Marmiroli, Marta; Imperiale, Davide; Pagano, Luca; Villani, Marco; Zappettini, Andrea; Marmiroli, Nelson
2015-01-01
A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment. PMID:26732871
Bonilla, Jose C; Ryan, Valerie; Yazar, Gamze; Kokini, Jozef L; Bhunia, Arun K
2018-04-25
The importance of gluten proteins, gliadins and glutenins, is well-known in the quality of wheat products. To gain more specific information about the role of glutenins in wheat dough, the two major subunits of glutenin, high- and low-molecular-weight (HMW and LMW) glutenins, were extracted, isolated, and identified by mass spectrometry. Antibodies for HMW and LMW glutenins were developed using the proteomic information on the characterized glutenin subunits. The antibodies were found to be specific to each subunit by western immunoblots and were then conjugated to quantum dots (QDs) using site-click conjugation, a new method to keep antibody integrity. A fluorescence-link immunosorbent assay tested the successful QD conjugation. The QD-conjugated antibodies were applied to dough samples, where they recognized glutenin subunits and were visualized using a confocal laser scanning microscope.
Quantum Dots: Proteomics characterization of the impact on biological systems
NASA Astrophysics Data System (ADS)
Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.
2009-05-01
Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a protein involved in the response to oxidative stress. Our results, although preliminary, suggest several interesting point of discussion on Quantum Dots imaging for in vivo diagnostic application, but also for a new therapeutic approach.
Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts
Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.
2004-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914
A novel spectral library workflow to enhance protein identifications.
Li, Haomin; Zong, Nobel C; Liang, Xiangbo; Kim, Allen K; Choi, Jeong Ho; Deng, Ning; Zelaya, Ivette; Lam, Maggie; Duan, Huilong; Ping, Peipei
2013-04-09
The innovations in mass spectrometry-based investigations in proteome biology enable systematic characterization of molecular details in pathophysiological phenotypes. However, the process of delineating large-scale raw proteomic datasets into a biological context requires high-throughput data acquisition and processing. A spectral library search engine makes use of previously annotated experimental spectra as references for subsequent spectral analyses. This workflow delivers many advantages, including elevated analytical efficiency and specificity as well as reduced demands in computational capacity. In this study, we created a spectral matching engine to address challenges commonly associated with a library search workflow. Particularly, an improved sliding dot product algorithm, that is robust to systematic drifts of mass measurement in spectra, is introduced. Furthermore, a noise management protocol distinguishes spectra correlation attributed from noise and peptide fragments. It enables elevated separation between target spectral matches and false matches, thereby suppressing the possibility of propagating inaccurate peptide annotations from library spectra to query spectra. Moreover, preservation of original spectra also accommodates user contributions to further enhance the quality of the library. Collectively, this search engine supports reproducible data analyses using curated references, thereby broadening the accessibility of proteomics resources to biomedical investigators. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.
2012-01-01
Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208
Aurass, Philipp; Gerlach, Thomas; Becher, Dörte; Voigt, Birgit; Karste, Susanne; Bernhardt, Jörg; Riedel, Katharina; Hecker, Michael; Flieger, Antje
2016-01-01
Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis. PMID:26545400
Pathogen vacuole purification from legionella-infected amoeba and macrophages.
Hoffmann, Christine; Finsel, Ivo; Hilbi, Hubert
2013-01-01
Legionella pneumophila replicates intracellularly in environmental and immune phagocytes within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). Formation of LCVs is strictly dependent on the Icm/Dot type IV secretion system and the translocation of "effector" proteins into the cell. Some effector proteins decorate the LCV membrane and subvert host cell vesicle trafficking pathways. Here we describe a method to purify intact LCVs from Dictyostelium discoideum amoebae and RAW 264.7 murine macrophages. The method comprises a two-step protocol: first, LCVs are enriched by immuno-magnetic separation using an antibody against a bacterial effector protein specifically localizing to the LCV membrane, and second, the LCVs are further purified by density gradient centrifugation. The purified LCVs can be characterized by proteomics and other biochemical approaches.
Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*
Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela
2009-01-01
Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686
Pressurized Pepsin Digestion in Proteomics
López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana
2011-01-01
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.
2011-02-01
Integrated top-down bottom-up proteomics combined with online digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to highthroughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications (PTMs). Herein, we describe recent efforts towards efficient integration of bottom-up and top-down LCMS based proteomic strategies. Since most proteomic platforms (i.e. LC systems) operate in acidic environments, we exploited themore » compatibility of the pepsin (i.e. the enzyme’s natural acidic activity) for the integration of bottom-up and top-down proteomics. Pressure enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an offline mode using a Barocycler or an online mode using a modified high pressure LC system referred to as a fast online digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultra-rapid integrated bottom-up top-down proteomic strategy employing a standard mixture of proteins and a monkey pox virus proteome.« less
Characterization of individual mouse cerebrospinal fluid proteomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles
2014-03-20
Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less
Assay Characterization Guidance Documents | Office of Cancer Clinical Proteomics Research
CPTAC characterized assays are defined as those that meet the criteria described in the Assay Characterization Guidance Document. This guidance document aligns with recommendations by the research community as “fit-for-purpose” validation requirements of targeted proteomics assays.
Proteomic Assessment of Poultry Spermatozoa
USDA-ARS?s Scientific Manuscript database
Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...
Proteome Characterization of Leaves in Common Bean
Robison, Faith M.; Heuberger, Adam L.; Brick, Mark A.; Prenni, Jessica E.
2015-01-01
Dry edible bean (Phaseolus vulgaris L.) is a globally relevant food crop. The bean genome was recently sequenced and annotated allowing for proteomics investigations aimed at characterization of leaf phenotypes important to agriculture. The objective of this study was to utilize a shotgun proteomics approach to characterize the leaf proteome and to identify protein abundance differences between two bean lines with known variation in their physiological resistance to biotic stresses. Overall, 640 proteins were confidently identified. Among these are proteins known to be involved in a variety of molecular functions including oxidoreductase activity, binding peroxidase activity, and hydrolase activity. Twenty nine proteins were found to significantly vary in abundance (p-value < 0.05) between the two bean lines, including proteins associated with biotic stress. To our knowledge, this work represents the first large scale shotgun proteomic analysis of beans and our results lay the groundwork for future studies designed to investigate the molecular mechanisms involved in pathogen resistance. PMID:28248269
Paulovich, Amanda G.; Billheimer, Dean; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Tabb, David L.; Wang, Pei; Blackman, Ronald K.; Bunk, David M.; Cardasis, Helene L.; Clauser, Karl R.; Kinsinger, Christopher R.; Schilling, Birgit; Tegeler, Tony J.; Variyath, Asokan Mulayath; Wang, Mu; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fenyo, David; Carr, Steven A.; Fisher, Susan J.; Gibson, Bradford W.; Mesri, Mehdi; Neubert, Thomas A.; Regnier, Fred E.; Rodriguez, Henry; Spiegelman, Cliff; Stein, Stephen E.; Tempst, Paul; Liebler, Daniel C.
2010-01-01
Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize preanalytical and analytical variation in comparative proteomics experiments. PMID:19858499
Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.
Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad
2015-12-01
This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.
Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*
Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.
2011-01-01
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008
2005-01-01
proteomic gel analyses. The research group has explored the use of chemodescriptors calculated using high-level ab initio quantum chemical basis sets...descriptors that characterize the entire proteomics map, local descriptors that characterize a subset of the proteins present in the gel, and spectrum...techniques for analyzing the full set of proteins present in a proteomics map. 14. SUBJECT TERMS 1S. NUMBER OF PAGES Topological indices
Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun
2013-10-15
Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
Proteomics and circadian rhythms: It’s all about signaling!
Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin
2014-01-01
1. Abstract Proteomic technologies using mass spectrometry (MS) offer new perspectives in circadian biology, in particular the possibility to study posttranslational modifications (PTMs). To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic heath as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. PMID:25103677
In an effort to improve rigor and reproducibility, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for monoclonal antibody production and distribution to the scientific community. The program from The Office of Cancer Clinical Proteomics Research provides well-characterized
NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research
The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience
NASA Astrophysics Data System (ADS)
Pathak, Smita
Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to nanoparticles in medical imaging.
Mass spectrometry based proteomics: existing capabilities and future directions
Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin S.; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D.
2012-01-01
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics is increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health. PMID:22498958
NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research
In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays. This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser
On September 4, 2013, NCI’s Clinical Proteomics Tumor Analysis Consortium (CPTAC) publicly released proteomic data produced from colorectal tumor samples previously analyzed by The Cancer Genome Atlas (TCGA). This is the initial release of proteomic tumor data designed to complement genomic data on the same tumors. The data is publicly available at the CPTAC data portal.
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA). This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.
Voltammetry as a Tool for Characterization of CdTe Quantum Dots
Sobrova, Pavlina; Ryvolova, Marketa; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2013-01-01
Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability. PMID:23807507
Characterization of human pineal gland proteome.
Yelamanchi, Soujanya D; Kumar, Manish; Madugundu, Anil K; Gopalakrishnan, Lathika; Dey, Gourav; Chavan, Sandip; Sathe, Gajanan; Mathur, Premendu P; Gowda, Harsha; Mahadevan, Anita; Shankar, Susarla K; Prasad, T S Keshava
2016-11-15
The pineal gland is a neuroendocrine gland located at the center of the brain. It is known to regulate various physiological functions in the body through secretion of the neurohormone melatonin. Comprehensive characterization of the human pineal gland proteome has not been undertaken to date. We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland. A total of 5874 proteins were identified from the human pineal gland in this study. Of these, 5820 proteins were identified from the human pineal gland for the first time. Interestingly, 1136 proteins from the human pineal gland were found to contain a signal peptide domain, which indicates the secretory nature of these proteins. An unbiased global proteomic profile of this biomedically important organ should benefit molecular research to unravel the role of the pineal gland in neuropsychiatric and neurodegenerative diseases.
Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots
NASA Astrophysics Data System (ADS)
Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker
2018-01-01
A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.
Characterization of the human aqueous humour proteome: A comparison of the genders.
Perumal, Natarajan; Manicam, Caroline; Steinicke, Matthias; Funke, Sebastian; Pfeiffer, Norbert; Grus, Franz H
2017-01-01
Aqueous humour (AH) is an important biologic fluid that maintains normal intraocular pressure and contains proteins that regulate the homeostasis of ocular tissues. Any alterations in the protein compositions are correlated to the pathogenesis of various ocular disorders. In recent years, gender-based medicine has emerged as an important research focus considering the prevalence of certain diseases, which are higher in a particular sex. Nevertheless, the inter-gender variations in the AH proteome are unknown. Therefore, this study endeavoured to characterize the AH proteome to assess the differences between genders. Thirty AH samples of patients who underwent cataract surgery were categorized according to their gender. Label-free quantitative discovery mass spectrometry-based proteomics strategy was employed to characterize the AH proteome. A total of 147 proteins were identified with a false discovery rate of less than 1% and only the top 10 major AH proteins make up almost 90% of the total identified proteins. A large number of proteins identified were correlated to defence, immune and inflammatory mechanisms, and response to wounding. Four proteins were found to be differentially abundant between the genders, comprising SERPINF1, SERPINA3, SERPING1 and PTGDS. The findings emerging from our study provide the first insight into the gender-based proteome differences in the AH and also highlight the importance in considering potential sex-dependent changes in the proteome of ocular pathologies in future studies employing the AH.
Fadda, Silvina; Almeida, André M
2015-11-01
Argentina is one of the most relevant countries in Latin America, playing a major role in regional economics, culture and science. Over the last 80 years, Argentinean history has been characterized by several upward and downward phases that had major consequences on the development of science in the country and most recently on proteomics. In this article, we characterize the evolution of Proteomics sciences in Argentina over the last decade and a half. We describe the proteomics publication output of the country in the framework of the regional and international contexts, demonstrating that Argentina is solidly anchored in a regional context, showing results similar to other emergent and Latin American countries, albeit still far from the European, American or Australian realities. We also provide a case-study on the importance of Proteomics to a specific sector in the area of food science: the use of bacteria of technological interest, highlighting major achievements obtained by Argentinean proteomics scientists. Finally, we provide a general picture of the endeavors being undertaken by Argentinean Proteomics scientists and their international collaborators to promote the Proteomics-based research with the new generation of scientists and PhD students in both Argentina and other countries in the Southern cone. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. The program from The Office of Cancer Clinical Proteomics Research provides reagents and other critical resources that support protein and/or peptide measurements and analysis.
Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André
2016-03-01
Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.
An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.
Parsons, Harriet T.; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S.; Smith-Moritz, Andreia M.; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z.; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Scheller, Henrik V.; Loqué, Dominique; Heazlewood, Joshua L.
2012-01-01
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844
Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian
2014-09-01
The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications. Copyright © 2014. Published by Elsevier B.V.
White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging.
Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa
2016-01-01
To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908-0.986) and moderate NPDR or more severe grades (0.888-0.974). These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR.
Spectroscopy characterization and quantum yield determination of quantum dots
NASA Astrophysics Data System (ADS)
Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.
2016-02-01
In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.
Dejung, Mario; Subota, Ines; Bucerius, Ferdinand; Dindar, Gülcin; Freiwald, Anja; Engstler, Markus; Boshart, Michael; Butter, Falk; Janzen, Christian J.
2016-01-01
Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes. PMID:26910529
Mapping the Small Molecule Interactome by Mass Spectrometry.
Flaxman, Hope A; Woo, Christina M
2018-01-16
Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.
Characterization of in-use emissions from TxDOT's non-road equipment fleet : phase 1 report.
DOT National Transportation Integrated Search
2009-06-01
The objective of this document is to present the preliminary findings of the study characterizing in-use : TxDOT non-road diesel equipment emissions. This document presents literature reviews of emissions : reduction technologies and emissions contro...
Schizophrenia proteomics: biomarkers on the path to laboratory medicine?
Lakhan, Shaheen Emmanuel
2006-01-01
Over two million Americans are afflicted with schizophrenia, a debilitating mental health disorder with a unique symptomatic and epidemiological profile. Genomics studies have hinted towards candidate schizophrenia susceptibility chromosomal loci and genes. Modern proteomic tools, particularly mass spectrometry and expression scanning, aim to identify both pathogenic-revealing and diagnostically significant biomarkers. Only a few studies on basic proteomics have been conducted for psychiatric disorders relative to the plethora of cancer specific experiments. One such proteomic utility enables the discovery of proteins and biological marker fingerprinting profiling techniques (SELDI-TOF-MS), and then subjects them to tandem mass spectrometric fragmentation and de novo protein sequencing (MALDI-TOF/TOF-MS) for the accurate identification and characterization of the proteins. Such utilities can explain the pathogenesis of neuro-psychiatric disease, provide more objective testing methods, and further demonstrate a biological basis to mental illness. Although clinical proteomics in schizophrenia have yet to reveal a biomarker with diagnostic specificity, methods that better characterize the disorder using endophenotypes can advance findings. Schizophrenia biomarkers could potentially revolutionize its psychopharmacology, changing it into a more hypothesis and genomic/proteomic-driven science. PMID:16846510
Proteome Characterization Centers - TCGA
The centers, a component of NCI’s Clinical Proteomic Tumor Analysis Consortium, will analyze a subset of TCGA samples to define proteins translated from cancer genomes and their related biological processes.
White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging
Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa
2016-01-01
Purpose To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. Methods We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Results Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908–0.986) and moderate NPDR or more severe grades (0.888–0.974). Conclusions These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR. PMID:27812207
Characterization of in-use emissions from TxDOT's non-road equipment fleet : final report.
DOT National Transportation Integrated Search
2010-08-01
The objective of this document is to present the findings of the study characterizing in-use emissions of TxDOT's non-road diesel equipment. This document presents literature reviews of emission reduction technologies and emission control measures pr...
Proteomic approaches in research of cyanobacterial photosynthesis.
Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari
2015-10-01
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in; Kaur, Gurvir
2015-08-28
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
The Clinical Proteomic Technologies for Cancer | Antibody Portal
An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.
USDA-ARS?s Scientific Manuscript database
Seasonal weight loss (SWL) is a significant limitation to animal production. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Herein, labelfree proteomics was used to characterize the effects of SWL in two goat breeds with different levels of adaptation to...
Fabrication and characterization of silicon quantum dots in Si-rich silicon carbide films.
Chang, Geng-Rong; Ma, Fei; Ma, Dayan; Xu, Kewei
2011-12-01
Amorphous Si-rich silicon carbide films were prepared by magnetron co-sputtering and subsequently annealed at 900-1100 degrees C. After annealing at 1100 degrees C, this configuration of silicon quantum dots embedded in amorphous silicon carbide formed. X-ray photoelectron spectroscopy was used to study the chemical modulation of the films. The formation and orientation of silicon quantum dots were characterized by glancing angle X-ray diffraction, which shows that the ratio of silicon and carbon significantly influences the species of quantum dots. High-resolution transmission electron microscopy investigations directly demonstrated that the formation of silicon quantum dots is heavily dependent on the annealing temperatures and the ratio of silicon and carbide. Only the temperature of about 1100 degrees C is enough for the formation of high-density and small-size silicon quantum dots due to phase separation and thermal crystallization. Deconvolution of the first order Raman spectra shows the existence of a lower frequency peak in the range 500-505 cm(-1) corresponding to silicon quantum dots with different atom ratio of silicon and carbon.
The National Cancer Institute will hold a public pre-application webinar on Friday, December 11 at 12:00 p.m. (EST) for the Funding Opportunity Announcements (FOAs) RFA-CA-15-021 entitled “Proteome Characterization Centers for Clinical Proteomic Tumor Analysis Consortium (U24), RFA-CA-15-022 entitled “Proteogenomic Translational Research Centers for Clinical Proteomic Tumor Analysis Consortium (U01)”, and RFA-CA-15-023 entitled “Proteogenomic Data Analysis Centers for Clinical Proteomic Tumor Analysis Consortium (U24)”.
Proteogenomic characterization of human colon and rectal cancer
Zhang, Bing; Wang, Jing; Wang, Xiaojing; Zhu, Jing; Liu, Qi; Shi, Zhiao; Chambers, Matthew C.; Zimmerman, Lisa J.; Shaddox, Kent F.; Kim, Sangtae; Davies, Sherri R.; Wang, Sean; Wang, Pei; Kinsinger, Christopher R.; Rivers, Robert C.; Rodriguez, Henry; Townsend, R. Reid; Ellis, Matthew J.C.; Carr, Steven A.; Tabb, David L.; Coffey, Robert J.; Slebos, Robbert J.C.; Liebler, Daniel C.
2014-01-01
Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology. PMID:25043054
Comparing Simplification Strategies for the Skeletal Muscle Proteome
Geary, Bethany; Young, Iain S.; Cash, Phillip; Whitfield, Phillip D.; Doherty, Mary K.
2016-01-01
Skeletal muscle is a complex tissue that is dominated by the presence of a few abundant proteins. This wide dynamic range can mask the presence of lower abundance proteins, which can be a confounding factor in large-scale proteomic experiments. In this study, we have investigated a number of pre-fractionation methods, at both the protein and peptide level, for the characterization of the skeletal muscle proteome. The analyses revealed that the use of OFFGEL isoelectric focusing yielded the largest number of protein identifications (>750) compared to alternative gel-based and protein equalization strategies. Further, OFFGEL led to a substantial enrichment of a different sub-population of the proteome. Filter-aided sample preparation (FASP), coupled to peptide-level OFFGEL provided more confidence in the results due to a substantial increase in the number of peptides assigned to each protein. The findings presented here support the use of a multiplexed approach to proteome characterization of skeletal muscle, which has a recognized imbalance in the dynamic range of its protein complement. PMID:28248220
CPTAC Assay Portal: a repository of targeted proteomic assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.
2014-06-27
To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigatorsmore » to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.« less
Systematic Proteomic Approach to Characterize the Impacts of ...
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of
Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection*
Kulej, Katarzyna; Avgousti, Daphne C.; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N.; Kim, Eui Tae; Garcia, Benjamin A.; Weitzman, Matthew D.
2017-01-01
Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. PMID:28179408
Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.
Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2004-07-01
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.
The strategy, organization, and progress of the HUPO Human Proteome Project.
Omenn, Gilbert S
2014-04-04
The Human Proteome Project is a major, comprehensive initiative of the Human Proteome Organization. This global collaborative effort aims to identify and characterize at least one protein product and many PTM, SAP, and splice variant isoforms from the 20,300 human protein-coding genes. The deliverables are an extensive parts list and an array of technology platforms, reagents, spectral libraries, and linked knowledge bases that advance the field and facilitate the use of proteomics by a much wider community of life scientists. Such enablement will help address the Grand Challenge of using proteomics to bridge major gaps between evidence of genomic variation and diverse phenotypes. The HUPO Human Proteome Project (HPP) has made an outstanding launch, including a special issue of the Journal of Proteome Research on the Chromosome-centric HPP with a total of 48 articles. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes? © 2013.
MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*
Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying
2016-01-01
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644
Study of CdTe quantum dots grown using a two-step annealing method
NASA Astrophysics Data System (ADS)
Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2006-02-01
High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.
Proteomic analyses of the environmental toxicity of carcinogenic chemicals
Protein expression and posttranslational modifications consistently change in response to the exposure to environmental chemicals. Recent technological advances in proteomics provide new tools for more efficient characterization of protein expression and posttranslational modific...
Proteomics in the investigation of HIV-1 interactions with host proteins.
Li, Ming
2015-02-01
Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mathematical biodescriptors of proteomics maps: background and applications.
Basak, Subhash C; Gute, Brian D
2008-05-01
This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.
Keller, Martin; Hettich, Robert
2009-03-01
The increase in sequencing capacity led to a new wave of metagenomic projects, enabling and setting the prerequisite for the application of environmental proteomics technologies. This review describes the current status of environmental proteomics. It describes sample preparation as well as the two major technologies applied within this field: two-dimensional electrophoresis-based environmental proteomics and liquid chromatography-mass spectrometry-based environmental proteomics. It also highlights current publications and describes major scientific findings. The review closes with a discussion of critical improvements in the area of integrating experimental mass spectrometry technologies with bioinformatics as well as improved sample handling.
Bernal, Dolores; Trelis, Maria; Montaner, Sergio; Cantalapiedra, Fernando; Galiano, Alicia; Hackenberg, Michael; Marcilla, Antonio
2014-06-13
With the aim of characterizing the molecules involved in the interaction of Dicrocoelium dendriticum adults and the host, we have performed proteomic analyses of the external surface of the parasite using the currently available datasets including the transcriptome of the related species Echinostoma caproni. We have identified 182 parasite proteins on the outermost surface of D. dendriticum. The presence of exosome-like vesicles in the ESP of D. dendriticum and their components has also been characterized. Using proteomic approaches, we have characterized 84 proteins in these vesicles. Interestingly, we have detected miRNA in D. dendriticum exosomes, thus representing the first report of miRNA in helminth exosomes. In order to identify potential targets for intervention against parasitic helminths, we have analyzed the surface of the parasitic helminth Dicrocoelium dendriticum. Along with the proteomic analyses of the outermost layer of the parasite, our work describes the molecular characterization of the exosomes of D. dendriticum. Our proteomic data confirm the improvement of protein identification from "non-model organisms" like helminths, when using different search engines against a combination of available databases. In addition, this work represents the first report of miRNAs in parasitic helminth exosomes. These vesicles can pack specific proteins and RNAs providing stability and resistance to RNAse digestion in body fluids, and provide a way to regulate host-parasite interplay. The present data should provide a solid foundation for the development of novel methods to control this non-model organism and related parasites. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Proteomic Characterization of Host Response to Yersinia pestis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chromy, B; Perkins, J; Heidbrink, J
Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less
Proteomic Characterization of Central Pacific Oxygen Minimum Zone Microbial Communities
NASA Astrophysics Data System (ADS)
Saunders, J. K.; McIlvin, M. M.; Moran, D.; Held, N.; Futrelle, J.; Webb, E.; Santoro, A.; Dupont, C.; Saito, M.
2018-05-01
Microbial proteomic profiles are excellent for surveying vast expanses of pelagic ecosystems for links between microbial communities and the biogeochemical cycles they mediate. Data from the ProteOMZ expedition supports the utility of this method.
CPTAC Teams | Office of Cancer Clinical Proteomics Research
The following are the current CPTAC teams, representing a network of Proteome Characterization Centers (PCCs), Proteogenomic Translational Research Centers (PTRCs), and Proteogenomic Data Analysis Centers (PGDACs). Teams are listed alphabetically by institution, with their respective Principal Investigators:
Integrated proteogenomic characterization of human high grade serous ovarian cancer
Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyö, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D
2016-01-01
SUMMARY To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSC). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease such as how different copy number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, as well as the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. PMID:27372738
Interlaboratory studies and initiatives developing standards for proteomics
Ivanov, Alexander R.; Colangelo, Christopher M.; Dufresne, Craig P.; Friedman, David B.; Lilley, Kathryn S.; Mechtler, Karl; Phinney, Brett S.; Rose, Kristie L.; Rudnick, Paul A.; Searle, Brian C.; Shaffer, Scott A.; Weintraub, Susan T.
2013-01-01
Proteomics is a rapidly transforming interdisciplinary field of research that embraces a diverse set of analytical approaches to tackle problems in fundamental and applied biology. This view-point article highlights the benefits of interlaboratory studies and standardization initiatives to enable investigators to address many of the challenges found in proteomics research. Among these initiatives, we discuss our efforts on a comprehensive performance standard for characterizing PTMs by MS that was recently developed by the Association of Biomolecular Resource Facilities (ABRF) Proteomics Standards Research Group (sPRG). PMID:23319436
Saliva Proteomics Analysis Offers Insights on Type 1 Diabetes Pathology in a Pediatric Population
Pappa, Eftychia; Vastardis, Heleni; Mermelekas, George; Gerasimidi-Vazeou, Andriani; Zoidakis, Jerome; Vougas, Konstantinos
2018-01-01
The composition of the salivary proteome is affected by pathological conditions. We analyzed by high resolution mass spectrometry approaches saliva samples collected from children and adolescents with type 1 diabetes and healthy controls. The list of more than 2000 high confidence protein identifications constitutes a comprehensive characterization of the salivary proteome. Patients with good glycemic regulation and healthy individuals have comparable proteomic profiles. In contrast, a significant number of differentially expressed proteins were identified in the saliva of patients with poor glycemic regulation compared to patients with good glycemic control and healthy children. These proteins are involved in biological processes relevant to diabetic pathology such as endothelial damage and inflammation. Moreover, a putative preventive therapeutic approach was identified based on bioinformatic analysis of the deregulated salivary proteins. Thus, thorough characterization of saliva proteins in diabetic pediatric patients established a connection between molecular changes and disease pathology. This proteomic and bioinformatic approach highlights the potential of salivary diagnostics in diabetes pathology and opens the way for preventive treatment of the disease. PMID:29755368
Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.
Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu
2013-02-01
Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.
Silva, Wanderson M; Carvalho, Rodrigo D; Soares, Siomar C; Bastos, Isabela Fs; Folador, Edson L; Souza, Gustavo Hmf; Le Loir, Yves; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2014-12-04
Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora
Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less
Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.
Pflieger, Delphine; Gonnet, Florence; de la Fuente van Bentem, Sergio; Hirt, Heribert; de la Fuente, Alberto
2011-01-01
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks. Copyright © 2010 Wiley Periodicals, Inc.
The photosensitivity of carbon quantum dots/CuAlO2 films composites.
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-31
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
The photosensitivity of carbon quantum dots/CuAlO2 films composites
NASA Astrophysics Data System (ADS)
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-01
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
Synthesis and Characterization of Quantum Dots: A Case Study Using PbS
ERIC Educational Resources Information Center
Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.
2015-01-01
A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…
Evolution of complexity in the zebrafish synapse proteome
Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.
2017-01-01
The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024
Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress.
Zhang, Zaibao; Hu, Menghui; Feng, Xiaobing; Gong, Andong; Cheng, Lin; Yuan, Hongyu
2017-10-01
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the canine urinary proteome.
Brandt, Laura E; Ehrhart, E J; Scherman, Hataichanok; Olver, Christine S; Bohn, Andrea A; Prenni, Jessica E
2014-06-01
Urine is an attractive biofluid for biomarker discovery as it is easy and minimally invasive to obtain. While numerous studies have focused on the characterization of human urine, much less research has focused on canine urine. The objectives of this study were to characterize the universal canine urinary proteome (both soluble and exosomal), to determine the overlap between the canine proteome and a representative human urinary proteome study, to generate a resource for future canine studies, and to determine the suitability of the dog as a large animal model for human diseases. The soluble and exosomal fractions of normal canine urine were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Biological Networks Gene Ontology (BiNGO) software was utilized to assign the canine urinary proteome to respective Gene Ontology categories, such as Cellular Component, Molecular Function, and Biological Process. Over 500 proteins were confidently identified in normal canine urine. Gene Ontology analysis revealed that exosomal proteins were largely derived from an intracellular location, while soluble proteins included both extracellular and membrane proteins. Exosome proteins were assigned to metabolic processes and localization, while soluble proteins were primarily annotated to specific localization processes. Several proteins identified in normal canine urine have previously been identified in human urine where these proteins are related to various extrarenal and renal diseases. The results of this study illustrate the potential of the dog as an animal model for human disease states and provide the framework for future studies of canine renal diseases. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.
2016-02-12
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative tomore » other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and post-translational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.« less
Whiteaker, Jeffrey R; Halusa, Goran N; Hoofnagle, Andrew N; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John A; Kennedy, Jacob; Mani, D R; Zimmerman, Lisa J; Meyer, Matthew R; Mesri, Mehdi; Boja, Emily; Carr, Steven A; Chan, Daniel W; Chen, Xian; Chen, Jing; Davies, Sherri R; Ellis, Matthew J C; Fenyö, David; Hiltke, Tara; Ketchum, Karen A; Kinsinger, Chris; Kuhn, Eric; Liebler, Daniel C; Liu, Tao; Loss, Michael; MacCoss, Michael J; Qian, Wei-Jun; Rivers, Robert; Rodland, Karin D; Ruggles, Kelly V; Scott, Mitchell G; Smith, Richard D; Thomas, Stefani; Townsend, R Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Rodriguez, Henry; Paulovich, Amanda G
2016-01-01
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative to other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and posttranslational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.
Design and Initial Characterization of the SC-200 Proteomics Standard Mixture
Bauman, Andrew; Higdon, Roger; Rapson, Sean; Loiue, Brenton; Hogan, Jason; Stacy, Robin; Napuli, Alberto; Guo, Wenjin; van Voorhis, Wesley; Roach, Jared; Lu, Vincent; Landorf, Elizabeth; Stewart, Elizabeth; Kolker, Natali; Collart, Frank; Myler, Peter; van Belle, Gerald
2011-01-01
Abstract High-throughput (HTP) proteomics studies generate large amounts of data. Interpretation of these data requires effective approaches to distinguish noise from biological signal, particularly as instrument and computational capacity increase and studies become more complex. Resolving this issue requires validated and reproducible methods and models, which in turn requires complex experimental and computational standards. The absence of appropriate standards and data sets for validating experimental and computational workflows hinders the development of HTP proteomics methods. Most protein standards are simple mixtures of proteins or peptides, or undercharacterized reference standards in which the identity and concentration of the constituent proteins is unknown. The Seattle Children's 200 (SC-200) proposed proteomics standard mixture is the next step toward developing realistic, fully characterized HTP proteomics standards. The SC-200 exhibits a unique modular design to extend its functionality, and consists of 200 proteins of known identities and molar concentrations from 6 microbial genomes, distributed into 10 molar concentration tiers spanning a 1,000-fold range. We describe the SC-200's design, potential uses, and initial characterization. We identified 84% of SC-200 proteins with an LTQ-Orbitrap and 65% with an LTQ-Velos (false discovery rate = 1% for both). There were obvious trends in success rate, sequence coverage, and spectral counts with protein concentration; however, protein identification, sequence coverage, and spectral counts vary greatly within concentration levels. PMID:21250827
Design and initial characterization of the SC-200 proteomics standard mixture.
Bauman, Andrew; Higdon, Roger; Rapson, Sean; Loiue, Brenton; Hogan, Jason; Stacy, Robin; Napuli, Alberto; Guo, Wenjin; van Voorhis, Wesley; Roach, Jared; Lu, Vincent; Landorf, Elizabeth; Stewart, Elizabeth; Kolker, Natali; Collart, Frank; Myler, Peter; van Belle, Gerald; Kolker, Eugene
2011-01-01
High-throughput (HTP) proteomics studies generate large amounts of data. Interpretation of these data requires effective approaches to distinguish noise from biological signal, particularly as instrument and computational capacity increase and studies become more complex. Resolving this issue requires validated and reproducible methods and models, which in turn requires complex experimental and computational standards. The absence of appropriate standards and data sets for validating experimental and computational workflows hinders the development of HTP proteomics methods. Most protein standards are simple mixtures of proteins or peptides, or undercharacterized reference standards in which the identity and concentration of the constituent proteins is unknown. The Seattle Children's 200 (SC-200) proposed proteomics standard mixture is the next step toward developing realistic, fully characterized HTP proteomics standards. The SC-200 exhibits a unique modular design to extend its functionality, and consists of 200 proteins of known identities and molar concentrations from 6 microbial genomes, distributed into 10 molar concentration tiers spanning a 1,000-fold range. We describe the SC-200's design, potential uses, and initial characterization. We identified 84% of SC-200 proteins with an LTQ-Orbitrap and 65% with an LTQ-Velos (false discovery rate = 1% for both). There were obvious trends in success rate, sequence coverage, and spectral counts with protein concentration; however, protein identification, sequence coverage, and spectral counts vary greatly within concentration levels.
Proteomic approaches in cancer risk and response assessment.
Petricoin, Emanuel F; Liotta, Lance A
2004-02-01
Proteomics is more than just a list-generating exercise where increases or decreases in protein expression are identified. Proteomic technologies will ultimately characterize information-flow through the protein circuitry that interconnects the extracellular microenvironment to the serum or plasma macroenvironment through intracellular signaling systems and their control of gene transcription. The nature of this information can be a cause or a consequence of disease processes and how patients respond to therapy. Analysis of human cancer as a model for how proteomics can have an impact at the bedside can take advantage of several promising new proteomic technologies. These technologies are being developed for early detection and risk assessment, therapeutic targeting and patient-tailored therapy.
The emergence of top-down proteomics in clinical research
2013-01-01
Proteomic technology has advanced steadily since the development of 'soft-ionization' techniques for mass-spectrometry-based molecular identification more than two decades ago. Now, the large-scale analysis of proteins (proteomics) is a mainstay of biological research and clinical translation, with researchers seeking molecular diagnostics, as well as protein-based markers for personalized medicine. Proteomic strategies using the protease trypsin (known as bottom-up proteomics) were the first to be developed and optimized and form the dominant approach at present. However, researchers are now beginning to understand the limitations of bottom-up techniques, namely the inability to characterize and quantify intact protein molecules from a complex mixture of digested peptides. To overcome these limitations, several laboratories are taking a whole-protein-based approach, in which intact protein molecules are the analytical targets for characterization and quantification. We discuss these top-down techniques and how they have been applied to clinical research and are likely to be applied in the near future. Given the recent improvements in mass-spectrometry-based proteomics and stronger cooperation between researchers, clinicians and statisticians, both peptide-based (bottom-up) strategies and whole-protein-based (top-down) strategies are set to complement each other and help researchers and clinicians better understand and detect complex disease phenotypes. PMID:23806018
Maillard Proteomics: Opening New Pages
Soboleva, Alena; Schmidt, Rico; Vikhnina, Maria; Grishina, Tatiana; Frolov, Andrej
2017-01-01
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress. PMID:29231845
Nuez-Ortín, Waldo G; Carter, Chris G; Nichols, Peter D; Wilson, Richard
2016-07-01
Understanding diet- and environmentally induced physiological changes in fish larvae is a major goal for the aquaculture industry. Proteomic analysis of whole fish larvae comprising multiple tissues offers considerable potential but is challenging due to the very large dynamic range of protein abundance. To extend the coverage of the larval phase of the Atlantic salmon (Salmo salar) proteome, we applied a two-step sequential extraction (SE) method, based on differential protein solubility, using a nondenaturing buffer containing 150 mM NaCl followed by a denaturing buffer containing 7 M urea and 2 M thiourea. Extracts prepared using SE and one-step direct extraction were characterized via label-free shotgun proteomics using nanoLC-MS/MS (LTQ-Orbitrap). SE partitioned the proteins into two fractions of approximately equal amounts, but with very distinct protein composition, leading to identification of ∼40% more proteins than direct extraction. This fractionation strategy enabled the most detailed characterization of the salmon larval proteome to date and provides a platform for greater understanding of physiological changes in whole fish larvae. The MS data are available via the ProteomeXchange Consortium PRIDE partner repository, dataset PXD003366. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)*
Lamond, Angus I.; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V.; Serrano, Luis; Hartl, F. Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S.; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias
2012-01-01
The term “proteomics” encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new “third generation” proteomics strategy that offers an indispensible tool for cell biology and molecular medicine. PMID:22311636
A proteomics performance standard to support measurement quality in proteomics.
Beasley-Green, Ashley; Bunk, David; Rudnick, Paul; Kilpatrick, Lisa; Phinney, Karen
2012-04-01
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brandt, Ulrike; Schürmann, Marc; Steinbüchel, Alexander
2014-01-01
The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mm, and a specific activity (Vmax) of 20.0 μmol min−1 mg−1 corresponding to a kcat of 7.7 s−1. Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase. PMID:25228698
The secrets of Oriental panacea: Panax ginseng.
Colzani, Mara; Altomare, Alessandra; Caliendo, Matteo; Aldini, Giancarlo; Righetti, Pier Giorgio; Fasoli, Elisa
2016-01-01
The Panax ginseng root proteome has been investigated via capture with combinatorial peptide ligand libraries (CPLL) at three different pH values. Proteomic characterization by SDS-PAGE and nLC–MS/MS analysis, via LTQ-Orbitrap XL, led to the identification of a total of 207 expressed proteins. This quite large number of identifications was achieved by consulting two different plant databases: P. ginseng and Arabidopsis thaliana. The major groups of identified proteins were associated to structural species (19.2%), oxidoreductase (19.5%), dehydrogenases (7.6%) and synthases (9.0%). For the first time, an exploration of protein–protein interactions was performed by merging all recognized proteins and building an interactomic map, characterized by 196 nodes and 1554 interactions. Finally a peptidomic analysis was developed combining different in-silico enzymatic digestions to simulate the human gastrointestinal process: from 661 generated peptides, 95 were identified as possible bioactives and in particular 6 of them were characterized by antimicrobial activity. The present report offers new insight for future investigations focused on elucidation of biological properties of P. ginseng proteome and peptidome. Ginseng is a traditional oriental herbal remedy whose use is very diffused in all the world for its numerous pharmacological effects. However, the exact mechanism of action of ginseng components, both ginsenosides and proteins, is still unidentified. So the common use of ginseng requires strict investigations to assess both its efficiency and its safety. Although many reports have been published regarding the pharmacological effects of ginseng, little is known about the biochemical pathways of root. Proteomics analysis could be useful to elucidate the physiological pathways. In this manuscript, an integrated approach to proteomics and peptidomics will usher in exploration of Panax ginseng proteins and proteolytic peptides, obtained by in-silico gastrointestinal digestion, characterized by antimicrobial action. The present research would pave the way for better knowledge of metabolic functions connected with ginseng proteome and provide with new information necessary to understand better antimicrobial activity of P. ginseng.
Characteristics and instabilities of mode-locked quantum-dot diode lasers.
Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J
2013-04-08
Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.
Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.
Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D
2017-04-01
Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Syed, Asad; Ahmad, Absar
2013-04-01
The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.
Scebba, Francesca; Tognotti, Danika; Presciuttini, Gianluca; Gabellieri, Edi; Cioni, Patrizia; Angeloni, Debora; Basso, Barbara; Morelli, Elisabetta
2016-01-01
Quantum dots (QDs), namely semiconductor nanocrystals, due to their particular optical and electronic properties, have growing applications in device technology, biotechnology and biomedical fields. Nevertheless, the possible threat to human health and the environment have attracted increasing attention as the production and applications of QDs increases rapidly while standard evaluation of safety lags. In the present study we performed proteomic analyses, by means of 2D gel electrophoresis and Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS). We aimed to identify potential biomarkers of exposure to CdSe/ZnS quantum dots. The marine diatom Phaeodactylum tricornutum exposed to 2.5nM QDs was used as a model system. Both 2DE and SELDI showed the presence of differentially expressed proteins. By Principal Component Analysis (PCA) we were able to show that the differentially expressed proteins can discriminate between exposed and not exposed cells. Furthermore, a protein profile specific for exposed cells was obtained by SELDI analysis. To our knowledge, this is the first example of the application of SELDI technology to the analysis of microorganisms used as biological sentinel model of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.
Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.
Rivero-Hinojosa, Samuel; Lau, Ling San; Stampar, Mojca; Staal, Jerome; Zhang, Huizhen; Gordish-Dressman, Heather; Northcott, Paul A; Pfister, Stefan M; Taylor, Michael D; Brown, Kristy J; Rood, Brian R
2018-06-07
Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.
Quantitative characterization of nanoparticle agglomeration within biological media
NASA Astrophysics Data System (ADS)
Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy
2012-07-01
Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.
2017-03-15
The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.
Proteomics: a new approach to the study of disease.
Chambers, G; Lawrie, L; Cash, P; Murray, G I
2000-11-01
The global analysis of cellular proteins has recently been termed proteomics and is a key area of research that is developing in the post-genome era. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bio-informatics to resolve comprehensively, to quantify, and to characterize proteins. The application of proteomics provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets. This review aims to explain briefly the background to proteomics and then to outline proteomic techniques. Applications to the study of human disease conditions ranging from cancer to infectious diseases are reviewed. Finally, possible future advances are briefly considered, especially those which may lead to faster sample throughput and increased sensitivity for the detection of individual proteins. Copyright 2000 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Stefanakis, Dimitrios; Philippidis, Aggelos; Sygellou, Labrini; Filippidis, George; Ghanotakis, Demetrios; Anglos, Demetrios
2014-10-01
Two types of highly fluorescent carbon dots (C-dots) were prepared by a single-step procedure based on microwave heating citric acid and 6-aminocaproic acid or citric acid and urea in an aqueous solution. The small size of the isolated carbon dots along with their strong absorption in the UV and their excitation wavelength-dependent fluorescence render them ideal nanomaterials for biomedical applications (imaging and sensing). The structure and properties of the two types of C-dot materials were studied using a series of spectroscopic techniques. The ability of the C-dots to be internalized by HeLa cells was demonstrated via 3-photon fluorescence microscopy imaging.
Integrating cell biology and proteomic approaches in plants.
Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef
2017-10-03
Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of representative studies combining proteomic and cell biology methods for various purposes. Integrating cell biology approaches with proteomic ones allow validation and better interpretation of proteomic data. Moreover, cell biology methods remarkably extend the knowledge provided by proteomic studies and might be fundamental for the functional complementation of proteomic data. This review article summarizes current literature linking proteomics with cell biology. Copyright © 2017 Elsevier B.V. All rights reserved.
Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.
Burstein, David; Zusman, Tal; Degtyar, Elena; Viner, Ram; Segal, Gil; Pupko, Tal
2009-07-01
A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF) was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine learning algorithms for the identification and characterization of bacterial pathogenesis determinants.
Khakbaz, Faeze; Mahani, Mohamad
2017-04-15
Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.
Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan
2018-03-01
Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.
Proteomic Profiling of Rat Thyroarytenoid Muscle
ERIC Educational Resources Information Center
Welham, Nathan V.; Marriott, Gerard; Bless, Diane M.
2006-01-01
Purpose: Proteomic methodologies offer promise in elucidating the systemwide cellular and molecular processes that characterize normal and diseased thyroarytenoid (TA) muscle. This study examined methodological issues central to the application of 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) to the study of…
Mass spectrometry-based proteomics: basic principles and emerging technologies and directions.
Van Riper, Susan K; de Jong, Ebbing P; Carlis, John V; Griffin, Timothy J
2013-01-01
As the main catalytic and structural molecules within living systems, proteins are the most likely biomolecules to be affected by radiation exposure. Proteomics, the comprehensive characterization of proteins within complex biological samples, is therefore a research approach ideally suited to assess the effects of radiation exposure on cells and tissues. For comprehensive characterization of proteomes, an analytical platform capable of quantifying protein abundance, identifying post-translation modifications and revealing members of protein complexes on a system-wide level is necessary. Mass spectrometry (MS), coupled with technologies for sample fractionation and automated data analysis, provides such a versatile and powerful platform. In this chapter we offer a view on the current state of MS-proteomics, and focus on emerging technologies within three areas: (1) New instrumental methods; (2) New computational methods for peptide identification; and (3) Label-free quantification. These emerging technologies should be valuable for researchers seeking to better understand biological effects of radiation on living systems.
Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; ...
2013-01-01
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans . Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterizedmore » their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.« less
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer.
Zhang, Hui; Liu, Tao; Zhang, Zhen; Payne, Samuel H; Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyö, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D; Chan, Daniel W; Rodland, Karin D
2016-07-28
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick
2018-05-01
We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.
Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G
2002-08-01
Brucella melitensis is a facultative intracellular bacterial pathogen that causes brucellosis, a zoonotic disease primarily infecting sheep and goats, characterized by undulant fever, arthritic pain and other neurological disorders in humans. A comprehensive proteomic study of strain 16M was conducted to identify and characterize the proteins expressed in laboratory-grown culture. Using overlapping narrow range immobilized pH gradient strips for two-dimensional gel electrophoresis, 883 protein spots were detected between pH 3.5 and 11. The average isoelectric point and molecular weight values of the detected spots were 5.22 and 46.5 kDa, respectively. Of the 883 observed protein spots, 440 have been identified by matrix-assisted laser desorption/ionization-mass spectrometry. These proteins represent 187 discrete open reading frames (ORFs) or 6% of the predicted 3197 ORFs contained in the genome. The corresponding ORFs of the identified proteins are distributed evenly between each of the two circular B. melitensis chromosomes, indicating that both replicons are functionally active. The presented proteome map lists those protein spots identified to date in this study. This map may serve as a baseline reference for future proteomic studies aimed at the definition of biochemical pathways associated with stress responses, host specificity, pathogenicity and virulence. It will also assist in characterization of global proteomic effects in gene-knockout mutants. Ultimately, it may aid in our overall understanding of the cell biology of B. melitensis, an important bacterial pathogen.
Quantitative proteomics in biological research.
Wilm, Matthias
2009-10-01
Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.
USDA-ARS?s Scientific Manuscript database
Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...
USDA-ARS?s Scientific Manuscript database
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in ...
Tacoma, Rinske; Fields, Julia; Ebenstein, David B; Lam, Ying-Wai; Greenwood, Sabrina L
2016-01-01
Milk is a highly nutritious natural product that provides not only a rich source of amino acids to the consumer but also hundreds of bioactive peptides and proteins known to elicit health-benefitting activities. We investigated the milk protein profile produced by Holstein and Jersey dairy cows maintained under the same diet, management and environmental conditions using proteomic approaches that optimize protein extraction and characterization of the low abundance proteins within the skim milk fraction of bovine milk. In total, 935 low abundance proteins were identified. Gene ontology classified all proteins identified into various cellular localization and function categories. A total of 43 low abundance proteins were differentially expressed between the two dairy breeds. Bioactive proteins involved in host-defense, including lactotransferrin (P=0.0026) and complement C2 protein (P=0.0001), were differentially expressed by the two breeds, whereas others such as osteopontin (P=0.1788) and lactoperoxidase (P=0.2973) were not. This work is the first to outline the protein profile produced by two important breeds of dairy cattle maintained under the same diet, environment and management conditions in order to observe likely true breed differences. This research now allows us to better understand and contrast further research examining the bovine proteome that includes these different breeds. Within the last decade, the amount of research characterizing the bovine milk proteome has increased due to growing interest in the bioactive proteins that are present in milk. Proteomic analysis of low abundance whey proteins has mainly focused on human breast milk; however, previous research has highlighted the presence of bioactive proteins in bovine milk. Recent publications outlining the cross-reactivity of bovine bioactive proteins on human biological function highlight the need for further investigation into the bovine milk proteome. The rationale behind this study is to characterize and compare the low abundance protein profile in the skim milk fraction produced from Holstein and Jersey breeds of dairy cattle, which are two major dairy cattle breeds in the USA. A combination of fractionation strategies was used to efficiently enrich the low abundance proteins from bovine skim milk for proteomic profiling. A total of 935 low abundance proteins were identified and compared between the two bovine breeds. The results from this study provide insight into breed differences and similarities in the milk proteome profile produced by two breeds of dairy cattle. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial and temporal dynamics of the cardiac mitochondrial proteome.
Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T Umut; Black, Caitie M; Lin, Amanda J; Lee, Jessica M; Wang, Ding; Liem, David A; Lam, Maggie P Y; Ping, Peipei
2015-04-01
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study
Sun, Su; Xie, Shangxian; Cheng, Yanbing; ...
2017-09-12
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level formore » the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.« less
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study.
Sun, Su; Xie, Shangxian; Cheng, Yanbing; Yu, Hongbo; Zhao, Honglu; Li, Muzi; Li, Xiaotong; Zhang, Xiaoyu; Yuan, Joshua S; Dai, Susie Y
2017-09-12
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level for the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Su; Xie, Shangxian; Cheng, Yanbing
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level formore » the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.« less
2012-01-01
Background Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. Methods Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. Results A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). Conclusions A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC. PMID:22726388
NASA Astrophysics Data System (ADS)
Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.
2016-05-01
The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chin-Rang
Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less
A perspective on extracellular vesicles proteomics
NASA Astrophysics Data System (ADS)
Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe
2017-11-01
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieve from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Synthesis, characterization and cells and tissues imaging of carbon quantum dots
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong
2017-10-01
Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.
The yeast protein extract (RM8323) developed by National Institute of Standards and Technology (NIST) under the auspices of NCI's CPTC initiative is currently available to the public at https://www-s.nist.gov/srmors/view_detail.cfm?srm=8323. The yeast proteome offers researchers a unique biological reference material. RM8323 is the most extensively characterized complex biological proteome and the only one associated with several large-scale studies to estimate protein abundance across a wide concentration range.
Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport
NASA Astrophysics Data System (ADS)
Seward, Kenton; Lin, Zhibin; Lusk, Mark
2012-02-01
The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.
Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...
2017-07-19
Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less
Proteomic approach to characterize biochemistry of meat quality defects.
Schilling, M W; Suman, S P; Zhang, X; Nair, M N; Desai, M A; Cai, K; Ciaramella, M A; Allen, P J
2017-10-01
Proteomics can be used to characterize quality defects including pale, soft, and exudative (PSE) meat (pork and poultry), woody broiler breast meat, reddish catfish fillets, meat toughness, and beef myoglobin oxidation. PSE broiler meat was characterized by 15 proteins that differed in abundance in comparison to normal broiler breast meat, and eight proteins were differentially expressed in woody breast meat in comparison to normal breast meat. Hemoglobin was the only protein that was differentially expressed between red and normal catfish fillets. However, inducing low oxygen and/or heat stress conditions to catfish fillets did not lead to the production of red fillets. Proteomic data provided information pertaining to the protein differences that exist in meat quality defects. However, these data need to be evaluated in conjunction with information pertaining to genetics, nutrition, environment of the live animal, muscle to meat conversion, meat quality analyses and sensory attributes to understand causality, protein biomarkers, and ultimately how to prevent quality defects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane
NASA Astrophysics Data System (ADS)
Knapp, T. J.; Mohr, R. T.; Li, Yize Stephanie; Thorgrimsson, Brandur; Foote, Ryan H.; Wu, Xian; Ward, Daniel R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
We report the characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. Previously, all heterostructures used to form quantum dots were created using the strain-grading method of strain relaxation, a method that necessarily introduces misfit dislocations into a heterostructure and thereby degrades the reproducibility of quantum devices. Using a SiGe nanomembrane as a virtual substrate eliminates the need for misfit dislocations but requires a wet-transfer process that results in a non-epitaxial interface in close proximity to the quantum dots. We show that this interface does not prevent the formation of quantum dots, and is compatible with a tunable inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of the applied magnetic field. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915, PHY-1104660), and the United States Department of Defense. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. T.J. Knapp et al. (2015). arXiv:1510.08888 [cond-mat.mes-hall].
Severi, Leda; Losi, Lorena; Fonda, Sergio; Taddia, Laura; Gozzi, Gaia; Marverti, Gaetano; Magni, Fulvio; Chinello, Clizia; Stella, Martina; Sheouli, Jalid; Braicu, Elena I; Genovese, Filippo; Lauriola, Angela; Marraccini, Chiara; Gualandi, Alessandra; D'Arca, Domenico; Ferrari, Stefania; Costi, Maria P
2018-01-01
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
A peptide resource for the analysis of Staphylococcus aureus in host pathogen interaction studies
Depke, Maren; Michalik, Stephan; Rabe, Alexander; Surmann, Kristin; Brinkmann, Lars; Jehmlich, Nico; Bernhardt, Jörg; Hecker, Michael; Wollscheid, Bernd; Sun, Zhi; Moritz, Robert L.; Völker, Uwe; Schmidt, Frank
2016-01-01
Staphylococcus aureus is an opportunistic human pathogen, which can cause life-threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS–driven, proteome-wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide-centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus-typic peptides in highly complex host–pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus-specific host–pathogen interaction studies through comprehensive proteome analysis. The S. aureus-specific spectra resource developed here also represents an important spectral repository for SRM or for data-independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 (http://proteomecentral.proteomexchange.org/dataset/PXD000702). PMID:26224020
A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies.
Depke, Maren; Michalik, Stephan; Rabe, Alexander; Surmann, Kristin; Brinkmann, Lars; Jehmlich, Nico; Bernhardt, Jörg; Hecker, Michael; Wollscheid, Bernd; Sun, Zhi; Moritz, Robert L; Völker, Uwe; Schmidt, Frank
2015-11-01
Staphylococcus aureus is an opportunistic human pathogen, which can cause life-threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS-driven, proteome-wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide-centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus-typic peptides in highly complex host-pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus-specific host-pathogen interaction studies through comprehensive proteome analysis. The S. aureus-specific spectra resource developed here also represents an important spectral repository for SRM or for data-independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 (http://proteomecentral.proteomexchange.org/dataset/PXD000702). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Motohashi, Reiko; Rödiger, Anja; Agne, Birgit; Baerenfaller, Katja; Baginsky, Sacha
2012-01-01
Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants. PMID:23027667
Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S
2008-09-01
The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.
Effects of Hypertension and Exercise on Cardiac Proteome Remodelling
Petriz, Bernardo A.; Franco, Octavio L.
2014-01-01
Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined. PMID:24877123
The role of targeted chemical proteomics in pharmacology
Sutton, Chris W
2012-01-01
Traditionally, proteomics is the high-throughput characterization of the global complement of proteins in a biological system using cutting-edge technologies (robotics and mass spectrometry) and bioinformatics tools (Internet-based search engines and databases). As the field of proteomics has matured, a diverse range of strategies have evolved to answer specific problems. Chemical proteomics is one such direction that provides the means to enrich and detect less abundant proteins (the ‘hidden’ proteome) from complex mixtures of wide dynamic range (the ‘deep’ proteome). In pharmacology, chemical proteomics has been utilized to determine the specificity of drugs and their analogues, for anticipated known targets, only to discover other proteins that bind and could account for side effects observed in preclinical and clinical trials. As a consequence, chemical proteomics provides a valuable accessory in refinement of second- and third-generation drug design for treatment of many diseases. However, determining definitive affinity capture of proteins by a drug immobilized on soft gel chromatography matrices has highlighted some of the challenges that remain to be addressed. Examples of the different strategies that have emerged using well-established drugs against pharmaceutically important enzymes, such as protein kinases, metalloproteases, PDEs, cytochrome P450s, etc., indicate the potential opportunity to employ chemical proteomics as an early-stage screening approach in the identification of new targets. PMID:22074351
Bettler, Bernhard; Fakler, Bernd
2017-08-01
Ionotropic AMPA-type glutamate receptors and G-protein-coupled metabotropic GABA B receptors are key elements of neurotransmission whose cellular functions are determined by their protein constituents. Over the past couple of years unbiased proteomic approaches identified comprehensive sets of protein building blocks of these two types of neurotransmitter receptors in the brain (termed receptor proteomes). This provided the opportunity to match receptor proteomes with receptor physiology and to study the structural organization, regulation and function of native receptor complexes in an unprecedented manner. In this review we discuss the principles of receptor architecture and regulation emerging from the functional characterization of the proteomes of AMPA and GABA B receptors. We also highlight progress in unraveling the role of unexpected protein components for receptor physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.
Petricoin, Emanuel F; Liotta, Lance A
2004-02-01
Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.
Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics
Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.
2009-01-01
The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504
Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.
Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony
2018-06-13
Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.
Karlsson, Christofer A Q; Järnum, Sofia; Winstedt, Lena; Kjellman, Christian; Björck, Lars; Linder, Adam; Malmström, Johan A
2018-06-01
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes , with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Litichevskiy, Lev; Peckner, Ryan; Abelin, Jennifer G; Asiedu, Jacob K; Creech, Amanda L; Davis, John F; Davison, Desiree; Dunning, Caitlin M; Egertson, Jarrett D; Egri, Shawn; Gould, Joshua; Ko, Tak; Johnson, Sarah A; Lahr, David L; Lam, Daniel; Liu, Zihan; Lyons, Nicholas J; Lu, Xiaodong; MacLean, Brendan X; Mungenast, Alison E; Officer, Adam; Natoli, Ted E; Papanastasiou, Malvina; Patel, Jinal; Sharma, Vagisha; Toder, Courtney; Tubelli, Andrew A; Young, Jennie Z; Carr, Steven A; Golub, Todd R; Subramanian, Aravind; MacCoss, Michael J; Tsai, Li-Huei; Jaffe, Jacob D
2018-04-25
Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen
2013-01-01
Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less
Wheat proteomics: proteome modulation and abiotic stress acclimation
Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed
2014-01-01
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718
A Method for Label-Free, Differential Top-Down Proteomics.
Ntai, Ioanna; Toby, Timothy K; LeDuc, Richard D; Kelleher, Neil L
2016-01-01
Biomarker discovery in the translational research has heavily relied on labeled and label-free quantitative bottom-up proteomics. Here, we describe a new approach to biomarker studies that utilizes high-throughput top-down proteomics and is the first to offer whole protein characterization and relative quantitation within the same experiment. Using yeast as a model, we report procedures for a label-free approach to quantify the relative abundance of intact proteins ranging from 0 to 30 kDa in two different states. In this chapter, we describe the integrated methodology for the large-scale profiling and quantitation of the intact proteome by liquid chromatography-mass spectrometry (LC-MS) without the need for metabolic or chemical labeling. This recent advance for quantitative top-down proteomics is best implemented with a robust and highly controlled sample preparation workflow before data acquisition on a high-resolution mass spectrometer, and the application of a hierarchical linear statistical model to account for the multiple levels of variance contained in quantitative proteomic comparisons of samples for basic and clinical research.
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Fluorescent Quantum Dots for Biological Labeling
NASA Technical Reports Server (NTRS)
McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit
2003-01-01
Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.
Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite
NASA Astrophysics Data System (ADS)
Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.
2018-02-01
A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.
Spin-dependent transport through an interacting quantum dot.
Zhang, Ping; Xue, Qi-Kun; Wang, Yupeng; Xie, X C
2002-12-31
We study the nonequilibrium spin transport through a quantum dot coupled to the magnetic electrodes. A formula for the spin-dependent current is obtained and is applied to discuss the linear conductance and magnetoresistance in the interacting regime. We show that the Kondo resonance and the correlation-induced spin splitting of the dot levels may be systematically controlled by internal magnetization in the electrodes. As a result, when the electrodes are in parallel magnetic configuration, the linear conductance is characterized by two spin-resolved peaks. Furthermore, the presence of the spin-flip process in the dot splits the Kondo resonance into three peaks.
NASA Astrophysics Data System (ADS)
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Vorontsov, Egor A.; Rensen, Elena; Prangishvili, David; Krupovic, Mart; Chamot-Rooke, Julia
2016-01-01
Protein post-translational methylation has been reported to occur in archaea, including members of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight into the extent of this modification and its dynamics during the different growth steps of the thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis using a combination of high-throughput bottom-up and top-down approaches on a single high-resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: early-exponential, mid-exponential, and stationary. The top-down analysis revealed 3,978 proteoforms arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins are frequently acetylated at the N terminus, following the removal of the N-terminal methionine. This study highlights the great value of combining bottom-up and top-down proteomics for obtaining an unprecedented level of accuracy in detecting differentially modified intact proteoforms. The data have been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179. PMID:27555370
NASA Astrophysics Data System (ADS)
Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo
2018-05-01
A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.
Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke
2014-01-01
Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24–48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48–72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects. PMID:24895377
Cabello-Hurtado, Francisco; Keller, Jean; Ley, José; Sanchez-Lucas, Rosa; Jorrín-Novo, Jesús V; Aïnouche, Abdelkader
2016-06-30
Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values. Copyright © 2016 Elsevier B.V. All rights reserved.
Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke
2014-09-01
Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Liquid chromatography tandem-mass spectrometry (LC-MS/MS)- based methods such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) have been shown to provide overall better quantification accuracy and reproducibility over other LC-MS/MS techniques. However, large scale projects like the Clinical Proteomic Tumor Analysis Consortium (CPTAC) require comparisons across many genomically characterized clinical specimens in a single study and often exceed the capability of traditional iTRAQ-based quantification.
Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.
Cravatt, Benjamin F; Wright, Aaron T; Kozarich, John W
2008-01-01
Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.
Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites.
Gómez de León, Carmen T; Díaz Martín, Rubén Darío; Mendoza Hernández, Guillermo; González Pozos, Sirenia; Ambrosio, Javier R; Mondragón Flores, Ricardo
2014-12-05
Toxoplasma, the causative agent of toxoplasmosis in animals and humans, has a subpellicular cytoskeleton that is involved in motility, cell shape and invasion. Knowledge of components of the cytoskeleton is necessary to understand the invasion mechanisms as well as for the identification of possible therapeutic targets. To date, most cytoskeletal components of Toxoplasma remain unidentified due mainly to the lack of reproducible methods for their isolation. Based on the successful isolation of the cytoskeleton, it was possible to report for the first time, the proteomic characterization of the subpellicular cytoskeleton of Toxoplasma formed by 95 cytoskeletal proteins through proteomic analysis by tandem mass spectrometry of one dimension SDS PAGE. By bioinformatic analysis of the data, proteins were classified as: 18 conventional cytoskeletal proteins; 10 inner membrane complex proteins, including 7 with alveolin repeats; 5 new proteins with alveolin like repeats; 37 proteins associated with other organelles and 25 novel proteins of unknown function. One of the alveolin like proteins not previously described in Toxoplasma named TgArticulin was partially characterized with a specific monoclonal antibody. Presence of TgArticulin was exclusively associated with the cytoskeleton fraction with a cortical distribution. Functions for the several molecules identified are proposed. This manuscript describes, for the first time, the proteome of the subpellicular cytoskeleton of Toxoplasma gondii. The importance of this study is related to the role of the cytoskeleton in the highly invasive capability of a parasite that causes abortion, blindness, and death by encephalitis in immunocompromised patients. Proteomic characterization of the cytoskeleton of T. gondii tachyzoites was possible by the development of a successful procedure for the isolation of the subpellicular cytoskeleton. Knowledge of the composition of the cytoskeleton of Toxoplasma is fundamental for the understanding of the motility and host cell invasion mechanisms, and for the future design and development of toxoplasmicidal drugs with effects against specific components of the cytoskeleton of this parasite that are absent in mammal host cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert
2013-01-01
The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
Laboratory and field procedures used to characterize materials.
DOT National Transportation Integrated Search
2009-01-01
The objective of TxDOT Project 0-5798 is to develop the framework for the development and : implementation of the next level of Mechanistic-Empirical Pavement Design Guide (MEPDG) for TxDOT : (Tex-ME). A very important aspect of this project is to id...
Automation, parallelism, and robotics for proteomics.
Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F
2006-07-01
The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.
Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research
The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.
Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1.
Oyama, Rieko; Kito, Fusako; Sakumoto, Marimu; Shiozawa, Kumiko; Toki, Shunichi; Endo, Makoto; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi
2018-05-01
Synovial sarcoma is an aggressive mesenchymal tumor, characterized by the presence of unique transfusion gene, SS18-SSX. Cell lines enable researchers to investigate the molecular backgrounds of disease and the significance of SS18-SSX in relevant cellular contexts. We report the establishment and proteomic characterization of a novel synovial sarcoma cell line. Primary tissue culture was performed using tumor tissue of synovial sarcoma. The established cell line was authenticated by assessing its DNA microsatellite short tandem repeat analysis and characterized by in vitro assay. Proteomic study was achieved by mass spectrometry, and the results were analyzed by treemap. The cell line NCC-SS2-C1 was established from a primary tumor tissue of a synovial sarcoma patient. The cell line has grown well for 11 mo and has been subcultured more than 15 times. The established cells were authenticated by assessing their short tandem repeat pattern comparing with that of original tumor tissue. The cells showed polygonal in shape and formed spheroid when seeded on the low-attachment dish. Proteomic analysis revealed the molecular pathways which are unique to the original tumor tissue or the established cell line. In conclusion, a novel synovial sarcoma cell line NCC-SS2-C1 was successfully established from the primary tumor tissue. The cell line has characteristic transfusion SS18-SSX and poses aggressive in vitro growth and capability of spheroid formation. Thus, NCC-SS2-C1 cell line will be a useful tool for investigation of the mechanisms of disease and the biological role of fusion gene.
Tipton, Jeremiah D; Tran, John C; Catherman, Adam D; Ahlf, Dorothy R; Durbin, Kenneth R; Lee, Ji Eun; Kellie, John F; Kelleher, Neil L; Hendrickson, Christopher L; Marshall, Alan G
2012-03-06
Current high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis. Further, a goal of high-throughput top-down proteomics is to extend the mass range for routine nLC MS analysis up to 80 kDa because gene sequence analysis predicts that ~70% of the human proteome is transcribed to be less than 80 kDa. Normally, large proteins greater than 50 kDa are identified and characterized by top-down proteomics through fraction collection and direct infusion at relatively low throughput. Further, other MS-based techniques provide top-down protein characterization, however at low resolution for intact mass measurement. Here, we present analysis of standard (up to 78 kDa) and whole cell lysate proteins by Fourier transform ion cyclotron resonance mass spectrometry (nLC electrospray ionization (ESI) FTICR MS). The separation platform reduced the complexity of the protein matrix so that, at 14.5 T, proteins from whole cell lysate up to 72 kDa are baseline mass resolved on a nano-LC chromatographic time scale. Further, the results document routine identification of proteins at improved throughput based on accurate mass measurement (less than 10 ppm mass error) of precursor and fragment ions for proteins up to 50 kDa.
Proteomic analysis of human aqueous humor using multidimensional protein identification technology
Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu
2009-01-01
Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884
NASA Astrophysics Data System (ADS)
Paramanik, Dipak; Varma, Shikha
2008-04-01
The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.
Characterization, design, and function of the mitochondrial proteome: from organs to organisms.
Lotz, Christopher; Lin, Amanda J; Black, Caitlin M; Zhang, Jun; Lau, Edward; Deng, Ning; Wang, Yueju; Zong, Nobel C; Choi, Jeong H; Xu, Tao; Liem, David A; Korge, Paavo; Weiss, James N; Hermjakob, Henning; Yates, John R; Apweiler, Rolf; Ping, Peipei
2014-02-07
Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.
Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri
2016-02-01
Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. © 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles
Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.
2012-01-01
Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443
Proteogenomic characterization of human colon and rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Wang, Jing; Wang, Xiaojing
2014-09-18
We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less
Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il
2017-01-01
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali
2013-10-01
Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.
Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae
2015-07-01
Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.
Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V
2015-02-13
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.
He, Ruifeng; Kim, Min-Jeong; Nelson, William; Balbuena, Tiago S; Kim, Ryan; Kramer, Robin; Crow, John A; May, Greg D; Thelen, Jay J; Soderlund, Carol A; Gang, David R
2012-02-01
The common reed (Phragmites australis), one of the most widely distributed of all angiosperms, uses its rhizomes (underground stems) to invade new territory, making it one of the most successful weedy species worldwide. Characterization of the rhizome transcriptome and proteome is needed to identify candidate genes and proteins involved in rhizome growth, development, metabolism, and invasiveness. We employed next-generation sequencing technologies including 454 and Illumina platforms to characterize the reed rhizome transcriptome and used quantitative proteomics techniques to identify the rhizome proteome. Combining 336514 Roche 454 Titanium reads and 103350802 Illumina paired-end reads in a de novo hybrid assembly yielded 124450 unique transcripts with an average length of 549 bp, of which 54317 were annotated. Rhizome-specific and differentially expressed transcripts were identified between rhizome apical tips (apical meristematic region) and rhizome elongation zones. A total of 1280 nonredundant proteins were identified and quantified using GeLC-MS/MS based label-free proteomics, where 174 and 77 proteins were preferentially expressed in the rhizome elongation zone and apical tip tissues, respectively. Genes involved in allelopathy and in controlling development and potentially invasiveness were identified. In addition to being a valuable sequence and protein data resource for studying plant rhizome species, our results provide useful insights into identifying specific genes and proteins with potential roles in rhizome differentiation, development, and function.
Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development
Zhang, Ning; Chen, Feng; Huo, Wang; Cui, Dangqun
2015-01-01
Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 differentially accumulated protein spots representing 88 unique proteins, and four main expression patterns displayed a dynamic description of middle and late grain formation. Those identified protein species participated in eight biochemical processes: stress/defense, carbohydrate metabolism, protein synthesis/assembly/degradation, storage proteins, energy production and transportation, photosynthesis, transcription/translation, signal transduction. Comparative proteomic characterization demonstrated 12 protein spots that co-accumulated in the two wheat cultivars with different expression patterns, and six cultivar-specific protein spots including serpin, small heat shock protein, β-amylase, α-amylase inhibitor, dimeric α-amylase inhibitor precursor, and cold regulated protein. These cultivar-specific protein spots possibly resulted in differential yield-related traits of the two wheat cultivars. Our results provide valuable information for dissection of molecular and genetics basis of yield-related traits in bread wheat and the proteomic characterization in this study could also provide insights in the biology of middle and late grain development. PMID:26442048
Kültz, Dietmar; Li, Johnathon; Zhang, Xuezhen; Villarreal, Fernando; Pham, Tuan; Paguio, Darlene
2015-12-01
Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma. Unbiased quantitative proteome profiling identified 45 highly population-specific plasma proteins. Population-specific abundance differences were validated by targeted proteomics based on data-independent acquisition. Gene ontology enrichment analyses and known functions of population-specific plasma proteins indicate enrichment of processes controlling cell adhesion, tissue remodeling, proteolytic processing, and defense signaling in marine sticklebacks. Moreover, fetuin B and leukocyte cell derived chemotaxin 2 are much more abundant in marine fish. These proteins promote bone morphogenesis and likely contribute to population-specific body armor differences. Plasma proteins enriched in FW fish promote translation, heme biosynthesis, and lipid transport, suggesting a greater presence of plasma microparticles. Many prominent population-specific plasma proteins (e.g. apoptosis-associated speck-like protein containing a CARD) lack any homolog of known function or adequate functional characterization. Their functional characterization and the identification of population-specific environmental contexts and selective pressures that cause plasma proteome diversification are future directions emerging from this study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun
2018-06-01
We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.
NASA Astrophysics Data System (ADS)
Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.
2014-12-01
The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.
Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Beavis, Ronald C; Overall, Christopher M; Deutsch, Eric W
2016-11-04
The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts list-the draft human proteome including confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifications (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.1 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [ www.thehpp.org/guidelines ]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have been PE1 under the Guidelines v1.0 from 2012 but now have insufficient evidence due to the agreed-upon more stringent Guidelines v2.0 to reduce false positives. neXtProt and PeptideAtlas now both require two non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length. There are 2,949 missing proteins (PE2+3+4) as the baseline for submissions for this fourth annual C-HPP special issue of Journal of Proteome Research. PeptideAtlas has 14,629 canonical (plus 1187 uncertain and 1755 redundant) entries. GPMDB has 16,190 EC4 entries, and the Human Protein Atlas has 10,475 entries with supportive evidence. neXtProt, PeptideAtlas, and GPMDB are rich resources of information about post-translational modifications (PTMs), single amino acid variants (SAAVSs), and splice isoforms. Meanwhile, the Biology- and Disease-driven (B/D)-HPP has created comprehensive SRM resources, generated popular protein lists to guide targeted proteomics assays for specific diseases, and launched an Early Career Researchers initiative.
NASA Astrophysics Data System (ADS)
Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2003-11-01
CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (
Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis.
Kamita, Masahiro; Mori, Taiki; Sakai, Yoshihito; Ito, Sadayuki; Gomi, Masahiro; Miyamoto, Yuko; Harada, Atsushi; Niida, Shumpei; Yamada, Tesshi; Watanabe, Ken; Ono, Masaya
2015-05-01
Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age-related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.
Tholey, Andreas; Becker, Alexander
2017-11-01
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017 Elsevier B.V. All rights reserved.
Transport through an impurity tunnel coupled to a Si/SiGe quantum dot
Foote, Ryan H.; Ward, Daniel R.; Prance, J. R.; ...
2015-09-11
Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here in this paper, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Finally, our results aremore » consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.« less
Eukaryotic Elongation Factor 2 (eEF2) mediates translocation in protein synthesis. eEF2 is modified by two post-translational modifications: the phosphorylation of Thr57 in the G domain and a unique conversion of His699 to diphthamide at the tip of domain IV. Diphthamide is the t...
Trentmann, Oliver; Haferkamp, Ilka
2013-01-01
Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g., isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity, and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes. PMID:23459586
Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
Hui, Sheng; Silverman, Josh M; Chen, Stephen S; Erickson, David W; Basan, Markus; Wang, Jilong; Hwa, Terence; Williamson, James R
2015-01-01
A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other ‘omics’ studies. PMID:25678603
Maryáš, Josef; Faktor, Jakub; Dvořáková, Monika; Struhárová, Iva; Grell, Peter; Bouchal, Pavel
2014-03-01
Metastases are responsible for most of the cases of death in patients with solid tumors. There is thus an urgent clinical need of better understanding the exact molecular mechanisms and finding novel therapeutics targets and biomarkers of metastatic disease of various tumors. Metastases are formed in a complicated biological process called metastatic cascade. Up to now, proteomics has enabled the identification of number of metastasis-associated proteins and potential biomarkers in cancer tissues, microdissected cells, model systems, and secretomes. Expression profiles and biological role of key proteins were confirmed in verification and functional experiments. This communication reviews these observations and analyses the methodological aspects of the proteomics approaches used. Moreover, it reviews contribution of current proteomics in the field of functional characterization and interactome analysis of proteins involved in various events in metastatic cascade. It is evident that ongoing technical progress will further increase proteome coverage and sample capacity of proteomics technologies, giving complex answers to clinical and functional questions asked. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.
2012-01-01
Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730
Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper
NASA Astrophysics Data System (ADS)
Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha
2016-03-01
We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.
Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha
We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantummore » dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.« less
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 9, 2012.
Butler, Georgina S; Overall, Christopher M
2009-11-24
Shotgun proteomics techniques are conceptually unbiased, but data interpretation and follow-up experiments are often constrained by dogma, established beliefs that are accepted without question, that can dilute the power of proteomics and hinder scientific progress. Proteomics and degradomics, the characterization of all proteases, inhibitors, and protease substrates by genomic and proteomic techniques, have exponentially expanded the known substrate repertoire of the matrix metalloproteinases (MMPs), even to include intracellular proteins with newly recognized extracellular functions. Thus, the dogma that MMPs are dowdy degraders of extracellular matrix has been resolutely overturned, and the metamorphosis of MMPs into modulators of multiple signaling pathways has been facilitated. Here we review progress made in the field of degradomics and present a current view of the MMP degradome.
Enhancing Bottom-up and Top-down Proteomic Measurements with Ion Mobility Separations
Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; ...
2015-07-03
Proteomic measurements with greater throughput, sensitivity and additional structural information enhance the in-depth characterization of complex mixtures and targeted studies with additional information and higher confidence. While liquid chromatography separation coupled with mass spectrometry (LC-MS) measurements have provided information on thousands of proteins in different sample types, the additional of another rapid separation stage providing structural information has many benefits for analyses. Technical advances in ion funnels and multiplexing have enabled ion mobility separations to be easily and effectively coupled with LC-MS proteomics to enhance the information content of measurements. Finally, herein, we report on applications illustrating increased sensitivity, throughput,more » and structural information by utilizing IMS-MS and LC-IMS-MS measurements for both bottom-up and top-down proteomics measurements.« less
Aebersold, Ruedi; Bader, Gary D; Edwards, Aled M; van Eyk, Jennifer E; Kussmann, Martin; Qin, Jun; Omenn, Gilbert S
2013-01-04
The biology and disease oriented branch of the Human Proteome Project (B/D-HPP) was established by the Human Proteome Organization (HUPO) with the main goal of supporting the broad application of state-of the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. This will be accomplished through the generation of research and informational resources that will support the routine and definitive measurement of the process or disease relevant proteins. The B/D-HPP is highly complementary to the C-HPP and will provide datasets and biological characterization useful to the C-HPP teams. In this manuscript we describe the goals, the plans, and the current status of the of the B/D-HPP.
Combining genomic and proteomic approaches for epigenetics research
Han, Yumiao; Garcia, Benjamin A
2014-01-01
Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656
Proteomic analysis of tissue samples in translational breast cancer research.
Gromov, Pavel; Moreira, José M A; Gromova, Irina
2014-06-01
In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis, and both prognosis and prediction of outcome of chemotherapy. The purpose of this review is to critically appraise what has been achieved to date using proteomic technologies and to bring forward novel strategies - based on the analysis of clinically relevant samples - that promise to accelerate the translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens.
NASA Technical Reports Server (NTRS)
Johnson, Jill W. (Compiler)
2015-01-01
This Corrective Measures Implementation (CMI) Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site. Applicable meeting minutes are provided as Appendix A. The following EE ADPs for CRHE are included with this CMI Progress Report: center dot Supplemental Site Characterization ADP (Step 1 EE) (Appendix B) center dot Site Characterization ADP (Step 1 EE) for Hot Spot 1 (HS1) (Appendix C) center dot Remedial Alternatives Evaluation (Step 2 EE) ADP for HS1 (Appendix D) center dot Interim Measures Work Plan (Step 3 EE) ADP for HS1 (Appendix E) center dot Site Characterization ADP (Step 1 EE) ADP for Hot Spot 2 (HS2), High Concentration Plume (HCP), and Low Concentration Plume (LCP) (Appendix F) A summary of direct-push technology (DPT) and groundwater monitoring well sampling results are provided in Appendices G and H, respectively. The Interim Land Use Control Implementation Plan (LUCIP) is provided as Appendix I. Monitoring well completion reports, other applicable field forms, survey data, and analytical laboratory reports are provided as Appendices J through M, respectively, in the electronic copy of this document. Selected Site photographs are provided in Appendix N. The interim groundwater monitoring plan and document revision log are included as Appendices O and P, respectively. KSC Electronic Data Deliverable (KEDD) files are provided on the attached compact disk.
Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi
2013-01-01
Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424
Anjo, Sandra I; Figueiredo, Francisco; Fernandes, Rui; Manadas, Bruno; Oliveira, Manuela
2017-05-24
The airborne fungus Aspergillus fumigatus is one of the most common agents of human fungal infections with a remarkable impact on public health. However, A. fumigatus conidia atmospheric resistance and longevity mechanisms are still unknown. Therefore, in this work, the processes underlying conidial adaptation were studied by a time course evaluation of the proteomics and ultrastructural changes of A. fumigatus' conidia at three time-points selected according to relevant changes previously established in conidial survival rates. The proteomics characterization revealed that conidia change from a highly active metabolic to a dormant state, culminating in cell autolysis as revealed by the increased levels of hydrolytic enzymes. Structural characterization corroborates the proteomics data, with noticeable changes observed in mitochondria, nucleus and plasma membrane ultrastructure, accompanied by the formation of autophagic vacuoles. These changes are consistent with both apoptotic and autophagic processes, and indicate that the changes in protein levels may anticipate those in cell morphology. The findings presented in this work not only clarify the processes underlying conidial adaptation to nutrient limiting conditions but can also be exploited for improving infection control strategies and in the development of new therapeutical drugs. Additionally, the present study was deposited in a public database and thus, it may also be a valuable dataset to be used by the scientific community as a tool to understand and identified other potential targets associated with conidia resistance. Copyright © 2017. Published by Elsevier B.V.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through February 5, 2016.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 11, 2014.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 12, 2013.
A comprehensive and scalable database search system for metaproteomics.
Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W
2016-08-16
Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.
Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi
2017-05-01
We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.
ProteoSign: an end-user online differential proteomics statistical analysis platform.
Efstathiou, Georgios; Antonakis, Andreas N; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Divanach, Peter; Trudgian, David C; Thomas, Benjamin; Papanikolaou, Nikolas; Aivaliotis, Michalis; Acuto, Oreste; Iliopoulos, Ioannis
2017-07-03
Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude
2011-12-10
The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.
A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia
Perrot, Aurore; Pionneau, Cédric; Nadaud, Sophie; Davi, Frédéric; Leblond, Véronique; Jacob, Frédéric; Merle-Béral, Hélène; Herbrecht, Raoul; Béné, Marie-Christine; Gribben, John G.; Vallat, Laurent
2011-01-01
Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease. PMID:21602524
Scaturro, Maria; Meschini, Stefania; Arancia, Giuseppe; Stefano, Fontana; Ricci, Maria Luisa
2009-12-01
The pathogenesis of Legionella pneumophila mainly resides in its ability to inhibit the phagosome-lysosome fusion, which normally prevents the killing of the host cells. In order to characterize the molecular alterations that occurred in a spontaneous avirulent mutant of Legionella pneumophila serogroup 6, named Vir-, we investigated the ability of the mutant to adhere to and multiply in the WI26VA4 alveolar epithelial cell line and in human macrophages, when compared to its parental strain, Vir+. We also determined the colocalization of bacteria with LAMP-1 to gain an insight into the phagosome-lysosome fusion process. Additionally, we determined the flagellin expression and dotA nucleotide sequencing. We observed a lack of expression of flagellin and an in-frame mutation in the dotA. gene. The data obtained strongly suggest the loss of virulence of the mutant could probably be due to the absence of flagellin and the dysfunctional type IV secretion System, resulting from the DotA protein being severely compromised.
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.
2010-04-13
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY
2008-07-29
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji
2014-12-12
Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.
Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...
2016-08-01
Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si 0.8Ge 0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratiomore » used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less
Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng
2015-08-19
An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.
Protocols | Office of Cancer Clinical Proteomics Research
Each reagent on the Antibody Portal has been characterized by a combination of methods specific for that antibody. To view the customized antibody methods and protocols (Standard Operating Procedures) used to generate and characterize each reagent, select an antibody of interest and open the protocols associated with their respective characterization methods along with characterization data.
2015-09-01
glioblastoma . We have successfully established several patient-derived cell lines from glioblastoma tumors and further established a number of...and single-cell technologies. Although the focus of this research is glioblastoma , the proposed tools are generally applicable to all cancer-based...studies. 15. SUBJECT TERMS Human cohorts, Glioblastoma , Genomic, Proteomic, Single-cell technologies, Hypothesis-driven, integrative systems approach
Quantitative proteomics in the field of microbiology.
Otto, Andreas; Becher, Dörte; Schmidt, Frank
2014-03-01
Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in proteomics of cereals.
Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash
Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.
Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.
Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A
2004-01-01
The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.
Microchip-Based Single-Cell Functional Proteomics for Biomedical Applications
Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui
2017-01-01
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that fail to be addressed by traditional population-based methods. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical framework to extract new biology. In this review article, we highlight a few biological and clinical applications in which the microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating well-contolled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies. PMID:28280819
Murine colon proteome and characterization of the protein pathways
2012-01-01
Background Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer) rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue- colon proteome. Results We report here a detailed murine (mouse) whole tissue- colon protein reference dataset composed of 1237 confident protein (FDR < 2) with comprehensive insight on its peptide properties, cellular and subcellular localization, functional network GO annotation analysis, and its relative abundances. The presented dataset includes wide spectra of pI and Mw ranged from 3–12 and 4–600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen- activated protein kinase (Mapk8, 9) in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2), Glutathione S-transferase (Gstp1) in prostate cancer, and Cell division control protein (Cdc42), Ras-related protein (Rac1,2) in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI) provide a relative quantification under normal condition as guidance. Conclusions This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well. PMID:22929016
Pla, Davinia; Sanz, Libia; Molina-Sánchez, Pedro; Zorita, Virginia; Madrigal, Marvin; Flores-Díaz, Marietta; Alape-Girón, Alberto; Núñez, Vitelbina; Andrés, Vicente; Gutiérrez, José María; Calvete, Juan J
2013-08-26
We report the proteomic analysis of the Atlantic bushmaster, Lachesis muta rhombeata, from Brazil. Along with previous characterization of the venom proteomes of L. stenophrys (Costa Rica), L. melanocephala (Costa Rica), L. acrochorda (Colombia), and L. muta muta (Bolivia), the present study provides the first overview of the composition and distribution of venom proteins across this wide-ranging genus, and highlights the remarkable similar compositional and pharmacological profiles across Lachesis venoms. The paraspecificity of two antivenoms, produced at Instituto Vital Brazil (Brazil) and Instituto Clodomiro Picado (Costa Rica) using different conspecific taxa in the immunization mixtures, was assessed using genus-wide comparative antivenomics. This study confirms that the proteomic similarity among Lachesis sp. venoms is mirrored in their high immunological conservation across the genus. The clinical and therapeutic consequences of genus-wide venomics and antivenomics investigations of Lachesis venoms are discussed. The proteomics characterization of L. m. rhombeata venom completes the overview of Lachesis venom proteomes and confirms the remarkable toxin profile conservation across the five clades of this wide-ranging genus. Genus-wide antivenomics showed that two antivenoms, produced against L. stenophrys or L. m. rhombeata, exhibit paraspecificity towards all other congeneric venoms. Our venomics study shows that, despite the broad geographic distribution of the genus, monospecific antivenoms may achieve clinical coverage for any Lachesis sp. envenoming. Copyright © 2013 Elsevier B.V. All rights reserved.
Top-down Proteomics: Technology Advancements and Applications to Heart Diseases
Cai, Wenxuan; Tucholski, Trisha M.; Gregorich, Zachery R.; Ge, Ying
2016-01-01
Introduction Diseases of the heart are a leading cause of morbidity and mortality for both men and women worldwide, and impose significant economic burdens on the healthcare systems. Despite substantial effort over the last several decades, the molecular mechanisms underlying diseases of the heart remain poorly understood. Areas covered Altered protein post-translational modifications (PTMs) and protein isoform switching are increasingly recognized as important disease mechanisms. Top-down high-resolution mass spectrometry (MS)-based proteomics has emerged as the most powerful method for the comprehensive analysis of PTMs and protein isoforms. Here, we will review recent technology developments in the field of top-down proteomics, as well as highlight recent studies utilizing top-down proteomics to decipher the cardiac proteome for the understanding of the molecular mechanisms underlying diseases of the heart. Expert commentary Top-down proteomics is a premier method for the global and comprehensive study of protein isoforms and their PTMs, enabling the identification of novel protein isoforms and PTMs, characterization of sequence variations, and quantification of disease-associated alterations. Despite significant challenges, continuous development of top-down proteomics technology will greatly aid the dissection of the molecular mechanisms underlying diseases of the hearts for the identification of novel biomarkers and therapeutic targets. PMID:27448560
Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D
2004-01-01
Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.
MitoMiner: a data warehouse for mitochondrial proteomics data
Smith, Anthony C.; Blackshaw, James A.; Robinson, Alan J.
2012-01-01
MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process. PMID:22121219
Proteomics boosts translational and clinical microbiology.
Del Chierico, F; Petrucca, A; Vernocchi, P; Bracaglia, G; Fiscarelli, E; Bernaschi, P; Muraca, M; Urbani, A; Putignani, L
2014-01-31
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013. Published by Elsevier B.V. All rights reserved.
Waste Characterization Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Patrick E.
2014-11-01
The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to includemore » every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.« less
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots
NASA Astrophysics Data System (ADS)
Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin
2015-07-01
Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.
Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.
2012-08-15
Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less
Vincent, Carr D; Friedman, Jonathan R; Jeong, Kwang Cheol; Sutherland, Molly C; Vogel, Joseph P
2012-07-01
Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. © 2012 Blackwell Publishing Ltd.
Proteomic characterization of hempseed (Cannabis sativa L.).
Aiello, Gilda; Fasoli, Elisa; Boschin, Giovanna; Lammi, Carmen; Zanoni, Chiara; Citterio, Attilio; Arnoldi, Anna
2016-09-16
This paper presents an investigation on hempseed proteome. The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana (125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%). Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products. Copyright © 2016 Elsevier B.V. All rights reserved.
Biochemical and genetic analysis of the yeast proteome with a movable ORF collection
Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.
2005-01-01
Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557
Antibody Protein Array Analysis of the Tear Film Cytokines
Li, Shimin; Sack, Robert; Vijmasi, Trinka; Sathe, Sonal; Beaton, Ann; Quigley, David; Gallup, Marianne; McNamara, Nancy A.
2013-01-01
Purpose Many bioactive proteins including cytokines are reported to increase in dry eye disease although the specific profile and concentration of inflammatory mediators varies considerably from study to study. In part this variability results from inherent difficulties in quantifying low abundance proteins in a limited sample volume using relatively low sensitivity dot ELISA methods. Additional complexity comes with the use of pooled samples collected using a variety of techniques and intrinsic variation in the diurnal pattern of individual tear proteins. The current study describes a recent advance in the area of proteomics that has allowed the identification of dozens of low abundance proteins in human tear samples. Methods Commercially available stationary phase antibody protein arrays were adapted to improve suitability for use in small volume biological fluid analysis with particular emphasis on tear film proteomics. Arrays were adapted to allow simultaneous screening for a panel of inflammatory cytokines in low volume tear samples collected from individual eyes. Results A preliminary study comparing tear array results in a small population of Sjögren’s syndrome patients was conducted. The multiplex microplate array assays of cytokines in tear fluid present an unanticipated challenge due to the unique nature of tear fluid. The presence of factors that exhibit an affinity for plastic, capture antibodies and IgG and create a complex series of matrix effects profoundly impacting the reliability of dot ELISA, including with elevated levels of background reactivity and reduction in capacity to bind targeted protein. Conclusions Preliminary results using tears collected from patients with Sjögren’s syndrome reveal methodological advantages of protein array technology and support the concept that autoimmune-mediated dry eye disease has an inflammatory component. They also emphasize the inherent difficulties one can face when interpreting the results of micro-well arrays that result from blooming effects, matrix effects, image saturation and cross-talk between capture and probe antibodies that can greatly reduce signal-to-noise and limit the ability to obtain meaningful results. PMID:18677223
Ararso, Zewdu; Ma, Chuan; Qi, Yuping; Feng, Mao; Han, Bin; Hu, Han; Meng, Lifeng; Li, Jianke
2018-01-05
Hemolymph is vital for the immunity of honeybees and offers a way to investigate their physiological status. To gain novel insight into the functionality and molecular details of the hemolymph in driving increased Royal Jelly (RJ) production, we characterized and compared hemolymph proteomes across the larval and adult ages of Italian bees (ITbs) and Royal Jelly bees (RJbs), a stock selected from ITbs for increasing RJ output. Unprecedented in-depth proteome was attained with the identification of 3394 hemolymph proteins in both bee lines. The changes in proteome support the general function of hemolymph to drive development and immunity across different ages. However, age-specific proteome settings have adapted to prime the distinct physiology for larvae and adult bees. In larvae, the proteome is thought to drive temporal immunity, rapid organogenesis, and reorganization of larval structures. In adults, the proteome plays key roles in prompting tissue development and immune defense in newly emerged bees, in gland maturity in nurse bees, and in carbohydrate energy production in forager bees. Between larval and adult samples of the same age, RJbs and ITbs have tailored distinct hemolymph proteome programs to drive their physiology. In particular, in day 4 larvae and nurse bees, a large number of highly abundant proteins are enriched in protein synthesis and energy metabolism in RJbs. This implies that they have adapted their proteome to initiate different developmental trajectories and high RJ secretion in response to selection for enhanced RJ production. Our hitherto unexplored in-depth proteome coverage provides novel insight into molecular details that drive hemolymph function and high RJ production by RJbs.
A Community Standard Format for the Representation of Protein Affinity Reagents*
Gloriam, David E.; Orchard, Sandra; Bertinetti, Daniela; Björling, Erik; Bongcam-Rudloff, Erik; Borrebaeck, Carl A. K.; Bourbeillon, Julie; Bradbury, Andrew R. M.; de Daruvar, Antoine; Dübel, Stefan; Frank, Ronald; Gibson, Toby J.; Gold, Larry; Haslam, Niall; Herberg, Friedrich W.; Hiltke, Tara; Hoheisel, Jörg D.; Kerrien, Samuel; Koegl, Manfred; Konthur, Zoltán; Korn, Bernhard; Landegren, Ulf; Montecchi-Palazzi, Luisa; Palcy, Sandrine; Rodriguez, Henry; Schweinsberg, Sonja; Sievert, Volker; Stoevesandt, Oda; Taussig, Michael J.; Ueffing, Marius; Uhlén, Mathias; van der Maarel, Silvère; Wingren, Christer; Woollard, Peter; Sherman, David J.; Hermjakob, Henning
2010-01-01
Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications. This situation has triggered several initiatives involving large scale generation and validation of antibodies, for example the Swedish Human Protein Atlas and the German Antibody Factory. Antibodies targeting specific subproteomes are being pursued by members of Human Proteome Organisation (plasma and liver proteome projects) and the United States National Cancer Institute (cancer-associated antigens). ProteomeBinders, a European consortium, aims to set up a resource of consistently quality-controlled protein-binding reagents for the whole human proteome. An ultimate PAR database resource would allow consumers to visit one on-line warehouse and find all available affinity reagents from different providers together with documentation that facilitates easy comparison of their cost and quality. However, in contrast to, for example, nucleotide databases among which data are synchronized between the major data providers, current PAR producers, quality control centers, and commercial companies all use incompatible formats, hindering data exchange. Here we propose Proteomics Standards Initiative (PSI)-PAR as a global community standard format for the representation and exchange of protein affinity reagent data. The PSI-PAR format is maintained by the Human Proteome Organisation PSI and was developed within the context of ProteomeBinders by building on a mature proteomics standard format, PSI-molecular interaction, which is a widely accepted and established community standard for molecular interaction data. Further information and documentation are available on the PSI-PAR web site. PMID:19674966
Spencer, Jean L; Bhatia, Vivek N; Whelan, Stephen A; Costello, Catherine E; McComb, Mark E
2013-12-01
The identification of protein post-translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography-tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post-Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi-sample comparison by collating, scoring, and ranking PTMs and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans-Proteomic Pipeline. The easy-to-use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting.
How may targeted proteomics complement genomic data in breast cancer?
Guerin, Mathilde; Gonçalves, Anthony; Toiron, Yves; Baudelet, Emilie; Audebert, Stéphane; Boyer, Jean-Baptiste; Borg, Jean-Paul; Camoin, Luc
2017-01-01
Breast cancer (BC) is the most common female cancer in the world and was recently deconstructed in different molecular entities. Although most of the recent assays to characterize tumors at the molecular level are genomic-based, proteins are the actual executors of cellular functions and represent the vast majority of targets for anticancer drugs. Accumulated data has demonstrated an important level of quantitative and qualitative discrepancies between genomic/transcriptomic alterations and their protein counterparts, mostly related to the large number of post-translational modifications. Areas covered: This review will present novel proteomics technologies such as Reverse Phase Protein Array (RPPA) or mass-spectrometry (MS) based approaches that have emerged and that could progressively replace old-fashioned methods (e.g. immunohistochemistry, ELISA, etc.) to validate proteins as diagnostic, prognostic or predictive biomarkers, and eventually monitor them in the routine practice. Expert commentary: These different targeted proteomic approaches, able to complement genomic data in BC and characterize tumors more precisely, will permit to go through a more personalized treatment for each patient and tumor.
Alabi, T; Marion-Poll, F; Danho, M; Mazzucchelli, G D; De Pauw, E; Haubruge, E; Francis, F
2014-02-01
Chemoreception plays an important role in mediating a diverse range of behaviours, including predation and food selection. In the present study, we combined anatomical observations, electrophysiology and proteomics to investigate sensilla that mediate chemoreception on the antenna and the legs of Tribolium. Scanning electron microscopy was used to differentiate the coxal and trochanteral segments of the pro-, meso- and metathoracic legs by the presence of sensilla trichoidea and chaetica, while the antennae were covered with five types of sensilla (chaetica, basiconica, trichoidea, squamiformia and coeloconica). Antenna morphology and ultrastructure were similar in both sexes. Electrophysiological recordings allowed us to characterize a row of small sensilla basiconica on the terminal segment of the antenna as taste receptors, responding to sucrose and NaCl. Proteomics investigations of antennae and legs yielded several proteins with specific interest for those involved in chemoreception. Odorant-binding proteins were antenna-specific, while chemosensory proteins were detected in both tissues. © 2013 The Royal Entomological Society.
Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.
2015-01-01
Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems...
Rice proteome analysis: a step toward functional analysis of the rice genome.
Komatsu, Setsuko; Tanaka, Naoki
2005-03-01
The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins.
Rice proteome database: a step toward functional analysis of the rice genome.
Komatsu, Setsuko
2005-09-01
The technique of proteome analysis using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this study, the proteins of rice were cataloged, a rice proteome database was constructed, and a functional characterization of some of the identified proteins was undertaken. Proteins extracted from various tissues and subcellular compartments in rice were separated by 2D-PAGE and an image analyzer was used to construct a display of the proteins. The Rice Proteome Database contains 23 reference maps based on 2D-PAGE of proteins from various rice tissues and subcellular compartments. These reference maps comprise 13129 identified proteins, and the amino acid sequences of 5092 proteins are entered in the database. Major proteins involved in growth or stress responses were identified using the proteome approach. Some of these proteins, including a beta-tubulin, calreticulin, and ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice, have unexpected functions. The information obtained from the Rice Proteome Database will aid in cloning the genes for and predicting the function of unknown proteins.
Mitochondrial Proteome Studies in Seeds during Germination
Czarna, Malgorzata; Kolodziejczak, Marta; Janska, Hanna
2016-01-01
Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination. PMID:28248229
Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.
2013-01-01
High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779
Proteomics Insights into Autophagy.
Cudjoe, Emmanuel K; Saleh, Tareq; Hawkridge, Adam M; Gewirtz, David A
2017-10-01
Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Statistical Analysis of Variation in the Human Plasma Proteome
Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; ...
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less
Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei
2009-01-01
Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319
Fagerquist, Clifton K
2017-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in the MS peaks that collectively constitute the MS 'fingerprint'. This review/perspective is intended to explore this topic in greater detail in the hopes that it may spur interest and further research in this area. Areas covered: This paper examines the recent literature on utilizing MALDI-TOF for bacterial identification. Critical works highlighting protein biomarker identification of bacteria, arguments for and against protein biomarker identification, proteomic approaches to biomarker identification, emergence of MALDI-TOF-TOF platforms and their use for top-down proteomic identification of bacterial proteins, protein denaturation and its effect on protein ion fragmentation, collision cross-sections and energy deposition during desorption/ionization are also explored. Expert commentary: MALDI-TOF and TOF-TOF mass spectrometry platforms will continue to provide chemical analyses that are rapid, cost-effective and high throughput. These instruments have proven their utility in the taxonomic identification of pathogenic bacteria at the genus and species level and are poised to more fully characterize these microorganisms to the benefit of clinical microbiology, food safety and other fields.
Statistical analysis of variation in the human plasma proteome.
Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.
NASA Astrophysics Data System (ADS)
Baruah, Upama; Konwar, Achyut; Chowdhury, Devasish
2016-04-01
We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution.We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution. Electronic supplementary information (ESI) available: The ESI includes the detailed synthesis and characterization of carbon dots both before and after oxidation and of the carbon dot-chitosan nanocomposite films viz. DLS, SEM, UV-visible, FTIR, PL spectroscopy and TGA. See DOI: 10.1039/c6nr01129b
Fluorescence Determination of Warfarin Using TGA-capped CdTe Quantum Dots in Human Plasma Samples.
Dehbozorgi, A; Tashkhourian, J; Zare, S
2015-11-01
In this study, some effort has been performed to provide low temperature, less time consuming and facile routes for the synthesis of CdTe quantum dots using ultrasound and water soluble capping agent thioglycolic acid. TGA-capped CdTe quantum dots were characterized through x-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy. The prepared quantum dots were used for warfarin determination based on the quenching of the fluorescence intensity in aqueous solution. Under the optimized conditions, the linear range of quantum dots fluorescence intensity versus the concentration of warfarin was 0.1-160.0 μM, with the correlation coefficient of 0.9996 and a limit of detection of 77.5 nM. There was no interference to coexisting foreign substances. The selectivity of the sensor was also tested and the results show that the developed method possesses a high selectivity for warfarin.
NASA Astrophysics Data System (ADS)
Anilkumar, M.; Bindu, K. R.; Sneha Saj, A.; Anila, E. I.
2016-08-01
Toxicity of nanoparticles remains to be a major issue in their application to the biomedical field. Aloe vera (AV) is one of the most widely exploited medicinal plants that have a multitude of amazing properties in the field of medicine. Methanol extract of Aloe vera can be used as a novel stabilising agent for quantum dots to reduce toxicity. We report the synthesis, structural characterization, antibacterial activity and cytotoxicity studies of ZnS:Mn quantum dots synthesized by the colloidal precipitation method, using methanol extract of Aloe vera (AVME) as the capping agent. The ZnS:Mn quantum dots capped with AVME exhibit superior performances in biocompatibility and antibacterial activity compared with ZnS:Mn quantum dots without encapsulation. Project supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.
Configuration Management at NASA
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
2013-01-01
NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt
NASA Astrophysics Data System (ADS)
Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba; Sorouraddin, Mohammad H.
2014-03-01
The chemiluminescence (CL) of water-soluble fluorescent carbon dots (C-dots) induced by direct chemical oxidation was investigated. C-dots were prepared by solvothermal method and characterized by fluorescence spectra and transmission electron microscopy. It was found that K3Fe(CN)6 could directly oxidize C-dots to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra and the effect of radical scavengers on the CL intensity. The inhibitive effect of some metal ions and biologically important molecules on the CL intensity of the system was examined and the potential of the system for the determination of these species at trace levels was studied. In order to evaluate the capability of method to real sample analysis, it was applied to the determination of Cr(VI) and adrenaline in water and injection samples, respectively.
Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong
2018-01-31
In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rath, Arup K.; Lasanta, Tania; Bernechea, Maria
2014-02-10
Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties,more » carrier lifetime, and mobility, in a facile way.« less
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin
2011-10-01
We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.
Proteomic analyses of host and pathogen responses during bovine mastitis.
Boehmer, Jamie L
2011-12-01
The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.
2010-01-01
Background Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition. PMID:20704702
Labra, Álvaro; Arredondo-Zelada, Oscar; Flores-Herrera, Patricio; Marshall, Sergio H; Gómez, Fernando A
2016-03-01
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L
2017-01-01
Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP. PMID:28406494
Proteomics characterization of intermediate wheatgrass (Thinopyrum intermedium) flour proteins
USDA-ARS?s Scientific Manuscript database
Thinopyrum intermedium, commonly known as intermediate wheatgrass (IWG), is a perennial crop with favorable agronomic characteristics and nutritional benefits. IWG lines are deficient in high molecular weight glutenins (HMWG), responsible for dough strength. A detailed characterization of IWG flou...
Consolidation of proteomics data in the Cancer Proteomics database.
Arntzen, Magnus Ø; Boddie, Paul; Frick, Rahel; Koehler, Christian J; Thiede, Bernd
2015-11-01
Cancer is a class of diseases characterized by abnormal cell growth and one of the major reasons for human deaths. Proteins are involved in the molecular mechanisms leading to cancer, furthermore they are affected by anti-cancer drugs, and protein biomarkers can be used to diagnose certain cancer types. Therefore, it is important to explore the proteomics background of cancer. In this report, we developed the Cancer Proteomics database to re-interrogate published proteome studies investigating cancer. The database is divided in three sections related to cancer processes, cancer types, and anti-cancer drugs. Currently, the Cancer Proteomics database contains 9778 entries of 4118 proteins extracted from 143 scientific articles covering all three sections: cell death (cancer process), prostate cancer (cancer type) and platinum-based anti-cancer drugs including carboplatin, cisplatin, and oxaliplatin (anti-cancer drugs). The detailed information extracted from the literature includes basic information about the articles (e.g., PubMed ID, authors, journal name, publication year), information about the samples (type, study/reference, prognosis factor), and the proteomics workflow (Subcellular fractionation, protein, and peptide separation, mass spectrometry, quantification). Useful annotations such as hyperlinks to UniProt and PubMed were included. In addition, many filtering options were established as well as export functions. The database is freely available at http://cancerproteomics.uio.no. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polyphemus, Odysseus and the ovine milk proteome.
Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore
2017-01-30
In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier
Selective staining of proteins with hydrophobic surface sites on a native electrophoretic gel.
Bertsch, Martina; Kassner, Richard J
2003-01-01
Chemical proteomics aims to characterize all of the proteins in the proteome with respect to their function, which is associated with their interaction with other molecules. We propose the identification of a subproteomic library of expressed proteins whose native structures are typified by the presence of hydrophobic surface sites, which are often involved in interactions with small molecules, membrane lipids, and other proteins, pertaining to their functions. We demonstrate that soluble globular proteins with hydrophobic surface sites can be detected selectively by staining on an electrophoretic gel run under nondenaturing conditions. The application of these staining techniques may help elucidate new catalytic, transport, and regulatory functionalities in complex proteomic screenings.
Proteomic Profiling of the Pituitary Gland in Studies of Psychiatric Disorders.
Krishnamurthy, Divya; Rahmoune, Hassan; Guest, Paul C
2017-01-01
Psychiatric disorders have been associated with perturbations of the hypothalamic-pituitary-adrenal axis. Therefore, proteomic studies of the pituitary gland have the potential to provide new insights into the underlying pathways affected in these conditions as well as identify new biomarkers or targets for use in developing improved medications. This chapter describes a protocol for preparation of pituitary protein extracts followed by characterization of the pituitary proteome by label-free liquid chromatography-tandem mass spectrometry in expression mode (LC-MS E ). The main focus was on establishing a method for identifying the major pituitary hormones and accessory proteins as many of these have already been implicated in psychiatric diseases.
Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials
NASA Astrophysics Data System (ADS)
Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai
2016-03-01
We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.
Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions
NASA Astrophysics Data System (ADS)
Goodman, Samuel Martin
The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the use of cadmium telluride quantum dots as light-activated therapeutics for treating multi-drug resistant bacterial infectoins. A review of the physiological effects of cadmium chalcogenide quantum dots is first presented in Chapter 5 which provides a foundation for understanding the inherent toxicity of these materials. The phototoxic effect induced by CdTe quantum dots is then introduced in Chapter 6 showing the reduction in growth of gram-negative bacteria. Additional insight is provided in Chapter 7 which discusses the therapeutic mechanism and the oxygen-centered radical species which are formed by the application of light in aqueous media. The section closes with Chapter 8 describing efforts to improve the stability and bio-compatibility of the dots using various surface treatments, and shows that stability can be improved by the passivation of the quantum dots' anionic facets, though at the cost of overall radical generation.
Proteomics of ovarian cancer: functional insights and clinical applications
Elzek, Mohamed A.; Rodland, Karin D.
2015-03-04
In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification ofmore » aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.« less
Wierer, Michael; Prestel, Matthias; Schiller, Herbert B; Yan, Guangyao; Schaab, Christoph; Azghandi, Sepiede; Werner, Julia; Kessler, Thorsten; Malik, Rainer; Murgia, Marta; Aherrahrou, Zouhair; Schunkert, Heribert; Dichgans, Martin; Mann, Matthias
2018-02-01
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Wierer, Michael; Prestel, Matthias; Schiller, Herbert B.; Yan, Guangyao; Schaab, Christoph; Azghandi, Sepiede; Werner, Julia; Kessler, Thorsten; Malik, Rainer; Murgia, Marta; Aherrahrou, Zouhair; Schunkert, Heribert; Dichgans, Martin; Mann, Matthias
2018-01-01
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function. PMID:29208753
Purification and fractionation of membranes for proteomic analyses.
Marmagne, Anne; Salvi, Daniel; Rolland, Norbert; Ephritikhine, Geneviève; Joyard, Jacques; Barbier-Brygoo, Hélène
2006-01-01
Proteomics is a very powerful approach to link the information contained in sequenced genomes, such as Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. However, membrane proteomics remains a challenge. One way to bring into view the complex mixture of proteins present in a membrane is to develop proteomic analyses based on (1) the use of highly purified membrane fractions and (2) fractionation of membrane proteins to retrieve as many proteins as possible (from the most to the less hydrophobic ones). To illustrate such strategies, we choose two types of membranes, the plasma membrane and the chloroplast envelope membranes. Both types of membranes can be prepared in a reasonable degree of purity from different types of tissues: the plasma membrane from cultured cells and the chloroplast envelope membrane from whole plants. This article is restricted to the description of methods for the preparation of highly purified and characterized plant membrane fractions and the subsequent fractionation of these membrane proteins according to simple physicochemical criteria (i.e., chloroform/methanol extraction, alkaline or saline treatments) for further analyses using modern proteomic methodologies.
Gallo, Juan; Cerqueira, María de Fátima; Menéndez-Miranda, Mario; Costa-Fernández, José Manuel; Diéguez, Lorena; Espiña, Begoña
2018-01-01
Carbon dots have demonstrated great potential as luminescent nanoparticles in bioapplications. Although such nanoparticles appear to exhibit low toxicity compared to other metal luminescent nanomaterials, today we know that the toxicity of carbon dots (C-dots) strongly depends on the protocol of fabrication. In this work, aqueous fluorescent C-dots have been synthesized from cinnamon, red chilli, turmeric and black pepper, by a one-pot green hydrothermal method. The synthesized C-dots were firstly characterized by means of UV–vis, fluorescence, Fourier transform infrared and Raman spectroscopy, dynamic light scattering and transmission electron microscopy. The optical performance showed an outstanding ability for imaging purposes, with quantum yields up to 43.6%. Thus, the cytotoxicity of the above mentioned spice-derived C-dots was evaluated in vitro in human glioblastoma cells (LN-229 cancer cell line) and in human kidney cells (HK-2 non-cancerous cell line). Bioimaging and viability studies were performed with different C-dot concentrations from 0.1 to 2 mg·mL−1, exhibiting a higher uptake of C-dots in the cancer cultures compared to the non-cancerous cells. Results showed that the spice-derived C-dots inhibited cell viability dose-dependently after a 24 h incubation period, displaying a higher toxicity in LN-229, than in HK-2 cells. As a control, C-dots synthesized from citric acid did not show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the surface of the C-dots might be responsible for the selective cytotoxicity, as suggested by the presence of piperine in the surface of black pepper C-dots analysed by ESI-QTOF-MS. PMID:29527430
Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus
2014-01-01
The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
Si/SiGe quadruple quantum dots with direct barrier gates
NASA Astrophysics Data System (ADS)
Ward, Daniel; Gamble, John; Foote, Ryan; Savage, Donald; Lagally, Max; Coppersmith, Susan; Eriksson, Mark
2014-03-01
We have fabricated a quadruple quantum dot in a Si/SiGe heterostructure with the aim of demonstrating a two-qubit quantum gate. This device makes use of direct barrier gates, in which individual gates are placed directly over the quantum dots and tunnel barriers. This design enables rational control of both energies and tunnel rates in coupled quantum dots. In this talk we discuss the design, fabrication, and initial characterization of the device. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidicmore » channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.« less
Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S
2013-01-04
We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation.
Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1
Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione
2007-01-01
The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555
Lorenzatto, Karina R; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P; Camargo de Lima, Jeferson; Thomas, Paul M; Kelleher, Neil L; Ferreira, Henrique B
2015-11-06
Echinococcus granulosus is the causative agent of cystic hydatid disease, a neglected zoonosis responsible for high morbidity and mortality. Several molecular mechanisms underlying parasite biology remain poorly understood. Here, E. granulosus subcellular fractions were analyzed by top down and bottom up proteomics for protein identification and characterization of co-translational and post-translational modifications (CTMs and PTMs, respectively). Nuclear and cytosolic extracts of E. granulosus protoscoleces were fractionated by 10% GELFrEE and proteins under 30 kDa were analyzed by LC-MS/MS. By top down analysis, 186 proteins and 207 proteoforms were identified, of which 122 and 52 proteoforms were exclusively detected in nuclear and cytosolic fractions, respectively. CTMs were evident as 71% of the proteoforms had methionine excised and 47% were N-terminal acetylated. In addition, in silico internal acetylation prediction coupled with top down MS allowed the characterization of 9 proteins differentially acetylated, including histones. Bottom up analysis increased the overall number of identified proteins in nuclear and cytosolic fractions to 154 and 112, respectively. Overall, our results provided the first description of the low mass proteome of E. granulosus subcellular fractions and highlighted proteoforms with CTMs and PTMS whose characterization may lead to another level of understanding about molecular mechanisms controlling parasitic flatworm biology.
Application of targeted proteomics to metabolically engineered Escherichia coli.
Singh, Pragya; Batth, Tanveer S; Juminaga, Darmawi; Dahl, Robert H; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J
2012-04-01
As synthetic biology matures to compete with chemical transformation of commodity and high-value compounds, a wide variety of well-characterized biological parts are needed to facilitate system design. Protein quantification based on selected-reaction monitoring (SRM) mass spectrometry compliments metabolite and transcript analysis for system characterization and optimizing flux through engineered pathways. By using SRM quantification, we assayed red fluorescent protein (RFP) expressed from plasmids containing several inducible and constitutive promoters and subsequently assessed protein production from the same promoters driving expression of eight mevalonate pathway proteins in Escherichia coli. For each of the promoter systems, the protein level for the first gene in the operon followed that of RFP, however, the levels of proteins produced from genes farther from the promoter were much less consistent. Second, we used targeted proteomics to characterize tyrosine biosynthesis pathway proteins after removal of native regulation. The changes were not expected to cause significant impact on protein levels, yet significant variation in protein abundance was observed and tyrosine production for these strains spanned a range from less than 1 mg/L to greater than 250 mg/L. Overall, our results underscore the importance of targeted proteomics for determining accurate protein levels in engineered systems and fine-tuning metabolic pathways. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.
Holland, Ashling
2018-01-01
Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.
Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L
2010-07-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Integration of cardiac proteome biology and medicine by a specialized knowledgebase.
Zong, Nobel C; Li, Haomin; Li, Hua; Lam, Maggie P Y; Jimenez, Rafael C; Kim, Christina S; Deng, Ning; Kim, Allen K; Choi, Jeong Ho; Zelaya, Ivette; Liem, David; Meyer, David; Odeberg, Jacob; Fang, Caiyun; Lu, Hao-Jie; Xu, Tao; Weiss, James; Duan, Huilong; Uhlen, Mathias; Yates, John R; Apweiler, Rolf; Ge, Junbo; Hermjakob, Henning; Ping, Peipei
2013-10-12
Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10,924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.
Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.
2010-01-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087
Redox Proteomics: A Key Tool for New Insights into Protein Modification with Relevance to Disease.
Butterfield, D Allan; Perluigi, Marzia
2017-03-01
Oxidatively modified proteins are characterized by elevations in protein-resident carbonyls or 3-nitrotyrosine, measures of protein oxidation, or protein bound reactive alkenals such as 4-hydroxy-2-nonenal, a measure of lipid peroxidation. Oxidatively modified proteins nearly always have altered structure and function. Redox proteomics is that branch of proteomics used to identify oxidized proteins and determine the extent and location of oxidative modifications in the proteomes of interest. This technique nearly always employs mass spectrometry as the major platform to achieve the goals of identifying the target proteins. Once identified, oxidatively modified proteins can be placed in specific molecular pathways to provide insights into protein oxidation and human disease. Both original research and review articles are included in this Forum on Redox Proteomics. The topics related to redox proteomics range from basic chemistry of sulfur radical-induced redox modifications in proteins, to the thiol secretome and inflammatory network, to reversible thiol oxidation in proteomes, to the role of glutamine synthetase in peripheral and central environments on inflammation and insulin resistance, to bioanalytical aspects of tyrosine nitrated proteins, to protein oxidation in human smokers and models thereof, and to Alzheimer disease, including articles on the brain ubiquitinylome and the "triangle of death" composed of oxidatively modified proteins involved in energy metabolism, mammalian target of rampamycin activation, and the proteostasis network. This Forum on Redox Proteomics is both timely and a critically important resource to highlight one of the key tools needed to better understand protein structure and function in oxidative environments in health and disease. Antioxid. Redox Signal. 26, 277-279.
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; ...
2016-04-29
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei
2014-01-01
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661
Yu, Zhiyuan; Kong, Qun; Kone, Bruce C
2010-03-01
Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.
Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P
2017-09-01
An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-assembled InN quantum dots on side facets of GaN nanowires
NASA Astrophysics Data System (ADS)
Bi, Zhaoxia; Ek, Martin; Stankevic, Tomas; Colvin, Jovana; Hjort, Martin; Lindgren, David; Lenrick, Filip; Johansson, Jonas; Wallenberg, L. Reine; Timm, Rainer; Feidenhans'l, Robert; Mikkelsen, Anders; Borgström, Magnus T.; Gustafsson, Anders; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars
2018-04-01
Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (…ABABCBC…) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.
NASA Astrophysics Data System (ADS)
Maiseyeu, Andrei; Bagalkot, Vaishali
2014-04-01
A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).
Peptide Coated Quantum Dots for Biological Applications
Iyer, Gopal; Pinaud, Fabien; Tsay, James; Li, Jack J.; Bentolila, Laurent A.; Michalet, Xavier; Weiss, Shimon
2011-01-01
Quantum dots (QDOTs) have been widely recognized by the scientific community and the biotechnology industry, as witnessed by the exponential growth of this field in the past several years. We describe the synthesis and characterization of visible and near infrared QDots—a critical step for engineering organic molecules like proteins and peptides for building nanocomposite materials with multifunctional properties suitable for biological applications. PMID:17181021
Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B
2010-10-01
The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.
Proteomic and genomic characterization of a yeast model for Ogden syndrome
Dörfel, Max J.; Fang, Han; Crain, Jonathan; Klingener, Michael; Weiser, Jake
2016-01-01
Abstract Naa10 is an Nα‐terminal acetyltransferase that, in a complex with its auxiliary subunit Naa15, co‐translationally acetylates the α‐amino group of newly synthetized proteins as they emerge from the ribosome. Roughly 40–50% of the human proteome is acetylated by Naa10, rendering this an enzyme one of the most broad substrate ranges known. Recently, we reported an X‐linked disorder of infancy, Ogden syndrome, in two families harbouring a c.109 T > C (p.Ser37Pro) variant in NAA10. In the present study we performed in‐depth characterization of a yeast model of Ogden syndrome. Stress tests and proteomic analyses suggest that the S37P mutation disrupts Naa10 function and reduces cellular fitness during heat shock, possibly owing to dysregulation of chaperone expression and accumulation. Microarray and RNA‐seq revealed a pseudo‐diploid gene expression profile in ΔNaa10 cells, probably responsible for a mating defect. In conclusion, the data presented here further support the disruptive nature of the S37P/Ogden mutation and identify affected cellular processes potentially contributing to the severe phenotype seen in Ogden syndrome. Data are available via GEO under identifier GSE86482 or with ProteomeXchange under identifier PXD004923. © 2016 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:27668839
Intermittent regime of brain activity at the early, bias-guided stage of perceptual learning.
Nikolaev, Andrey R; Gepshtein, Sergei; van Leeuwen, Cees
2016-11-01
Perceptual learning improves visual performance. Among the plausible mechanisms of learning, reduction of perceptual bias has been studied the least. Perceptual bias may compensate for lack of stimulus information, but excessive reliance on bias diminishes visual discriminability. We investigated the time course of bias in a perceptual grouping task and studied the associated cortical dynamics in spontaneous and evoked EEG. Participants reported the perceived orientation of dot groupings in ambiguous dot lattices. Performance improved over a 1-hr period as indicated by the proportion of trials in which participants preferred dot groupings favored by dot proximity. The proximity-based responses were compromised by perceptual bias: Vertical groupings were sometimes preferred to horizontal ones, independent of dot proximity. In the evoked EEG activity, greater amplitude of the N1 component for horizontal than vertical responses indicated that the bias was most prominent in conditions of reduced visual discriminability. The prominence of bias decreased in the course of the experiment. Although the bias was still prominent, prestimulus activity was characterized by an intermittent regime of alternating modes of low and high alpha power. Responses were more biased in the former mode, indicating that perceptual bias was deployed actively to compensate for stimulus uncertainty. Thus, early stages of perceptual learning were characterized by episodes of greater reliance on prior visual preferences, alternating with episodes of receptivity to stimulus information. In the course of learning, the former episodes disappeared, and biases reappeared only infrequently.
Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots
Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel
2013-01-01
A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661
Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M
2018-03-28
Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.
Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes
Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.
2009-01-01
Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702
Characterization of the Proteome of Theobroma cacao Beans by Nano-UHPLC-ESI MS/MS.
Scollo, Emanuele; Neville, David; Oruna-Concha, M Jose; Trotin, Martine; Cramer, Rainer
2018-02-01
Cocoa seed storage proteins play an important role in flavour development as aroma precursors are formed from their degradation during fermentation. Major proteins in the beans of Theobroma cacao are the storage proteins belonging to the vicilin and albumin classes. Although both these classes of proteins have been extensively characterized, there is still limited information on the expression and abundance of other proteins present in cocoa beans. This work is the first attempt to characterize the whole cocoa bean proteome by nano-UHPLC-ESI MS/MS analysis using tryptic digests of cocoa bean protein extracts. The results of this analysis show that >1000 proteins could be identified using a species-specific Theobroma cacao database. The majority of the identified proteins were involved with metabolism and energy. Additionally, a significant number of the identified proteins were linked to protein synthesis and processing. Several proteins were also involved with plant response to stress conditions and defence. Albumin and vicilin storage proteins showed the highest intensity values among all detected proteins, although only seven entries were identified as storage proteins. A comparison of MS/MS data searches carried out against larger non-specific databases confirmed that using a species-specific database can increase the number of identified proteins, and at the same time reduce the number of false positives. The results of this work will be useful in developing tools that can allow the comparison of the proteomic profile of cocoa beans from different genotypes and geographic origins. Data are available via ProteomeXchange with identifier PXD005586. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Horn, Signe; Kirkegaard, Jeannette S; Hoelper, Soraya; Seymour, Philip A; Rescan, Claude; Nielsen, Jens H; Madsen, Ole D; Jensen, Jan N; Krüger, Marcus; Grønborg, Mads; Ahnfelt-Rønne, Jonas
2016-01-01
Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of β-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.
NCI's Antibody Characterization Program provides reagents and other critical resources to support protein/peptide measurements and analysis. In an effort to produce and distribute well-characterized monoclonal antibodies to the scientific community, the program is seeking cancer related protein targets for antibody production and characterization for distribution to the research community. Submission Period: May 20, 2011 - July 1, 2011.
NASA Astrophysics Data System (ADS)
Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan
2016-03-01
Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM+ on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 +/- 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM+ on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 +/- 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection. Electronic supplementary information (ESI) available: Fig. S1. TEM image of the products generated via an electrochemical method using pure BMIMBF4 aqueous solution as the electrolyte; Fig. S2. TEM and HRTEM (inset) images of the water-dispersed solution of C-dots generated from the EC process using electrolytes with a BMIMPF6/3-methylaminopropionitrile volume ratio of 1 : 9 Fig. S3. The effect of pH on the fluorescence intensity (I) of the C-dots; experimental details for detection of Fe3+ in tap water; Fig. S4. Calibration curve for detection of Fe3+ in tap water using the standard addition method. See DOI: 10.1039/c6nr00023a
Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar
2017-11-01
Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Ehwang; Gao, Yuqian; Wu, Chaochao
Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less
Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma
2013-01-04
One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.
Final Report: Proteomic study of brassinosteroid responses in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiyong; Burlingame, Alma
2017-11-29
The steroid hormone brassinosteroid (BR) is a major growth-promoting phytohormone. The specific aim of the current project is to identify BR-regulated proteins and characterize their functions in various aspects of plant growth, development, and adaptation. Our research has significantly advanced our understanding of how BR signal is transduced from the receptor at the cell surface to changes of nuclear gene expression and other cellular responses such as vesicle trafficking, as well as developmental transitions such as seed germination and flowering. We have also developed effective proteomic methods for quantitative analysis of protein phosphorylation and for identification of glycosylated proteins. Throughmore » this DOE funding, we have performed several proteomic experiments and made major discoveries.« less
Rappoport, Nadav; Linial, Michal
2015-08-07
Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.
Erogbogbo, Folarin; May, Jasmine; Swihart, Mark; Prasad, Paras N.; Smart, Katie; Jack, Seif El; Korcyk, Dariusz; Webster, Mark; Stewart, Ralph; Zeng, Irene; Jullig, Mia; Bakeev, Katherine; Jamieson, Michelle; Kasabov, Nikolas; Gopalan, Banu; Liang, Linda; Hu, Raphael; Schliebs, Stefan; Villas-Boas, Silas; Gladding, Patrick
2013-01-01
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment. PMID:24019856
Synthesis and characterization of graphene quantum dots-silver nanocomposites
NASA Astrophysics Data System (ADS)
Vandana, M.; Ashokkumar, S. P.; Vijeth, H.; Niranjana, M.; Yesappa, L.; Devendrappa, H.
2018-04-01
A facile microwave assisted hydrothermal method is used to synthesise glucose derived water soluble crystalline graphene quantum dots (GQDs) andcitrate reduction method was used to synthesized silver nanoparticles (SNPs). The formation of graphene quantum dots-silver nanocomposites (GSC) was synthesized through a simple refluxing process and characterised using Fourier Transform Infrared (FT-IR) to study the chemical interaction, Surface morphology using FESEM, Optical properties were studied using UV-Visible spectroscopy. The absorption band shows at 249, 306 and 447 nm confirms the formation of GQDs and GSC. The electrochemical performance of GSC tested to determine the oxidation/reduction processes by cyclic voltammetry and linear sweep voltammetry.
Antibody Scientific Committee | Office of Cancer Clinical Proteomics Research
The Antibody Scientific Committee provides scientific insight and guidance to the NCI's Antibody Characterization Program. Specifically, the members of this committee evaluate request from the external scientific community for development and characterization of antibodies by the program. The members of the Antibody Scientific Committee include:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weckwerth, Wolfram; Baginsky, Sacha; Van Wijk, Klass
2009-12-01
In the past 10 years, we have witnessed remarkable advances in the field of plant molecular biology. The rapid development of proteomic technologies and the speed with which these techniques have been applied to the field have altered our perception of how we can analyze proteins in complex systems. At nearly the same time, the availability of the complete genome for the model plant Arabidopsis thaliana was released; this effort provides an unsurpassed resource for the identification of proteins when researchers use MS to analyze plant samples. Recognizing the growth in this area, the Multinational Arabidopsis Steering Committee (MASC) establishedmore » a subcommittee for A. thaliana proteomics in 2006 with the objective of consolidating databases, technique standards, and experimentally validated candidate genes and functions. Since the establishment of the Multinational Arabidopsis Steering Subcommittee for Proteomics (MASCP), many new approaches and resources have become available. Recently, the subcommittee established a webpage to consolidate this information (www.masc-proteomics.org). It includes links to plant proteomic databases, general information about proteomic techniques, meeting information, a summary of proteomic standards, and other relevant resources. Altogether, this website provides a useful resource for the Arabidopsis proteomics community. In the future, the website will host discussions and investigate the cross-linking of databases. The subcommittee members have extensive experience in arabidopsis proteomics and collectively have produced some of the most extensive proteomics data sets for this model plant (Table S1 in the Supporting Information has a list of resources). The largest collection of proteomics data from a single study in A. thaliana was assembled into an accessible database (AtProteome; http://fgcz-atproteome.unizh.ch/index.php) and was recently published by the Baginsky lab.1 The database provides links to major Arabidopsis online resources, and raw data have been deposited in PRIDE and PRIDE BioMart. Included in this database is an Arabidopsis proteome map that provides evidence for the expression of {approx}50% of all predicted gene models, including several alternative gene models that are not represented in The Arabidopsis Information Resource (TAIR) protein database. A set of organ-specific biomarkers is provided, as well as organ-specific proteotypic peptides for 4105 proteins that can be used to facilitate targeted quantitative proteomic surveys. In the future, the AtProteome database will be linked to additional existing resources developed by MASCP members, such as PPDB, ProMEX, and SUBA. The most comprehensive study on the Arabidopsis chloroplast proteome, which includes information on chloroplast sorting signals, posttranslational modifications (PTMs), and protein abundances (analyzed by high-accuracy MS [Orbitrap]), was recently published by the van Wijk lab.2 These and previous data are available via the plant proteome database (PPDB; http://ppdb.tc.cornell.edu) for A. thaliana and maize. PPDB provides genome-wide experimental and functional characterization of the A. thaliana and maize proteomes, including PTMs and subcellular localization information, with an emphasis on leaf and plastid proteins. Maize and Arabidopsis proteome entries are directly linked via internal BLAST alignments within PPDB. Direct links for each protein to TAIR, SUBA, ProMEX, and other resources are also provided.« less
Morgon, Adriano M; Belisario-Ferrari, Matheus R; Trevisan-Silva, Dilza; Meissner, Gabriel O; Vuitika, Larissa; Marin, Brenda; Tashima, Alexandre K; Gremski, Luiza H; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio S; Chaim, Olga M
2016-01-01
Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2-40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like protease 1) has been characterized. Herein, we characterized LALP3 as a novel recombinant astacin-like metalloprotease isoform from Loxosceles intermedia venom. LALP3 cDNA was cloned in pET-SUMO vector, and its soluble heterologous expression was performed using a SUMO tag added to LALP3 to achieve solubility in Escherichia coli SHuffle T7 Express LysY cells, which express the disulfide bond isomerase DsbC. Protein purification was conducted by Ni-NTA Agarose resin and assayed for purity by SDS-PAGE under reducing conditions. Immunoblotting analyses were performed with specific antibodies recognizing LALP1 and whole venom. Western blotting showed linear epitopes from recombinant LALP3 that cross-reacted with LALP1, and dot blotting revealed conformational epitopes with native venom astacins. Mass spectrometry analysis revealed that the recombinant expressed protein is an astacin-like metalloprotease from L. intermedia venom. Furthermore, molecular modeling of LALP3 revealed that this isoform contains the zinc binding and Met-turn motifs, forming the active site, as has been observed in astacins. These data confirmed that LALP3, which was successfully obtained by heterologous expression using a prokaryote system, is a new astacin-like metalloprotease isoform present in L. intermedia venom. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles
2014-11-07
Theoretical studies of spin- photon entangled complementarity”. Mr. Anderson Hayes in physics finished B.S. degree in May 2013 with a capstone thesis entitled...working on “Semiconductor quantum dots and photon entanglement ”. Mr. Quinn Allen Hailes, undergraduate student in physics completed B.S. degree in...great interests for the Department of Defense’s (DoD) photonic applications. Our research focused on developing and characterizing advanced optical
Pascual, Jesús; Alegre, Sara; Nagler, Matthias; Escandón, Mónica; Annacondia, María Luz; Weckwerth, Wolfram; Valledor, Luis; Cañal, María Jesús
2016-06-30
The importance of UV stress and its side-effects over the loss of plant productivity in forest species demands a deeper understanding of how pine trees respond to UV irradiation. Although the response to UV stress has been characterized at system and cellular levels, the dynamics within the nuclear proteome triggered by UV is still unknown despite that they are essential for gene expression and regulation of plant physiology. To fill this gap this work aims to characterize the variations in the nuclear proteome as a response to UV irradiation by using state-of-the-art mass spectrometry-based methods combined with novel bioinformatics workflows. The combination of SEQUEST, de novo sequencing, and novel annotation pipelines allowed cover sensing and transduction pathways, endoplasmic reticulum-related mechanisms and the regulation of chromatin dynamism and gene expression by histones, histone-like NF-Ys, and other transcription factors previously unrelated to this stress source, as well as the role of alternative splicing and other mechanisms involved in RNA translation and protein synthesis. The determination of 33 transcription factors, including NF-YB13, Pp005698_3 (NF-YB) and Pr009668_2 (WD-40), which are correlated to stress responsive mechanisms like an increased accumulation of photoprotective pigments and reduced photosynthesis, pointing them as strong candidate biomarkers for breeding programs aimed to improve UV resistance of pine trees. The description of the nuclear proteome of Pinus radiata combining a classic approach based on the use of SEQUEST and the use of a mass accuracy precursor alignment (MAPA) allowed an unprecedented protein coverage. This workflow provided the methodological basis for characterizing the changes in the nuclear proteome triggered by UV irradiation, allowing the depiction of the nuclear events involved in stress response and adaption. The relevance of some of the discovered proteins will suppose a major advance in stress biology field, also providing a set of transcription factors that can be considered as strong biomarker candidates to select trees more tolerant to UV radiation in forest upgrade programs. Copyright © 2016 Elsevier B.V. All rights reserved.
High-Throughput Cloning and Expression Library Creation for Functional Proteomics
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-01-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzek, Mohamed A.; Rodland, Karin D.
In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification ofmore » aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.« less
The proteomic landscape of triple-negative breast cancer.
Lawrence, Robert T; Perez, Elizabeth M; Hernández, Daniel; Miller, Chris P; Haas, Kelsey M; Irie, Hanna Y; Lee, Su-In; Blau, C Anthony; Villén, Judit
2015-04-28
Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A draft map of the mouse pluripotent stem cell spatial proteome
Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.
2016-01-01
Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106
Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.
Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae; Johnson, Jeffery; Jungnickel, Melissa K; Choksi, Semil P; Garcia, Galo; Busengdal, Henriette; Dougherty, Gerard W; Pennekamp, Petra; Werner, Claudius; Rentzsch, Fabian; Florman, Harvey M; Krogan, Nevan; Wallingford, John B; Omran, Heymut; Reiter, Jeremy F
2017-12-18
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L.; Dianes, José A.; del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W.; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-01-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra. PMID:27493588
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L; Dianes, José A; Del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-08-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
Characterization of proteomic and metabolomic responses to dietary factors and supplements.
Astle, John; Ferguson, Jonathan T; German, J Bruce; Harrigan, George G; Kelleher, Neil L; Kodadek, Thomas; Parks, Bryan A; Roth, Michael J; Singletary, Keith W; Wenger, Craig D; Mahady, Gail B
2007-12-01
Over the past decade there has been a renewed interest in research and development of both dietary and nutritional supplements. Significant advancements have been made in the scientific assessment of the quality, safety, and efficacy of these products because of the strong interest in and financial support of these projects. As research in both fields continues to advance, opportunities to use new and innovative research technologies and methodologies, such as proteomics and metabolomics, are critical for the future progress of the science. The purpose of the symposium was to begin the process of communicating new innovative proteomic and metabolomic methodologies that may be applied by researchers in both the nutrition and the natural product communities. This symposium highlighted 2 proteomic approaches, protein fingerprinting in complex mixtures with peptoid microarrays and top-down mass spectrometry for annotation of gene products. Likewise, an overview of the methodologies used in metabolomic profiling of natural products was presented, and an illustration of an integrated metabolomics approach in nutrition research was highlighted.
High-throughput cloning and expression library creation for functional proteomics.
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-05-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Ge; Guo, Yuming; Yang, Gai; Yang, Lin; Ma, Xiaoming; Wang, Kui; Zhu, Lin; Sun, Jiaojiao; Wang, Xiaobing; Zhang, Hua
2016-08-01
The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including “p38 MAPK Signaling”, “p53 Signaling”, “14-3-3-mediated Signaling”, “p70S6K Signaling” and “Protein Ubiquitination Pathway”. This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells.
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2018-04-01
Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.
Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit
2018-04-01
Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.
Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa
2014-08-14
Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.
Antibody Portal | Office of Cancer Clinical Proteomics Research
Central to reproducibility in biomedical research is being able to use well-characterized and defined reagents. The CPTAC Antibody Portal serves as a National Cancer Institute (NCI) community resource that provides access to a large number of standardized renewable affinity reagents (to cancer-associated targets) and accompanying characterization data.
FAQs | Office of Cancer Clinical Proteomics Research
What makes an assay “CPTAC Characterized?” As described in the Assay Characterization Guidance, an assay receives a “CPTAC characterized” stamp of approval if it satisfies the following criteria: Experiments 1 and 2 are required for upload of assays into the portal. Other experiments are optional but highly encouraged.
Dosimetric characterization of a new directional low-dose rate brachytherapy source.
Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S
2018-05-24
CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.
The Impact of the Glomerular Filtration Rate on the Human Plasma Proteome.
Christensson, Anders; Ash, Jessica A; DeLisle, Robert K; Gaspar, Fraser W; Ostroff, Rachel; Grubb, Anders; Lindström, Veronica; Bruun, Laila; Williams, Steve A
2018-05-01
The application of proteomics in chronic kidney disease (CKD) can potentially uncover biomarkers and pathways that are predictive of disease. Within this context, this study examines the relationship between the human plasma proteome and glomerular filtration rate (GFR) as measured by iohexol clearance in a cohort from Sweden (n = 389; GFR range: 8-100 mL min -1 /1.73 m 2 ). A total of 2893 proteins are quantified using a modified aptamer assay. A large proportion of the proteome is associated with GFR, reinforcing the concept that CKD affects multiple physiological systems (individual protein-GFR correlations listed here). Of these, cystatin C shows the most significant correlation with GFR (rho = -0.85, p = 1.2 × 10 -97 ), establishing strong validation for the use of this biomarker in CKD diagnostics. Among the other highly significant protein markers are insulin-like growth factor-binding protein 6, neuroblastoma suppressor of tumorigenicity 1, follistatin-related protein 3, trefoil factor 3, and beta-2 microglobulin. These proteins may indicate an imbalance in homeostasis across a variety of cellular processes, which may be underlying renal dysfunction. Overall, this study represents the most extensive characterization of the plasma proteome and its relation to GFR to date, and suggests the diagnostic and prognostic value of proteomics for CKD across all stages. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shui, Wenqing; Xiong, Yun; Xiao, Weidi; Qi, Xianni; Zhang, Yong; Lin, Yuping; Guo, Yufeng; Zhang, Zhidan; Wang, Qinhong; Ma, Yanhe
2015-01-01
Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering. PMID:25926660
Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun
2013-04-05
To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.
Simats, Alba; García-Berrocoso, Teresa; Ramiro, Laura; Giralt, Dolors; Gill, Natalia; Penalba, Anna; Bustamante, Alejandro; Rosell, Anna; Montaner, Joan
2018-05-21
The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.
Runau, Franscois; Arshad, Ali; Isherwood, John; Norris, Leonie; Howells, Lynne; Metcalfe, Matthew; Dennison, Ashley
2015-06-01
Pancreatic cancer is a disease with a significantly poor prognosis. Despite modern advances in other medical, surgical, and oncologic therapy, the outcome from pancreatic cancer has improved little over the last 40 years. To improve the management of this difficult disease, trials investigating the use of dietary and parenteral fish oils rich in omega-3 (ω-3) fatty acids, exhibiting proven anti-inflammatory and anticarcinogenic properties, have revealed favorable results in pancreatic cancers. Proteomics is the large-scale study of proteins that attempts to characterize the complete set of proteins encoded by the genome of an organism and that, with the use of sensitive mass spectrometric-based techniques, has allowed high-throughput analysis of the proteome to aid identification of putative biomarkers pertinent to given disease states. These biomarkers provide useful insight into potentially discovering new markers for early detection or elucidating the efficacy of treatment on pancreatic cancers. Here, our review identifies potential proteomic-based biomarkers in pancreatic cancer relating to apoptosis, cell proliferation, angiogenesis, and metabolic regulation in clinical studies. We also reviewed proteomic biomarkers from the administration of ω-3 fatty acids that act on similar anticarcinogenic pathways as above and reflect that proteomic studies on the effect of ω-3 fatty acids in pancreatic cancer will yield favorable results. © 2015 American Society for Parenteral and Enteral Nutrition.
Proteomic insights into floral biology.
Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng
2016-08-01
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Trap elimination and reduction of size dispersion due to aging in CdS x Se1- x quantum dots
NASA Astrophysics Data System (ADS)
Verma, Abhishek; Nagpal, Swati; Pandey, Praveen K.; Bhatnagar, P. K.; Mathur, P. C.
2007-12-01
Quantum Dots of CdS x Se1- x embedded in borosilicate glass matrix have been grown using Double-Step annealing method. Optical characterization of the quantum dots has been done through the combinative analysis of optical absorption and photoluminescence spectroscopy at room temperature. Decreasing trend of photoluminescence intensity with aging has been observed and is attributed to trap elimination. The changes in particle size, size distribution, number of quantum dots, volume fraction, trap related phenomenon and Gibbs free energy of quantum dots, has been explained on the basis of the diffusion-controlled growth process, which continues with passage of time. For a typical case, it was found that after 24 months of aging, the average radii increased from 3.05 to 3.12 nm with the increase in number of quantum dots by 190% and the size-dispersion decreased from 10.8% to 9.9%. For this sample, the initial size range of the quantum dots was 2.85 to 3.18 nm. After that no significant change was found in these parameters for the next 12 months. This shows that the system attains almost a stable nature after 24 months of aging. It was also observed that the size-dispersion in quantum dots reduces with the increase in annealing duration, but at the cost of quantum confinement effect. Therefore, a trade off optimization has to be done between the size-dispersion and the quantum confinement.
Kotagiri, Nalinikanth; Li, Zhenyu; Xu, Xiaoxiao; Mondal, Suman; Nehorai, Arye; Achilefu, Samuel
2014-07-16
Antibody-based proteomics is an enabling technology that has significant implications for cancer biomarker discovery, diagnostic screening, prognostic and pharmacodynamic evaluation of disease state, and targeted therapeutics. Quantum dot based fluoro-immunoconjugates possess promising features toward realization of this goal such as high photostability, brightness, and multispectral tunability. However, current strategies to generate such conjugates are riddled with complications such as improper orientation of antigen binding sites of the antibody, aggregation, and stability issues. We report a facile yet effective strategy to conjugate anti-epidermal growth factor receptor (EGFR) antibody to quantum dots using copper-free click reaction, and compared them to similar constructs prepared using traditional strategies such as succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) and biotin-streptavidin schemes. The Fc and Fab regions of the conjugates retain their binding potential, compared to those generated through the traditional schemes. We further applied the conjugates in testing a novel microsphere array device designed to carry out sensitive detection of cancer biomarkers through fluoroimmunoassays. Using purified EGFR, we determined the limit of detection of the microscopy centric system to be 12.5 ng/mL. The biological assay, in silico, was successfully tested and validated by using tumor cell lysates, as well as human serum from breast cancer patients, and the results were compared to normal serum. A pattern consistent with established clinical data was observed, which further validates the effectiveness of the developed conjugates and its successful implementation both in vitro as well as in silico fluoroimmunoassays. The results suggest the potential development of a high throughput in silico paradigm for predicting the class of patient cancer based on EGFR expression levels relative to normal reference levels in blood.
Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots
NASA Astrophysics Data System (ADS)
Gonzales, Gavin P.; Alas, Gema; Senthil, Arjun; Withers, Nathan J.; Minetos, Christina; Sandoval, Alejandro; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Osiński, Marek
2018-02-01
Quantum dots (QDs) emitting in the visible are of interest for many biomedical applications, including bioimaging, biosensing, drug targeting, and photodynamic therapy. However, a significant limitation is that QDs typically contain cadmium, which makes prospects for their FDA approval very unlikely. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have also been shown to be cytotoxic. High-efficiency luminescent ZnTe-based QDs could be a reasonable alternative to Cd-containing QDs. In this paper, we present preliminary results of our recent studies of ZnTe-based QDs, including their synthesis, structural characterization, and optical properties.
Liu, Huiyan; Dong, Qian; Lopez, Rene
2018-05-18
The oxidation speed of PbS quantum dots has been a subject of controversy for some time. In this study, we reveal the precise functional form of the oxidation rate constant for bare quantum dots through analysis of their photoluminescence as a function of temperature, oxygen pressure, and excitation-laser intensity. The combined effect of these factors results in a reduced energy barrier that allows the oxidation to proceed at a high rate. Each absorbed photon is found to have a 10 -8 probability of oxidizing a PbS atomic pair. This highlights the importance of photo-excitation on the speed of the oxidation process, even at low illumination conditions. The procedure used here may set up a quantitative standard useful for characterizing the stability of quantum dots coated with ligands/linkers, and to compare different protection schemes in a fair quantitative way.
Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N; Swihart, Mark T
2010-09-28
Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.
DelVecchio, Vito G; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy A; Kraycer, Jo Ann; Estock, Frank; Elzer, Phil; Mujer, Cesar V
2002-12-20
The proteomes of selected Brucella spp. have been extensively analyzed by utilizing current proteomic technology involving 2-DE and MALDI-MS. In Brucella melitensis, more than 500 proteins were identified. The rapid and large-scale identification of proteins in this organism was accomplished by using the annotated B. melitensis genome which is now available in the GenBank. Coupled with new and powerful tools for data analysis, differentially expressed proteins were identified and categorized into several classes. A global overview of protein expression patterns emerged, thereby facilitating the simultaneous analysis of different metabolic pathways in B. melitensis. Such a global characterization would not have been possible by using time consuming and traditional biochemical approaches. The era of post-genomic technology offers new and exciting opportunities to understand the complete biology of different Brucella species.
Bladergroen, Marco R.; van der Burgt, Yuri E. M.
2015-01-01
For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071
Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit
2015-01-01
Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Petyuk, Vladislav A.; Qian, Wei-Jun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.
2009-01-01
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of type 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2,612 proteins having at least two unique peptides per protein. The dataset also identified ~60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at http://ncrr.pnl.gov, provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields. PMID:18570455
Characterization of the Low-Molecular-Weight Human Plasma Peptidome.
Greening, David W; Simpson, Richard J
2017-01-01
The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.
The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature
Gonzalez‐Freire, Marta; Semba, Richard D.; Ubaida‐Mohien, Ceereena; Fabbri, Elisa; Scalzo, Paul; Højlund, Kurt; Dufresne, Craig; Lyashkov, Alexey
2016-01-01
Abstract Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer‐reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography‐mass spectrometry (LC‐MS/MS)’. A catalogue of 5431 non‐redundant muscle proteins identified by mass spectrometry‐based proteomics from 38 peer‐reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry‐based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment. PMID:27897395
Li, Li; Luo, Zisheng; Huang, Xinhong; Zhang, Lu; Zhao, Pengyu; Ma, Hongyuan; Li, Xihong; Ban, Zhaojun; Liu, Xia
2015-04-29
To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest physiological quality traits including firmness, total soluble solids, total acidity, ascorbic acid and volatile production were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis. The proteins spanned a range of functions in various metabolic pathways and networks involved in carbohydrate and energy metabolism, volatile biosynthesis, phenylpropanoid activity, stress response and protein synthesis, degradation and folding. After CA and LT storage, 16 (13) and 11 (17) proteins, respectively, were significantly increased (decreased) in abundance, while expression profile of 12 proteins was significantly changed by both CA and LT. To summarize, the differential variability of abundance in strawberry proteome, working in a cooperative manner, provided an overview of the biological processes that occurred during CA and LT storage. Controlled atmosphere storage at an optimal temperature is regarded to be an effective postharvest technology to delay fruit senescence and maintain fruit quality during shelf life. Nonetheless, little information on fruit proteomic changes under controlled atmosphere and/or low temperature storage is available. The significance of this paper is that it is the first study employing a label-free approach in the investigation of strawberry fruit response to controlled atmosphere and cold storage. Changes in postharvest physiological quality traits including volatile production, firmness, ascorbic acid, soluble solids and total acidity were also characterized. Significant biological changes associated with senescence were revealed and differentially abundant proteins under various storage conditions were identified. Proteomic profiles were linked to physiological aspects of strawberry fruit senescence in order to provide new insights into possible regulation mechanisms. Findings from this study not only provide proteomic information on fruit regulation, but also pave the way for further quantitative studies at the transcriptomic and metabolomic levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Biogeoscience from a Metallomic and Proteomic Perspective
NASA Astrophysics Data System (ADS)
Anbar, A. D.; Shock, E.
2004-12-01
In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and understand the proteins and inorganic elements used by organisms to catalyze reactions and capture energy from their surroundings. Similar challenges are faced when attempting to map the evolutionary relationships inferred from phylogenetic analyses of genomes to ecological histories determined by geochemists and paleobiologists - for example, ongoing efforts to understand the evolutionary history of eukaryotes and metazoa - because the driving forces for the evolution and ecological radiation of organisms lie at the intersection of metabolism and environment, and hence in the gap between genomes and geochemistry. Future progress in understanding the biogeochemistry of modern and ancient environments will be spurred by integrating proteomic and metallomic methods and perspectives.
Dot Projection Photogrammetric Technique for Shape Measurements of Aerospace Test Articles
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Pappa, Richard S.
2002-01-01
Results from initial laboratory investigations with the dot projection photogrammetric technique are presented for three wind-tunnel test articles with a range of surface scattering and reflection properties. These test articles are a semispan model and a micro air vehicle with a latex wing that are both diffusely reflecting, and a highly polished specularly reflecting model used for high Reynolds number testing. Results using both white light and laser illumination are presented. Some of the advantages and limitations of the dot projection technique are discussed. Although a desirable final outcome of this research effort is the characterization of dynamic behavior, only static laboratory results are presented in this preliminary effort.
Plastic scintillator enhancement through Quantum Dot
NASA Astrophysics Data System (ADS)
Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael
2017-08-01
Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.
Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M
2004-11-01
In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu,S.; Gu, J.; Belknap, B.
2006-01-01
When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A{center_dot}M{center_dot}ADP and A{center_dot}M) and the weakly bound A{center_dot}M{center_dot}ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ('stereospecific' attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A{center_dot}M{center_dot}ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A{center_dot}M{center_dot}ADP{center_dot}P{sub i}, however, is poorly understood. Thismore » state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M{center_dot}ATP, M{center_dot}ADP{center_dot}P{sub i} states and the weakly attached A{center_dot}M{center_dot}ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A{center_dot}M{center_dot}ADP{center_dot}P{sub i}. The series of experiments presented in this article were carried out under relaxing conditions at 25{sup o}C, where {approx}95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M{center_dot}ADP{center_dot}P{sub i} with strongly coupled domains may contribute to the unique attachment configuration: the 'primed' myosin heads may function as 'transient struts' when attached to the thin filaments.« less
Soenen, Stefaan J; Montenegro, José-Maria; Abdelmonem, Abuelmagd M; Manshian, Bella B; Doak, Shareen H; Parak, Wolfgang J; De Smedt, Stefaan C; Braeckmans, Kevin
2014-02-01
Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain a hot research topic and several questions such as possible intracellular degradation of quantum dots and the effect thereof on both cell viability and particle functionality remain unresolved. In the present work, amphiphilic polymer [corrected] coated CdSe/ZnS quantum dots were synthesized and characterized, after which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data revealed that comparing different particles in terms of their applied dose is challenging, likely due to difficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of their biological functionality enables an easy and straightforward comparison. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ke, Ching-Bin; Lu, Te-Ling; Chen, Jian-Lian
2018-05-26
Oxygen and nitrogen capacitively coupled plasma (CCP) was used to irradiate mixtures of aliphatic acids in high boiling point solvents to synthesize fluorescent carbon dots (C-dots). With a high fluorescence intensity, the C-dots obtained from the O₂/CCP radiation of a 1-ethyl-3-methylimidazolium dicyanamide ionic liquid solution of citric acid were characterized with an average diameter of 8.6 nm (σ = 1.1 nm), nitrogen and oxygen bonding functionalities, excitation-independent emissions, and upconversion fluorescence. Through dialysis of the CCP-treated C-dots, two emissive surface states corresponding to their respective functionalities and emissions were identified. The fluorescence spectrum of the CCP-treated C-dots was different from that of the microwave irradiation and possessed higher intensity than that of hydrothermal pyrolysis. By evaluation of the fluorescence quenching effect on flavonoids and metal ions, the CCP-treated C-dots showed a high selectivity for quercetin and sensitivity to Hg 2+ . Based on the Perrin model, a calibration curve ( R ² = 0.9992) was established for quercetin ranging from 2.4 μM to 119 μM with an LOD (limit of detection) = 0.5 μM. The quercetin in the ethanol extract of the sun-dried peel of Citrus reticulata cv. Chachiensis was determined by a standard addition method to be 4.20 ± 0.15 mg/g with a matrix effect of 8.16%.
Integrated Molecular Characterization of Uterine Carcinosarcoma.
Cherniack, Andrew D; Shen, Hui; Walter, Vonn; Stewart, Chip; Murray, Bradley A; Bowlby, Reanne; Hu, Xin; Ling, Shiyun; Soslow, Robert A; Broaddus, Russell R; Zuna, Rosemary E; Robertson, Gordon; Laird, Peter W; Kucherlapati, Raju; Mills, Gordon B; Weinstein, John N; Zhang, Jiashan; Akbani, Rehan; Levine, Douglas A
2017-03-13
We performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified. Copyright © 2017 Elsevier Inc. All rights reserved.
The Legionella pneumophila global regulatory protein LetA affects DotA and Mip.
Shi, Chunwei; Forsbach-Birk, Vera; Marre, Reinhard; McNealy, Tamara L
2006-02-01
Several genes have been identified in Legionella pneumophila which are necessary for its virulence properties. These genes include the dot/icm type IV secretion system (T4SS), mip and letA. Genes of the dot/icm system, in particular dotA, have been found to be essential for intracellular growth. The macrophage infectivity protein (Mip) is also necessary for full virulence of the bacteria. Although these genes are well characterized, the regulation of such virulence factors is not. The LetA transcriptional activator interacts with the global regulator CsrA in controlling the switch from the replicative, non-infectious to the transmissive, highly infectious form of L. pneumophila. Regulation by LetA of the dot/icm genes has also been previously postulated. Here we show that the letA mutation exerts effects not only on DotA but on a substrate of the secretion system, RalF as well. LetA was found to be necessary for full transcriptional expression of the dotA and ralF genes. Although at the transcriptional level dotA was reduced, this did not result in a decrease of DotA protein in whole cell lysates. The letA mutation, however, does result in decreased amounts of the DotA protein found in the membrane and increased amounts in the culture supernatant. Additionally, the letA mutation dramatically decreased the secretion of Mip. This work demonstrates the participation of the global regulatory protein LetA in the regulation of an essential part of the dot/icm T4SS. Also shown is the presence of secreted Mip and a decrease in this secretion in the letA(-) strain. Exactly how LetA is regulating these virulence factors remains to be elucidated but it obviously occurs at both transcriptional and post-transcriptional levels.
Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna
2018-06-01
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Stamps, R. L.
2014-05-01
Micromagnetic simulations at room temperature (300 K) have been carried out in order to analyse the magnetic eigenmodes (frequency and spatial profile) in elliptical dots with sub-100 nm lateral size. Features are found that are qualitatively different from those typical of larger dots because of the dominant role played by the exchange-energy. These features can be understood most simply in terms of nodal planes defined relative to the orientation of the static magnetization. A new, generalized labeling scheme is proposed that simplifies discussion and comparison of modes from different geometries. It is shown that the lowest-frequency mode for small dots is characterized by an in-phase precession of spins, without nodal planes, but with a maximum amplitude at the edges. This mode softens at an applied switching field with magnitude comparable to the coercive field and determines specific aspects of magnetization reversal. This characteristic behavior can be relevant for optimization of microwave assisting switching as well as for maximizing interdot coupling in dense arrays of dots.
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout
NASA Astrophysics Data System (ADS)
House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.
2011-03-01
Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.
Spin-resolved electron waiting times in a quantum-dot spin valve
NASA Astrophysics Data System (ADS)
Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian
2018-04-01
We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.
Near-infrared quantum dots for HER2 localization and imaging of cancer cells.
Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M
2014-01-01
Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shen Lei; Yang Gaowen, E-mail: ygwsx@126.com
2012-02-15
Reaction of MCl{sub 2}{center_dot}4H{sub 2}O (M=Zn, Cd, Mn, Co, Ni) with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) yielded a set of new M(II)/pztza complexes, [Cd(pztza){sub 2}(H{sub 2}O){sub 6}]{center_dot}3H{sub 2}O{center_dot}(Hpztza) (1), [M(pztza){sub 2}(H{sub 2}O){sub 2}; M=Cd(2), Zn(7), Mn(9)], [Cd(pztza){sub 2}]{center_dot}2(CH{sub 3}OH) (3), [Co(pztza){sub 2}(H{sub 2}O){sub 2}]{center_dot}6H{sub 2}O (4), [Co(pztza)(H{sub 2}O)Cl] (6) and [M(pztza){sub 2}(H{sub 2}O){sub 2}]{center_dot}2H{sub 2}O [M=Co(5), Zn(8), Ni(10)]. These compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Complex 1 featured a mononuclear structure, complexes 4, 5, 7, 8, 10 showed 1D chains and complexes 2, 3, 6, 9 displayed 2D layer structures. Furthermore, the luminescence propertiesmore » of 1-10 were investigated at room temperature in the solid state. - Graphical abstract: Ten new coordination polymers with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) ligand have been synthesized and their structures have been characterized. All of the complexes show photoluminescence at room temperature. Highlights: Black-Right-Pointing-Pointer Ten novel transition metal-based coordination complexes with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) are reported. Black-Right-Pointing-Pointer Complexes 1-10 are described as mononuclear structure, 1D and 2D frameworks with diverse architecture. Black-Right-Pointing-Pointer Six coordination complexes show emission at room temperature in the solid state.« less
Proteomic Profiling of Skin Fibroblasts as a Model of Schizophrenia.
Wang, Lan; Rahmoune, Hassan; Guest, Paul C
2017-01-01
Since many aspects of schizophrenia are also manifested at the peripheral level in proliferating cell types, this chapter describes the analysis of skin fibroblasts biopsied from living patients. The method focuses on cell culture and sample preparation for characterization of the model. The resulting cell extracts can be analysed by any number of proteomic techniques for identification of biomarker candidates. This approach could help to elucidate the molecular mechanisms associated with the pathophysiology of schizophrenia and provide a useful model for a new target and drug discovery.
LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.
2015-01-01
Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543
2015-03-26
appropriate. Group 16 (VI) contains the following elements: Oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and polonium (Po). They are shown...below in Figure 33. S, Se, and Te are referred to as chalcogens, and their compounds are chalcogenides [68]. Polonium is excluded from the chalcogen...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order
NASA Astrophysics Data System (ADS)
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
NASA Astrophysics Data System (ADS)
Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo
2018-03-01
The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.
Wang, Qingqing; Zhan, Guoqing; Li, Chunya
2014-01-03
Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Klein, M.; Levine, R. D.
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less
Two new species of Chromadoridae (Chromadorida: Nematoda) from the East China Sea.
Huang, Yong; Gao, Qun
2016-07-26
Two new species of Chromadoridae, a family of free-living marine nematodes, are described from intertidal sediments of the East China Sea. Ptycholaimellus pirus sp. nov. is characterized by having a cuticle with six longitudinal rows of double dots and long somatic setae, relatively long cephalic setae, a pear-shaped terminal pharyngeal bulb occupying less than 30% of pharyngeal length, and an elongate conical tail. The new species is distinguished from all related species by the unique character of the cuticle, with six longitudinal rows of horizontal double dots, and the pear-shaped terminal pharyngeal bulb. Hypodontolaimus ventrapophyses sp. nov. is characterized by having a cylindrical body with a slightly expanded anterior end and a conical tail, a homogeneous cuticle with lateral differentiation of two longitudinal rows of larger dots, a well developed pharynx with oval-shaped buccal bulb and terminal bulb, and a large ventral gland. Males have slender, strongly curved spicules and a gubernaculum with a ventral apophysis, and precloacal supplements are absent. The new species differs from all related species in this genus by the structure of the gubernaculum, which has a ventral apophysis.
Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R
2017-08-01
Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in cells and tissues. In this study we designed a cytokine (interleukin-13) functionalized quantum dot to detect a cancer associated receptor expressed in cancer stem cells and the extracellular vesicles (exosomes) secreted by the cancer cells themselves. The binding pattern of these cytokine modified quantum dots to the cancer stem cells and exosomes alters the physical properties of the complex in the fixed and suspended form. This altered binding pattern can be monitored by a variety of techniques, including transmission electron microscopy, atomic force microscopy and flow cytometry, and subsequent characterization of this quantum dot binding profile provides useful data that can be utilized as a fingerprint to detect cancer disease progression. This type of functionalized quantum dot fingerprint is especially useful for invasive cancers including brain and other metastatic cancers and may allow for earlier detection of disease progression or recurrence, thus saving the lives of patients suffering from this devastating disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Borziak, Kirill; Álvarez-Fernández, Aitor; L. Karr, Timothy; Pizzari, Tommaso; Dorus, Steve
2016-01-01
Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication. PMID:27804984
Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan
2016-04-13
Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish.
Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan
2016-01-01
Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722
Borziak, Kirill; Álvarez-Fernández, Aitor; L Karr, Timothy; Pizzari, Tommaso; Dorus, Steve
2016-11-02
Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.
The “Dark Side” of Food Stuff Proteomics: The CPLL-Marshals Investigate
Righetti, Pier Giorgio; Fasoli, Elisa; D’Amato, Alfonsina; Boschetti, Egisto
2014-01-01
The present review deals with analysis of the proteome of animal and plant-derived food stuff, as well as of non-alcoholic and alcoholic beverages. The survey is limited to those systems investigated with the help of combinatorial peptide ligand libraries, a most powerful technique allowing access to low- to very-low-abundance proteins, i.e., to those proteins that might characterize univocally a given biological system and, in the case of commercial food preparations, attest their genuineness or adulteration. Among animal foods the analysis of cow’s and donkey’s milk is reported, together with the proteomic composition of egg white and yolk, as well as of honey, considered as a hybrid between floral and animal origin. In terms of plant and fruits, a survey is offered of spinach, artichoke, banana, avocado, mango and lemon proteomics, considered as recalcitrant tissues in that small amounts of proteins are dispersed into a large body of plant polymers and metabolites. As examples of non-alcoholic beverages, ginger ale, coconut milk, a cola drink, almond milk and orgeat syrup are analyzed. Finally, the trace proteome of white and red wines, beer and aperitifs is reported, with the aim of tracing the industrial manipulations and herbal usage prior to their commercialization. PMID:28234315
Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu
2010-02-05
Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.
Wegrzyn, Jill L.; Bark, Steven J.; Funkelstein, Lydiane; Mosier, Charles; Yap, Angel; Kazemi-Esfarjani, Parasa; La Spada, Albert; Sigurdson, Christina; O’Connor, Daniel T.; Hook, Vivian
2010-01-01
Regulated secretion of neurotransmitters and neurohumoural factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoural factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 distinct proteins in the soluble fraction and 384 distinct membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease. PMID:20695487
Fröhlich, Thomas; Kemter, Elisabeth; Flenkenthaler, Florian; Klymiuk, Nikolai; Otte, Kathrin A; Blutke, Andreas; Krause, Sabine; Walter, Maggie C; Wanke, Rüdiger; Wolf, Eckhard; Arnold, Georg J
2016-09-16
Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.
Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin
2011-11-01
Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.
Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan
2015-01-01
An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763
Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo
2012-04-06
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.
Proteome of Caulobacter crescentus cell cycle publicly accessible on SWICZ server.
Vohradsky, Jiri; Janda, Ivan; Grünenfelder, Björn; Berndt, Peter; Röder, Daniel; Langen, Hanno; Weiser, Jaroslav; Jenal, Urs
2003-10-01
Here we present the Swiss-Czech Proteomics Server (SWICZ), which hosts the proteomic database summarizing information about the cell cycle of the aquatic bacterium Caulobacter crescentus. The database provides a searchable tool for easy access of global protein synthesis and protein stability data as examined during the C. crescentus cell cycle. Protein synthesis data collected from five different cell cycle stages were determined for each protein spot as a relative value of the total amount of [(35)S]methionine incorporation. Protein stability of pulse-labeled extracts were measured during a chase period equivalent to one cell cycle unit. Quantitative information for individual proteins together with descriptive data such as protein identities, apparent molecular masses and isoelectric points, were combined with information on protein function, genomic context, and the cell cycle stage, and were then assembled in a relational database with a world wide web interface (http://proteom.biomed.cas.cz), which allows the database records to be searched and displays the recovered information. A total of 1250 protein spots were reproducibly detected on two-dimensional gel electropherograms, 295 of which were identified by mass spectroscopy. The database is accessible either through clickable two-dimensional gel electrophoretic maps or by means of a set of dedicated search engines. Basic characterization of the experimental procedures, data processing, and a comprehensive description of the web site are presented. In its current state, the SWICZ proteome database provides a platform for the incorporation of new data emerging from extended functional studies on the C. crescentus proteome.
Proteomics and Systems Biology: Current and Future Applications in the Nutritional Sciences1
Moore, J. Bernadette; Weeks, Mark E.
2011-01-01
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences. PMID:22332076
Proteomic profile of dormant Trichophyton Rubrum conidia
Leng, Wenchuan; Liu, Tao; Li, Rui; Yang, Jian; Wei, Candong; Zhang, Wenliang; Jin, Qi
2008-01-01
Background Trichophyton rubrum is the most common dermatophyte causing fungal skin infections in humans. Asexual sporulation is an important means of propagation for T. rubrum, and conidia produced by this way are thought to be the primary cause of human infections. Despite their importance in pathogenesis, the conidia of T. rubrum remain understudied. We intend to intensively investigate the proteome of dormant T. rubrum conidia to characterize its molecular and cellular features and to enhance the development of novel therapeutic strategies. Results The proteome of T. rubrum conidia was analyzed by combining shotgun proteomics with sample prefractionation and multiple enzyme digestion. In total, 1026 proteins were identified. All identified proteins were compared to those in the NCBI non-redundant protein database, the eukaryotic orthologous groups database, and the gene ontology database to obtain functional annotation information. Functional classification revealed that the identified proteins covered nearly all major biological processes. Some proteins were spore specific and related to the survival and dispersal of T. rubrum conidia, and many proteins were important to conidial germination and response to environmental conditions. Conclusion Our results suggest that the proteome of T. rubrum conidia is considerably complex, and that the maintenance of conidial dormancy is an intricate and elaborate process. This data set provides the first global framework for the dormant T. rubrum conidia proteome and is a stepping stone on the way to further study of the molecular mechanisms of T. rubrum conidial germination and the maintenance of conidial dormancy. PMID:18578874
Zhang, Xu; Liu, Qun; Zhou, Wei; Li, Ping; Alolga, Raphael N; Qi, Lian-Wen; Yin, Xiaojian
2018-06-15
Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis. Copyright © 2018. Published by Elsevier B.V.
Time-Resolved Proteomic Visualization of Dendrimer Cellular Entry and Trafficking.
Wang, Linna; Yang, Li; Pan, Li; Kadasala, Naveen Reddy; Xue, Liang; Schuster, Robert J; Parker, Laurie L; Wei, Alexander; Tao, W Andy
2015-10-14
Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.
Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko
2016-01-01
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244
Far from the equilibrium crystallization of oxide quantum dots in dried inorganic gels
NASA Astrophysics Data System (ADS)
Costille, B.; Dumoulin, M.; Ntsame Abagha, A. M.; Thune, E.; Guinebretière, R.
2018-06-01
We synthesized, through the sol-gel process, far from the equilibrium amorphous materials in which heterogeneous crystallization allowed the formation of oxide quantum dots. The isothermal evolutions of the mean size of the nanocrystals and the crystallinity of the materials were determined through x-ray diffraction experiments. The heterogeneous crystallization is characterized by a kinetic behavior that is far from that expected, according to the classical nucleation theory. We demonstrate that the evolution of the crystallinity is characterized by an Avrami exponent largely smaller than 1. Finally, nanocrystals exhibiting a size significantly below their Bohr radius are obtained and the number of these nanocrystals increases during isothermal treatment, whereas their mean size remains quasi-constant.
NASA Technical Reports Server (NTRS)
Pappa, Richard S. (Technical Monitor); Black, Jonathan T.
2003-01-01
This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun
Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein,more » we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.« less
Computational approaches to protein inference in shotgun proteomics
2012-01-01
Shotgun proteomics has recently emerged as a powerful approach to characterizing proteomes in biological samples. Its overall objective is to identify the form and quantity of each protein in a high-throughput manner by coupling liquid chromatography with tandem mass spectrometry. As a consequence of its high throughput nature, shotgun proteomics faces challenges with respect to the analysis and interpretation of experimental data. Among such challenges, the identification of proteins present in a sample has been recognized as an important computational task. This task generally consists of (1) assigning experimental tandem mass spectra to peptides derived from a protein database, and (2) mapping assigned peptides to proteins and quantifying the confidence of identified proteins. Protein identification is fundamentally a statistical inference problem with a number of methods proposed to address its challenges. In this review we categorize current approaches into rule-based, combinatorial optimization and probabilistic inference techniques, and present them using integer programing and Bayesian inference frameworks. We also discuss the main challenges of protein identification and propose potential solutions with the goal of spurring innovative research in this area. PMID:23176300
Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico
2018-02-01
The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.
Cho, Yun Sang; Jang, Young-Boo; Lee, Sang-Eun; Cho, Je-Yoel; Ahn, Jung-Mo; Hwang, Inyeong; Heo, Eunjeong; Nam, Hyang-Mi; Cho, Donghee; Her, Moon; Jean, Young Hwa; Jung, Suk Chan; Kim, Jong Man; Lee, Hee Soo; Lee, Keechan; Belisle, John T
2015-08-01
Bovine tuberculin purified protein derivative (bPPD) is used as an intradermal test (IT) reagent to detect bovine tuberculosis (bTB) in most countries. Identification of bPPD proteins is critical to understanding the immunological reaction of IT at the molecular level. While bPPD from the United Kingdom (UK) and Brazil (BR) have been recently defined at the proteomic level, bPPD from the Republic of Korea (KR) has not yet been analyzed. Here, bPPD KR proteome was examined for the first time. In total, 271 proteins were identified, including Mycobacterium bovis-specific proteins Mb0854c and Mb2898, and 42 known T cell antigens. On comparing with proteomes of bPPD UK and BR, 33 proteins were found to be common among all three bPPDs, of which 15 proteins were T cell antigens. M. bovis-specific antigens with T cell activity in bPPD may be novel candidates for use as alternatives to currently available bPPD in diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ephritikhine, Geneviève; Ferro, Myriam; Rolland, Norbert
2004-12-01
Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.
Synthesis, Characterization, and Fabrication of All Inorganic Quantum Dot LEDs
NASA Astrophysics Data System (ADS)
Salman, Haider Baqer
Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were synthesized following sol-gel method and deposited using spin coating. The anode of the device was a commercial slide of indium tin oxide deposited on glass substrate while the cathode was a 100 nm aluminum layer that was deposited using an Auto 306T Edwards thermal evaporator. In this research, Raman spectroscopy, micro-photoluminescence spectroscopy, absorbance spectroscopy, X-ray diffraction (XRD) spectroscopy, and atomic force microscopy, were used to characterize the materials. Three sharp peaks were observed in the XRD measurements of the NiO thin film related to three planes and indicated a proper level of crystallinity. The AFM image of the same material indicated a roughness RMS value of 2 nm which was accepted for a device fabrication. The photoluminescence spectrum exhibited a peak at 515 nm for the quantum dots and a peak at 315 nm for the ZnO nanocrystals. The narrow shape of these spectra proved a limited amount of size variation. The transfer characteristics of the fabricated device indicated that the current density ramped up producing green light when the voltage was higher than 5 V to reach 160 mA cm -2 at 9 V.
Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.
Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin
2014-06-13
Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Rokyta, Darin R; Ward, Micaiah J
2017-03-15
The order Scorpiones is one of the most ancient and diverse lineages of venomous animals, having originated approximately 430 million years ago and diversified into 14 extant families. Although partial venom characterizations have been described for numerous scorpion species, we provided the first quantitative transcriptome/proteome comparison for a scorpion species using single-animal approaches. We sequenced the venom-gland transcriptomes of a male and female black-back scorpion (Hadrurus spadix) from the family Caraboctonidae using the Illumina sequencing platform and conducted independent quantitative mass-spectrometry analyses of their venoms. We identified 79 proteomically confirmed venom proteins, an additional 69 transcripts with homology to toxins from other species, and 596 nontoxin proteins expressed at high levels in the venom glands. The venom of H. spadix was rich in antimicrobial peptides, K + -channel toxins, and several classes of peptidases. However, the most diverse and one of the most abundant classes of putative toxins could not be assigned even a tentative functional role on the basis of homology, indicating that this venom contained a wealth of previously unexplored animal toxin diversity. We found good agreement between both transcriptomic and proteomic abundances across individuals, but transcriptomic and proteomic abundandances differed substantially within each individual. Small peptide toxins such as K + -channel toxins and antimicrobial peptides proved challenging to detect proteomically, at least in part due to the significant proteolytic processing involved in their maturation. In addition, we found a significant tendency for our proteomic approach to overestimate the abundances of large putative toxins and underestimate the abundances of smaller toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uddin, Reaz; Jamil, Faiza
2018-06-01
Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that has the capability to acquire resistance under hostile conditions and become a threat worldwide. It is involved in nosocomial infections. In the current study, potential novel drug targets against P. aeruginosa have been identified using core proteomic analysis and Protein-Protein Interactions (PPIs) studies. The non-redundant reference proteome of 68 strains having complete genome and latest assembly version of P. aeruginosa were downloaded from ftp NCBI RefSeq server in October 2016. The standalone CD-HIT tool was used to cluster ortholog proteins (having >=80% amino acid identity) present in all strains. The pan-proteome was clustered in 12,380 Clusters of Orthologous Proteins (COPs). By using in-house shell scripts, 3252 common COPs were extracted out and designated as clusters of core proteome. The core proteome of PAO1 strain was selected by fetching PAO1's proteome from common COPs. As a result, 1212 proteins were shortlisted that are non-homologous to the human but essential for the survival of the pathogen. Among these 1212 proteins, 321 proteins are conserved hypothetical proteins. Considering their potential as drug target, those 321 hypothetical proteins were selected and their probable functions were characterized. Based on the druggability criteria, 18 proteins were shortlisted. The interacting partners were identified by investigating the PPIs network using STRING v10 database. Subsequently, 8 proteins were shortlisted as 'hub proteins' and proposed as potential novel drug targets against P. aeruginosa. The study is interesting for the scientific community working to identify novel drug targets against MDR pathogens particularly P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-01-01
Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells. PMID:21711811
Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.
Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K
2013-11-01
We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.
Zhang, Junqiu; Yan, Juping; Wang, Yingte; Zhang, Yong
2018-07-01
A facile and economic approach to synthesis highly fluorescence carbon dots (CDs) via one-step hydrothermal treatment of D-sorbitol was presented. The as-synthesized CDs were characterized by good water solubility, well monodispersion, and excellent biocompatibility. Spherical CDs had a particle size about 5 nm and exhibited a quantum yield of 8.85% at excitation wavelength of 360 nm. In addition, the CDs can serve as fluorescent probe for sensitive and selective detection of Fe3+ ions with the detection limit of 1.16 μM. Moreover, the potential of the as-prepared carbon dots for biological application was confirmed by employing it for fluorescence imaging in MCF-7 cells.
Core-shell quantum dots tailor the fluorescence of dental resin composites.
Alves, Leandro P; Pilla, Viviane; Murgo, Dírian O A; Munin, Egberto
2010-02-01
We characterized the optical properties, such as absorbance and fluorescence, of dental resins containing quantum dots (QD). We also determined the doping level needed to obtain a broad and nearly flat emission spectrum that provides the perception of white color. The samples studied were resin composites from Charisma (Heraeus Kulzer) prepared with CdSe/ZnS core-shell QD (0.05-0.77 mass%). The results showed that the fluorescence of dental resin composites can be tailored by using CdSe/ZnS core-shell quantum dots. QD core incorporation into dental resins allows the fabrication of restorative materials with fluorescence properties that closely match those of natural human teeth. Copyright 2009 Elsevier Ltd. All rights reserved.
The Effect of Molecular Diagnostics on the Treatment of Glioma.
Bush, Nancy Ann Oberheim; Butowski, Nicholas
2017-04-01
This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.
Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; ...
2015-08-28
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less
Melani, Rafael D; Skinner, Owen S; Fornelli, Luca; Domont, Gilberto B; Compton, Philip D; Kelleher, Neil L
2016-07-01
Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin
2015-06-15
In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghosh, Nandini; Sircar, Gaurab; Saha, Bodhisattwa; Pandey, Naren; Gupta Bhattacharya, Swati
2015-01-01
Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools. Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensional electrophoretic separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoallergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry. Prevalence of sunflower pollen sensitization was observed among 21% of the pollen allergic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient sera detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two pectate lyases and a cysteine protease. Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level, which substantiated the clinical evidence of sunflower allergy. Further purification and recombinant expression of these allergens will improve component-resolved diagnosis and therapy of pollen allergy.
Marlow, Jeffrey J.; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, Victoria J.
2016-01-01
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system. PMID:27199908
2012-01-01
Background Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. Results Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. Conclusions The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will provide a platform for the further exploration of biomineralization processes in molluscs. PMID:22540284
Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.
Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter
2014-08-28
Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further improve systems-level understanding of the seed filling process and provide rational strategies for plant bioengineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.
2013-01-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423
Kirkwood, Kathryn J; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I
2013-12-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.
Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics
VanDuijn, Martijn M.; Dekker, Lennard J.; van IJcken, Wilfred F. J.; Sillevis Smitt, Peter A. E.; Luider, Theo M.
2017-01-01
The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics. PMID:29085363
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
Wang, Zhen; Schey, Kevin L
2015-12-01
Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Soares, Renata; Franco, Catarina; Pires, Elisabete; Ventosa, Miguel; Palhinhas, Rui; Koci, Kamila; Martinho de Almeida, André; Varela Coelho, Ana
2012-07-19
Proteomic approaches are gaining increasing importance in the context of all fields of animal and veterinary sciences, including physiology, productive characterization, and disease/parasite tolerance, among others. Proteomic studies mainly aim the proteome characterization of a certain organ, tissue, cell type or organism, either in a specific condition or comparing protein differential expression within two or more selected situations. Due to the high complexity of samples, usually total protein extracts, proteomics relies heavily on separation procedures, being 2D-electrophoresis and HPLC the most common, as well as on protein identification using mass spectrometry (MS) based methodologies. Despite the increasing importance of MS in the context of animal and veterinary science studies, the usefulness of such tools is still poorly perceived by the animal science community. This is primarily due to the limited knowledge on mass spectrometry by animal scientists. Additionally, confidence and success in protein identification is hindered by the lack of information in public databases for most of farm animal species and their pathogens, with the exception of cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In this article, we will briefly summarize the main methodologies available for protein identification using mass spectrometry providing a case study of specific applications in the field of animal science. We will also address the difficulties inherent to protein identification using MS, with particular reference to experiments using animal species poorly described in public databases. Additionally, we will suggest strategies to increase the rate of successful identifications when working with farm animal species. Copyright © 2012 Elsevier B.V. All rights reserved.
Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia
2016-01-01
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537
DOT National Transportation Integrated Search
1976-09-01
Results of aeronautical L-band multipath channel characterization tests are given. All tests were conducted between September 1974 and April 1975 as part of the U.S. DOT aeronautical technology test program. These tests were part of the international...
Rea, Giuseppina; Cristofaro, Francesco; Pani, Giuseppe; Pascucci, Barbara; Ghuge, Sandip A; Corsetto, Paola Antonia; Imbriani, Marcello; Visai, Livia; Rizzo, Angela M
2016-03-30
Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.
Zhou, Chun-Xue; Zhu, Xing-Quan; Elsheikha, Hany M; He, Shuai; Li, Qian; Zhou, Dong-Hui; Suo, Xun
2016-10-04
Toxoplasma gondii is a medically and economically important protozoan parasite. However, the molecular mechanisms of its sporulation remain largely unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the proteomic expression profile of T. gondii oocysts during sporulation. Of the 2095 non-redundant proteins identified, 587 were identified as differentially expressed proteins (DEPs). Based on Gene Ontology enrichment and KEGG pathway analyses the majority of these DEPs were found related to the metabolism of amino acids, carbon and energy. Protein interaction network analysis generated by STRING identified ATP-citrate lyase (ACL), GMP synthase, IMP dehydrogenase (IMPDH), poly (ADP-ribose) glycohydrolase (PARG), and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) as the top five hubs. We also identified 25 parasite virulence factors that were expressed at relatively high levels in sporulated oocysts compared to non-sporulated oocysts, which might contribute to the infectivity of mature oocysts. Considering the importance of oocysts in the dissemination of toxoplasmosis these findings may help in the search of protein targets with a key role in infectiousness and ecological success of oocysts, creating new opportunities for the development of better means for disease prevention. The development of new preventative interventions against T. gondii infection relies on an improved understanding of the proteome and chemical pathways of this parasite. To identify proteins required for the development of environmentally resistant and infective T. gondii oocysts, we compared the proteome of non-sporulated (immature) oocysts with the proteome of sporulated (mature, infective) oocysts. iTRAQ 2D-LC-MS/MS analysis revealed proteomic changes that distinguish non-sporulated from sporulated oocysts. Many of the differentially expressed proteins were involved in metabolic pathways and 25 virulence factors were identified upregulated in the sporulated oocysts. This work provides the first quantitative characterization of the proteomic variations that occur in T. gondii oocyst stage during sporulation. Copyright © 2016. Published by Elsevier B.V.
Growth and characterization of InAs sub-monolayer quantum dots with varying fractional coverage
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Pradhan, A.; Mukherje, S.; Maitra, T.; Sengupta, S.; Chakrabarti, S.; Nayak, A.; Bhunia, S.
2018-04-01
We have studied the optical properties of InAs sub monolayer (SML) quantum dots in GaAs quantum well with InAs average deposition below one monolayer (ML) [0.3 - 0.8 ML] in Molecular Beam Epitaxy (MBE) growth system. The samples have exhibited sharp photoluminescence peak at low temperature (3.3 K) which could be tuned in the near infrared (NIR) region (1.42 eV-1.47 eV) by controlling the InAs SML coverage.
Chen, Disheng; Lander, Gary R; Solomon, Glenn S; Flagg, Edward B
2017-01-20
Resonant photoluminescence excitation (RPLE) spectra of a neutral InGaAs quantum dot show unconventional line shapes that depend on the detection polarization. We characterize this phenomenon by performing polarization-dependent RPLE measurements and simulating the measured spectra with a three-level quantum model. The spectra are explained by interference between fields coherently scattered from the two fine structure split exciton states, and the measurements enable extraction of the steady-state coherence between the two exciton states.
The vertical structure and stability of accretion disks surrounding black holes and neutron stars
NASA Technical Reports Server (NTRS)
Milsom, J. A.; Chen, Xingming; Taam, Ronald E.
1994-01-01
The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd) for neutron stars and for M-dot greater than or = M-dot(sub Edd) for black holes for a viscosity prescription characterized by n = 1 and alpha(sub 0) = 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushwaha, Manvir S.
2014-12-15
Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas
NASA Astrophysics Data System (ADS)
Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration
2016-10-01
Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Ibrahim Mohammed S., M.; Gubari, Ghamdan M. M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal
2018-05-01
We have successfully deposited CdS quantum dot thin film on the glass substrate by simple and economic chemical bath deposition method at ˜50 ˚C. The X-ray diffraction study confirms the formation of CdS when compared with standard JCPDS data with average crystallite size ˜3 nm. The morphology of the film was studied by FE-SEM, which suggests the homogeneous and uniform deposition of the CdS material over the entire glass substrate with a porous structure. From UV absorption spectra we observed that the sample exhibited a band edge near ˜400 nm with a slight deviation with the presence of excitonic peak for the sample. The presence of excitonic peak may be attributed to the formation of quantum dots. The calculated band gap energy of CdS quantum dot thin film was found to be ˜3.136 eV. The thin film further characterized to study electrical parameters and the sample show a drastic increase in current after light illumination.
InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface
NASA Astrophysics Data System (ADS)
Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.
2013-08-01
We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.
2012-01-01
Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines.
Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz
2015-01-01
Herein we describe an easy one step synthesis of carbon nanodots (C-dots) by thermal carbonization of 6-bromohexylboronic acid using two different amine compounds, polyethyleneglycol bis(3-aminopropyl (PEGA) and 1,2-aminopropane (DPA), at 180 °C in atmospheric oxygen. The as-synthesized C-dots were characterized by FTIR, HRTEM, NMR and fluorescence. The C-dots prepared using PEGA showed a strong emission at 440 nm with excitation at 362 nm. These C-dots exhibited analytical potential as sensing probes for tannic acid (TA) determination. pH effect, interferences, and analytical performance of the method were investigated. The method was found effective in the linear concentration range from 0.1 to 10 mg L(-1) TA achieving a limit of detection equal 0.018 mg L(-1) TA. The applicability of the method was demonstrated by direct measurements of TA in red and white wine samples. Validation of the method was achieved by spiking the wine samples with different standard TA concentrations obtaining recoveries in the range (90-112.5%). A probable mechanism by which TA quenched the C-dots fluorescence was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and characterization of surface-modified colloidal CdTe Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajh, T.; Micic, O.I.; Nozik, A.J.
1993-11-18
The controlled synthesis of quantized colloidal CdTe nanocrystals (in aqueous solutions) with narrow size distributions and stabilized against rapid oxidation was achieved by capping the quantum dot particles with 3-mercapto-1,2-propanediol. Nanocrystals (i.e., quantum dots) with mean diameters of 20, 25, 35, and 40 A were produced. Optical absorption spectra showed strong excitonic peaks at the smallest size; the absorption coefficient was shown to follow an inverse cube dependence on particle diameter, while the extinction coefficient per particle remained constant. The quantum yield for photoluminescence increased with decreasing particle size and reached 20% at 20 A. The valence band edges ofmore » the CdTe quantum dots were determined by pulse radiolysis experiments (hole injection from oxidizing radicals); the bandgaps were estimated from pulse radiolysis data (redox potentials of hole and electron injecting radicals) and from the optical spectra. The dependence of the CdTe bandgap on quantum dot size was found to be much weaker than predicted by the effective mass approximation; this result is consistent with recently published theoretical calculations by several groups. 36 refs., 5 figs., 1 tab.« less
Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu
2016-06-21
The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.
Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo
2016-05-01
The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.
Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen
2015-01-01
A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent. Copyright © 2014 Elsevier B.V. All rights reserved.
Orton, Dennis J.; Doucette, Alan A.
2013-01-01
Identification of biomarkers capable of differentiating between pathophysiological states of an individual is a laudable goal in the field of proteomics. Protein biomarker discovery generally employs high throughput sample characterization by mass spectrometry (MS), being capable of identifying and quantifying thousands of proteins per sample. While MS-based technologies have rapidly matured, the identification of truly informative biomarkers remains elusive, with only a handful of clinically applicable tests stemming from proteomic workflows. This underlying lack of progress is attributed in large part to erroneous experimental design, biased sample handling, as well as improper statistical analysis of the resulting data. This review will discuss in detail the importance of experimental design and provide some insight into the overall workflow required for biomarker identification experiments. Proper balance between the degree of biological vs. technical replication is required for confident biomarker identification. PMID:28250400
Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages.
Chen, Zhipeng; Yang, Lijuan; Cui, Yizhi; Zhou, Yanlong; Yin, Xingfeng; Guo, Jiahui; Zhang, Gong; Wang, Tong; He, Qing-Yu
2016-10-11
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Approaches for Defining the Hsp90-dependent Proteome
Hartson, Steven D.; Matts, Robert L.
2011-01-01
Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90’s roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. PMID:21906632
Redox proteomics gives insights into the role of oxidative stress in alkaptonuria.
Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Santucci, Annalisa
2013-12-01
Alkaptonuria (AKU) is an ultra-rare metabolic disorder of the catabolic pathway of tyrosine and phenylalanine that has been poorly characterized at molecular level. As a genetic disease, AKU is present at birth, but its most severe manifestations are delayed due to the deposition of a dark-brown pigment (ochronosis) in connective tissues. The reasons for such a delayed manifestation have not been clarified yet, though several lines of evidence suggest that the metabolite accumulated in AKU sufferers (homogentisic acid) is prone to auto-oxidation and induction of oxidative stress. The clarification of the pathophysiological molecular mechanisms of AKU would allow a better understanding of the disease, help find a cure for AKU and provide a model for more common rheumatic diseases. With this aim, we have shown how proteomics and redox proteomics might successfully overcome the difficulties of studying a rare disease such as AKU and the limitations of the hitherto adopted approaches.
Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe
2015-02-01
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.
Terfve, Camille; Sabidó, Eduard; Wu, Yibo; Gonçalves, Emanuel; Choi, Meena; Vaga, Stefania; Vitek, Olga; Saez-Rodriguez, Julio; Aebersold, Ruedi
2017-02-03
Advances in mass spectrometry have made the quantitative measurement of proteins across multiple samples a reality, allowing for the study of complex biological systems such as the metabolic syndrome. Although the deregulation of lipid metabolism and increased hepatic storage of triacylglycerides are known to play a part in the onset of the metabolic syndrome, its molecular basis and dependency on dietary and genotypic factors are poorly characterized. Here, we used an experimental design with two different mouse strains and dietary and metabolic perturbations to generate a compendium of quantitative proteome data using three mass spectrometric techniques. The data reproduce known properties of the metabolic system and indicate differential molecular adaptation of the two mouse strains to perturbations, contributing to a better understanding of the metabolic syndrome. We show that high-quality, high-throughput proteomic data sets provide an unbiased broad overview of the behavior of complex systems after perturbation.
Gruninger, Robert J; Tsang, Adrian; McAllister, Tim A
2017-01-01
Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in this process. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and understand how the proteins produced by an organism change in response to different conditions. Many fungi are efficient decomposers of plant cell wall, and anaerobic fungi are well recognized for their ability to digest lignocellulose. Here, we outline a protocol for the enrichment and isolation of proteins secreted by anaerobic fungi after growth on simple (glucose) and complex (straw and alfalfa hay) carbon sources. We provide detailed instruction on generating protein fragments and preparing these for proteomic analysis using reversed phase chromatography and mass spectrometry.
Precision medicine is an approach that allows doctors to understand how a patient's genetic profile may cause cancer to grow and spread, leading to a more personalized treatment strategy based on molecular characterization of a person's tumor. However, precision medicine as a genomics-based approach does not yet apply to all patients because genetic mutations do not always lead to changes of the corresponding proteins. Therefore, integrating genomics and proteomics data, or proteogenomics, presents as a new approach that may help make precision medicine a more effective treatment option for patients.
Stable isotope dimethyl labelling for quantitative proteomics and beyond
Hsu, Jue-Liang; Chen, Shu-Hui
2016-01-01
Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970
Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.
Sun, Bingyun; Hood, Leroy
2014-06-06
The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.
Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua
2013-10-08
To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which cannot be described by transcriptional profiling approaches alone. In this study, within the overall objective of profiling differential protein abundance in developing J. curcas seeds, we provide a setting of physiological data with dynamic proteomic and qRT-PCR analysis to characterize the metabolic pathways and the relationship between mRNA and protein patterns from early stage to seed filling during the seed development of J. curcas. The construction of J. curcas seed development proteome profiles will significantly increase our understanding of the process of seed development and provide a foundation to examine the dynamic changes of the metabolic network during seed development process and certainly suggest some clues to improve the lipid content of J. curcas seeds. © 2013. Published by Elsevier B.V. All rights reserved.
Trisiriroj, Arunee; Jeyachok, Narumon; Chen, Shui-Tein
2004-07-01
Proteomic approach is applied for the analysis of seed brans of 14 rice varieties (Oryza sativa L. ssp. indica) which can classify to five aromatic rice and nine nonaromatic rice. The two-dimensional electrophoresis (2-DE) protein patterns for 14 rice varieties were similar within pH ranges of 3-10 and 4-7. To characterize aromatic group-specific proteins, we compared 2-D gels of aromatic rice to nonaromatic rice using PDQUEST image analysis. Four out of six differential spots were identified as hypothetical proteins, but one (SSP 7003) was identified by matrix assisted laser desoption/ionization-quardrupole-time of fight (MALDI-Q-TOF) as prolamin with three matching peptides based on NCBI database. Prolamin is a class of storage proteins with three different polypeptides of 10, 13, and 16 kDa. Spot SSP7003 was identified as a 13 kDa polypeptide of prolamin by combination of mass spectroscopy and N-terminal sequence analyses. In contrast, one sulfur-rich 16 kDa polypeptide of prolamin was found in extremely high intensity in brans of deep-water rice compared to nondeep-water rice. Our results suggest that proteomics is a powerful step to open the way for the identification of rice varieties.
Cinzia, Raso; Carlo, Cosentino; Marco, Gaspari; Natalia, Malara; Xuemei, Han; Daniel, McClatchy; Kyu, Park Sung; Maria, Renne; Nuria, Vadalà; Ubaldo, Prati; Giovanni, Cuda; Vincenzo, Mollace; Francesco, Amato; Yates, John R.
2012-01-01
Cancer is currently considered as the end point of numerous genomic and epigenomic mutations and as the result of the interaction of transformed cells within the stromal microenvironment. The present work focuses on breast cancer, one of the most common malignancies affecting the female population in industrialized countries. In this study we perform a proteomic analysis of bioptic samples from human breast cancer, namely interstitial fluids and primary cells, normal vs disease tissues, using Tandem mass Tags (TmT) quantitative mass spectrometry combined with the MudPIT technique. To the best of our knowledge this work, with over 1700 proteins identified, represents the most comprehensive characterization of the breast cancer interstitial fluid proteome to date. Network analysis was used to identify functionally active networks in the breast cancer associated samples. From the list of differentially expressed genes we have retrieved the associated functional interaction networks. Many different signaling pathways were found activated, strongly linked to invasion, metastasis development, proliferation and with a significant cross-talking rate. This pilot study presents evidence that the proposed quantitative proteomic approach can be applied to discriminate between normal and tumoral samples and for the discovery of yet unknown carcinogenesis mechanisms and therapeutic strategies. PMID:22563702
Chen, Chen; Liu, Xiaohui; Zheng, Weimin; Zhang, Lei; Yao, Jun; Yang, Pengyuan
2014-04-04
To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).
Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes.
Casimiro-Soriguer, Carlos S; Muñoz-Mérida, Antonio; Pérez-Pulido, Antonio J
2017-06-01
The current cheapening of next-generation sequencing has led to an enormous growth in the number of sequenced genomes and transcriptomes, allowing wet labs to get the sequences from their organisms of study. To make the most of these data, one of the first things that should be done is the functional annotation of the protein-coding genes. But it used to be a slow and tedious step that can involve the characterization of thousands of sequences. Sma3s is an accurate computational tool for annotating proteins in an unattended way. Now, we have developed a completely new version, which includes functionalities that will be of utility for fundamental and applied science. Currently, the results provide functional categories such as biological processes, which become useful for both characterizing particular sequence datasets and comparing results from different projects. But one of the most important implemented innovations is that it has now low computational requirements, and the complete annotation of a simple proteome or transcriptome usually takes around 24 hours in a personal computer. Sma3s has been tested with a large amount of complete proteomes and transcriptomes, and it has demonstrated its potential in health science and other specific projects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Xiang; Velliste, Meel; Murphy, Robert F.
2010-01-01
Proteomics, the large scale identification and characterization of many or all proteins expressed in a given cell type, has become a major area of biological research. In addition to information on protein sequence, structure and expression levels, knowledge of a protein’s subcellular location is essential to a complete understanding of its functions. Currently subcellular location patterns are routinely determined by visual inspection of fluorescence microscope images. We review here research aimed at creating systems for automated, systematic determination of location. These employ numerical feature extraction from images, feature reduction to identify the most useful features, and various supervised learning (classification) and unsupervised learning (clustering) methods. These methods have been shown to perform significantly better than human interpretation of the same images. When coupled with technologies for tagging large numbers of proteins and high-throughput microscope systems, the computational methods reviewed here enable the new subfield of location proteomics. This subfield will make critical contributions in two related areas. First, it will provide structured, high-resolution information on location to enable Systems Biology efforts to simulate cell behavior from the gene level on up. Second, it will provide tools for Cytomics projects aimed at characterizing the behaviors of all cell types before, during and after the onset of various diseases. PMID:16752421
Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes
Smith, Richard D.
2002-01-01
Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less
NASA Astrophysics Data System (ADS)
Patton, Wayne F.; Berggren, Kiera N.; Lopez, Mary F.
2001-04-01
Facilities engaged in proteome analysis differ significantly in the degree that they implement automated systems for high-throughput protein characterization. Though automated workstation environments are becoming more routine in the biotechnology and pharmaceutical sectors of industry, university-based laboratories often perform these tasks manually, submitting protein spots excised from polyacrylamide gels to institutional core facilities for identification. For broad compatibility with imaging platforms, an optimized fluorescent dye developed for proteomics applications should be designed taking into account that laser scanners use visible light excitation and that charge-coupled device camera systems and gas discharge transilluminators rely upon UV excitation. The luminescent ruthenium metal complex, SYPRO Ruby protein gel stain, is compatible with a variety of excitation sources since it displays intense UV (280 nm) and visible (470 nm) absorption maxima. Localization is achieved by noncovalent, electrostatic and hydrophobic binding of dye to proteins, with signal being detected at 610 nm. Since proteins are not covalently modified by the dye, compatibility with downstream microchemical characterization techniques such as matrix-assisted laser desorption/ionization-mass spectrometry is assured. Protocols have been devised for optimizing fluorophore intensity. SYPRO Ruby dye outperforms alternatives such as silver staining in terms of quantitative capabilities, compatibility with mass spectrometry and ease of integration into automated work environments.
Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells.
Lee, Song-Yi; Kang, Myeong-Gyun; Shin, Sanghee; Kwak, Chulhwan; Kwon, Taejoon; Seo, Jeong Kon; Kim, Jong-Seo; Rhee, Hyun-Woo
2017-03-15
The inner mitochondrial membrane (IMM) proteome plays a central role in maintaining mitochondrial physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several IMM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondrial inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.
Yu, Yanbao; Sikorski, Patricia; Smith, Madeline; Bowman-Gholston, Cynthia; Cacciabeve, Nicolas; Nelson, Karen E.; Pieper, Rembert
2017-01-01
Inflammation in the urinary tract results in a urinary proteome characterized by a high dynamic range of protein concentrations and high variability in protein content. This proteome encompasses plasma proteins not resorbed by renal tubular uptake, renal secretion products, proteins of immune cells and erythrocytes derived from trans-urothelial migration and vascular leakage, respectively, and exfoliating urothelial and squamous epithelial cells. We examined how such proteins partition into soluble urine (SU) and urinary pellet (UP) fractions by analyzing 33 urine specimens 12 of which were associated with a urinary tract infection (UTI). Using mass spectrometry-based metaproteomic approaches, we identified 5,327 non-redundant human proteins, 2,638 and 4,379 of which were associated with SU and UP fractions, respectively, and 1,206 non-redundant protein orthology groups derived from pathogenic and commensal organisms of the urogenital tract. Differences between the SU and UP proteomes were influenced by local inflammation, supported by respective comparisons with 12 healthy control urine proteomes. Clustering analyses showed that SU and UP fractions had proteomic signatures discerning UTIs, vascular injury, and epithelial cell exfoliation from the control group to varying degrees. Cases of UTI revealed clusters of proteins produced by activated neutrophils. Network analysis supported the central role of neutrophil effector proteins in the defense against invading pathogens associated with subsequent coagulation and wound repair processes. Our study expands the existing knowledge of the urinary proteome under perturbed conditions, and should be useful as reference dataset in the search of biomarkers. PMID:28042331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Wu, Si; Meng, Da
Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Bottom-up proteomic approaches often lead to loss of critical information about an endogenous protein’s actual state due to post translational modifications (PTMs) and other processes. Top-down approaches that involve analysis of the intact protein can address this concern but present significant analytical challenges related to the separation quality needed, measurement sensitivity, and speed that result in low throughput and limited coverage. Here we used single-dimension ultra high pressure liquid chromatography mass spectrometry to investigate the comprehensive ‘intact’ proteome ofmore » the Gram negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1665 proteoforms generated by PTMs, representing the largest microbial top-down dataset reported to date. Our analysis not only confirmed several previously recognized aspects of Salmonella biology and bacterial PTMs in general, but also revealed several novel biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions, which was corroborated by changes in corresponding biosynthetic pathways. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents to our knowledge the first report of S-cysteinylation in Gram negative bacteria. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.« less
Proteome regulation during Olea europaea fruit development.
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
NASA Technical Reports Server (NTRS)
Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.
2003-01-01
Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podar, Mircea; Hettich, Robert; Copie, Valerie
The main objective of this project was to use symbiotic Nanoarchaeaota, a group of thermophilic Archaea that are obligate symbionts/parasites on other Archaea, to develop an integrated multi-omic approach to study inter-species interactions as well as to understand fundamental mechanism that enable such relationships. As part of this grant we have achieved a number of important milestone on both technical and scientific levels. On the technical side, we developed immunofluorescence labeling and tracking methods to follow Nanoarchaeota in cultures and in environmental samples, we applied such methods in conjunction with flow cytometry to quantify and isolate uncultured representatives from themore » environment and characterized them by single cell genomics. On the proteomics side, we developed a more efficient and sensitive method to recover and semi-quantitatively measure membrane proteins, while achieving high total cellular proteome coverage (70-80% of the predicted proteome). Metabolomic analyses used complementary NMR and LC/GC mass spectrometry and led to the identification of novel lipids in these organisms as well as quantification of some of the major metabolites. Importantly, using several informatics approaches we were also able to integrate the transcriptomic, proteomic and metabolomic datasets, revealing aspects of the interspecies interaction that were not evident in the single omic analyses (manuscript in review). On the science side we determined that N. equitans and I. hospitalis are metabolically coupled and that N. equitans is strictly dependent on its host both for metabolic precursors and energetic needs. The actual mechanism by which small molecules move across the cell membrane remains unknown. The Ignicoccus host responds to the metabolic and energetic burned by upregulating of key primary metabolism steps and ATP synthesis. The two species have co-evolved, aspect that we determined by comparative genomics with other species of Ignicoccus (manuscript in preparation) and by characterizing other similar Nanoarchaeota systems. Using a single cell genomics approach we characterized the first terrestrial geothermal Nanoarchaeota system, from Yellowstone National Park. That nanoarchaeon uses a different host, a species of Sulfolobales, and comparative genomics with N. equitans-Ignicoccus allowed us to come up with an evolutionary model for the evolution of this group of organisms across marine and terrestrial ecosystems. Based on metabolic inferences we were also able to isolate in culture the first such terrestrial nanoarchaeal system, also from Yellowstone, which involves a species of Acidilobus. The novel nanoarchaeal system was characterized using proteomics and it helped us better understand the metabolic capabilities of these organisms as well as how co-evolution shapes the genomes of interacting species. It was also one of the very few cases in which prior genomic data was used to successfully design an approach to culture an organism, which remains the gold standard in microbiology research. As a better understanding of interspecies interaction requires multiple model systems, we have pursued identification and genomic characterization or isolation of additional nanoarchaeal systems from geographically and geochemically distinct environments. Two additional nanoarchaeal systems are presently being characterized from hot springs in Yellowstone and Iceland and will be the subject to future publications.« less
Nano-scale engineering using lead chalcogenide nanocrystals for opto-electronic applications
NASA Astrophysics Data System (ADS)
Xu, Fan
Colloidal quantum dots (QDs) or nanocrystals of inorganic semiconductors exhibit exceptional optoelectronic properties such as tunable band-gap, high absorption cross-section and narrow emission spectra. This thesis discusses the characterizations and physical properties of lead-chalcogenide nanocrystals, their assembly into more complex nanostructures and applications in solar cells and near-infrared light-emitting devices. In the first part of this work, we demonstrate that the band edge emission of PbS quantum dots can be tuned from the visible to the mid-infrared region through size control, while the self-attachment of PbS nanocrystals can lead to the formation of 1-D nanowires, 2-D quantum dot monolayers and 3-D quantum dot solids. In particular, the assembly of closely-packed quantum dot solids has attracted enormous attention. A series of distinctive optoelectronic properties has been observed, such as superb multiple exciton generation efficiencies, efficient hot-electron transfer and cold-exciton recycling. Since the surfactant determines the quantum dot surface passivation and inter dot electronic coupling, we examine the influence of different cross-linking surfactants on the optoelectronic properties of the quantum dot solids. Then, we discuss the ability to tune the quantum dot band-gap combined with the controllable assembly of lead-chalcogenide quantum dots, which opens new possibilities to engineer the properties of quantum dot solids. The PbS and PbSe quantum dot cascade structures and PbS/PbSe quantum dot heterojunctions are assembled using the layer-by-layer deposition method. We show that exciton funnelling and trap state-bound exciton recycling in the quantum dot cascade structure dramatically enhances the quantum dots photoluminescence. Moreover, we show that both type-I and type-II PbS/PbSe quantum dot heterojunctions can be assembled by carefully choosing the quantum dot sizes. In type-I heterojunctions, the excited electron-hole pairs tend to localize in narrower band-gap quantum dots, leading to significant photoluminescence enhancement. In contrast, the staggered energy bands in type-II heterojunctions lead to rapid exciton separation at the junctions that considerably quenches the photoluminescence. As such, this strategy can be fruitfully employed to enhance performances in nanocrystal-based photovoltaic devices. Using this approach, we achieve efficient PbS nanocrystal-based solar cells using an ITO/ TiO2/ PbS QDs/Au architecture, where a porous TiO2 nanowire network is employed as electron transporting layer. Our best heterojunction solar cells exhibit a decent short circuit current of 2.5 mA/cm2, a large open circuit voltage of 0.6 V and a power converting efficiency of 5.4 % under 8.5 mW/cm2 low-light illumination. On the other hand, nanocrystal-based near infrared LED devices are fabricated using a simple ITO-PbS QDs-Al device structure. There, the active quantum dot layer serves as both the electron- and hole-transporting layer. With appropriate surface chemistry treatment on quantum dots, a high-brightness near-infrared LED device is achieved.
Antibody Characterization Process | Office of Cancer Clinical Proteomics Research
The goal of the NCI's Antibody Characterization Program (ACP) is to have three monoclonal antibodies produced for each successfully expressed/purified recombinant antigen and one antibody per peptide (1 to 3 peptides per protein). To date, over 4000 clones have been screened before selecting the current 393 antibodies. They are winnowed down based on the projected end use of the antibody.
NASA Astrophysics Data System (ADS)
Ilie, C. C.; Guzman, F.; Swanson, B. L.; Evans, I. R.; Costa, P. S.; Teeter, J. D.; Shekhirev, M.; Benker, N.; Sikich, S.; Enders, A.; Dowben, P. A.; Sinitskii, A.; Yost, A. J.
2018-05-01
Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr3 perovskite quantum dots. The current–voltage (I–V) and capacitance–voltage (C–V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 109 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr3, indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.
NASA Astrophysics Data System (ADS)
Mishra, Praveen; Bhat, Badekai Ramchandra
2018-04-01
Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.
Zhang, Xi; Miller, Keith W.
2015-01-01
The challenge in high-quality membrane proteomics is all about sample preparation prior to HPLC, and the cell-to-protein step poses a long-standing bottleneck. Traditional protein extraction methods apply ionic or poly-disperse detergents, harsh denaturation, and repeated protein/peptide precipitation/resolubilization afterward, but suffer low yield, low reproducibility, and low sequence coverage. Contrary to attempts to subdue, we resolved this challenge by providing proteins nature-and-activity-promoting conditions throughout preparation. Using 285-kDa hetero-pentameric human GABA type A receptor overexpressed in HEK293 as a model, we describe a n-dodecyl-β-d-maltopyranoside/cholesteryl hemisuccinate (DDM/CHS)-based affinity purification method, that produced active receptors, supported protease activity, and allowed high performance with both in-gel and direct gel-free proteomic analyses—without detergent removal. Unlike conventional belief that detergents must be removed before HPLC MS, the high-purity low-dose nonionic detergent DDM did not interfere with peptides, and obviated removal or desalting. Sonication or dropwise addition of detergent robustly solubilized over 90% of membrane pellets. The purification conditions were comparable to those applied in successful crystallizations of most membrane proteins. These results enabled streamlined proteomics of human synaptic membrane proteins, and more importantly, allowed directly coupling proteomics with crystallography to characterize both static and dynamic structures of membrane proteins in crystallization pipelines. PMID:25473089
Schönke, Milena; Björnholm, Marie; Chibalin, Alexander V; Zierath, Juleen R; Deshmukh, Atul S
2018-03-01
Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however, the analysis of skeletal muscle is challenging. Using state-of-the-art multienzyme digestion and filter-aided sample preparation (MED-FASP) and a mass spectrometry (MS)-based workflow, we performed a global proteomics analysis of skeletal muscle from leptin-deficient, obese, insulin resistant (ob/ob) and lean mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed a shift toward the "slow fiber type." This detailed characterization of an obese rodent model of T2D demonstrates an efficient workflow for skeletal muscle proteomics, which may easily be adapted to other complex tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique
2006-07-01
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.
Alvarez, Sophie; Roy Choudhury, Swarup; Hicks, Leslie M; Pandey, Sona
2013-03-01
Abscisic acid (ABA) is proposed to be perceived by multiple receptors in plants. We have previously reported on the role of two GPCR-type G-proteins (GTG proteins) as plasma membrane-localized ABA receptors in Arabidopsis thaliana. However, due to the presence of multiple transmembrane domains, detailed structural and biochemical characterization of GTG proteins remains limited. Since ABA induces substantial changes in the proteome of plants, a labeling LC-based quantitative proteomics approach was applied to elucidate the global effects and possible downstream targets of GTG1/GTG2 proteins. Quantitative differences in protein abundance between wild-type and gtg1gtg2 were analyzed for evaluation of the effect of ABA on the root proteome and its dependence on the presence of functional GTG1/GTG2 proteins. The results presented in this study reveal the most comprehensive ABA-responsive root proteome reported to date in Arabidopsis. Notably, the majority of ABA-responsive proteins required the presence of GTG proteins, supporting their key role in ABA signaling. These observations were further confirmed by additional experiments. Overall, comparison of the ABA-dependent protein abundance changes in wild-type versus gtg1gtg2 provides clues to their possible links with some of the well-established effectors of the ABA signaling pathways and their role in mediating phytohormone cross-talk.
Taleb, Raghda Saad Zaghloul; Moez, Pacint; Younan, Doreen; Eisenacher, Martin; Tenbusch, Matthias; Sitek, Barbara; Bracht, Thilo
2017-12-01
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. Cirrhosis induced by hepatitis-C virus (HCV) infection is the most critical risk factor for HCC. However, the mechanism of HCV-induced carcinogenesis is not fully understood. Plasma microparticles (PMP) contribute to numerous physiological and pathological processes and contain proteins whose composition correlates to the respective pathophysiological conditions. We analyzed PMP from 22 HCV-induced cirrhosis patients, 16 HCV-positive HCC patients with underlying cirrhosis and 18 healthy controls. PMP were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. We identified 840 protein groups and quantified 507 proteins. 159 proteins were found differentially abundant between the three experimental groups. PMP in both disease entities displayed remarkable differences in the proteome composition compared to healthy controls. Conversely, the proteome difference between both diseases was minimal. GO analysis revealed that PMP isolated from both diseases were significantly enriched in proteins involved in complement activation, while endopeptidase activity was downregulated exclusively in HCC patients. This study reports for the first time a quantitative proteome analysis for PMP from patients with HCV-induced cirrhosis and HCC. Data are available via ProteomeXchange with identifier PXD005777. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin
2011-01-01
Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level. PMID:21841170
Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.
Salmon, Magali S; Bayer, Emmanuelle M F
2012-01-01
In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.
2012-01-01
Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms. PMID:23176545
Mani, D R; Abbatiello, Susan E; Carr, Steven A
2012-01-01
Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms.
Application of activity-based protein profiling to study enzyme function in adipocytes.
Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique
2014-01-01
Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. © 2014 Elsevier Inc. All rights reserved.
A Proteomic Characterization of Factors Enriched at Nascent DNA Molecules
Lopez-Contreras, Andres J.; Ruppen, Isabel; Nieto-Soler, Maria; Murga, Matilde; Rodriguez-Acebes, Sara; Remeseiro, Silvia; Rodrigo-Perez, Sara; Rojas, Ana M.; Mendez, Juan; Muñoz, Javier; Fernandez-Capetillo, Oscar
2013-01-01
SUMMARY DNA replication is facilitated by multiple factors that concentrate in the vicinity of replication forks. Here, we developed an approach that combines the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. In addition to known replisome components, we provide a broad list of proteins that reside in the vicinity of the replisome, some of which were not previously associated with replication. For instance, our data support a link between DNA replication and the Williams-Beuren syndrome and identify ZNF24 as a replication factor. In addition, we reveal that SUMOylation is wide-spread for factors that concentrate near replisomes, which contrasts with lower UQylation levels at these sites. This resource provides a panoramic view of the proteins that concentrate in the surroundings of the replisome, which should facilitate future investigations on DNA replication and genome maintenance. PMID:23545495
Tools for phospho- and glycoproteomics of plasma membranes.
Wiśniewski, Jacek R
2011-07-01
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.
Xu, Hesheng Victor; Zheng, Xin Ting; Zhao, Yanli; Tan, Yen Nee
2018-06-13
Natural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots. It was found that the amino acids with reactive R groups, including amine, hydroxyl, and carboxyl functional groups form unique C-O-C/C-OH and N-H bonds in the AA dots which stabilize the surface defects, giving rise to brightly luminescent AA dots. Furthermore, the AA dots were found to be amorphous and the length of the R group was observed to affect the final morphology (e.g., disclike nanostructure, nanowire, or nanomesh) of the AA dots, which in turn influence their photoluminescent properties. It is noteworthy to highlight that the hydroxyl-containing amino acids, that is, Ser and Thr, form the brightest AA dots with a quantum yield of 30.44% and 23.07%, respectively, and possess high photostability with negligible photobleaching upon continuous UV exposure for 3 h. Intriguingly, by selective mixing of Ser or Thr with another amino acid precursor, the resulting mixed AA dots could inherit unique properties such as improved photostability and significant red shift in their emission wavelength, producing enhanced green and red fluorescent intensity. Moreover, our cellular studies demonstrate that the as-synthesized AA dots display outstanding biocompatibility and excellent intracellular uptake, which are highly desirable for imaging applications. We envision that the material design rules discovered in this study will be broadly applicable for the rational selection of amino acid precursors in the tailored synthesis of biodots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less
Stavrianakou, Maria; Perez, Ricardo; Wu, Cheng; Sachs, Matthew S; Aramayo, Rodolfo; Harlow, Mark
2017-08-14
The electric organ of Tetronarce californica (an electric ray formerly known as Torpedo californica) is a classic preparation for biochemical studies of cholinergic neurotransmission. To broaden the usefulness of this preparation, we have performed a transcriptome assembly of the presynaptic component of the electric organ (the electric lobe). We combined our assembled transcriptome with a previous transcriptome of the postsynaptic electric organ, to define a MetaProteome containing pre- and post-synaptic components of the electric organ. Sequencing yielded 102 million paired-end 100 bp reads. De novo Trinity assembly was performed at Kmer 25 (default) and Kmers 27, 29, and 31. Trinity, generated around 103,000 transcripts, and 78,000 genes per assembly. Assemblies were evaluated based on the number of bases/transcripts assembled, RSEM-EVAL scores and informational content and completeness. We found that different assemblies scored differently according to the evaluation criteria used, and that while each individual assembly contained unique information, much of the assembly information was shared by all assemblies. To generate the presynaptic transcriptome (electric lobe), while capturing all information, assemblies were first clustered and then combined with postsynaptic transcripts (electric organ) downloaded from NCBI. The completness of the resulting clustered predicted MetaProteome was rigorously evaluated by comparing its information against the predicted proteomes from Homo sapiens, Callorhinchus milli, and the Transporter Classification Database (TCDB). In summary, we obtained a MetaProteome containing 92%, 88.5%, and 66% of the expected set of ultra-conserved sequences (i.e., BUSCOs), expected to be found for Eukaryotes, Metazoa, and Vertebrata, respectively. We cross-annotated the conserved set of proteins shared between the T. californica MetaProteome and the proteomes of H. sapiens and C. milli, using the H. sapiens genome as a reference. This information was used to predict the position in human pathways of the conserved members of the T. californica MetaProteome. We found proteins not detected before in T. californica, corresponding to processes involved in synaptic vesicle biology. Finally, we identified 42 transporter proteins in TCDB that were detected by the T. californica MetaProteome (electric fish) and not selected by a control proteome consisting of the combined proteomes of 12 widely diverse non-electric fishes by Reverse-Blast-Hit Blast. Combined, the information provided here is not only a unique tool for the study of cholinergic neurotransmission, but it is also a starting point for understanding the evolution of early vertebrates.
An orientation analysis method for protein immobilized on quantum dot particles
NASA Astrophysics Data System (ADS)
Aoyagi, Satoka; Inoue, Masae
2009-11-01
The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga +) and a cluster ion source (Au 3+) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga + and Au 3+, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.
Jaén, Karim E; Sigala, Juan-Carlos; Olivares-Hernández, Roberto; Niehaus, Karsten; Lara, Alvaro R
2017-07-04
Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.