In0.53Ga0.47As(001)-4 × 2 surface by atomic-layer deposition of tetrakis[ethylmethylamino]Hafnium (TEMAHf)) followed by the water pulse was investigated by synchrotron radiation photoemission. The Hf atoms maintain four-fold coordination, both after the initial TEMAHf deposition and the subsequent water pulse. The Hf atoms initially bond to the As dangling bonds of the surface As atom located on the edges of the raised ridges. One EMA ligand is removed in this process. Subsequent water exposure substitutes OH ligand for one or more remaining EMA ligands. These in turn react with TEMAHf to form Hf-O-Hf bonds allowing the hafnium oxides to grow. The surface In atoms on the terrace of the raised ridges were partially removed, but none bonded of the precursor atoms. Correlations between the interfacial electronic structure and the electric performance are discussed.

  8. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    PubMed

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  9. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    SciTech Connect

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  10. Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications

    NASA Astrophysics Data System (ADS)

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Hulicius, Eduard

    2017-04-01

    InAs/GaAs quantum dot (QD) heterostructures with different covering layers (CLs) prepared by MOVPE are compared in this work. The recombination energy of a structure covered only by GaAs depends nonlinearly on CL thickness. Experimental data of photoluminescence (PL) were supported by theoretical simulations. These simulations prove that the strain plays a major role in the structures. InGaAs strain reducing layer (SRL) was studied as well. Due to the strain reduction, the recombination energy is decreased, so the structure has longer PL wavelength. By theoretical simulations it was shown that for high content of In in InGaAs covering layer (approximately 45% and more), the heterostructure is type II, which would normally be unreachable for flat layers. For the structure with GaAsSb SRL, the band alignment is highly dependent on the SRL composition. The type I/type II transition occurs for approximately 15% of Sb; this value also slightly depends on the QD size. All structures were also studied by HRTEM to show different behavior of the CLs on the interface with InAs which highly influences the structure quality.

  11. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance.

    PubMed

    Rao, S Srinivasa; Durga, I Kanaka; Gopi, Chandu V V M; Venkata Tulasivarma, Chebrolu; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-07-28

    Currently, TiO2 on a fluorine-doped tin oxide substrate is the most commonly used type of photoelectrode in high-efficiency quantum dot-sensitized solar cells (QDSSCs). The power conversion efficiency (PCE) of TiO2 photoelectrodes is limited because of higher charge recombination and lower QD loading on the TiO2 film. This article describes the effect of a TiO2 compact layer on a TiO2 film to enhance the performance of QDSSCs. TiO2 nanoparticles were coated on an FTO substrate by the doctor-blade method and then the TiO2 compact layer was successfully fabricated on the surface of the nanoparticles by a simple hydrothermal method. QDSSCs were made using these films as photoelectrodes with NiS counter electrodes. Under one sun illumination (AM 1.5 G, 100 mW cm(-2)), the QDSSCs showed PCEs of 2.19 and 2.93% for TCL1 and TCL2 based photoelectrodes, which are higher than the 1.33% value obtained with bare TiO2. The compact-layer-coated film electrodes provide a lower charge-transfer resistance and higher light harvesting. The compact layer on the TiO2 film is a more efficient photocatalyst than pure TiO2 film and physically separates the injected electrons in the TiO2 from the positively charged CdS QD/electrolyte.

  12. Bottom-Up Fabrication of Single-Layered Nitrogen-Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane.

    PubMed

    Li, Rui; Liu, Yousong; Li, Zhaoqian; Shen, Jinpeng; Yang, Yuntao; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    A single-layered intermolecular carbonization method was applied to synthesize single-layered nitrogen-doped graphene quantum dots (N-GQDs) by using 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as the only precursor. In this method, the gas produced in the pyrolysis of TATB assists with speeding up of the reactions and expanding the layered distance, so that it facilitates the formation of single-layered N-GQDs (about 80 %). The symmetric intermolecular carbonizations of TATB arrayed in a plane and six nitrogen-containing groups ensure small, uniform sizes (2-5 nm) of the resulting products, and provide high nitrogen-doping concentrations (N/C atomic ratio ca. 10.6 %). In addition to release of the produced gas, TATB is almost completely converted into aggregated N-GQDs; thus, relatively higher production rates are possible with this approach. Investigations show that the as-produced N-GQDs have superior fluorescent characteristics; high water solubility, biocompatibility, and low toxicity; and are ready for potential applications, such as biomedical imaging and optoelectronic devices.

  13. Long-wavelength room-temperature luminescence from InAs/GaAs quantum dots with an optimized GaAsSbN capping layer

    PubMed Central

    2014-01-01

    An extensive study on molecular beam epitaxy growth conditions of quaternary GaAsSbN as a capping layer (CL) for InAs/GaAs quantum dots (QD) was carried out. In particular, CL thickness, growth temperature, and growth rate were optimized. Problems related to the simultaneous presence of Sb and N, responsible for a significant degradation of photoluminescence (PL), are thereby solved allowing the achievement of room-temperature (RT) emission. A particularly strong improvement on the PL is obtained when the growth rate of the CL is increased. This is likely due to an improvement in the structural quality of the quaternary alloy that resulted from reduced strain and composition inhomogeneities. Nevertheless, a significant reduction of Sb and N incorporation was found when the growth rate was increased. Indeed, the incorporation of N is intrinsically limited to a maximum value of approximately 1.6% when the growth rate is at 2.0 ML s−1. Therefore, achieving RT emission and extending it somewhat beyond 1.3 μm were possible by means of a compromise among the growth conditions. This opens the possibility of exploiting the versatility on band structure engineering offered by this QD-CL structure in devices working at RT. PACS 81.15.Hi (molecular beam epitaxy); 78.55.Cr (III-V semiconductors); 73.21.La (quantum dots) PMID:24438542

  14. Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers

    SciTech Connect

    McKerracher, Ian; Fu Lan; Hoe Tan, Hark; Jagadish, Chennupati

    2012-12-01

    Various approaches can be used to selectively control the amount of intermixing in III-V quantum well and quantum dot structures. Impurity-free vacancy disordering is one technique that is favored for its simplicity, however this mechanism is sensitive to many experimental parameters. In this study, a series of silicon oxynitride capping layers have been used in the intermixing of InGaAs/GaAs quantum well and quantum dot structures. These thin films were deposited by sputter deposition in order to minimize the incorporation of hydrogen, which has been reported to influence impurity-free vacancy disordering. The degree of intermixing was probed by photoluminescence spectroscopy and this is discussed with respect to the properties of the SiO{sub x}N{sub y} films. This work was also designed to monitor any additional intermixing that might be attributed to the sputtering process. In addition, the high-temperature stress is known to affect the group-III vacancy concentration, which is central to the intermixing process. This stress was directly measured and the experimental values are compared with an elastic-deformation model.

  15. Long-wavelength room-temperature luminescence from InAs/GaAs quantum dots with an optimized GaAsSbN capping layer.

    PubMed

    Utrilla, Antonio D; Ulloa, Jose M; Guzman, Alvaro; Hierro, Adrian

    2014-01-17

    An extensive study on molecular beam epitaxy growth conditions of quaternary GaAsSbN as a capping layer (CL) for InAs/GaAs quantum dots (QD) was carried out. In particular, CL thickness, growth temperature, and growth rate were optimized. Problems related to the simultaneous presence of Sb and N, responsible for a significant degradation of photoluminescence (PL), are thereby solved allowing the achievement of room-temperature (RT) emission. A particularly strong improvement on the PL is obtained when the growth rate of the CL is increased. This is likely due to an improvement in the structural quality of the quaternary alloy that resulted from reduced strain and composition inhomogeneities. Nevertheless, a significant reduction of Sb and N incorporation was found when the growth rate was increased. Indeed, the incorporation of N is intrinsically limited to a maximum value of approximately 1.6% when the growth rate is at 2.0 ML s-1. Therefore, achieving RT emission and extending it somewhat beyond 1.3 μm were possible by means of a compromise among the growth conditions. This opens the possibility of exploiting the versatility on band structure engineering offered by this QD-CL structure in devices working at RT. PACS: 81.15.Hi (molecular beam epitaxy); 78.55.Cr (III-V semiconductors); 73.21.La (quantum dots).

  16. Effects of insertion of strain-engineering Ga(In)NAs layers on optical properties of InAs/GaAs quantum dots for high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Pavelescu, Emil-Mihai; Polojärvi, Ville; Schramm, Andreas; Tukiainen, Antti; Aho, Arto; Zhang, Wenxin; Puustinen, Janne; Salmi, Joel; Guina, Mircea

    2016-02-01

    We report study on stacked InAs/GaNAs quantum dots heterostructures with dilute nitride GaInNAs strain mediating layers embedded in GaAs p-i-n solar cell structure. The insertion of GaInNAs strain mediating layers in the vicinity of the strain compensated InAs/GaNAs quantum dots heterostructures enhances their surface density, improves and significantly red shifts their light emission. Embedding a stack of the strain-mediated InAs/GaInNAs/GaNAs quantum dots in the i region of a GaAs p-i-n solar cell leads also to a red shift of the absorption edge of the solar cells and improves the solar cell photogenerated currents at longer wavelengths beyond 1200 nm.

  17. A comparative study on the electrical parameters of Au/n-Si Schottky diodes with and without interfacial (Ca1.9Pr0.1Co4Ox) layer

    NASA Astrophysics Data System (ADS)

    Kaya, A.; Çetinkaya, H. G.; Altındal, Ş.; Uslu, I.

    2016-05-01

    In order to compare the main electrical parameters such as ideality factor (n), barrier height (BH) (ΦI-V), series (Rs) and shunt (Rsh) resistances and energy density distribution profile of surface states (Nss), the Au/n-Si (MS) Schotthy diodes (SDs), with and without interfacial (Ca1.9Pr0.1Co4Ox) layer were obtained from the current-voltage (I-V ) measurements at room temperature. The other few electrical parameters such as Fermi energy level (EF), BH (ΦC-V), Rs and voltage dependence of Nss profile were also obtained from the capacitance-voltage (C-V ) measurements. The voltage dependence of Nss profile has two distinctive peaks in the depletion region for two diodes and they were attributed to a particular distribution of Nss located at metal-semiconductor (MS) interface. All of these results have been investigated at room temperature and results have been compared with each other. Experimental results confirmed that interfacial (Ca1.9Pr0.1Co4Ox) layer enhanced diode performance in terms of rectifier rate (RR = IF/IR at ± 3.4V), Nss (at 0.5eV) and Rsh (-3.4V) with values of 265, 5.38 × 1013eV-1 ṡcm-2 and 7.87 × 104Ω for MS type Schottky barrier diode and 2.56 × 106, 1.15 × 1013eV-1 ṡcm-2 and 7.50 × 108Ω for metal-insulator-semiconductor (MIS) type SBD, respectively. It is clear that the rectifying ratio of MIS type SBD is about 9660 times greater than MS type SBD. The value of barrier height (BH) obtained from C-V data is higher than the forward bias I-V data and it was attributed to the nature of measurements. These results confirmed that the interfacial (Ca1.9Pr0.1Co4Ox) layer has considerably improved the performance of SD.

  18. Self-assembled InAs/GaAs quantum dot molecules with InxGa1-xAs strain-reducing layer

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Huang, L. R.; Tian, P.; Huang, D. X.

    2010-12-01

    Self-assembled lateral aligned InAs quantum dot molecules (QDMs) with InxGa1-xAs strain-reducing layer are grown on GaAs substrate by metal-organic chemical vapor deposition. The effects of growth temperature and In content of InxGa1-xAs on the structural and optical properties of QDMs are investigated by using atomic force microscopy and photoluminescence. It is found that through appropriately selecting growth parameters, QDMs composed of two closely spaced InAs QDs are formed, and a redshift of emission wavelength and wideband photoluminescence spectra of QDMs are observed, which make QDM a potential candidate for broadband optical devices.

  19. Ammonia reduced graphene oxides as a hole injection layer for CdSe/CdS/ZnS quantum dot light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lou, Qing; Ji, Wen-Yu; Zhao, Jia-Long; Shan, Chong-Xin

    2016-08-01

    In this study, we report quantum-dot light-emitting devices (QD-LEDs) using ammonia reduced graphene oxide (rGO) as a hole injection layer (HIL). Compared with pristine GO, QD-LEDs employing rGO as a HIL show higher maximum luminance (936 cd m-2 versus 699 cd m-2) and lower turn-on voltage (V th, 5.0 V versus 7.5 V). The improved performance can be attributed to the synergistic effect of the improved conductivity (1.27 μS cm-1 versus 0.139 μS cm-1) and decreased work function (5.27 eV versus 5.40 eV) of the GO after the reduction process. The above results indicate that ammonia functionalized graphene may be a promising hole injection material for QD-LEDs.

  20. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-03-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.

  1. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions

    PubMed Central

    Allen, Peter M.; Liu, Wenhao; Zhao, Jing; Young, Elizabeth R.; Popović, Zoran; Walker, Brian

    2014-01-01

    We report single-particle photoluminescence (PL) intermittency (blinking) with high on-time fractions in colloidal CdSe quantum dots (QD) with conformal CdS shells of 1.4 nm thickness, equivalent to approximately 4 CdS monolayers. All QDs observed displayed on-time fractions > 60% with the majority > 80%. The high-on-time-fraction blinking is accompanied by fluorescence quantum yields (QY) close to unity (up to 98% in an absolute QY measurement) when dispersed in organic solvents and a monoexponential ensemble photoluminescence (PL) decay lifetime. The CdS shell is formed in high synthetic yield using a modified selective ion layer adsorption and reaction (SILAR) technique that employs a silylated sulfur precursor. The CdS shell provides sufficient chemical and electronic passivation of the QD excited state to permit water solubilization with greater than 60% QY via ligand exchange with an imidazole-bearing hydrophilic polymer. PMID:24932403

  2. Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ma, Zehao; Ooi, Poh Choon; Li, Fushan; Yun, Dong Yeol; Kim, Tae Whan

    2015-10-01

    Nonvolatile memory (NVM) devices based on a metal-insulator-metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current-voltage ( I- V) curves showed a bistable current behavior and the presence of hysteresis. The current-time ( I- t) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the I- t curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and Child-Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I- V characteristics.

  3. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    SciTech Connect

    Aoki, T. Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap of less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  4. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    NASA Astrophysics Data System (ADS)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  5. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.

    PubMed

    Palmstrom, Axel F; Santra, Pralay K; Bent, Stacey F

    2015-08-07

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  6. Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices.

    PubMed

    Jiang, Congbiao; Zhong, Zhiming; Liu, Baiquan; He, Zhiwei; Zou, Jianhua; Wang, Lei; Wang, Jian; Peng, JunBiao; Cao, Yong

    2016-10-05

    Inkjet printing has been considered an available way to achieve large size full-color RGB quantum dots LED display, and the key point is to obtain printed film with uniform and flat surface profile. In this work, mixed solvent of 20 vol % 1,2-dichlorobenzene (oDCB) with cyclohexylbenzene (CHB) was used to dissolve green quantum dots (QDs) with CdSe@ZnS/ZnS core/shell structure. Then, by inkjet printing, a flat dotlike QDs film without the coffee ring was successfully obtained on polyetherimide (PEI)-modified ZnO layer, and the printed dots array exhibited great stability and repeatability. Here, adding oDCB into CHB solutions was used to reduce surface tension, and employing ZnO nanoparticle layer with PEI-modified was used to increase the surface free energy. As a result, a small contact angle is formed, which leads to the enhancement of evaporation rate, and then the coffee ring effect was suppressed. The printed dots with flat surface profile were eventually realized. Moreover, inverted green QD-LEDs with PEI-modified ZnO film as electron transport layer (ETL) and printed green QDs film as emission layer were successfully fabricated. The QD-LEDs exhibited the maximum luminance of 12 000 cd/m(2) and the peak current efficiency of 4.5 cd/A at luminance of 1500 cd/m(2).

  7. Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zeng, Min; Zeng, Xi; Peng, Xiange; Zhu, Zhuo; Liao, Jianjun; Liu, Kai; Wang, Guizhen; Lin, Shiwei

    2016-12-01

    PbS and CdS quantum dots (QDs) have been deposited onto TiO2 nanotube arrays (TNTAs) in turn via a sonication-assisted successive ionic layer adsorption and reaction method. This method could uniformly decorate TNTAs with QDs, avoiding QDs aggregation at the mouth of TiO2 nanotube. The loading amounts of QDs on TNTAs could be controlled by adjusting the TNTAs length. Under one sun illumination, the QDs co-sensitized TNTAs (TNTAs/QDs) with the length of about 2.4 μm displayed the highest photocurrent of 4.32 mA cm-2, which is 27 times higher than that of the bare TNTAs. Introduction of a thin ZnO energy barrier by atomic layer deposition (ALD) between the TNTAs and QDs can further improve the photocurrent of TNTAs/QDs. And the TNTAs/QDs with 10 ALD cycles of ZnO interlayer exhibits the highest photocurrent of 5.24 mA cm-2 and best photoconversion efficiency of 4.9%, a more than 20% enhancement over the bare TNTAs/QDs. Such enhanced photoelectrochemical performance may be ascribed to the increased amounts of QDs on the TNTAs due to the introduction of ZnO interlayer. The benefits of ALD layers play a crucial role in development and optimization of high-performance photoelectrodes in the near future.

  8. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy.

    PubMed

    Park, Young-Shin; Bae, Wan Ki; Padilha, Lazaro A; Pietryga, Jeffrey M; Klimov, Victor I

    2014-02-12

    Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variation in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here, we directly evaluate the effect of the composition of the core-shell interface on single- and multiexciton dynamics via side-by-side measurements of individual core-shell CdSe/CdS nanocrystals with a sharp versus smooth (graded) interface. To realize the latter type of structures we incorporate a CdSexS1-x alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes, which correlates with the increase in the biexciton emission efficiency, as inferred from two-photon correlation measurements. These observations provide direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of "Auger-recombination-free" colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells.

  9. Theoretical study of the effects of InAs/GaAs quantum dot layer's position in i-region on current-voltage characteristic in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Yong-Xian; Yang, Xiao-Guang; Ji, Hai-Ming; Xu, Peng-Fei; Yang, Tao

    2012-08-01

    We theoretically investigated the current-voltage characteristic of InAs/GaAs quantum dot (QD) intermediate band solar cells by changing the QD layer's position in i-region. The open circuit voltage, short current density, fill factor, and conversion efficiency all vary with the position of QD layer. If the light generation coefficients through intermediate band (IB) are small, the IB mainly plays the role of a recombination energy level. If the light generation coefficients are improved, in order to ensure the highest QD layer performance, QD layer should be placed in an appropriate range.

  10. Tinv Scaling and Gate Leakage Reduction for n-Type Metal Oxide Semiconductor Field Effect Transistor with HfSix/HfO2 Gate Stack by Interfacial Layer Formation Using Ozone-Water-Last Treatment

    NASA Astrophysics Data System (ADS)

    Oshiyama, Itaru; Tai, Kaori; Hirano, Tomoyuki; Yamaguchi, Shinpei; Tanaka, Kazuaki; Hagimoto, Yoshiya; Uemura, Takayuki; Ando, Takashi; Watanabe, Koji; Yamamoto, Ryo; Kanda, Saori; Wang, Junli; Tateshita, Yasushi; Wakabayashi, Hitoshi; Tagawa, Yukio; Tsukamoto, Masanori; Iwamoto, Hayato; Saito, Masaki; Oshima, Masaharu; Toyoda, Satoshi; Nagashima, Naoki; Kadomura, Shingo

    2008-04-01

    In this paper, we demonstrate a wet treatment for the HfSix/HfO2 gate stack of n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated by a gate-last process in order to scale down the electrical thickness at inversion state Tinv value and reduce the gate leakage Jg. As a result, we succeeded in scaling down Tinv to 1.41 nm without mobility or Jg degradation by ozone-water-last treatment. We found that a high-density interfacial layer (IFL) is formed owing to the ozone-water-last treatment, and Hf diffusion to the IFL is suppressed, which was analyzed by high-resolution angle-resolved spectroscopy.

  11. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier

    NASA Astrophysics Data System (ADS)

    Shin, Byungha; Zhu, Yu; Bojarczuk, Nestor A.; Jay Chey, S.; Guha, Supratik

    2012-07-01

    We have examined Cu2ZnSnSe4 (CZTSe) solar cells prepared by thermal co-evaporation on Mo-coated glass substrates followed by post-deposition annealing under Se ambient. We show that the control of an interfacial MoSe2 layer thickness and the introduction of an adequate Se partial pressure (PSe) during annealing are essential to achieve high efficiency CZTSe solar cells—a reverse correlation between device performance and MoSe2 thickness is observed, and insufficient PSe leads to the formation of defects within the bandgap as revealed by photoluminescence measurements. Using a TiN diffusion barrier, we demonstrate 8.9% efficiency CZTSe devices with a long lifetime of photo-generated carriers.

  12. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  13. TEM Characterization of InAs/GaAs Quantum Dots Capped by a GaSb/GaAs Layer

    SciTech Connect

    Beltran, AM; Ben, Teresa; Sanchez, AM; Sales Lerida, David; Chisholm, Matthew F; Varela del Arco, Maria; Pennycook, Stephen J; Galindo, Pedro; Ripalda, JM; Molina Rubio, Sergio I

    2008-01-01

    It is well known that there is intense interest in expanding the usable wavelength for electronic devices. This is one of the reasons to study new self-assembled semiconductor nanostructures. Telecommunication applications use InGaAsP/InP emitting at 1.3 and 1.55 m. Research efforts are dedicated to develop GaAs technology in order to achieve emission at the same range as InP, so GaAs could be used for optical fibre communications. Ga(As)Sb on InAs/GaAs quantum dots (QDs) is a promising nanostructure to be used in telecommunications. The introduction of antimony during or after the QDs growth is an effective solution to obtain a red shift in the emission wavelength, even at room temperature.

  14. High Brightness Fluorescent White Polymer Light-Emitting Diodes by Promoted Hole Injection via Reduced Barrier by Interfacial Dipole Imparted from Chlorinated Indium Tin Oxide to the Hole Injection Layer PEDOT:PSS.

    PubMed

    Syue, Hong-Ren; Hung, Miao-Ken; Chang, Yao-Tang; Lin, Ge-Wei; Lee, Yu-Hsuan; Chen, Show-An

    2017-02-01

    We demonstrated that introducing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a hole transport layer (HTL) on top of chlorinated indium tin oxide (Cl-ITO) anode can lead to a deeper highest occupied molecular orbital level of the HTL (promoting from 5.22 to 5.42 eV) due to the interfacial dipole imparted by the Cl-ITO, which allows barrier-free hole injection to the emitting layer with polyspirobifluorene doped with the yellow emitter rubrene and significantly prevents excitons quenching by residual chlorine radicals on the surface of Cl-ITO. By use of poly[9,9-bis(6'-(18-crown-6)methoxy)hexyl)fluorene] chelating to potassium ion (PFCn6:K(+)) as electron injection layer and air-stable high work function (EΦ) metal aluminum as the cathode, the performance of fluorescent white polymer light-emitting diode (WPLED) achieves the high maximum brightness (Bmax) of 61 523 cd/m(2) and maximum luminance efficiency (ηL, max) of 10.3 cd/A. Replacing PFCn6:K(+)/Al cathode by CsF/Al, the Bmax and ηL, max are promoted to 87 615 cd/m(2) (the record value in WPLED) and 11.1 cd/A, respectively.

  15. Recovery of small bioparticles by interfacial partitioning.

    PubMed

    Jauregi, P; Hoeben, M A; van der Lans, R G J M; Kwant, G; van der Wielen, L A M

    2002-05-20

    In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.

  16. The study of origin of interfacial perpendicular magnetic anisotropy in ultra-thin CoFeB layer on the top of MgO based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Peng; Li, Shaoping; Zheng, Yuankai; Fang, Jason; Chen, Lifan; Hong, Liang; Wang, Haifeng

    2016-10-01

    A comprehensive microstructure study has been conducted experimentally for identifying the origin or mechanism of perpendicular magnetic anisotropy (PMA) in the ultra-thin (10 Å) CoFeB layer on the top of magnetic tunnel junction (MTJ). The high resolution transmission electron microscopy reveals that the feature of crystal structure in 10 Å-CoFeB layer is localized in nature at the CoFeB-MgO interface. On the other hand, the strain-relaxed crystalline structure is observed in the thick CoFeB (20 Å) layer at the CoFeB-MgO interface, associated with a series of dislocation formations. The electron energy loss spectroscopy further suggests that the local chemical stoichiometry of the ultra-thin 10 Å-CoFeB layer is notably changed at the CoFeB-MgO interface, compared with an atomic stoichiometry in a thick 20 Å-CoFeB layer. The origin of PMA mechanism is therefore identified experimentally as an interface effect, which can be attributed to a change of local atom bonding or lattice constant of the transition metal at the CoFeB-MgO based MTJ interface. Furthermore, such a local interfacial atom bonding change is seemly induced by the localized anisotropic strain and consistent with previous theoretical speculations and calculations. The observed experimental findings provide some perspective on microstructure and chemistry on PMA in ultra-thin CoFeB film at the MTJ interface, then deepening our understanding of the mechanism of PMA within MTJ stack and thus facilitating advancement for emerging spintronics technology.

  17. Solution Processable CdSe/ZnS Quantum Dots Light-Emitting Diodes Using ZnO Nanocrystal as Electron Transport Layer.

    PubMed

    Kang, Byoung-Ho; Kim, Ju-Seong; Lee, Jae-Sung; Lee, Sang-Won; Sai-Anand, Gopalan; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2015-09-01

    In this paper, we propose interface engineering between cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots (QDs) as the emissive layer (EML) and ZnO nanocrystals (NCs) as the electron transport layer (ETL) for reducing the potential barrier in QDs based light-emitting diode (QLED). The n-type ZnO NCs were effective in confining charge to the QDs EML because of their wide band gap. The ZnO NCs were synthesized using a modified sol-gel process and were applied as the ETL in QLED. For comparison, a standard QLED with Tris(8-hydroxyquinolinato)aluminium as the ETL was also fabricated. The standard QLED was shown to have a luminance of 11,240 cd/m2 and current efficiency of 2.3 cd/A. However, QLED with ZnO NCs showed a higher luminance of 28,760 cd/m2 and current efficiency of 4.9 cd/A than the reference structure, and so has more efficient charge transport. Thus, QLED with ZnO NCs not only simplified the process, but also enhanced the luminance and current efficiency by factor of two.

  18. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

    PubMed

    Lee, Hyojoong; Wang, Mingkui; Chen, Peter; Gamelin, Daniel R; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Md K

    2009-12-01

    In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO(2) photoanodes, a new procedure for preparing selenide (Se(2-)) was developed and used for depositing CdSe QDs in situ over TiO(2) mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO(2) were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO(2) films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)(3)(2+/3+)], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m(2) with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO(2) film was combined with an organic hole conductor, spiro-OMeTAD, and shown to exhibit a promising efficiency of 1.6% at 100 W/m(2) in inorganic/organic hybrid all-solid-state cells.

  19. Effect of spacer layer thickness on structural and optical properties of multi-stack InAs/GaAsSb quantum dots

    SciTech Connect

    Kim, Yeongho; Ban, Keun-Yong Honsberg, Christiana B.; Boley, Allison; Smith, David J.

    2015-10-26

    The structural and optical properties of ten-stack InAs/GaAsSb quantum dots (QDs) with different spacer layer thicknesses (d{sub s} = 2, 5, 10, and 15 nm) are reported. X-ray diffraction analysis reveals that the strain relaxation of the GaAsSb spacers increases linearly from 0% to 67% with larger d{sub s} due to higher elastic stress between the spacer and GaAs matrix. In addition, the dislocation density in the spacers with d{sub s} = 10 nm is lowest as a result of reduced residual strain. The photoluminescence peak energy from the QDs does not change monotonically with increasing d{sub s} due to the competing effects of decreased compressive strain and weak electronic coupling of stacked QD layers. The QD structure with d{sub s} = 10 nm is demonstrated to have improved luminescence properties and higher carrier thermal stability.

  20. GaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics

    SciTech Connect

    Utrilla, A. D.; Ulloa, J. M. Guzman, A.; Hierro, A.

    2014-07-28

    The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.

  1. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    NASA Astrophysics Data System (ADS)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  2. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials

    PubMed Central

    2013-01-01

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled ‘SET/RESET’ current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications. PMID:24011235

  3. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    PubMed

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  4. (In,Mn)As multilayer quantum dot structures

    SciTech Connect

    Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George

    2014-12-08

    (In,Mn)As multilayer quantum dots structures were grown by molecular beam epitaxy using a Mn selective doping of the central parts of quantum dots. The study of the structural and magneto-optical properties of the samples with three and five layers of (In,Mn)As quantum dots has shown that during the quantum dots assembly, the out-diffusion of Mn from the layers with (In,Mn)As quantum dots can occur resulting in the formation of the extended defects. To produce a high quality structures using the elaborated technique of selective doping, the number of (In,Mn)As quantum dot layers should not exceed three.

  5. The effects of deposition temperature on the interfacial properties of SiH4 reduced blanket tungsten on TiN glue layer

    NASA Astrophysics Data System (ADS)

    Lee, Young J.; Park, Chong-Ook; Kim, Dong-Won; Chun, John S.

    1994-10-01

    Low pressure chemical vapor deposition tungsten films were deposited at various temperatures, using a WF6-SiH4-H2 gas mixture. The impurity distribution at the W/TiN interface was investigated by Auger electron spectroscopy depth profiling. Some fluorine accumulation at the interface is observed when the tungsten is deposited below 300°C. However, above 300°C, no accumulation of fluorine could be observed. A result obtained from thermodynamic calculations using SOLGASMIX-PV suggests that this phenomenon is closely associated with the highly oxidized surface layer of TiN at the initial stage of deposition. The reaction of the gas mixture with the TiN surface layer seems to enhance the fluorine accumulation, which lowers the adherence of the interface and increases the contact resistance.

  6. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact

    NASA Astrophysics Data System (ADS)

    Shin, Byungha; Bojarczuk, Nestor A.; Guha, Supratik

    2013-03-01

    We have studied the temperature dependent kinetics of MoSe2 formation between molybdenum and Cu2ZnSnSe4 (CZTSe) films during annealing in the presence of Se. CZTSe is an emerging light-absorbing material for thin film solar cell applications, and thermal treatment of this layer constitutes a critical part of the device processing. The formation of MoSe2 in this system is modeled using a three step mechanism—diffusion of Se through CZTSe, diffusion of Se through MoSe2, and reaction between Se and Mo. Applying the results of the model to experimental results reveals that the MoSe2 formation is limited by the diffusion of Se through the CZTSe layer.

  7. The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Ono, Keita; Izuishi, Takuya; Kuwahara, Shota; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi; Shen, Qing

    2016-10-01

    Quantum dot sensitized solar cells (QDSSCs) have attracted much interest due to their theoretical efficiency, predicted to be as high as 44%. However, the energy conversion efficiency of QDSSCs is still a lot lower than the theoretical value, one reason for which is the number of surface defects on the QDs. In order to improve the conversion efficiency, surface passivation of the QDs has been applied to QDSSCs. Studying the mechanism of how the surface passivation influences the photoexcited carrier dynamics is very important. In this paper, we clarify the effects of CdS passivation on electron injection, trapping and recombination in CdS passivated PbS QDSSCs (called PbS/CdS double-layered QDSSCs). We found that electron trapping and recombination can be suppressed effectively, and that the electron injection efficiency can be increased significantly by surface passivation with CdS on PbS QDSSCs. Our findings provide a better understanding of the effects of surface passivation on QDSSCs, which will prove beneficial for making further improvements in the photovoltaic properties of QDSSCs.

  8. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor.

    PubMed

    Samuei, Sara; Fakkar, Jila; Rezvani, Zolfaghar; Shomali, Ashkan; Habibi, Biuck

    2017-03-15

    In the present work, a novel nanocomposite based on the graphene quantum dots and CoNiAl-layered double-hydroxide was successfully synthesized by co-precipitation method. To achieve the morphological, structural and compositional information, the resulted nanocomposite was characterized by scanning electron microscopy X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and photoluminescence. Then, the nanocomposite was used as a modifier to fabricate a modified carbon paste electrode as a non-enzymatic sensor for glucose determination. Electrochemical behavior and determination of glucose at the nanocomposite modified carbon paste electrode were investigated by cyclic voltammetry and chronoamperometry methods, respectively. The prepared sensor offered good electrocatalytic properties, fast response time, high reproducibility and stability. At the optimum conditions, the constructed sensor exhibits wide linear range; 0.01-14.0 mM with a detection limit of 6 μM (S/N = 3) and high sensitivity of 48.717 μAmM(-1). Finally, the sensor was successfully applied to determine the glucose in real samples which demonstrated its applicability.

  9. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO 4 Photoanodes

    SciTech Connect

    Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu

    2016-08-03

    The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.

  10. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer.

    PubMed

    Sun, Qingjiang; Subramanyam, Guru; Dai, Liming; Check, Michael; Campbell, Angela; Naik, Rajesh; Grote, James; Wang, Yongqiang

    2009-03-24

    Owing to their narrow bright emission band, broad size-tunable emission wavelength, superior photostability, and excellent flexible-substrate compatibility, light-emitting diodes based on quantum dots (QD-LEDs) are currently under intensive research and development for multiple consumer applications including flat-panel displays and flat lighting. However, their commercialization is still precluded by the slow development to date of efficient QD-LEDs as even the highest reported efficiency of 2.0% cannot favorably compete with their organic counterparts. Here, we report QD-LEDs with a record high efficiency (approximately 4%), high brightness (approximately 6580 cd/m(2)), low turn-on voltage (approximately 2.6 V), and significantly improved color purity by simply using deoxyribonucleic acid (DNA) complexed with cetyltrimetylammonium (CTMA) (DNA-CTMA) as a combined hole transporting and electron-blocking layer (HTL/EBL). This, together with controlled thermal decomposition of ligand molecules from the QD shell, represents a novel combined, but simple and very effective, approach toward the development of highly efficient QD-LEDs with a high color purity.

  11. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang

    2016-09-01

    Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.

  12. Atomic layer deposition effect on the electrical properties of Al{sub 2}O{sub 3}-passivated PbS quantum dot field-effect transistors

    SciTech Connect

    So, Hye-Mi; Shim, Hyung Cheoul; Choi, Hyekyoung; Lee, Seung-Mo; Jeong, Sohee; Chang, Won Seok

    2015-03-02

    We have investigated the effect of atomic layer deposition (ALD) on the electrical properties of colloidal PbS quantum dot field-effect transistors (PbS QD-FETs). Low-temperature Al{sub 2}O{sub 3} ALD process was used to fill up the pore spaces of PbS QD films containing 1, 2-ethanedithiol ligands. Upon deposition of Al{sub 2}O{sub 3} on PbS film, the PbS QD-FETs showed ambipolar behavior. The treated film retained this property for over 2 months, despite of exposure to air. This change in the electrical properties of the PbS QD-FETs is attributed to the formation of electron channels in the Al{sub 2}O{sub 3}-passivated PbS film. We conclude that these electron transport channels in the Al{sub x}O{sub y}-PbS film are formed due to substitution of the Pb sites by Al metal and chemical reduction of Pb{sup 2+} ions, as determined by an analysis of the depth profile of the film using secondary ion mass spectrometry and X-ray photoelectron spectroscopy.

  13. Influence of microstructure and interfacial strain on the magnetic properties of epitaxial Mn3O4/La0.7Sr0.3MnO3 layered-composite thin films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Devajyoti; Bingham, Nicholas; Hordagoda, Mahesh; Phan, Manh-Huong; Srikanth, Hariharan; Witanachchi, Sarath; Mukherjee, Pritish

    2012-10-01

    Epitaxial Mn3O4/La0.7Sr0.3MnO3 (Mn3O4/LSMO) bilayer thin films were grown on lattice-matched single crystal substrates of SrTiO3 (STO) (100) and MgO (100), with Mn3O4 as the top layer, using a pulsed laser deposition technique. X-ray diffraction (XRD) patterns revealed the single crystalline nature and epitaxial relationship between the layers. A detailed analysis of strains using XRD asymmetric/symmetric scans indicated an increasing in-plane compressive strain in the LSMO layer with increasing thicknesses of the Mn3O4 layer, resulting in a tetragonal distortion of the LSMO lattice in the Mn3O4/LSMO films in comparison to the tensile strains in LSMO single-layer films grown on both STO and MgO substrates. Cross-sectional high resolution transmission electron microscope (HRTEM) images showed atomically sharp interfaces in all films. However, as opposed to a flat interface between LSMO and STO, the Mn3O4 and LSMO interface was undulating and irregular in the bilayer films. Magnetic measurements revealed that relative to LSMO, the presence of Mn3O4 in Mn3O4/LSMO reduced the saturation magnetization at T > 50 K (the ferrimagnetic ordering temperature of Mn3O4) but enhanced it at T < 50 K. The decrease of the saturation magnetization in Mn3O4/LSMO for T > 50 K was associated with the appearance and increase of the compressive strain with the increase in Mn3O4 thickness. These observations point to the importance of a ferromagnetic-ferrimagnetic interfacial coupling between the LSMO and Mn3O4 layers in enhancing the surface magnetism of LSMO in the Mn3O4/LSMO bilayers. Our study provides useful information regarding the development of manganite composite thin films with improved magnetic properties for a wide range of technological applications, such as in spintronics and sensor devices.

  14. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO2f/SiO2 (SiO2f/SiO2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO2f/SiO2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO2f/SiO2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO2f/SiO2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO2f/SiO2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  15. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  16. A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch

    PubMed Central

    Feng, Wei; Qin, Chengqun; Shen, Yongtao; Li, Yu; Luo, Wen; An, Haoran; Feng, Yiyu

    2014-01-01

    A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT nanostructures was improved and controlled by the packing density of PbS QDs. Efficient charge transfer between PbS and MWNT at the interface resulted in a remarkable quenching of photoluminescence up to 28.6% and a blue-shift of emission band by 300 nm. This feature was facilitated by band energy levels based on the intimate contact through the electrostatic interaction. Two-terminal devices using PbS/MWNT nanostructures showed an excellent on/off switching photocurrent and good stability during 20 cycles under light illumination due to electron transfer from PbS to MWNT. The photoswitch exhibited a high photo sensitivity up to 31.3% with the photocurrent of 18.3 μA under the light of 3.85 mW/cm2, which outperformed many QD/carbon-based nanocomposites. Results indicate that the electrostatic layered assembly of QD/MWNT nanostructure is an excellent platform for the fabrication of high-performance optoelectronic devices. PMID:24445285

  17. Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Narahara, Kohei; Tanaka, Hideharu; Kita, Takashi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-04-01

    We have investigated the properties of multi-stacked layers of self-organized In0.4Ga0.6As quantum dots (QDs) on GaAs (311)B grown by molecular beam epitaxy. We found that a high degree of in-plane ordering of QDs structure with a six-fold symmetry was maintained though the growth has been performed at a higher growth rate than the conventional conditions. The dependence of photoluminescence characteristics on spacer layer thickness showed an increasing degree of electronic coupling between the stacked QDs for thinner spacer layers. The external quantum efficiency for an InGaAs/GaAs quantum dot solar cell (QDSC) with a thin spacer layer thickness increased in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. Furthermore, a photocurrent production by 2-step photon absorption has been observed at room temperature for the InGaAs/GaAs QDSC with a spacer layer thickness of 15 nm.

  18. Enhanced heteroepitaxial growth of CoCrPt-SiO{sub 2} perpendicular magnetic recording media on optimized Ru intermediate layers

    SciTech Connect

    Srinivasan, Kumar; Piramanayagam, S. N.

    2008-01-15

    The crystallographic growth, interfacial roughness, and magnetic properties of CoCrPt-SiO{sub 2} perpendicular magnetic recording media prepared on various types of Ru intermediate growth layers were systematically investigated based on high angle and omega offset x-ray diffraction scans, rocking curve scans, synchrotron radiation based grazing incidence reflectivity scans, and magneto-optical Kerr hysteresis loops. For samples that make use of one Ru growth layer, voltage bias applied on the Ru layer was seen to have two observable effects: (1) the dispersion in the Ru(00{center_dot}2) perpendicular texture increased, but that of the Co(00{center_dot}2) remained unchanged, leading to identical layered growth and (2) the in-plane a-lattice parameter of the Ru decreased leading to enhanced heteroepitaxy with the Co. There was no significant change in the Ru-Co interfacial roughness with changing the bias on the Ru layer. The bias effect can be used to optimize the design of the Ru intermediate layers. A scheme that makes use of two Ru growth layers consisting of a bottom Ru layer prepared under zero bias, which is inserted below a second Ru layer prepared under biased conditions, is shown to lead to significant benefits such as improved texture without affecting the magnetic properties. This is due to the different functional roles ascribed to each of the Ru growth layers.

  19. An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films.

    PubMed

    Heriot, Sasha Y; Jones, Richard A L

    2005-10-01

    Spin-coating is a very widely used technique for making uniform thin polymer films. For example, the active layers in most experimental semiconducting polymer-based devices, such as light-emitting diodes and photovoltaics, are made this way. The efficiency of such devices can be improved by using blends of polymers; these phase separate during the spin-coating process, creating the complex morphology that leads to performance improvements. We have used time-resolved small-angle light scattering and light reflectivity during the spin-coating process to study the development of structure directly. Our results provide evidence that a blend of two polymers first undergoes vertical stratification; the interface between the stratified layers then becomes unstable, leading to the final phase-separated thin film. This has given us the basis for establishing a full mechanistic understanding of the development of morphology in thin mixed polymer films, allowing a route to the rational design of processing conditions so as to achieve desirable morphologies by self-assembly.

  20. On-chip high density droplet-on-template (DOT) array

    NASA Astrophysics Data System (ADS)

    Kim, Jitae; Song, Simon

    2015-01-01

    In this report, we present a new method for generating a high-density (2D) droplet array using double-layered polydimethylsiloxane (PDMS) templates containing honeycomb microwells. Without external flow control, a droplet-on-template (DOT) was created by utilizing capillary forces associated with the interfacial tension between the aqueous and oil phases. The DOT process involved three simple steps: (1) vacuum-assisted filling of microwells; (2) excess water removal; and (3) covering the droplet array with oil. To demonstrate the concept of the DOT, we generated spherical water droplets 147, 191, 238, 326 and 405 μm in diameter from corresponding microwells with lengths of 200, 300, 400, 600 and 800 μm, respectively and a height of 76 μm (up to ~10,000 droplets on a template 25  ×  25 mm). Two important factors, including the aspect ratio (height-to-length ratio) of the microwell and the interfacial tension of the two phases, were investigated to understand how those factors affect the shape of the droplets (‘sphere’ or ‘dome’). All the droplets were spherical up to an aspect ratio of 0.55. The droplets were dome-shaped for aspect ratios above 0.82. For a 1 mM sodium dodecyl sulfate (SDS) solution, the use of mineral oil (which had the highest interfacial tension studied) produced spherical droplets, but dome-shaped droplets were produced by corn oil and oleic acid.

  1. Reprint of "Mid-infrared InAsSb-based nBn photodetectors with AlGaAsSb barrier layers - grown on GaAs, using an interfacial misfit array, and on native GaSb"

    NASA Astrophysics Data System (ADS)

    Craig, A. P.; Marshall, A. R. J.; Tian, Z.-B.; Krishna, S.

    2015-05-01

    InAsSb-based nBn photodetectors were fabricated on GaAs, using the interfacial misfit (IMF) array growth mode, and on native GaSb. At -0.1 V operating bias, 200 K dark current densities of 1.4 × 10-5 A cm-2 (on GaAs) and 4.8 × 10-6 A cm-2 (on GaSb) were measured. At the same temperature, specific detectivity (D*) figures of 1.2 × 1010 Jones (on GaAs) and 7.2 × 1010 Jones (on GaSb) were calculated. Arrhenius plots of the dark current densities yielded activation energies of 0.37 eV (on GaAs) and 0.42 eV (on GaSb). These values are close to the 4 K bandgap of the absorption layers (0.32-0.35 eV) indicating diffusion limited dark currents and small valence band offsets. Significantly, these devices could be used for mid-infrared focal plane arrays operating within the temperature range of cost-effective thermoelectric coolers.

  2. Functionalization enhancement on interfacial shear strength between graphene and polyethylene

    NASA Astrophysics Data System (ADS)

    Jin, Yikuang; Duan, Fangli; Mu, Xiaojing

    2016-11-01

    Pull-out processes were simulated to investigate the interfacial mechanical properties between the functionalized graphene sheet (FGS) and polyethylene (PE) matrix by using molecular dynamics simulation with ReaxFF reactive force field. The interfacial structure of polymer and the interfacial interaction in the equilibrium FGS/PE systems were also analyzed to reveal the enhancement mechanism of interfacial shear strength. We observed the insertion of functional groups into polymer layer in the equilibrium FGS/PE systems. During the pull-out process, some interfacial chains were attached on the FGS and pulled out from the polymer matrix. The behavior of these pulled out chains was further analyzed to clarify the different traction action of functional groups applied on them. The results show that the traction effect of functional groups on the pulled-out chains is agreement with their enhancement influence on the interfacial shear strength of the FGS/PE systems. They both are basically dominated by the size of functional groups, suggesting the enhancement mechanism of mechanical interlocking. However, interfacial binding strength also exhibits an obvious influence on the interfacial shear properties of the hybrid system. Our simulation show that geometric constrains at the interface is the principal contributor to the enhancement of interfacial shear strength in the FGS/PE systems, which could be further strengthened by the wrinkled morphology of graphene in experiments.

  3. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Hong, Pengbo; Xu, Mengqing; Zheng, Xiongwen; Zhu, Yunmin; Liao, Youhao; Xing, Lidan; Huang, Qiming; Wan, Huaping; Yang, Yongjun; Li, Weishan

    2016-10-01

    Ethylene glycol bis (propionitrile) ether (EGBE) is used as an electrolyte additive to improve the cycling stability and rate capability of Li/Li1.2Mn0.54Ni0.13Co0.13O2 cells at high operating voltage (4.8 V). After 150 cycles, cells with 1.0 wt% of EGBE containing electrolyte have remarkable cycling performance, 89.0% capacity retention; while the cells with baseline electrolyte only remain 67.4% capacity retention. Linear sweep voltammetry (LSV) and computation results demonstrate that EGBE preferably oxidizes on the cathode surface compared to the LiPF6/carbonate electrolyte. In order to further understand the effects of EGBE on Li1.2Mn0.54Ni0.13Co0.13O2 cathode upon cycling at high voltage, electrochemical behaviors and ex-situ surface analysis of Li1.2Mn0.54Ni0.13Co0.13O2 are investigated via electrochemical impedance spectroscopy (EIS), scanning electron spectroscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and inductive coupled plasma spectroscopy (ICP-MS). The improved cycling performance can be attributed to more stable and robust surface layer yield via incorporation of EGBE, which mitigates the oxidation of electrolyte on the cathode electrode, and also inhibits the dissolution of bulk transition metal ions as well upon cycling at high voltage.

  4. Increased electro-optic effect in a guest–host electro-optic polymer by adding PEDOT:PSS as an interfacial barrier layer

    NASA Astrophysics Data System (ADS)

    Jouane, Youssef; Luo, Jingdong; K-Y Jen, Alex; Enami, Yasufumi

    2017-04-01

    We used an ellipsometric reflective technique developed by Teng and Man to measure the electrooptic (EO) coefficients of poled thin films in EO multilayer devices with and without a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive barrier layer (CBL). The EO coefficients for the device containing PEDOT:PSS were 260 and 215 pm V‑1 at 1.31 and 1.55 μm, respectively, which are higher than those for the device without the CBL. Indeed, the highest EO coefficient for the EO polymer poled without TiO2 or the CBL was 166 pm V‑1 at 1.55 μm, consistent with that obtained for our modulator devices (160 pm V‑1). We investigated the electrical properties, surface morphology, and optical quality of a PEDOT:PSS CBL in EO polymer/TiO2 multilayer-slot waveguide modulators. We demonstrated that the PEDOT:PSS functions as an efficient CBL to pole EO polymers in hybrid EO polymer/TiO2 vertical-slot waveguide modulators.

  5. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Liu, Zhi Hong

    2015-03-02

    The effect of post-deposition annealing on chemical bonding states at interface between Al{sub 0.5}Ga{sub 0.5}N and ZrO{sub 2} grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO{sub 2} on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO{sub 2}/AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO{sub 2}/AlGaN interface are easier to get oxidized as compared with Ga atoms.

  6. Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yoo, Hyein; Jang, Ho Seong; Lee, Kwangyeol; Woo, Kyoungja

    2015-07-01

    Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor adhesion of QDs to the resin. To overcome these problems, QD-layer-encapsulated and phenyl-functionalized silica (SQSPh) spheres were synthesized and applied for white LEDs, whereby the QDs were homogeneously distributed at radial equidistance from the center and near the surface of approximately 100 nm-sized silica spheres and the surface was functionalized with phenylethyl groups. The inter-core distances of QDs were over ~14 nm, which is over the limit (<10 nm) for Förster resonance energy transfer (FRET) that leads to photoluminescence (PL) reduction. This hierarchical nanostructure excludes a chance of FRET between QDs and provides the QDs a gradually refractive index matching environment, which yields ~4-fold enhanced PL in SQSPh. More importantly, the SQSPh acquired a highly adhesive property to silicone resin due to their phenyl functional group matching, which resulted in remarkably improved light extraction in white LEDs. When incorporated along with a yellow-emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor and silicone resin on blue LED chips, the SQSPh spheres presented significantly improved performance [luminous efficiency (LE) = 58.2 lm W-1 colour rendering index Ra = 81.8; I/I0 = 0.98 after 60 h operation] than their original QDs (LE = 39.6 lm W-1 Ra = 78.1; I/I0 = 0.91 after 60 h operation) under a forward bias current of 60 mA.Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor

  7. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers.

    PubMed

    Tang, Mingchu; Chen, Siming; Wu, Jiang; Jiang, Qi; Dorogan, Vitaliy G; Benamara, Mourad; Mazur, Yuriy I; Salamo, Gregory J; Seeds, Alwyn; Liu, Huiyun

    2014-05-19

    We compare InAlAs/GaAs and InGaAs/GaAs strained-layer superlattices (SLSs) as dislocation filter layers for 1.3-μm InAs/GaAs quantum-dot laser structures directly grown on Si substrates. InAlAs/GaAs SLSs are found to be more effective than InGaAs/GaAs SLSs in blocking the propagation of threading dislocations generated at the interface between the GaAs buffer layer and the Si substrate. Room-temperature lasing at ~1.27 μm with a threshold current density of 194 A/cm(2) and output power of ~77 mW has been demonstrated for broad-area lasers grown on Si substrates using InAlAs/GaAs dislocation filter layers.

  8. L{sub g} = 100 nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect

    Koh, D. E-mail: Taewoo.Kim@sematech.org; Kwon, H. M.; Kim, T.-W. E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D.; Kim, D.-H.; Hudnall, Todd W.; Bielawski, Christopher W.; Maszara, W.; Banerjee, S. K.

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100 mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/μm, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7 nm technology node and/or beyond.

  9. Capping layer growth rate and the optical and structural properties of GaAsSbN-capped InAs/GaAs quantum dots

    SciTech Connect

    Ulloa, J. M. Utrilla, A. D.; Guzman, A.; Hierro, A.

    2014-10-07

    Changing the growth rate during the heteroepitaxial capping of InAs/GaAs quantum dots (QDs) with a 5 nm-thick GaAsSbN capping layer (CL) strongly modifies the QD structural and optical properties. A size and shape transition from taller pyramids to flatter lens-shaped QDs is observed when the CL growth rate is decreased from 1.5 to 0.5 ML/s. This indicates that the QD dissolution processes taking place during capping can be controlled to some extent by the GaAsSbN CL growth rate, with high growth rates allowing a complete preservation of the QDs. However, the dissolution processes are shown to have a leveling effect on the QD height, giving rise to a narrower size distribution for lower growth rates. Contrary to what could be expected, these effects are opposite to the strong blue-shift and improvement of the photoluminescence (PL) observed for higher growth rates. Nevertheless, the PL results can be understood in terms of the strong impact of the growth rate on the Sb and N incorporation into the CL, which results in lower Sb and N contents at higher growth rates. Besides the QD-CL band offsets and QD strain, the different CL composition alters the band alignment of the system, which can be transformed to type-II at low growth rates. These results show the key role of the alloyed CL growth parameters on the resulting QD properties and demonstrate an intricate correlation between the PL spectra and the sample morphology in complex QD-CL structures.

  10. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Yi; Mao, Ming-Hua

    2016-08-01

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al2O3 thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al2O3 passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al2O3 protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  11. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    SciTech Connect

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  12. Synthesis and characterization of the layered zirconium arsenate Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}nH{sub 2}O

    SciTech Connect

    Bortun, A.I.; Bortun, L.N.; Clearfield, A.; Trobajo, C.; Garcia, J.R.

    1998-04-01

    Layered sodium zirconium arsenate of composition Zr{sub 2}O{sub 3}(NaAsO{sub 4}){center_dot}3H{sub 2}O was prepared by the reaction between Zr(OC{sub 3}H{sub 7}){sub 4} and sodium arsenate in alkaline media (pH > 12) under mild hydrothermal conditions (180--200 C). Two hydrogen forms of the zirconium arsenate ({psi}-ZrAs) Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}3H{sub 2}O and Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}H{sub 2}O, were prepared by acid treatment of the sodium form. The intercalation of n-alkylamines into the {psi}-ZrAs from the gas phase was studied. The synthesized materials were characterized by elemental analysis, thermogravimetric analysis, infrared spectroscopy and powder X-ray diffraction. The data indicate that the zirconium arsenate is isostructural to {psi}-Zr{sub 2}O{sub 3}(HPO{sub 4}){center_dot}nH{sub 2}O (n = 0.5, 1.5). The new compounds exhibit high hydrolytic stability in alkaline media. The ion exchange behavior of the {psi}-Zr{sub 2}O{sub 3}(HAsO{sub 4}){center_dot}3H{sub 2}O towards alkali, alkaline-earth, and some di- and tri-valent metal cations in different solutions was studied over a wide pH range (2--14) by the batch technique.

  13. Specific effects of Ca2+ ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sm00636a Click here for additional data file.

    PubMed Central

    Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr.; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang

    2016-01-01

    β-Lactoglobulin (BLG) adsorption layers at air–water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca2+ concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy – from the ubiquitous air–water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O–H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca2+ concentrations above 1 mM causes an apparent change in the polarity of aromatic C–H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca2+ concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca2+, micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca2+ concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes. PMID:27337699

  14. Plasma enhanced chemical vapor deposition of metalboride interfacial layers as diffusion barriers for nanostructured diamond growth on cobalt containing alloys CoCrMo and WC-Co

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.

    This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a

  15. Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction.

    PubMed

    Liao, Sih-Hao; Li, Yi-Lun; Jen, Tzu-Hao; Cheng, Yu-Shan; Chen, Show-An

    2012-09-05

    We present a novel electron transport (ET) polymer composed of polyfluorene grafted with a K(+)-intercalated crown ether involving six oxygen atoms (PFCn6:K(+)) for bulk-heterojunction polymer solar cells (PSCs) with regioregular poly(3-hexylthiophene) (P3HT) as the donor and indene-C(60) bisadduct (ICBA) or indene-[6,6]-phenyl-C(61)-butyric acid methyl ester (IPCBM) as the acceptor in the active layer and with Al or Ca/Al as the cathode. A remarkable improvement in the power conversion efficiency (PCE) (measured in air) was observed upon insertion of this ET layer, which increased the PCE from 5.78 to 7.5% for a PSC with ICBA and Ca/Al (5.53 to 6.63% with IPCBM) and from 3.87 to 6.88% for a PSC with ICBA and Al (3.06 to 6.21% with IPCBM). This ET layer provides multiple functionalities: (1) it generates an optical interference effect for redistribution of light intensity as an optical spacer; (2) it blocks electron-hole recombination at the interface with the cathode; (3) it forms an interfacial dipole that promotes the vacuum level of the cathode metal; and (4) it enhances electron conduction, as evidenced by (1) the increase in total absorption of 1:1 w/w P3HT:ICBA by a factor of 1.3; (2) the reduction in the hole-only current density profile by a factor of 3.3 at 2.0 × 10(5) V/cm; (3) the decrease of 0.81 eV in the work function of Al from 4.28 to 3.47 eV, as determined by UV photoelectron spectroscopy; and (4) the decrease in the series resistance of PSCs with ICBA and Al by a factor of 4.5, as determined by the current-voltage characteristic under dark conditions; respectively. The PSC of 7.5% is the highest among the reported values for PSC systems with the simplest donor polymer, P3HT.

  16. Oxidation-resistant interfacial coatings for fiber-reinforced ceramic composites

    SciTech Connect

    Lara-Curzio, Edgar; More, Karren L.; Lee, Woo Y.

    1999-04-22

    A ceramic-matrix composite having a multilayered interfacial coating adapted to protect the reinforcing fibers from long-term oxidation, while allowing these to bridge the wake of advancing cracks in the matrix, is provided by selectively mismatching materials within adjacent layers of the interfacial coating, the materials having different coefficients of thermal expansion so that a low toughness interface region is created to promote crack deflection either within an interior layer of the mismatched interfacial coating or between adjacent layers of the mismatched interfacial coating.

  17. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning.

    PubMed

    Pelipenko, Jan; Kristl, Julijana; Rošic, Romana; Baumgartner, Saša; Kocbek, Petra

    2012-06-01

    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

  18. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  19. Understanding the mechanisms of interfacial reactions during TiO2 layer growth on RuO2 by atomic layer deposition with O2 plasma or H2O as oxygen source

    NASA Astrophysics Data System (ADS)

    Chaker, A.; Szkutnik, P. D.; Pointet, J.; Gonon, P.; Vallée, C.; Bsiesy, A.

    2016-08-01

    In this paper, TiO2 layers grown on RuO2 by atomic layer deposition (ALD) using tetrakis (dimethyla-mino) titanium (TDMAT) and either oxygen plasma or H2O as oxygen source were analyzed using X-ray diffraction (XRD), Raman spectroscopy, and depth-resolved X-ray Photoelectron spectroscopy (XPS). The main objective is to investigate the surface chemical reactions mechanisms and their influence on the TiO2 film properties. The experimental results using XRD show that ALD deposition using H2O leads to anatase TiO2 whereas a rutile TiO2 is obtained when oxygen-plasma is used as oxygen source. Depth-resolved XPS analysis allows to determine the reaction mechanisms at the RuO2 substrate surface after growth of thin TiO2 layers. Indeed, the XPS analysis shows that when H2O assisted ALD process is used, intermediate Ti2O3 layer is obtained and RuO2 is reduced into Ru as evidenced by high resolution transmission electron microscopy. In this case, there is no possibility to re-oxidize the Ru surface into RuO2 due to the weak oxidation character of H2O and an anatase TiO2 layer is therefore grown on Ti2O3. In contrast, when oxygen plasma is used in the ALD process, its strong oxidation character leads to the re-oxidation of the partially reduced RuO2 following the first Ti deposition step. Consequently, the RuO2 surface is regenerated, allowing the growth of rutile TiO2. A surface chemical reaction scheme is proposed that well accounts for the observed experimental results.

  20. Programming interfacial energetic offsets and charge transfer in β-Pb0.33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE PAGES

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda; ...

    2016-12-06

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb0.33V2O5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb0.33V2O5 heterostructures prepared by the same methods. Increased valence-band (VB) edge onsetsmore » in X-ray photoelectron spectra for CdS/β-Pb0.33V2O5 heterostructures relative to CdSe/β-Pb0.33V2O5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb0.33V2O5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb0.33V2O5 NWs, along with electron transfer into the conduction band of the β-Pb0.33V2O5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that interfacing

  1. Programming interfacial energetic offsets and charge transfer in β-Pb0.33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    SciTech Connect

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda; Cho, Junsang; Sheng, Aaron; Chauhan, Saurabh; Sfeir, Matthew Y.; Piper, Louis F. J.; Watson, David F.; Banerjee, Sarbajit

    2016-12-06

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb0.33V2O5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb0.33V2O5 heterostructures prepared by the same methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb0.33V2O5 heterostructures relative to CdSe/β-Pb0.33V2O5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb0.33V2O5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb0.33V2O5 NWs, along with electron transfer into the conduction band of the β-Pb0.33V2O5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore

  2. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer

    NASA Astrophysics Data System (ADS)

    Wang, Guoshuai; Wei, Huiyun; Luo, Yanhong; Wu, Huijue; Li, Dongmei; Zhong, Xinhua; Meng, Qingbo

    2016-01-01

    CdSexTe1-x alloyed colloidal quantum dots show great potential application on quantum dot-sensitized solar cells (QDSCs) due to its relatively wide light absorption range and high chemical stability. In this respect, a thin Mn modified CdSe layer is introduced into TiO2/CdSexTe1-x alloyed QDs surface via a simple chemical bath deposition method (CBD) in order to further improve the cell performance. The power conversion efficiency of CdSexTe1-x QDSCs has been improved to 8.14%. Detailed investigation on the influence of this modification toward the TiO2/CdSexTe1-x interface on the cell performance reveals that introduction of Mn into CdSe QDs is found to facilitate the Mn-doped CdSe deposition and improve the light absorption of the device. In the meantime, the existence of the (Mn-)CdSe layer can also work as a passivation layer to reduce charge recombination.

  3. Investigation of GaInAs strain reducing layer combined with InAs quantum dots embedded in Ga(In)As subcell of triple junction GaInP/Ga(In)As/Ge solar cell.

    PubMed

    Li, Senlin; Bi, Jingfeng; Li, Mingyang; Yang, Meijia; Song, Minghui; Liu, Guanzhou; Xiong, Weiping; Li, Yang; Fang, Yanyan; Chen, Changqing; Lin, Guijiang; Chen, Wenjun; Wu, Chaoyu; Wang, Duxiang

    2015-01-01

    The InAs/GaAs quantum dots structure embedded in GaInP/Ga(In)As/Ge triple junction solar cell with and without Ga0.90In0.10As strain reducing layer was investigated. Conversion efficiency of 33.91% at 1,000 suns AM 1.5D with Ga0.90In0.10As strain reducing layer was demonstrated. A 1.19% improvement of the conversion efficiency was obtained via inserting the Ga0.90In0.10As strain reducing layer. The main contribution of this improvement was from the increase of the short-circuit current, which is caused by the reduction of the Shockley-Read-Hall recombination centers. Consequently, there was a decrease in open circuit voltage due to the lower thermal activation energy of confined carriers in Ga0.9In0.1As than GaAs and a reduction in the effective band gap of quantum dots.

  4. Interfacial functionalization and engineering of nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Yang

    also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus

  5. Interfacial bonding stability

    NASA Technical Reports Server (NTRS)

    Boerio, J.

    1984-01-01

    Interfacial bonding stability by in situ ellipsometry was investigated. It is found that: (1) gamma MPS is an effective primer for bonding ethylene vinyl acetate (EVA) to aluminum; (2) ellipsometry is an effective in situ technique for monitoring the stability of polymer/metal interfaces; (3) the aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass like properties.

  6. Modulation of organic interfacial spin polarization by interfacial angle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Li, Ying; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao

    2017-01-01

    Based on ab initio theory, we theoretically investigated the interfacial spin polarization by adsorbing a benzene-dithiolate molecule onto a nickel surface with different interfacial angles. A variable magnitude and even an inversion of the interfacial spin polarization are observed with the increase of the interfacial angle. The orbital analysis shows that the interfacial spin polarization is codetermined by two kinds of orbital hybridization between the molecule and the ferromagnet, the pz-d hybridization and the sp3-d hybridization, which show different dependence on the angle. These results indicate a new way to manipulate the spin polarization at organic spinterface.

  7. Organic electrophosphorescence device having interfacial layers

    DOEpatents

    Choulis, Stelios A.; Mathai, Mathew; Choong, Vi-En; So, Franky

    2010-08-10

    Techniques are described for forming an organic light emitting diode device with improved device efficiency. Materials having at least one energy level that is similar to those of a phosphorescent light emitting material in the diode are incorporated into the device to directly inject holes or electrons to the light emitting material.

  8. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  9. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%

    NASA Astrophysics Data System (ADS)

    Tu, Yongguang; Wu, Jihuai; Zheng, Min; Huo, Jinghao; Zhou, Pei; Lan, Zhang; Lin, Jianming; Huang, Miaoliang

    2015-12-01

    A compact TiO2 layer is crucial to achieve high-efficiency perovskite solar cells. In this study, we developed a facile, low-cost and efficient method to fabricate a pinhole-free and ultrathin blocking layer based on highly crystallized TiO2 quantum dots (QDs) with an average diameter of 3.6 nm. The surface morphology of the blocking layer and the photoelectric performance of the perovskite solar cells were investigated by spin-coating with three different materials: colloidal TiO2 QDs, titanium precursor solution, and aqueous TiCl4. Among these three treatments, the perovskite solar cell based on the TiO2 QD compact layer offered the highest power conversion efficiency (PCE) of 16.97% with a photocurrent density of 22.48 mA cm-2, a photovoltage of 1.063 V and a fill factor of 0.71. The enhancement of PCE mainly stems from the small series resistance and the large shunt resistance of the TiO2 QD layer.A compact TiO2 layer is crucial to achieve high-efficiency perovskite solar cells. In this study, we developed a facile, low-cost and efficient method to fabricate a pinhole-free and ultrathin blocking layer based on highly crystallized TiO2 quantum dots (QDs) with an average diameter of 3.6 nm. The surface morphology of the blocking layer and the photoelectric performance of the perovskite solar cells were investigated by spin-coating with three different materials: colloidal TiO2 QDs, titanium precursor solution, and aqueous TiCl4. Among these three treatments, the perovskite solar cell based on the TiO2 QD compact layer offered the highest power conversion efficiency (PCE) of 16.97% with a photocurrent density of 22.48 mA cm-2, a photovoltage of 1.063 V and a fill factor of 0.71. The enhancement of PCE mainly stems from the small series resistance and the large shunt resistance of the TiO2 QD layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05563f

  10. Increasing optical density of single-layer multi-polymer bulk-heterojunction OPVs using CdSe(ZnS) core(shell) quantum dots

    NASA Astrophysics Data System (ADS)

    Bump, Buddy J.; Olson, Grant T.; Savage, Richard; Echols, Robert S.

    2014-10-01

    Photovoltaic technology has powerful implications from commercial and national security standpoints. Due to the high material cost of silicon solar devices, inexpensive and lightweight polymer based solar is desirable to meet the demand for decentralized electrical power production in traditionally "off-grid" areas. Using a blend of Poly(3-hexylthiophene- 2,5-diyl) (P3HT), Phenyl-C61-butyric acid methyl ester (PCBM), and the low band-gap polymer Poly[2,6-(4,4-bis-(2- ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), we have fabricated devices with a wide spectral response and 3% power conversion efficiency in AM 1.5 conditions. Due to low absorptivity in the peak of the solar spectra (500nm), we have blended this previous polymer system with CdSe(ZnS) core (shell) quantum dots to improve absorption, and thus power conversion efficiencies. Devices were prepared with quantum dots having a peak absorbance at 560nm and an emission wavelength of 577nm, with device loading ranging from 0% to 2.7% by weight. The relationship between quantum dot concentration and device performance is discussed, along with the impact of quantum dot concentration on thermal resistance to morphology changes.

  11. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  12. Interfacial supersaturation, secondary nucleation, and crystal growth

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Wu, Jenn-Fang; Rousseau, Ronald W.

    1992-02-01

    A theory describing the source of nuclei in secondary nucleation is presented and used to rationalize experimental data from the literature, some of which had appeared to be conflicting. The theory rests on a model in which an adsorption layer consisting of clusters of growth units of varying size is formed on the surface of growing crystals. The existence of the layer is related to the two-resistance model of crystal growth; by varying system conditions, the relative importance of the two resistances is altered and thereby changes the interfacial supersaturation even though overall supersaturation remains constant. Interracial supersaturation and contact energy determine kinetics in a system dominated by contact nucleation.

  13. Investigation of single-layer/multilayer self-assembled InAs quantum dots on GaAs{sub 1-x}Sb{sub x}/GaAs composite substrates

    SciTech Connect

    Tang, Dinghao; Kim, Yeongho Faleev, Nikolai; Honsberg, Christiana B.; Smith, David J.

    2015-09-07

    The structure-performance properties of single-layered and multi-layered InAs/GaAs{sub 1−x}Sb{sub x} quantum dot (QD) system, grown by molecular beam epitaxy on GaAs (001) substrates, have been investigated as a function of Sb concentration. Electron microscopy observations showed no significant crystalline defects for the single-layered InAs QDs (Sb 20%). X-ray diffraction analysis revealed that the increase of Sb concentration from 7.3% to 10.2% for the multi-layered QDs increased the strain relaxation from 0% to ∼23% and the dislocation density of GaAsSb layers went up to 3.6 × 10{sup 9 }cm{sup −2}. The peak energy of QD luminescence was red-shifted with increasing Sb concentration due to reduced strain inside QDs. Moreover, the carrier lifetime of the QDs was highly improved from 1.7 to 36.7 ns due to weak hole confinement as the Sb concentration was increased from 7.3% to 10.2%. These structures should be highly promising as the basis for photovoltaic solar-cell applications. Finally, the increased Sb concentration increased the thermal activation energy of electrons confined in the QDs from 163.7 to 206.8 meV, which was indicative of the improved thermal stability with Sb concentration.

  14. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97.

    PubMed

    Tu, Yongguang; Wu, Jihuai; Zheng, Min; Huo, Jinghao; Zhou, Pei; Lan, Zhang; Lin, Jianming; Huang, Miaoliang

    2015-12-28

    A compact TiO(2) layer is crucial to achieve high-efficiency perovskite solar cells. In this study, we developed a facile, low-cost and efficient method to fabricate a pinhole-free and ultrathin blocking layer based on highly crystallized TiO(2) quantum dots (QDs) with an average diameter of 3.6 nm. The surface morphology of the blocking layer and the photoelectric performance of the perovskite solar cells were investigated by spin-coating with three different materials: colloidal TiO(2) QDs, titanium precursor solution, and aqueous TiCl(4). Among these three treatments, the perovskite solar cell based on the TiO(2) QD compact layer offered the highest power conversion efficiency (PCE) of 16.97% with a photocurrent density of 22.48 mA cm(-2), a photovoltage of 1.063 V and a fill factor of 0.71. The enhancement of PCE mainly stems from the small series resistance and the large shunt resistance of the TiO(2) QD layer.

  15. Design principles of interfacial thermal conductance

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie; Le, Nam; Norris, Pamela; Ghosh, Avik

    We explore fundamental principles to design the thermal conductance across solid interfaces by changing the composition and disorder of an intermediate matching layer. In absence of phonon-phonon interactions, the layer addition involves two competing effects that influence the conductance. The layer can act as an impedance matching 'bridge' to increase the mode-averaged phonon transmission. However, it also reduces the relevant modes that conserve their momenta transverse to the interface, so that the net result depends on features such as the overlap of conserving modes and the dispersivity of the transverse subbands. Moving into the interacting anharmonic regime, we find that the added layer aids conductance when the decreased resistances at the contact-layer boundaries compensate for the layer resistance. In fact, we show that the maximum conductance corresponds to an exact matching of the two separate contact-layer resistances. For instance, if we vary just the atomic mass across layers, then maximum conductance happens when the intervening layer mass is the geometric mean of the contact masses. We conjecture that the best interfacial layer is one that is compositionally graded into many geometric means - in other words, an exponential variation in thermal impedance.

  16. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  17. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping

    SciTech Connect

    Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.

    2015-04-06

    The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.

  18. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  19. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  20. High-Throughput Screening and Optimization of Binary Quantum Dots Cosensitized Solar Cell.

    PubMed

    Yuan, Ding; Xiao, Lina; Luo, Jianheng; Luo, Yanhong; Meng, Qingbo; Mao, Bing-Wei; Zhan, Dongping

    2016-07-20

    Quantum dots (QDs) are considered as the alternative of dye sensitizers for solar cells. However, interfacial construction and evaluation of photocatalytic nanomaterials still remains challenge through the conventional methodology involving demo devices. We propose here a high-throughput screening and optimizing method based on combinatorial chemistry and scanning electrochemical microscopy (SECM). A homogeneous TiO2 catalyst layer is coated on a FTO substrate, which is then covered by a dark mask to expose the photocatalyst array. On each photocatalyst spot, different successive ionic layer adsorption and reaction (SILAR) processes are performed by a programmed solution dispenser to load the binary PbxCd1-xS QDs sensitizers. An optical fiber is employed as the scanning tip of SECM, and the photocatalytic current is recorded during the imaging experiment, through which the optimized technical parameters are figured out. To verify the validity of the combinatorial SECM imaging results, the controlled trials are performed with the corresponding photovoltaic demo devices. The harmonious accordance proved that the methodology based on combinatorial chemistry and SECM is valuable for the interfacial construction, high-throughput screening, and optimization of QDSSCs. Furthermore, the PbxCd1-xS/CdS QDs cosensitized solar cell optimized by SECM achieves a short circuit current density of 24.47 mA/cm(2), an open circuit potential of 421 mV, a fill factor of 0.52, and a photovoltaic conversion efficiency of 5.33%.

  1. Effect of nanoscale patterned interfacial roughness on interfacial toughness.

    SciTech Connect

    Zimmerman, Jonathan A.; Moody, Neville Reid; Mook, William M.; Kennedy, Marian S.; Bahr, David F.; Zhou, Xiao Wang; Reedy, Earl David, Jr.

    2007-09-01

    The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

  2. Interfacial Instabilities on a Droplet

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Mehravaran, Kian

    2013-11-01

    The fragmentation of droplets is an essential stage of several natural and industrial applications such as fuel atomization and rain phenomena. In spite of its relatively long history, the mechanism of fragmentation is not clear yet. This is mainly due to small length and time scales as well as the non-linearity of the process. In the present study, two and three-dimensional numerical simulations have been performed to understand the early stages of the fragmentation of an initially spherical droplet. Simulations are performed for high Reynolds and a range of relatively high Weber numbers (shear breakup). To resolve the small-scale instabilities generated over the droplet, a second-order adaptive finite volume/volume of fluids (FV/VOF) method is employed, where the grid resolution is increased with the curvature of the gas-liquid interface as well as the vorticity magnitude. The study is focused on the onset and growth of interfacial instabilities. The role of Kelvin-Helmholtz instability (in surface wave formation) and Rayleigh-Taylor instability (in azimuthal transverse modulation) are shown and the obtained results are compared with the linear instability theories for zero and non-zero vorticity layers. Moreover, the analogy between the fragmentation of a single drop and a co-axial liquid jet is discussed. The current results can be used for the further development of the current secondary atomization models.

  3. 'Green'-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging.

    PubMed

    Wang, D; Qian, J; Cai, F; He, S; Han, S; Mu, Y

    2012-06-22

    In this paper, PbS semiconductor quantum dots (QDs) with near-infrared (NIR) photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using an easily handled and 'green' approach. Surface functionalization of the QDs was accomplished with a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellent chemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future.

  4. Interfacial chemistry and structure in ceramic composites

    SciTech Connect

    Jones, R.H.; Saenz, N.T.; Schilling, C.H.

    1990-09-01

    The interfacial chemistry and structure of ceramic matrix composites (CMCs) play a major role in the properties of these materials. Fiber-matrix interfaces chemistries are vitally important in the fracture strength, fracture toughness, and fracture resistance of ceramic composites because they influence fiber loading and fiber pullout. Elevated-temperature properties are also linked to the interfacial characteristics through the chemical stability of the interface in corrosive environments and the creep/pullout behavior of the interface. Physical properties such as electrical and thermal conductivity are also dependent on the interface. Fiber-matrix interfaces containing a 1-{mu}m-thick multilayered interface with amorphous and graphitic C to a 1-nm-thick SiO{sub 2} layer can result from sintering operations for some composite systems. Fibers coated with C, BN, C/BC/BN, and Si are also used to produce controlled interface chemistries and structures. Growth interfaces within the matrix resulting from processing of CMCs can also be crucial to the behavior of these materials. Evaluation of the interfacial chemistry and structure of CMCs requires the use of a variety of analytical tools, including optical microscopy, scanning electron microscopy, Auger electron spectroscopy, and transmission electron microscopy coupled with energy dispersive x-ray analysis. A review of the interfacial chemistry and structure of SiC whisker- and fiber-reinforced Si{sub 3}N{sub 4} and SiC/SiC materials is presented. Where possible, correlations with fracture properties and high-temperature stability are made. 94 refs., 10 figs.

  5. Mechanobiology of interfacial growth

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Preziosi, L.; Maugin, G. A.

    2013-03-01

    A multiscale analysis integrating biomechanics and mechanobiology is today required for deciphering the crosstalk between biochemistry, geometry and elasticity in living materials. In this paper we derive a unified thermomechanical theory coupling growth processes with mass transport phenomena across boundaries and/or material interfaces. Inside a living system made by two contiguous bodies with varying volumes, an interfacial growth mechanism is considered to force fast but continuous variations of the physical fields inside a narrow volume across the material interface. Such a phenomenon is modelled deriving homogenized surface fields on a growing non-material discontinuity, possibly including a singular edge line. A number of balance laws is derived for imposing the conservation of the thermomechanical properties of the biological system. From thermodynamical arguments we find that the normal displacement of the non-material interface is governed by the jump of a new form of material mechanical-energy flux, also involving the kinetic energies and the mass fluxes. Furthermore, the configurational balance indicates that the surface Eshelby tensor is the tangential stress measure driving the material inhomogeneities on the non-material interface. Accordingly, stress-dependent evolution laws for bulk and interfacial growth processes are derived for both volume and surface fields. The proposed thermomechanical theory is finally applied to three biological system models. The first two examples are focused on stress-free growth problems, concerning the morphogenesis of animal horns and of seashells. The third application finally deals with the stress-driven surface evolution of avascular tumours with heterogeneous structures. The results demonstrate that the proposed theory can successfully model those biological systems where growth and mass transport phenomena interact at different length-scales. Coupling biological, mechanical and geometrical factors, the proposed

  6. Some Aspects of Interfacial Phenomena in Steelmaking and Refining

    NASA Astrophysics Data System (ADS)

    Wang, L. J.; Viswanathan, N. N.; Muhmood, L.; Kapilashrami, E.; Seetharaman, S.

    2016-08-01

    Unique experiments were designed to study the surface phenomena in steelmaking reactions. The concept of surface sulfide capacities and an understanding of the surface accumulation of surface-active species, based on experimental results, are presented. In order to understand the flow phenomenon at slag/metal interface, experiments were designed to measure the interfacial velocity of S on the surface of an iron drop immersed in an aluminosilicate slag using the X-ray sessile drop method. The oscillation of the iron drop in the slag due to the change in the surface concentration of sulfur at the slag-metal interface was monitored by X-ray imaging. From the observations, the interfacial velocity of sulfur was evaluated. Similar experiments were performed to measure the interfacial velocity of oxygen at the interface as well as the impact of oxygen potential on the interfacial velocity of sulfur. The interfacial shear viscosity and the dilatational modulus were also evaluated. In a study of the wetting of alumina base by iron drop at constant oxygen pressure under isothermal condition, the contact angle was found to be decreased with the progress of the reaction leading to the formation of hercynite as an intermediate layer creating non-wetting conditions. In the case of silica substrate, an intermediate liquid fayalite layer was formed.

  7. Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device.

    PubMed

    Kim, Daekyoung; Fu, Yan; Kim, Sunho; Lee, Woosuk; Lee, Ki-Heon; Chung, Ho Kyoon; Lee, Hoo-Jeong; Yang, Heesun; Chae, Heeyeop

    2017-02-28

    We report on an all-solution-processed fabrication of highly efficient green quantum dot-light-emitting diodes (QLEDs) with an inverted architecture, where an interfacial polymeric surface modifier of polyethylenimine ethoxylated (PEIE) is inserted between a quantum dot (QD) emitting layer (EML) and a hole transport layer (HTL), and a MoOx hole injection layer is solution deposited on top of the HTL. Among the inverted QLEDs with varied PEIE thicknesses, the device with an optimal PEIE thickness of 15.5 nm shows record maximum efficiency values of 65.3 cd/A in current efficiency and 15.6% in external quantum efficiency (EQE). All-solution-processed fabrication of inverted QLED is further implemented on a flexible platform by developing a high-performing transparent conducting composite film of ZnO nanoparticles-overcoated on Ag nanowires. The resulting flexible inverted device possesses 35.1 cd/A in current efficiency and 8.4% in EQE, which are also the highest efficiency values ever reported in flexible QLEDs.

  8. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  9. Interfacial Instabilities in Evaporating Drops

    NASA Astrophysics Data System (ADS)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  10. Impact of La{sub 2}O{sub 3} interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks deposited by atomic-layer-deposition

    SciTech Connect

    Chang, C.-Y. Takenaka, M.; Takagi, S.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.

    2015-08-28

    We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectiveness of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.

  11. Annealing-induced change in quantum dot chain formation mechanism

    SciTech Connect

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-15

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  12. Initial stage growth of GexSi1−x layers and Ge quantum dot formation on GexSi1−x surface by MBE

    PubMed Central

    2012-01-01

    Critical thicknesses of two-dimensional to three-dimensional growth in GexSi1−x layers were measured as a function of composition for different growth temperatures. In addition to the (2 × 1) superstructure for a Ge film grown on Si(100), the GexSi1−x layers are characterized by the formation of (2 × n) reconstruction. We measured n for all layers of Ge/GexSi1−x/Ge heterosystem using our software with respect to the video recording of reflection high-energy electron diffraction (RHEED) pattern during growth. The n reaches a minimum value of about 8 for clear Ge layer, whereas for GexSi1−x films, n is increased from 8 to 14. The presence of a thin strained film of the GexSi1−x caused not only the changes in critical thicknesses of the transitions, but also affected the properties of the germanium nanocluster array for the top Ge layer. Based on the RHEED data, the hut-like island form, which has not been previously observed by us between the hut and dome islands, has been detected. Data on the growth of Ge/GexSi1−x/Ge heterostructures with the uniform array of islands in the second layer of the Ge film have been received. PMID:23043796

  13. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  14. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  15. Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solid-State NMR.

    PubMed

    Marchetti, Alessandro; Chen, Juner; Pang, Zhenfeng; Li, Shenhui; Ling, Daishun; Deng, Feng; Kong, Xueqian

    2017-03-01

    Surface and interfacial chemistry is of fundamental importance in functional nanomaterials applied in catalysis, energy storage and conversion, medicine, and other nanotechnologies. It has been a perpetual challenge for the scientific community to get an accurate and comprehensive picture of the structures, dynamics, and interactions at interfaces. Here, some recent examples in the major disciplines of nanomaterials are selected (e.g., nanoporous materials, battery materials, nanocrystals and quantum dots, supramolecular assemblies, drug-delivery systems, ionomers, and graphite oxides) and it is shown how interfacial chemistry can be addressed through the perspective of solid-state NMR characterization techniques.

  16. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  17. Interfacial Widths of Conjugated Polymer Bilayers

    SciTech Connect

    NCSU; UC Berkeley; UCSB; Advanced Light Source; Garcia, Andres; Yan, Hongping; Sohn, Karen E.; Hexemer, Alexander; Nguyen, Thuc-Quyen; Bazan, Guillermo C.; Kramer, Edward J.; Ade, Harald

    2009-08-13

    The interfaces of conjugated polyelectrolyte (CPE)/poly[2-methoxy-5-(2{prime}-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) bilayers cast from differential solvents are shown by resonant soft X-ray reflectivity (RSoXR) to be very smooth and sharp. The chemical interdiffusion due to casting is limited to less than 0.6 nm, and the interface created is thus nearly 'molecularly' sharp. These results demonstrate for the first time and with high precision that the nonpolar MEH-PPV layer is not much disturbed by casting the CPE layer from a polar solvent. A baseline is established for understanding the role of interfacial structure in determining the performance of CPE-based polymer light-emitting diodes. More broadly, we anticipate further applications of RSoXR as an important tool in achieving a deeper understanding of other multilayer organic optoelectronic devices, including multilayer photovoltaic devices.

  18. Charge-extraction strategies for colloidal quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Lan, Xinzheng; Masala, Silvia; Sargent, Edward H.

    2014-03-01

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

  19. Quantitative morphological characterization of bicontinuous Pickering emulsions via interfacial curvatures

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew; Stratford, Kevin; Thijssen, Job H. J.

    Bicontinuous Pickering emulsions (bijels) are a physically interesting class of soft materials with many potential applications including catalysis, microfluidics and tissue engineering. They are created by arresting the spinodal decomposition of a partially-miscible liquid with a (jammed) layer of interfacial colloids. Porosity $L$ (average interfacial separation) of the bijel is controlled by varying the radius ($r$) and volume fraction ($\\phi$) of the colloids ($L \\propto r/\\phi$). However, to optimize the bijel structure with respect to other parameters, e.g. quench rate, characterizing by $L$ alone is insufficient. Hence, we have used confocal microscopy and X-ray CT to characterize a range of bijels in terms of local and area-averaged interfacial curvatures. In addition, the curvatures of bijels have been monitored as a function of time, which has revealed an intriguing evolution up to 60 minutes after bijel formation, contrary to previous understanding.

  20. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  1. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  2. Nanostructured titania films sensitized by quantum dot chalcogenides.

    PubMed

    Kontos, Athanassios G; Likodimos, Vlassis; Vassalou, Eleni; Kapogianni, Ioanna; Raptis, Yannis S; Raptis, Costas; Falaras, Polycarpos

    2011-03-29

    The optical and structural properties of cadmium and lead sulfide nanocrystals deposited on mesoporous TiO2 substrates via the successive ionic layer adsorption and reaction method were comparatively investigated by reflectance, transmittance, micro-Raman and photoluminescence measurements. Enhanced interfacial electron transfer is evidenced upon direct growth of both CdS and PbS on TiO2 through the marked quenching of their excitonic emission. The optical absorbance of CdS/TiO2 can be tuned over a narrow spectral range. On the other side PbS/TiO2 exhibits a remarkable band gap tunability extending from the visible to the near infrared range, due to the distinct quantum size effects of PbS quantum dots. However, PbS/TiO2 suffers from severe degradation upon air exposure. Degradation effects are much less pronounced for CdS/TiO2 that is appreciably more stable, though it degrades readily upon visible light illumination.

  3. Nanostructured titania films sensitized by quantum dot chalcogenides

    PubMed Central

    2011-01-01

    The optical and structural properties of cadmium and lead sulfide nanocrystals deposited on mesoporous TiO2 substrates via the successive ionic layer adsorption and reaction method were comparatively investigated by reflectance, transmittance, micro-Raman and photoluminescence measurements. Enhanced interfacial electron transfer is evidenced upon direct growth of both CdS and PbS on TiO2 through the marked quenching of their excitonic emission. The optical absorbance of CdS/TiO2 can be tuned over a narrow spectral range. On the other side PbS/TiO2 exhibits a remarkable band gap tunability extending from the visible to the near infrared range, due to the distinct quantum size effects of PbS quantum dots. However, PbS/TiO2 suffers from severe degradation upon air exposure. Degradation effects are much less pronounced for CdS/TiO2 that is appreciably more stable, though it degrades readily upon visible light illumination. PMID:21711770

  4. Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Kwang; Yu, Jae-woong; Kim, Young Heon; Kang, Seong Jun

    2014-03-01

    Red-light-emitting diodes (LEDs) were fabricated using CdSe/CdZnS quantum dots (QDs). During the device fabrication process, the oxygen plasma treatment of the indium-tin oxide (ITO) surface was performed to improve the interfacial contact between the ITO anode and the hole injection layer. The device showed red emission at 622 nm, which was consistent with the dimensions of the QDs (band gap: 1.99 eV). The luminance was 108.77 cd/m2 and the current density was 230.2 mA/cm2 at an operating voltage of 7 V, when the oxygen plasma treatment was performed on the ITO surface. The luminance showed 207% improvement compared with that of LEDs fabricated without oxygen plasma treatment. These results suggested that the oxygen plasma treatment of the ITO surface improved the contact between ITO and PEDOT:PSS, and that the light emitting intensity was markedly improved.

  5. Organic photovoltaic devices with the bilayer cathode interfacial structure of pyromellitic dianhydride and lithium fluoride

    NASA Astrophysics Data System (ADS)

    Nam, Eunkyoung; Oh, Seungsik; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop; Yi, Junsin

    2012-10-01

    In this study, we fabricated and characterized an organic photovoltaic (OPV) device with a pyromellitic dianhydride (PMDA)/lithium fluoride (LiF) cathode interfacial layer between poly(3-hexylthiophene-2,5-diyl)(P3HT)+[6,6]-phenyl C61 butyric acid methyl ester (PCBM) and Al. Compared to the OPV device with a LiF-only cathode interfacial layer having a power conversion efficiency (PCE) of 2.7%, the OPV device with the bilayer cathode interfacial structure [PMDA (0.3 nm)/LiF (0.7 nm)] exhibited a reduced resistance and a PCE value enhanced to 3.9% under an illumination condition of 100 mW cm-2 (AM1.5). The observed improvement of the OPV characteristics was attributed to the reduced leakage current of the device by the bilayer cathode interfacial layer.

  6. Influence of electromechanical effects and wetting layers on band structures of AlN/GaN quantum dots and spin control

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick

    2010-09-01

    In a series of recent papers we demonstrated that coupled electromechanical effects can lead to pronounced contributions in band structure calculations of low dimensional semiconductor nanostructures (LDSNs) such as quantum dots (QDs), wires, and even wells. Some such effects are essentially nonlinear. Both strain and piezoelectric effects have been used as tuning parameters for the optical response of LDSNs in photonics, band gap engineering, and other applications. However, the influence of spin orbit effects in presence of external magnetic field on single and vertically coupled QD has been largely neglected in the literature. The electron spin splitting terms which are coupled to the magnetic field through the Pauli spin matrix in these QDs become important in the design of optoelectronic devices as well as in tailoring properties of QDs in other applications areas. At the same time, single and vertically stacked QDs are coupled with electromagnetic and mechanical fields which become increasingly important in many applications of LDSN-based systems, in particular, where spin splitting energy is important. These externally applied electric and magnetic fields as well as the separation between the vertically coupled QDs can be used as tuning parameters. Indeed, as electromagnetic and elastic effects are often significant in LDSNs, it is reasonable to expect that the externally applied magnetic fields oriented along a direction perpendicular to the plane of two-dimensional electron gas in the QDs may also be used as a tuning parameter in the application of light emitting diodes, logic devices, for example, OR gates, AND gates and others. In this paper, by using the fully coupled model of electroelasticity, we analyze the influence of these effects on optoelectronic properties of QDs. Results are reported for III-V type semiconductors with a major focus given to AlN/GaN based QD systems.

  7. Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m(-2).

    PubMed

    Wang, Hung Chia; Zhang, Heng; Chen, Hao Yue; Yeh, Han Cheng; Tseng, Mei Rurng; Chung, Ren Jei; Chen, Shuming; Liu, Ru Shi

    2017-04-01

    Cadmium-free thick-shelled InP/ZnSeS/ZnS quantum dot (QD) was synthesized using the heating-up approach. This quantum dots was used in inverted quantum dots light emitting diode (QLED) devices. The brightness of the inverted QLED device can reach a brightness of over 10 000 cd m(-2) , low turn-on voltage (2.2 V), and high power efficiency (4.32 lm W(-1) ).

  8. Full-colour quantum dot displays fabricated by transfer printing

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Eun Kyung; Lee, Sang Jin; Chae, Jungseok; Kim, Jung Woo; Kim, Do Hwan; Kwon, Jang-Yeon; Amaratunga, Gehan; Lee, Sang Yoon; Choi, Byoung Lyong; Kuk, Young; Kim, Jong Min; Kim, Kinam

    2011-03-01

    Light-emitting diodes with quantum dot luminophores show promise in the development of next-generation displays, because quantum dot luminophores demonstrate high quantum yields, extremely narrow emission, spectral tunability and high stability, among other beneficial characteristics. However, the inability to achieve size-selective quantum dot patterning by conventional methods hinders the realization of full-colour quantum dot displays. Here, we report the first demonstration of a large-area, full-colour quantum dot display, including in flexible form, using optimized quantum dot films, and with control of the nano-interfaces and carrier behaviour. Printed quantum dot films exhibit excellent morphology, well-ordered quantum dot structure and clearly defined interfaces. These characteristics are achieved through the solvent-free transfer of quantum dot films and the compact structure of the quantum dot networks. Significant enhancements in charge transport/balance in the quantum dot layer improve electroluminescent performance. A method using plasmonic coupling is also suggested to further enhance luminous efficiency. The results suggest routes towards creating large-scale optoelectronic devices in displays, solid-state lighting and photovoltaics.

  9. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2015-10-01

    Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel () and anti-parallel () to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small electric field, of the order of 1 kV cm-1. The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm-1 electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical modes

  10. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.

    PubMed

    Usman, Muhammad

    2015-10-21

    Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical

  11. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  12. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  13. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure.

    PubMed

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  14. Metamorphic quantum dots: Quite different nanostructures

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-09-15

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  15. Enhancing interfacial magnetization with a ferroelectric

    DOE PAGES

    Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; ...

    2016-11-21

    Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface’s magnetic properties can be probed at an atomic level. In this paper, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can bemore » greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μB/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. Finally, these compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.« less

  16. Enhancing interfacial magnetization with a ferroelectric

    NASA Astrophysics Data System (ADS)

    Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; Freeland, John W.; Nichols, John; Guo, Er-Jia; Lee, Shinbuhm; Ward, T. Zac; Balke, Nina; Kalinin, Sergei V.; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-11-01

    Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface's magnetic properties can be probed at an atomic level. Here, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZ r0.2T i0.8O3/L a0.8S r0.2Mn O3(PZT /LSMO ) ] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0 μB/f .u . , a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. These compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.

  17. Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low-intensity illumination

    NASA Astrophysics Data System (ADS)

    Zhai, Peng; Lee, Hyeonseok; Huang, Yu-Ting; Wei, Tzu-Chien; Feng, Shien-Ping

    2016-10-01

    In this study, ultrasmall and ultrafine TiO2 quantum dots (QDs) were prepared and used as a high-performance compact layer (CL) in dye-sensitized solar cells (DSCs). We systematically investigated the performance of TiO2 CL under both low-intensity light and indoor fluorescent light illumination and found that the efficiency of DSCs with the insertion of optimal TiO2 QDs-CL was increased up to 18.3% under indoor T5 fluorescent light illumination (7000 lux). We clarified the controversy over the blocking effect of TiO2 CL for the efficiency increment and confirmed that the TiO2 QDs-CL performed significantly better under low-intensity illumination due to the efficient suppression of electron recombination at the FTO/electrolyte interface. We, for the first time, demonstrate this potential for the application of the DSCs with TiO2 QDs-CL in the low-intensity light and indoor fluorescent light illumination.

  18. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO2 Array Hybrid Solar Cells.

    PubMed

    Wu, Fan; Zhu, Yanyan; Ye, Xunheng; Li, Xiaoyi; Tong, Yanhua; Xu, Jiaxing

    2017-12-01

    The polymer/TiO2 array heterojunction interfacial characteristics can be tailored by balanced dipole effects through integration of TiO2-quantum dots (QDs) and N719 at heterojunction interface, resulting in the tunable photovoltaic performance. The changes of V oc with interfacial engineering originate from the shift of the conduction band (E c) edge in the TiO2 nanorod by the interfacial dipole with different directions (directed away or toward the TiO2 nanorod). The J sc improvement originates from the enhanced charge separation efficiency with an improved electronic coupling property and better charge transfer property. The balanced dipole effects caused by TiO2-QDs and N719 modification on the device V oc are confirmed by the changed built-in voltage V bi and reverse saturation current density J s.

  19. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO2 Array Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zhu, Yanyan; Ye, Xunheng; Li, Xiaoyi; Tong, Yanhua; Xu, Jiaxing

    2017-02-01

    The polymer/TiO2 array heterojunction interfacial characteristics can be tailored by balanced dipole effects through integration of TiO2-quantum dots (QDs) and N719 at heterojunction interface, resulting in the tunable photovoltaic performance. The changes of V oc with interfacial engineering originate from the shift of the conduction band ( E c) edge in the TiO2 nanorod by the interfacial dipole with different directions (directed away or toward the TiO2 nanorod). The J sc improvement originates from the enhanced charge separation efficiency with an improved electronic coupling property and better charge transfer property. The balanced dipole effects caused by TiO2-QDs and N719 modification on the device V oc are confirmed by the changed built-in voltage V bi and reverse saturation current density J s.

  20. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.

    PubMed

    Kim, Heejin; Jeong, Hyuncheol; An, Tae Kyu; Park, Chan Eon; Yong, Kijung

    2013-01-23

    A polymer hybrid quantum-dot-sensitized solar cell was developed using CdSe/CdS/ZnO nanowires as a photoanode and regioregular P3HT as a conjugated polymer. The P3HT polymer was used as a hole transport material to replace the liquid electrolyte in quantum dot sensitized solar cells, CdSe/CdS acts as a cosensitizer, which enhances light harvesting in the visible range, and the ZnO nanowires provide a direct pathway for electron transport. Through an adequate cascade bandgap structure of the photoanode, the photoexcited electrons were effectively separated from the electron/hole pairs and transported under illumination. The remaining holes at the anode were transported by the conjugated polymer P3HT without any intermediate potential loss. The fabrication of the hybrid solar cell was optimized with various experimental conditions, including the length of the ZnO nanowires, quantum sensitizers, P3HT filling conditions, and electrolytes. The optimally obtained hybrid solar cells exhibited 1.5% power-conversion efficiency under AM 1.5G of 100 mW/cm(2) intensity. The fabricated hybrid cells exhibited highly durable cell performances, even after 1 month under atmospheric conditions, whereas the liquid junction quantum dot sensitized solar cells exhibited a significant degradation in their performances during the first 2 weeks immediately after fabrication. High open-circuit voltage and fill factor values of our hybrid quantum-dot-sensitized solar cell indicate that the applied hole transport layer efficiently dissociates electron/hole pairs at the interface and retards the interfacial charge recombination.

  1. Auger-decay engineering in quantum dots in relation to applications in LEDs and lasers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Klimov, Victor I.

    2015-09-01

    Multicarrier dynamics in colloidal quantum dots (QDs) are normally controlled by nonradiative Auger recombination wherein the energy of an electron-hole pair is converted not into a photon but instead transferred to a third carrier (an electron or a hole). Auger decay is extremely fast in QDs (time scales of tens-to-hundreds of picoseconds) due to both close proximity between interacting charges and elimination of restrictions imposed by translational momentum conservation. Photoluminescence (PL) quenching by nonradiative Auger processes complicates realization of applications that require high emissivity of multicarrier states such as light-emitting diodes (LEDs) and lasers. Therefore, the development of "Auger-recombination-free" QDs is an important current challenge in the field of colloidal nanostructures. Previous single-dot spectroscopic studies have indicated a significant spread in Auger lifetimes across an ensemble of nominally identical QDs. It has been speculated that in addition to dot-to-dot variation in physical dimensions, this spread is contributed to by variations in the structure of the QD interface, which controls the shape of the confinement potential. Here we directly evaluate the effect of the composition of the core-shell interface on single- and multi-exciton dynamics via side-by-side measurements of individual core-shell CdSe/CdS nanocrystals with a sharp vs. smooth (graded) interface. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in the biexciton lifetime indicating suppression of Auger recombination. We demonstrate that using QDs with "engineered interfaces" we can considerably improve the performance of QD LEDs and lasers.

  2. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  3. Interfacial Properties of Bilayer and Trilayer Graphene on Metal Substrates

    PubMed Central

    Zheng, Jiaxin; Wang, Yangyang; Wang, Lu; Quhe, Ruge; Ni, Zeyuan; Mei, Wai-Ning; Gao, Zhengxiang; Yu, Dapeng; Shi, Junjie; Lu, Jing

    2013-01-01

    One popular approach to prepare graphene is to grow them on transition metal substrates via chemical vapor deposition. By using the density functional theory with dispersion correction, we systematically investigate for the first time the interfacial properties of bilayer (BLG) and trilayer graphene (TLG) on metal substrates. Three categories of interfacial structures are revealed. The adsorption of B(T)LG on Al, Ag, Cu, Au, and Pt substrates is a weak physisorption, but a band gap can be opened. The adsorption of B(T)LG on Ti, Ni, and Co substrates is a strong chemisorption, and a stacking-insensitive band gap is opened for the two uncontacted layers of TLG. The adsorption of B(T)LG on Pd substrate is a weaker chemisorption, with a band gap opened for the uncontacted layers. This fundamental study also helps for B(T)LG device study due to inevitable graphene/metal contact. PMID:23803738

  4. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    PubMed

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  5. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets.

    PubMed

    Busignies, Virginie; Mazel, Vincent; Diarra, Harona; Tchoreloff, Pierre

    2013-11-30

    The effect of the elasticity of various pharmaceutical materials on the interfacial adhesion in bilayer tablets was investigated. The elastic properties of five pharmaceutical products were characterized by their total elastic recovery. To test the interfacial strength of the bilayer tablets a new flexural test was proposed. Thanks to the test configuration, the experimental breaking force is directly correlated with the interfacial layer strength. Depending on the materials, the fracture occurred over the interface or in one of the two layers. In most cases, the highest breaking forces were obtained when the materials had close elastic recovery. On the contrary, for materials with different elastic recovery, the breaking forces were reduced. The observed changes in the interfacial mechanical strength were statistically analyzed. Such an approach has an importance in the growing interest in the Quality by Design (QbD) concept in pharmaceutical industry.

  6. Avalanche in adhesion. [interfacial separation between two Ni crystals

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Bozzolo, Guillermo; Banerjea, Amitava; Ferrante, John

    1989-01-01

    Consider surfaces being brought into contact. It is proposed that atomic layers can collapse or avalanche together when the interfacial spacing falls below a critical distance. This causes a discontinuous drop in the adhesive binding energy. Avalanche can occur regardless of the stiffness of external supports. A simple understanding of the origin of this phenomenon is provided. A numerical calculation has been carried out for adhesion in Ni. A new wear mechanism due to avalanche is suggested.

  7. Interfacial Adsorption of Antifreeze Proteins: A Neutron Reflection Study

    PubMed Central

    Xu, Hai; Perumal, Shiamalee; Zhao, Xiubo; Du, Ning; Liu, Xiang-Yang; Jia, Zongchao; Lu, Jian R.

    2008-01-01

    Interfacial adsorption from two antifreeze proteins (AFP) from ocean pout (Macrozoarces americanus, type III AFP, AFP III, or maAFP) and spruce budworm (Choristoneura fumiferana, isoform 501, or cfAFP) were studied by neutron reflection. Hydrophilic silicon oxide was used as model substrate to facilitate the solid/liquid interfacial measurement so that the structural features from AFP adsorption can be examined. All adsorbed layers from AFP III could be modeled into uniform layer distribution assuming that the protein molecules were adsorbed with their ice-binding surface in direct contact with the SiO2 substrate. The layer thickness of 32 Å was consistent with the height of the molecule in its crystalline form. With the concentration decreasing from 2 mg/ml to 0.01 mg/ml, the volume fraction of the protein packed in the monolayer decreased steadily from 0.4 to 0.1, consistent with the concentration-dependent inhibition of ice growth observed over the range. In comparison, insect cfAFP showed stronger adsorption over the same concentration range. Below 0.1 mg/ml, uniform layers were formed. But above 1 mg/ml, the adsorbed layers were characterized by a dense middle layer and two outer diffuse layers, with a total thickness around 100 Å. The structural transition indicated the responsive changes of conformational orientation to increasing surface packing density. As the higher interfacial adsorption of cfAFP was strongly correlated with the greater thermal hysteresis of spruce budworm, our results indicated the important relation between protein adsorption and antifreeze activity. PMID:18234809

  8. InAsP quantum dot lasers grown by MOVPE.

    PubMed

    Karomi, Ivan; Smowton, Peter M; Shutts, Samuel; Krysa, Andrey B; Beanland, Richard

    2015-10-19

    We report on InAsP quantum dot lasers grown by MOVPE for 730-780 nm wavelength emission and compare performance with InP dot samples grown under similar conditions and with similar structures. 1-4 mm long, uncoated facet InAsP dot lasers emit between 760 and 775 nm and 2 mm long lasers with uncoated facets have threshold current density of 260 Acm(-2), compared with 150 Acm(-2) for InP quantum dot samples, which emit at shorter wavelengths, 715-725 nm. Pulsed lasing is demonstrated for InAsP dots up to 380 K with up to 200 mW output power. Measured absorption spectra indicate the addition of Arsenic to the dots has shifted the available transitions to longer wavelengths but also results in a much larger degree of spectral broadening. These spectra and transmission electron microscopy images indicate that the InAsP dots have a much larger degree of inhomogeneous broadening due to dot size variation, both from layer to layer and within a layer.

  9. Fundamental studies of interfacial excited-state charge transfer in molecularly tethered semiconductor nanoassemblies

    NASA Astrophysics Data System (ADS)

    Youker, Diane Greer

    The research presented in this dissertation focuses on elucidating the parameters affecting dynamics and yield of electron transfer reactions in semiconducting nanoparticle assemblies through the use of time-resolved spectroscopy. In particular, the dissertation focuses on photoinduced electron injection in assemblies of CdSe, CdS, or PbS quantum dots covalently bound to either metal oxide films or each other through the use of bifunctional molecular linkers. Chapter 2 elucidates the influence of electronic coupling on excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. We establish that the efficiency of electron injection from CdS quantum dots to TiO2 nanoparticle varies dramatically with electronic coupling, which can be controlled by tuning the properties of molecular linkers. Chapter 3 presents the role of excitation energy on interfacial electron transfer in tethered assemblies of CdSe quantum dots and TiO2 nanoparticles. Through this work, we determined that injection efficiency from band-edge states is independent of excitation energy. However, the efficiency of injection from trap-states decreases at lower-energy excitation. We attribute the decrease to a lower energy distribution of emissive trap-states from which injection is less efficient. Chapter 4 presents the observation of multiphasic electron injection dynamics from photoexcited PbS quantum dots to TiO2 nanoparticles. In this collaborative study with Dr. Masumoto from the University of Tsukuba we observed electron injection on multiple timescales. We determined that electron injection occurred in this system through two different mechanisms. The first involved injection from thermalized PbS excited states and the second through injection of hot electrons through Auger recombination of biexcitons that creates high lying excitonic states. Chapter 5 investigates charge transfer in covalently bound quantum dot assemblies. We utilize

  10. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    PubMed

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this

  11. Relaxations and Interfacial Water Ordering at the Corundum (110) Surface

    SciTech Connect

    Catalano, Jeffrey G.

    2010-09-17

    In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

  12. Numerical simulation of optical feedback on a quantum dot lasers

    SciTech Connect

    Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  13. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  14. Liquid metal actuation by electrical control of interfacial tension

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Dickey, Michael D.

    2016-09-01

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  15. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    PubMed

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-29

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  16. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  17. Annealing-induced interfacial toughening using a molecular nanolayer.

    PubMed

    Gandhi, Darshan D; Lane, Michael; Zhou, Yu; Singh, Amit P; Nayak, Saroj; Tisch, Ulrike; Eizenberg, Moshe; Ramanath, Ganapathiraman

    2007-05-17

    Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants, in nanolithography, for corrosion protection and in the crystallization of biominerals. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices, and as passive layers, inhibiting interfacial diffusion, promoting adhesion and toughening brittle nanoporous structures. The relatively low stability of MNLs on surfaces at temperatures above 350-400 degrees C (refs 12, 13), as a result of desorption or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper-dielectric interfaces relevant to wiring in micro- and nano-electronic devices. Annealing Cu/MNL/SiO2 structures at 400-700 degrees C results in interfaces that are five times tougher than pristine Cu/SiO2 structures, yielding values exceeding approximately 20 J m(-2). Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option-such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.

  18. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  19. Elastocapillary-mediated interfacial assembly

    NASA Astrophysics Data System (ADS)

    Evans, Arthur

    2015-11-01

    Particles confined to an interface are present in a large number of industrial applications and ubiquitous in cellular biophysics. Interactions mediated by the interface, such as capillary effects in the presence of surface tension, give rise to rafts and aggregates whose structure is ultimately determined by geometric characteristics of these adsorbed particles. A common strategy for assembling interfacial structures relies on exploiting these interactions by tuning particle anisotropy, either by constructing rigid particles with heterogeneous wetting properties or fabricating particles that have a naturally anisotropic shape. Less explored, however, is the scenario where the interface causes the particles to deform. In this talk I will discuss the implications for interfacial assembly using elastocapillary-mediated interactions. The competition between surface energy and elasticity can wrinkle and buckle adsorbed soft particles, leading to complicated (but programmable) aggregates.

  20. Surface Exchange and Shape Transitions of PbSe Quantum Dots during Overgrowth

    SciTech Connect

    Abtin, L.; Springholz, G.; Holy, V.

    2006-12-31

    Epitaxial overgrowth of PbSe quantum dots is shown to drastically affect their shape and composition due to anion exchange reactions. As shown by scanning tunneling microscopy, for PbTe capping layers this results in a complete truncation of the dots. Introduction of EuTe into the cap layer leads to an effective suppression of the anion exchange process. This preserves the original dot pyramids and induces a large stress concentration on the surface which further alters the overgrowth process.

  1. Enhancing interfacial magnetization with a ferroelectric

    SciTech Connect

    Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; Freeland, John W.; Nichols, John; Guo, Er-Jia; Lee, Shinbuhm; Ward, T. Zac; Balke, Nina; Kalinin, Sergei V.; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-11-21

    Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface’s magnetic properties can be probed at an atomic level. In this paper, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μB/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. Finally, these compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.

  2. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  3. How intermixing and anharmonicity enhances interfacial thermal conductance?

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Le, Nam; Rastgarkafshgarkolaei, Rouzbeh; Norris, Pamela; Ghosh, Avik

    2015-03-01

    The thermal conductance at an interface, whether ballistic or diffusive, can be expressed as a product of the number of conducting channels (M) and their average transmission (T). The common expectation is that interfacial defects reduce T and thus hurt the conductance. This is however at odds with recent simulations showing that a thin intermixing layer can in fact enhance the conductance. We argue that such an enhancement occurs when the increase in number of modes outweighs the reduction in their average transmission. The new channels open as a result of (a) the random interfacial structure that relaxes the conservation rules for the transverse momentum and promotes transitions between formerly symmetry disallowed channels; and (b) inelastic scattering through phonon-phonon interactions that allow modes beyond the contact cut-off frequency to contribute to transport. We use these results to build a back of the envelope model for interfacial conductance that depends on the mixing distribution, the anharmonic strength, the phonon polarization and wavelength. Non-Equilibrium Green's Function (NEGF) as well as Molecular Dynamics (MD) simulations on Si/mixed layer/Ge, as well as simpler FCC crystals support our results. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE (TG-DMR130123).

  4. Probing Interfacial Processes on Graphene Surface by Mass Detection

    NASA Astrophysics Data System (ADS)

    Kakenov, Nurbek; Kocabas, Coskun

    2013-03-01

    In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).

  5. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination.

    PubMed

    Yeh, Te-Fu; Teng, Chiao-Yi; Chen, Shean-Jen; Teng, Hsisheng

    2014-05-28

    Nitrogen-doped graphene oxide quantum dots exhibit both p- and n-type conductivities and catalyze overall water-splitting under visible-light irradiation. The quantum dots contain p-n type photochemical diodes, in which the carbon sp(2) clusters serve as the interfacial junction. The active sites for H2 and O2 evolution are the p- and n-domains, respectively, and the reaction mimics biological photosynthesis.

  6. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming

    2016-01-01

    Pursuing extremely low interfacial thermal resistance has long been the task of many researchers in the area of nano-scale heat transfer, in particular pertaining to improve heat dissipation performance in electronic cooling. While it is well known and documented that confining a macroscopic third layer between two dissimilar materials usually increases the overall interfacial thermal resistance, no research has realized the fundamental decrease in resistance so far. By performing nonequilibrium molecular dynamics simulations, we report that the overall interfacial thermal resistance can be reduced by 6 fold by confining mass graded materials with thickness of the order of nanometers. As comparison we also studied the thermal transport across the perfectly abrupt interface and the widely used alloyed (rough) interface, which shows an opposing and significantly large increase in the overall thermal resistance. With the help of frequency dependent interfacial thermal conductance and wave packet dynamics simulation, different mechanisms governing the heat transfer across these three types of interfaces are identified. It is found that for the rough interface there are two different regimes of interfacial heat transfer, which originates from the competition between phonon scattering and the thickness of the interface. The mechanism of dramatically improved interfacial heat transfer across the nano-confined mass graded interface resides in the minor phonon reflection when the phonons first reach the mass graded area and the rare occurrence of phonon scattering in the subsequent interior region. The phonons are found to be gradually truncated by the geometric interfaces and can travel through the mass graded layer with a high transmission coefficient, benefited from the small mass mismatch between two neighboring layers in the interfacial region. Our findings provide deep insight into the phonon transport across nano-confined mass graded layers and also offer significant

  7. Monte Carlo investigation of how interfacial magnetic couplings affect blocking temperature distributions in exchange bias bilayers

    NASA Astrophysics Data System (ADS)

    Lhoutellier, G.; Ledue, D.; Patte, R.; Baltz, V.

    2016-11-01

    Exchange bias in ferromagnetic (F)/antiferromagnetic (AF) bilayers is a function of both the bulk properties of the AF layer and the interfacial properties determining the effective interfacial couplings between the F and AF layers. The distinction between bulk and interface can be clearly revealed in blocking temperature distributions, where AF grain volume distribution results in a high-temperature peak while disordered interfacial magnetic phases produce a low-temperature contribution. However, the coupling conditions producing such bimodal blocking temperature distributions remain to be specified. In this article, we use a granular model which accounts for the disordered interfacial phases by considering small magnetic grains (SGs) with weaker anisotropy and coupling with the F grains at the F/AF interface. The SG are included in the AF material. The coupling conditions producing bimodal blocking temperature distributions were determined. Then, using Monte Carlo simulations, these conditions were validated and the effect of interfacial F-SG coupling on distributions was investigated. We next determined how the ratio between F-SG and F-AF couplings could be used to estimate the surface coverage of the disordered interfacial phases from experimental data.

  8. Morphological Instability in InAs/GaSb Superlattices due to Interfacial Bonds

    SciTech Connect

    Li, J.H.; Moss, S.C.; Stokes, D.W.; Caha, O.; Bassler, K.E.; Ammu, S.L.; Bai, J.

    2005-08-26

    Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers.

  9. Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment.

    PubMed

    Chen, Lie; Liu, Xiangfu; Wei, Yingkai; Wu, Feiyan; Chen, Yiwang

    2016-01-21

    Three fluorene-based alcohol-soluble organic small molecule electrolytes (SMEs) with different conjugated backbones, namely, TFTN-Br, FTFN-Br and FTTFN-Br, were designed as cathode interfacial layers for inverted polymer solar cells (i-PSCs). The insertion of SMEs to the ITO/active layer interfaces effectively lowered the energy barrier for electron transport and improved the inherent compatibility between the hydrophilic ITO and hydrophobic active layers. Due to these advantages, the device based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methyl ester (PC61BM) with TFTN-Br as the cathode interfacial layer achieved an improved power conversion efficiency (PCE) of 3.8%, which is a 26% improvement when compared to the standard device comprising ZnO cathode interfacial layers (PCE = 3.0%). Devices with FTFN-Br and FTTFN-Br also showed an improved PCE of 3.1% and 3.5%, respectively. The variation in device performance enhancement was found to be primarily correlated with the different conformation of their assembly onto the electrode caused by the joint sequence of the polar group of the SMEs, consequently impacting the dipole moment and interface morphology. In addition, introducing SMEs as the cathode interfacial layer also produced devices with long-term stability.

  10. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  11. Quantum-dot-based cell motility assay.

    PubMed

    Gu, Weiwei; Pellegrino, Teresa; Parak, Wolfgang J; Boudreau, Rosanne; Le Gros, Mark A; Gerion, Daniele; Alivisatos, A Paul; Larabell, Carolyn A

    2005-06-28

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  12. Slow Electron Cooling in Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of ~0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  13. Nanomechanical Sensing of Biological Interfacial Interactions

    NASA Astrophysics Data System (ADS)

    Du, Wenjian

    between cellulose layers monitored by means of the atomic force microscopy (AFM), the current study shows that water molecules can efficiently reduce the energy required for separating two layers of cellulose bilayers during hydration of cellulose bilayer nanoparticles. The findings of the study contribute to explicating the mechanism of cellulose the decrystallization, a free-energetically unfavorable process, through enzymatic hydrolysis of cellulase. The study also investigates the application of a cell-based microcantilever sensor to monitor the real-time ligand-induced response of living cells. These nanomechanical approaches offer unique perspectives on the interfacial activities of biological molecules.

  14. Influence of interfacial rheology on stabilization of the tear film

    NASA Astrophysics Data System (ADS)

    Bhamla, M. Saad; Fuller, Gerald G.

    2014-11-01

    The tear film that protecting the ocular surface is a complex, thin film comprised of a collection of proteins and lipids that come together to provide a number of important functions. Of particular interest in this presentation is meibum, an insoluble layer that is spread from glands lining our eyelids. Past work has focussed on the role of this layer in reducing evaporation, although conflicting evidence on its ability to reduce evaporative loss has been published. We present here the beneficial effects that are derived through the interfacial viscoelasticity of the meibomian lipid film. This is a duplex film is comprised of a rich mixture of phospholipids, long chain fatty esters, and cholesterol esters. Using interfacial rheology measurements, meibum has been shown to be highly viscoelastic. By measuring the drainage and dewetting dynamics of thin aqueous films from hemispherical surfaces where those films are laden with insoluble layers of lipids at controlled surface pressure, we offer evidence that these layers strongly stabilize the films because of their ability to support surface shearing stresses. This alternative view of the role of meibum can help explain the origin of meibomian gland dysfunction, or dry eye disease, where improper compositions of this lipid mixture do not offer the proper mechanical resistance to breakage and dewetting of the tear film.

  15. Interaction of porphyrins with CdTe quantum dots.

    PubMed

    Zhang, Xing; Liu, Zhongxin; Ma, Lun; Hossu, Marius; Chen, Wei

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  16. Combinatorial Approach to Studying Metal Enhanced Fluorescence from Quantum Dots

    NASA Astrophysics Data System (ADS)

    Le, Nguyet; Corrigan, Timothy; Norton, Michael; Neff, David

    2013-03-01

    Fluorescence is extensively used in biochemistry for determining the concentration or purity of molecules in a biological environment. In metal-enhanced fluorescence (MEF), the fluorescence molecules separated from a metal surface by several nanometers can be enhanced. The fluorescent enhancement is dependent on the size and spacing of the nanoparticles, as has been shown previously for a number of fluorophore molecules. Fluorescence from quantum dots is of particular interest because the quantum dots do not lose fluorescence ability when exposed to light and they have higher intensity of fluorescence. The purpose of this study is to determine the effect of size and spacing on fluorescence intensity when coupling gold nano-particles with quantum dots. We employ a combinatorial approach, depositing gold particles ranging in diameter from 30 nm to 130 nm with varied spacings onto the substrate, followed by a protein spacer-layer and quantum dots. The fluorescence signal from the metal enhanced quantum dots were determined by confocal microscopy.

  17. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  18. Interfacial structures of LaAlO3 films on Si(100) substrates

    NASA Astrophysics Data System (ADS)

    Lu, X. B.; Liu, Z. G.; Shi, G. H.; Ling, H. Q.; Zhou, H. W.; Wang, X. P.; Nguyen, B. Y.

    This paper investigates the interfacial characteristics of LaAlO3 (LAO) and LaAlOxNy (LAON) films deposited directly on silicon substrates by the pulsed-laser deposition technique. High-resolution transmission electron microscopy (HRTEM) pictures indicate that an interfacial reaction between LAO and Si often exists. The interfacial layer thickness of LAO films deposited in a nitrogen ambient atmosphere is smaller than that of LAO films deposited in an oxygen ambient atmosphere. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were used to study the composition of the interfacial layer. The shift of the La 3d photoelectron peak to a higher binding energy compared to LaAlO3, the shift of the Al 2p peak to a higher binding energy compared to LaAlO3, the shift of the Si 2p peak to a lower binding energy compared to SiO2 and the intermediate location of the O 1s peak compared to LaAlO3 and SiO2 indicate the existence of a La-Al-Si-O bonding structure, which was also proved by the AES depth profile of LAO films. It can be concluded that the interfacial layer is not simply SiO2 but a compound of La-Al-Si-O.

  19. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber.

    PubMed

    Park, Byeongho; Lee, Wonoh; Lee, Eunhee; Min, Sa Hoon; Kim, Byeong-Su

    2015-02-11

    The performance of fiber-reinforced composites is governed not only by the nature of each individual component comprising the composite but also by the interfacial properties between the fiber and the matrix. We present a novel layer-by-layer (LbL) assembly for the surface modification of a glass fiber to enhance the interfacial properties between the glass fiber and the epoxy matrix. Solution-processable graphene oxide (GO) and an aramid nanofiber (ANF) were employed as active components for the LbL assembly onto the glass fiber, owing to their abundant functional groups and mechanical properties. We found that the interfacial properties of the glass fibers uniformly coated with GO and ANF multilayers, such as surface free energy and interfacial shear strength, were improved by 23.6% and 39.2%, respectively, compared with those of the bare glass fiber. In addition, the interfacial adhesion interactions between the glass fiber and the epoxy matrix were highly tunable simply by changing the composition and the architecture of layers, taking advantage of the versatility of the LbL assembly.

  20. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  1. Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells.

    PubMed

    Xiao, Minyu; Joglekar, Suneel; Zhang, Xiaoxian; Jasensky, Joshua; Ma, Jialiu; Cui, Qingyu; Guo, L Jay; Chen, Zhan

    2017-03-08

    A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.

  2. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  3. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  4. Protein interfacial structure and nanotoxicology

    NASA Astrophysics Data System (ADS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, Jhih-Min

    2009-02-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle "corona" thought to be important for nanoparticle-cell wall penetration.

  5. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-03-28

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge{sub 0.96}Sn{sub 0.04} self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  6. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and Theory

    SciTech Connect

    Kent, Paul R

    2011-01-01

    The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution x-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle {Theta}{sub c} = 73{sup o}) is substantially smaller than that of multilayer graphene ({Theta}{sub c} = 93{sup o}). Classical and ab initio molecular dynamics simulations show that the reduced contact angle of the buffer layer is due to both its epitaxy with the SiC substrate and the presence of interfacial defects. This insight clarifies the relationship between interfacial water structure and hydrophobicity, in general, and suggests new routes to control interface properties of epitaxial graphene.

  7. Reverberation-ray matrix analysis for wave propagation in multiferroic plates with imperfect interfacial bonding.

    PubMed

    Zhu, Jun; Chen, Weiqiu; Ye, Guiru

    2012-01-01

    The dispersion behavior of waves in multiferroic plates with imperfect interfacial bonding has been investigated via the method of reverberation-ray matrix, which is directly established from the three-dimensional equations of magneto-electro-elasticity in the form of state space formalism. A generalized spring-layer model is employed to characterize the interfacial imperfection. By introducing a dual system of local coordinates for each single layer, the numerical instability usually encountered in the state space method can be avoided. Based on the proposed method, a typical sandwich plate made of piezoelectric and piezomagnetic phases is considered in numerical examples to calculate the dispersion curves and mode shapes. It is demonstrated that the results obtained by the present method is unconditionally stable as compared to the traditional state space method. The influence of different interfacial bonding conditions on the dispersion characteristics and corresponding mode shapes is investigated.

  8. Plasmonic quantum dot solar cells for enhanced infrared response

    NASA Astrophysics Data System (ADS)

    Feng Lu, Hao; Mokkapati, Sudha; Fu, Lan; Jolley, Greg; Hoe Tan, Hark; Jagadish, Chennupati

    2012-03-01

    Enhanced near infrared photoresponse in plasmonic InGaAs/GaAs quantum dot solar cells (QDSC) is demonstrated. Long wavelength light absorption in the wetting-layer and quantum-dot region of the quantum dot solar cell is enhanced through scattering of light by silver nanoparticles deposited on the solar cell surface. Plasmonic light trapping results in simultaneous increase in short-circuit current density by 5.3% and open circuit voltage by 0.9% in the QDSC, leading to an overall efficiency enhancement of 7.6%.

  9. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP. PMID:24705632

  10. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  11. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.

    PubMed

    Kolay, Ankita; Kumar, P Naresh; Kumar, Sarode Krishna; Deepa, Melepurath

    2017-02-08

    Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S(2-) interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S(2-) interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

  12. Templating growth of gold nanostructures with a CdSe quantum dot array.

    PubMed

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-07

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  13. Interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating

    NASA Astrophysics Data System (ADS)

    Hwang, Chi-Won; Lee, Jung-Goo; Suganuma, Katsuaki; Mori, Hirotaro

    2003-02-01

    The microstructure of the interfacial phase of Sn-3Ag-xBi alloy on a Cu substrate with or without electrolytic Ni plating was evaluated. Bismuth additions into Sn-Ag alloys do not affect interfacial phase formations. Without plating, η-Cu6Sn5/ɛ-Cu3Sn interfacial phases developed as reaction products in the as-soldered condition. The η-phase Cu6Sn5 with a hexagonal close-packed structure grows about 1-µm scallops. The ɛ-phase Cu3Sn with an orthorhombic structure forms with small 100-nm grains between η-Cu6Sn5 and Cu. For Ni plating, a Ni3Sn4 layer of monoclinic structure formed as the primary reaction product, and a thin η-Ni3Sn2 layer of hexagonal close-packed structure forms between the Ni3Sn4 and Ni layer. In the Ni layer, Ni-Sn compound particles of nanosize distribute by Sn diffusion into Ni. On the total thickness of interfacial reaction layers, Sn-3Ag-6Bi joints are thicker by about 0.9 µm for the joint without Ni plating and 0.18 µm for the joint with Ni plating than Sn-3Ag joints, respectively. The thickening of interfacial reaction layers can affect the mechanical properties of strength and fatigue resistance.

  14. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  15. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.

    PubMed

    Zhang, Xiaoqing; Fan, Xinyu; Yan, Chun; Li, Hongzhou; Zhu, Yingdan; Li, Xiaotuo; Yu, Liping

    2012-03-01

    The performance of carbon fiber-reinforced composites is dependent to a great extent on the properties of fiber-matrix interface. To improve the interfacial properties in carbon fiber/epoxy composites, we directly introduced graphene oxide (GO) sheets dispersed in the fiber sizing onto the surface of individual carbon fibers. The applied graphite oxide, which could be exfoliated to single-layer GO sheets, was verified by atomic force microscope (AFM). The surface topography of modified carbon fibers and the distribution of GO sheets in the interfacial region of carbon fibers were detected by scanning electron microscopy (SEM). The interfacial properties between carbon fiber and matrix were investigated by microbond test and three-point short beam shear test. The tensile properties of unidirectional (UD) composites were investigated in accordance with ASTM standards. The results of the tests reveal an improved interfacial and tensile properties in GO-modified carbon fiber composites. Furthermore, significant enhancement of interfacial shear strength (IFSS), interlaminar shear strength (ILSS), and tensile properties was achieved in the composites when only 5 wt % of GO sheets introduced in the fiber sizing. This means that an alternative method for improving the interfacial and tensile properties of carbon fiber composites by controlling the fiber-matrix interface was developed. Such multiscale reinforced composites show great potential with their improved mechanical performance to be likely applied in the