Sample records for double bond equivalent

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, J.; Berger, G.; Nabedryk, E.

    The photoreduction of the secondary quinone acceptor Q{sub B} in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis has been investigated by light-induced FTIR difference spectroscopy of RCs reconstituted with several isotopically labeled ubiquinones. The labels used were {sup 18}O on both carbonyls and {sup 13}C either uniformly or selectively at the 1- or the 4-position, i.e., on either one of the two carbonyls. The Q{sub B}{sup {minus}}/Q{sub B} spectra of RCs reconstituted with the isotopically labeled and unlabeled quinones as well as the double differences calculated form these spectra exhibit distinct isotopic shifts for amore » numer of bands attributed to vibrations of Q{sub B} and Q{sub B}{sup {minus}}. The vibrational modes of the quinone in the Q{sub B} site are compared to those of ubiquinone in vitro, leading to band assignments for the C{double_bond}O and C{double_bond}C vibrations of the neutral Q{sub B} and for the C---O and C---C of the semiquinone. The C{double_bond}O frequency of each of the carbonyls of the unlabeled quinone is revealed at 1641 cm{sup {minus}1} for both species. This demonstrates symmetrical and weak hydrogen bonding of the two C{double_bond}O groups to the protein at the Q{sub B} site. In contrast, the C{double_bond}C vibrations are not equivalent for selective labeling at C{sub 1} or at C{sub 4}, although they both contribute to the {approximately}1611-cm{sup {minus}1} band in the Q{sub B}{sup {minus}}/Q{sub B} spectra of the two species. Compared to the vibrations of isolated ubiquinone, the C{double_bond}C mode of Q{sub B} does not involve displacement of the C{sub 4} carbon atom, while the motion of C{sub 1} is not hindered. Further analysis of the spectra suggests that the protein at the binding site imposes a specific constraint on the methoxy and/or the methyl group proximal to the C{sub 4} carbonyl. 49 refs., 5 figs.« less

  2. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE PAGES

    Zhang, Guanghua; Flint, Rebecca

    2017-12-27

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  3. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanghua; Flint, Rebecca

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  4. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  5. From double-slit interference to structural information in simple hydrocarbons

    PubMed Central

    Kushawaha, Rajesh Kumar; Patanen, Minna; Guillemin, Renaud; Journel, Loic; Miron, Catalin; Simon, Marc; Piancastelli, Maria Novella; Skates, C.; Decleva, Piero

    2013-01-01

    Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young’s double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70–700 eV. A strong dependence of the oscillation period on the C–C distance is observed, which can be used to determine bond lengths between selected pairs of equivalent atoms with an accuracy of at least 0.01 Å. Furthermore, we show that the observed oscillations are directly informative of the nature and atomic composition of the inner-valence molecular orbitals and that observed ratios are quantitative measures of elusive many-body effects. The technique and analysis can be immediately extended to a large class of compounds. PMID:24003155

  6. The covalently bound diazo group as an infrared probe for hydrogen bonding environments.

    PubMed

    You, Min; Liu, Liyuan; Zhang, Wenkai

    2017-07-26

    Covalently bound diazo groups are frequently found in biomolecular substrates. The C[double bond, length as m-dash]N[double bond, length as m-dash]N asymmetric stretching vibration (ν as ) of the diazo group has a large extinction coefficient and appears in an uncongested spectral region. To evaluate the solvatochromism of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band for studying biomolecules, we recorded the infrared (IR) spectra of a diazo model compound, 2-diazo-3-oxo-butyric acid ethyl ester, in different solvents. The width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly dependent on the Kamlet-Taft solvent parameter, which reflects the polarizability and hydrogen bond accepting ability of the solvent. Therefore, the width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band could be used to probe these properties for a solvent. We found that the position of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly correlated with the density of hydrogen bond donor groups in the solvent. We studied the relaxation dynamics and spectral diffusion of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of a natural amino acid, 6-diazo-5-oxo-l-norleucine, in water using nonlinear IR spectroscopy. The relaxation and spectral diffusion time constants of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band were similar to those of the N[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band. We concluded that the position and width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of the diazo group could be used to probe the hydrogen bond donating and accepting ability of a solvent, respectively. These results suggest that the diazo group could be used as a site-specific IR probe for the local hydration environments.

  7. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  8. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.

    PubMed

    Luo, Xiang; Yang, Xianhai; Qiao, Xianliang; Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Peijnenburg, Willie J G M

    2017-03-22

    Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (k OH ) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict k OH . In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C 6 H 5 , -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH 2 , -NH-C(O)-, -NO 2 , -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO 3 , -SO 4 , -PO 4 , and -X (F, Cl, Br, and I).

  9. Synthesis and structural characterisation of alkali metal complexes of heteroatom-stabilised 1,4- and 1,6-dicarbanions.

    PubMed

    Izod, Keith; Bowman, Lyndsey J; Wills, Corinne; Clegg, William; Harrington, Ross W

    2009-05-07

    A straightforward Peterson olefination reaction between either [{(Me(2)PhSi)(3)C}Li(THF)] or in situ-generated [(Me(3)Si)(2){Ph(2)P(BH(3))}CLi(THF)(n)] and paraformaldehyde gives the alkenes (Me(2)PhSi)(2)C[double bond, length as m-dash]CH(2) () and (Me(3)Si){Ph(2)P(BH(3))}C[double bond, length as m-dash]CH(2) (), respectively, in good yield. Ultrasonic treatment of with lithium in THF yields the lithium complex [{(Me(2)PhSi)(2)C(CH(2))}Li(THF)(n)](2) (), which reacts in situ with one equivalent of KOBu(t) in diethyl ether to give the potassium salt [{(Me(2)PhSi)(2)C(CH(2))}K(THF)](2) (). Similarly, ultrasonic treatment of with lithium in THF yields the lithium complex [[{Ph(2)P(BH(3))}(Me(3)Si)C(CH(2))]Li(THF)(3)](2).2THF (). The bis(phosphine-borane) [(Me(3)Si){Me(2)(H(3)B)P}CH(Me(2)Si)(CH(2))](2) () may be prepared by the reaction of [Me(2)P(BH(3))CH(SiMe(3))]Li with half an equivalent of ClSiMe(2)CH(2)CH(2)SiMe(2)Cl in refluxing THF. Metalation of with two equivalents of MeLi in refluxing THF yields the lithium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}]Li(THF)(3)](2) (), whereas metalation with two equivalents of MeK in cold diethyl ether yields the potassium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}](2)K(2)(THF)(4)](infinity) () after recrystallisation. X-Ray crystallography shows that, whereas the lithium complex crystallises as a discrete molecular species, the potassium complexes and crystallise as sheet and chain polymers, respectively.

  10. Phase separation in an exactly solvable model binary solution with three-body interactions and intermolecular bonding.

    PubMed

    Lungu, Radu P; Huckaby, Dale A; Buzatu, Florin D

    2006-02-01

    A model is presented in which the bonds of a honeycomb lattice are covered by rodlike molecules of types AA and BB, molecular ends near a common site having both three-body interactions and orientation-dependent bonding between two A molecular ends and between an A and a B molecular end. Phase diagrams corresponding to the separation into AA-rich and BB-rich phases are calculated exactly. Depending on the relative strengths of the interactions, one of several qualitatively different types of phase diagrams can result, including diagrams containing phenomena such as a double critical point or two separate asymmetric closed loops. The model is essentially a limiting case of a previously considered ternary solution model, and it is equivalent to a two-component system of interacting A and B molecules on the sites of a kagomé lattice.

  11. Petroleomics: Chemistry of the underworld

    PubMed Central

    Marshall, Alan G.; Rodgers, Ryan P.

    2008-01-01

    Each different molecular elemental composition—e.g., CcHhNnOoSs—has a different exact mass. With sufficiently high mass resolving power (m/Δm50% ≈ 400,000, in which m is molecular mass and Δm50% is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to ≈800 Da, now routinely available from high-field (≥9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (NnOoSs), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. “Petroleomics” is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, “heavy ends” (asphaltenes) analysis, corrosion, etc. PMID:18836082

  12. Petroleomics: chemistry of the underworld.

    PubMed

    Marshall, Alan G; Rodgers, Ryan P

    2008-11-25

    Each different molecular elemental composition-e.g., C(c)H(h)N(n)O(o)S(s)-has a different exact mass. With sufficiently high mass resolving power (m/Deltam(50%) approximately 400,000, in which m is molecular mass and Deltam(50%) is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to approximately 800 Da, now routinely available from high-field (>/=9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (N(n)O(o)S(s)), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. "Petroleomics" is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, "heavy ends" (asphaltenes) analysis, corrosion, etc.

  13. Reactions of the linear tetranuclear complex Ru sub 4 (CO) sub 10 (CH sub 3 C double bond C(H)C(H) double bond N-i-Pr) sub 2 with oxidizing reagents. Syntheses of halide-bridged (Ru(CO) sub 2 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)) sub 2 and fac-Ru(CO) sub 3 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mul, W.P.; Elsevier, C.J.; van Leijen, M.

    1991-01-01

    The linear tetranuclear complex Ru{sub 4}(CO){sub 10}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (1), containing two {eta}{sup 5}-azaruthenacyclopentadienyl systems, reacts with oxidizing reagents (I{sub 2}, Br{sub 2}, NBS, CCl{sub 4}) at elevated temperatures (40-90C) in heptane or benzene to give the new dimeric halide-bridged organoruthenium(II) complexes (Ru(CO){sub 2}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr)){sub 2} (X = I (3a), X = Br (3b), Cl (3c); yield 30-80%) together with (Ru(CO){sub 3}X{sub 2}){sub 2}. The reactions of 1 with CX{sub 4} (X = I, Br, Cl) are accelerated by CO, probably because Ru{sub 4}(CO){sub 12}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (5), which contains two unbridged metal-metal bonds,more » is formed prior to oxidation. The halide-bridged dimers 3a-c are obtained as mixtures of four isomers, the configurations of which are discussed. Splitting of the halide bridges takes place when a solution of 3a-c is saturated with CO, whereby mononuclear fac-Ru(CO){sub 3}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr) (4a-c) is obtained. This process is reversible; ie., passing a stream of nitrogen through a solution of 4a-c or removal of the solvent under vacuum causes the reverse reaction with reformation of 3a-c. Compounds 3a-c and 4a-c have been characterized by IR (3, 4), FD mass (3), {sup 1}H (3, 4), and {sup 13}C{l brace}H{r brace} NMR (4) spectroscopy and satisfactory elemental analyses have been obtained for 3a-c. Compounds 3 and 4 are suitable precursors for the preparation of new homo- and heteronuclear transition-metal complexes.« less

  14. Catalytic coupling of sp2- and sp-hybridized carbon-hydrogen bonds with vinylmetalloid compounds.

    PubMed

    Marciniec, Bogdan

    2007-10-01

    In the Account given herein, it has been shown that silylative coupling of olefins, well-recognized as a new catalytic route for the activation of double bond C-H bond of olefins and double bond C-Si bond of vinylsilicon compounds with ethylene elimination, can be extended over both other vinylmetalloid derivatives (double bond C-E) (where E = Ge, B, and others) as well as the activation of triple bond C-H, double bond C aryl-H, and -O-H bond of alcohols and silanols. This general transformation is catalyzed by transition-metal complexes (mainly Ru and Rh) containing or initiating TM-H and/or TM-E bonds (inorganometallics). This new general catalytic route for the activation of double bond C-H and triple bond C-H as well as double bond C-E bonds called metallative coupling or trans-metalation (cross-coupling, ring-closing, and polycondensation) constitutes an efficient method (complementary to metathesis) for stereo- and regioselective synthesis of a variety of molecular and macromolecular compounds of vinyl-E (E = Si, B, and Ge) and ethynyl-E (E = Si and Ge) functionality, also potent organometallic reagents for efficient synthesis of highly pi-conjugated organic compounds. The mechanisms of the catalysis of this deethenative metalation have been supported by equimolar reactions of TM-H and/or TM-E with initial substances and reactions with deuterium-labeled reagents.

  15. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  16. Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters.

    PubMed

    Lawrence, Peter; Brenna, J Thomas

    2006-02-15

    Covalent adduct chemical ionization (CACI) using a product of acetonitrile self-reaction, (1-methyleneimino)-1-ethenylium (MIE; CH2=C=N+=CH2), has been investigated as a method for localizing double bonds in a series of 16 non-methylene-interrupted fatty acid methyl esters (NMI-FAME) of polyenes with three and more double bonds. As with polyunsaturated homoallylic (methylene-interrupted) FAME and conjugated dienes, MIE (m/z 54) reacts across double bonds to yield molecular ions 54 mass units above the parent analyte. [M + 54]+ ions of several 20- and 22-carbon FAME that include one double bond in the C2-C3 position separated by two to five methylene units from a three, four, or five C homoallylic system dissociated according to rules for the homoallylic system, with an additional fragment corresponding to cleavage between the lone double bond and the carboxyl group and defining the position of the lone double bond. Triene FAME with both methylene and ethylene interruption yielded characteristic fragments distinguishable from homoallylic trienes. Fragmentation of fully conjugated trienes in the MS-1 spectra yields ratios of [M + 54]+/[M + 54 - 32]+ (loss of methanol) near unity, which distinguishes them from homoallylic FAME having a ratio of 8 or more; collisionally activated dissociation of [M + 54]+ yields a series of ions, including some rearrangement products, indicative of double bond position. Unlike conjugated dienes, fully conjugated triene diagnostic ion signal ratios did not follow any pattern based on double bond geometry. Partially conjugated trienes behave similarly to monoenes and conjugated dienes, yielding [M + 54]+/[M + 54 - 32]+ of 2-3 and, permitting them to be assigned as partially conjugated FAME using the MS-1 spectrum. They yield unique MS/MS spectra with weaker but assignable fragment ions, along with a diagnostic fragment that locates the lone double bond and permits 6,10,12-octatrienoate to be distinguished from 6,8,12-octatrienoate. The presence of a triple bond did not affect fragment formation in a methylene-interrupted yne-ene but did change fragments in a conjugated yne-ene. These data extend the principle of double bond localization by acetonitrile CACI-MS/MS to double bond structure in complex FAME found in nature.

  17. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    PubMed

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  18. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane adhesive is supplied in a two-part form, comprising a resin and a hardener that must be mixed. The resulting urethane adhesive has a working time of 3 to 5 minutes. To prepare the urethane/silicone blend, one must quickly add the silicone to the urethane adhesive and mix it in thoroughly within the working time of the urethane. Once the urethane/silicone blend has been mixed and applied to the bond surfaces, it takes about 2 hours for the adhesive to cure under pressure. However, it takes about 24 hours for the adhesive to reach full strength.

  19. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    PubMed

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  20. A general mixture equation of state for double bonding carboxylic acids with ≥2 association sites

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2018-05-01

    In this paper, we obtain the first general multi-component solution to Wertheim's thermodynamic perturbation theory for the case that molecules can participate in cyclic double bonds. In contrast to previous authors, we do not restrict double bonding molecules to a 2-site association scheme. Each molecule in a multi-component mixture can have an arbitrary number of donor and acceptor association sites. The one restriction on the theory is that molecules can have at most one pair of double bonding sites. We also incorporate the effect of hydrogen bond cooperativity in cyclic double bonds. We then apply this new association theory to 2-site and 3-site models for carboxylic acids within the polar perturbed chain statistical associating fluid theory equation of state. We demonstrate the accuracy of the approach by comparison to both pure and multi-component phase equilibria data. It is demonstrated that the 3-site association model gives substantially a different hydrogen bonding structure than a 2-site approach. We also demonstrate that inclusion of hydrogen bond cooperativity has a substantial effect on a liquid phase hydrogen bonding structure.

  1. On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes

    NASA Astrophysics Data System (ADS)

    Catalán, J.

    2003-07-01

    An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.

  2. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.

    PubMed

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-02-22

    It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.

  3. Formation of unexpected silicon- and disiloxane-bridged multiferrocenyl derivatives bearing Si-O-CH[double bond, length as m-dash]CH2 and Si-(CH2)2C(CH3)3 substituents via cleavage of tetrahydrofuran and trapping of its ring fragments.

    PubMed

    Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel

    2017-09-12

    The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.

  4. Effect of double-layer application on bond quality of adhesive systems.

    PubMed

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  6. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  7. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  8. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  9. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α < α1ac = 0 . 46(1) and α > α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  10. Modeling of fracture and durability of paste-bonded composite joints subjected to hygro-thermal-mechanical loading

    NASA Astrophysics Data System (ADS)

    Harris, David Lee

    The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.

  11. A P-H functionalized Al/P-based frustrated Lewis pair - hydrophosphination of nitriles, ring opening with cyclopropenones and evidence of P[double bond, length as m-dash]C double bond formation.

    PubMed

    Keweloh, Lukas; Aders, Niklas; Hepp, Alexander; Pleschka, Damian; Würthwein, Ernst-Ulrich; Uhl, Werner

    2018-06-12

    Hydroalumination of R-P(H)-C[triple bond, length as m-dash]C-tBu with bulky H-Al[CH(SiMe3)2]2 afforded the new P-H functionalized Al/P-based frustrated Lewis pair R-P(H)-C[[double bond, length as m-dash]C(H)-tBu]-AlR2 [R = CH(SiMe3)2; FLP 7]. A weak adduct of 7 with benzonitrile (8) was detected by NMR spectroscopy, but could not be isolated. tert-Butyl isocyanide afforded a similar, but isolable adduct (9), in which the isocyanide C atom was coordinated to aluminium. The unique reactivity of 7 became evident from its reactions with the heteroatom substituted nitriles PhO-C[triple bond, length as m-dash]N, PhCH2S-C[triple bond, length as m-dash]N and H8C4N-C[triple bond, length as m-dash]N. Hydrophosphination of the C[triple bond, length as m-dash]N triple bonds afforded imines at room temperature which were coordinated to the FLP by Al-N and P-C bonds to yield AlCPCN heterocycles (10 to 12). These processes depend on substrate activation by the FLP. Diphenylcyclopropenone and its sulphur derivative reacted with 7 by addition of the P-H bond to a C-C bond of the strained C3 ring and ring opening to afford the fragment (Z)-Ph-C(H)[double bond, length as m-dash]C(Ph)-C-X-Al (X = O, S). The C-O or C-S groups were coordinated to the FLP to yield AlCPCX heterocycles (13 and 14). The thiocarbonyl derived compound 14 contains an internally stabilized phosphenium cation with a localized P[double bond, length as m-dash]C bond, a trigonal planar coordinated P atom and a short P[double bond, length as m-dash]C distance (168.9 pm). Insight into formation mechanisms, the structural and energetic properties of FLP 7 and compounds 13 and 14 was gained by quantum chemical DFT calculations.

  12. Two Equivalent Methyl Internal Rotations in 2,5-DIMETHYLTHIOPHENE Investigated by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Van, Vinh; Stahl, Wolfgang; Nguyen, Ha Vinh Lam

    2016-06-01

    The microwave spectrum of 2,5-dimethylthiophene, a sulfur-containing five-membered heterocyclic molecule with two conjugated double bonds, was recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Highly accurate molecular parameters were determined. The rotational constants obtained by geometry optimizations at different levels of theory are in good agreement with the experimental values. A C2v equilibrium structure was calculated, where one hydrogen atom of each methyl group is antiperiplanar to the sulfur atom, and the two methyl groups are thus equivalent. Transition states were optimized at different levels of theory using the Berny algorithm to calculate the barrier height of the two equivalent methyl rotors. The fitted experimental torsional barrier of 247.95594(30) wn is in reasonable agreement with the calculated barriers. Similar barriers to internal rotation were found for the monomethyl derivatives 2-methylthiophene (194.1 wn) and 3-methylthiophene (258.8 wn). A labeling scheme for the group G36 written as the semi-direct product (C3I x C3I) (x C2v was introduced.

  13. Electrical conductivity in a nonconjugated polymer intermediate between polyisoprene and polyacetylene

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Thakur, Mrinal

    2002-03-01

    Conjugation is not a prerequisite for electrical conductivity in polymers. Nonconjugated polymers having at least one double bond in the repeat can become conductive upon doping. Polyisoprene having one double bond repeating after three single bonds in the backbone becomes conductive upon doping with electron acceptors such as iodine.^1 The conductivity of doped polyisoprene is about 10-2 - 10-1 ohm-1cm-1. Poly(allocimene) has on the average one double bond repeating after two single bonds in the polymer backbone. The conductivity of poly(allocimene) is about 1 ohm-1cm-1 upon iodine doping. For polyacetylene, the conductivity upon iodine doping is about 100 ohm-1cm-1. There seems to be a power law dependence of conductivity on the fraction of double bonds in the repeat: σ ~ 10^5(f)^10, where σ is the conductivity in ohm-1cm-1, f is the number fraction of double bonds (e.g. 0.25 in polyisoprene, 0.33 in poly(allocimene) and 0.5 in polyacetylene). The conductivity depends partly on substituents and the morphology of the polymer as well. 1. M. Thakur, Macromolecules, 21 661 (1988); J. Macromol. Sci.-PAC, A38.12, Dec., (2001).

  14. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    PubMed

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  15. Structure and energetics of extended defects in ice Ih

    NASA Astrophysics Data System (ADS)

    Silva Junior, Domingos L.; de Koning, Maurice

    2012-01-01

    We consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice Ih. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30∘ and 90∘ partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice Ih are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30∘ dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90∘ partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice Ih should be based on the idea of reconstructed partial dislocations.

  16. Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.

    PubMed

    Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph

    2018-06-01

    There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.

  17. (E)-1,3-Bis(2,3,4,5,6-penta­fluoro­phen­yl)prop-2-en-1-one

    PubMed Central

    Schwarzer, Anke; Weber, Edwin

    2010-01-01

    In the title compound, C15H2F10O, the two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The olefinic double bond adopts an E configuration and the single bond between the olefinic and carbonyl double bonds has an s-trans conformation. The carbonyl group is not in a coplanar alignment with respect to the neighbouring arene ring (0.963 Å from aryl plane) while being coplanar with regard to the olefinic double bond (0.0805 Å from olefinic bond). The crystal packing does not feature significant hydrogen-bond-type or stacking inter­actions. PMID:21588260

  18. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  19. Can HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, or HN[double bond, length as m-dash]CHOH bridge the σ-hole and the lone pair at P in binary complexes with H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H?

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2015-11-11

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.

  20. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.

  1. Programming Recognition Arrays through Double Chalcogen-Bonding Interactions.

    PubMed

    Biot, Nicolas; Bonifazi, Davide

    2018-04-11

    In this work, we have programmed and synthesized a recognition motif constructed around a chalcogenazolo-pyridine scaffold (CGP) that, through the formation of frontal double chalcogen-bonding interactions, associates into dimeric EX-type complexes. The reliability of the double chalcogen-bonding interaction has been shown at the solid-state by X-ray analysis, depicting the strongest recognition persistence for a Te-congener. The high recognition fidelity, chemical and thermal stability and easy derivatization at the 2-position makes CGP a convenient motif for constructing supramolecular architectures through programmed chalcogen-bonding interactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Why Combustions Are Always Exothermic, Yielding about 418 kJ per Mole of O[subscript 2

    ERIC Educational Resources Information Center

    Schmidt-Rohr, Klaus

    2015-01-01

    The strongly exothermic nature of reactions between molecular oxygen and all organic molecules as well as many other substances is explained in simple, general terms. The double bond in O[subscript 2] is much weaker than other double bonds or pairs of single bonds, and therefore the formation of the stronger bonds in CO[subscript 2] and…

  4. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  5. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    PubMed

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  6. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  7. Facile synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions.

    PubMed

    Ding, San-Yuan; Cui, Xiao-Hui; Feng, Jie; Lu, Gongxuan; Wang, Wei

    2017-10-31

    We reported herein a facile approach for the synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions. Three known (COF-42, COF-43, and COF-LZU1) and one new (Pr-COF-42) COF materials were successfully synthesized using this method. Furthermore, this simple synthetic approach makes the large-scale synthesis of -C[double bond, length as m-dash]N- linked COFs feasible.

  8. The Existence of a Designer Al=Al Double Bond in the LiAl2 H4- Cluster Formed by Electronic Transmutation.

    PubMed

    Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H

    2017-12-22

    The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterization of polysaccharides from bamboo

    NASA Astrophysics Data System (ADS)

    Kamil, Ruzaimah Nik Mohamad; Yusuf, Nur'aini Raman; Yunus, Normawati M.; Yusup, Suzana

    2014-10-01

    The alkaline and water soluble polysaccharides were isolate by sequential extractions with distilled water, 60% ethanol containing 1%, 5% and 8% NaOH. The samples were prepared at 60 °C for 3 h from local bamboo. The functional group of the sample were examined using FTIR analysis. The most precipitate obtained is from using 60% ethanol containing 8% NaOH with yield of 2.6%. The former 3 residues isolated by sequential extractions with distilled water, 60% ethanol containing 1% and 5% NaOH are barely visible after filtering with cellulose filter paper. The FTIR result showed that the water-soluble polysaccharides consisted mainly of OH group, CH group, CO indicates the carbohydrate and sugar chain. The sample weight loss was slightly decreased with increasing of temperature.

  10. Identification of a Disulfide Bridge in Sodium-Coupled Neutral Amino Acid Transporter 2(SNAT2) by Chemical Modification.

    PubMed

    Chen, Chen; Wang, Jiahong; Cai, Ruiping; Yuan, Yanmeng; Guo, Zhanyun; Grewer, Christof; Zhang, Zhou

    2016-01-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins.

  11. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability.

  12. Part II: Biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique.

    PubMed

    Park, Maxwell C; Tibone, James E; ElAttrache, Neal S; Ahmad, Christopher S; Jun, Bong-Jae; Lee, Thay Q

    2007-01-01

    We hypothesized that a transosseous-equivalent repair would demonstrate improved tensile strength and gap formation between the tendon and tuberosity when compared with a double-row technique. In 6 fresh-frozen human shoulders, a transosseous-equivalent rotator cuff repair was performed: a suture limb from each of two medial anchors was bridged over the tendon and fixed laterally with an interference screw. In 6 contralateral matched-pair specimens, a double-row repair was performed. For all repairs, a materials testing machine was used to load each repair cyclically from 10 N to 180 N for 30 cycles; each repair underwent tensile testing to measure failure loads at a deformation rate of 1 mm/sec. Gap formation between the tendon edge and insertion was measured with a video digitizing system. The mean ultimate load to failure was significantly greater for the transosseous-equivalent technique (443.0 +/- 87.8 N) compared with the double-row technique (299.2 +/- 52.5 N) (P = .043). Gap formation during cyclic loading was not significantly different between the transosseous-equivalent and double-row techniques, with mean values of 3.74 +/- 1.51 mm and 3.79 +/- 0.68 mm, respectively (P = .95). Stiffness for all cycles was not statistically different between the two constructs (P > .40). The transosseous-equivalent rotator cuff repair technique improves ultimate failure loads when compared with a double-row technique. Gap formation is similar for both techniques. A transosseous-equivalent repair helps restore footprint dimensions and provides a stronger repair than the double-row technique, which may help optimize healing biology.

  13. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C 2H 4, C 2H 3F, and 1,1-C 2H 2F 2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  14. Utilisation of an eta(3)-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

    PubMed

    Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B

    2008-10-21

    Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

  15. IR spectroscopy as a source of data on bond strengths

    NASA Astrophysics Data System (ADS)

    Finkelshtein, E. I.; Shamsiev, R. S.

    2018-02-01

    The aim of this work is the estimation of double bond strength, namely Cdbnd O bonds in ketones and aldehydes and Cdbnd C bonds in various compounds. By the breaking of these bonds one or both fragments formed are carbenes, for which experimental data on the enthalpies of formation (ΔHf298) are scarce. Thus for the estimation of ΔHf298 of the corresponding carbenes, the empirical equations were proposed based on different approximations. In addition, a quantum chemical calculations of the ΔHf298 values of carbenes were performed, and the data obtained were compared with experimental values and the results of earlier calculations. Equations for the calculation of Cdbnd O bond strengths of different ketones and aldehydes from the corresponding stretching frequencies ν(Cdbnd O) were derived. Using the proposed equations, the strengths of Cdbnd O bonds of 25 ketones and 12 conjugated aldehydes, as well as Cdbnd C bonds of 13 hydrocarbons and 7 conjugated aldehydes were estimated for the first time. Linear correlations of Cdbnd C and Cdbnd O bond strengths with the bond lengths were established, and the equations permitting the estimation of the double bond strengths and lengths with acceptable accuracy were obtained. Also, the strength of central Cdbnd C bond of stilbene was calculated for the first time. The uncertainty of the strengths of double bonds obtained may be regarded as accurate ±10-15 kJ/mol.

  16. Capture of SO3 isomers in the oxidation of sulfur monoxide with molecular oxygen.

    PubMed

    Wu, Zhuang; Lu, Bo; Feng, Ruijuan; Xu, Jian; Lu, Yan; Wan, Huabin; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-02-13

    When mixing SO with O 2 in N 2 , Ne, or Ar, an end-on complex OS-OO forms in the gas phase and can subsequently be trapped at cryogenic temperatures (2.8-15.0 K). Upon infrared light irradiation, OS-OO converts to SO 3 and SO 2 + O with the concomitant formation of a rare 1,2,3-dioxathiirane 2-oxide, i.e., cyclic OS([double bond, length as m-dash]O)O. Unexpectedly, the ring-closure of 16 OS- 18 O 18 O yields a ca. 2 : 1 mixture of cyclic 18 OS([double bond, length as m-dash] 16 O) 18 O and 16 OS([double bond, length as m-dash] 18 O) 18 O. The characterization of OS-OO and OS([double bond, length as m-dash]O)O with IR and UV/Vis spectroscopy is supported by high-level ab initio computations.

  17. Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard

    2014-12-01

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bondmore » correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.« less

  18. Precision Tests of a Quantum Hall Effect Device DC Equivalent Circuit Using Double-Series and Triple-Series Connections

    PubMed Central

    Jeffery, A.; Elmquist, R. E.; Cage, M. E.

    1995-01-01

    Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768

  19. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    PubMed Central

    Nishihara, Masateru; Morii, Hiroyuki; Matsuno, Koji; Ohga, Mami; Stetter, Karl O.; Koga, Yosuke

    2002-01-01

    A choline-containing phospholipid (PL-4) in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997). The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC) followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate). Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea. PMID:15803650

  20. Tautomerism of monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, Te) in the gas phase and in the polar and aprotic solution: An ab initio computational investigation

    NASA Astrophysics Data System (ADS)

    Li, Qiang-Gen; Deng, Chao; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Wang, Xin

    Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6-311+G(d,p) and 6-311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(=X)OH are much more stable than the silanone forms CH3Si(=O)XH in the gas-phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(=O)XH are dominant. This situation may be attributed to the fact that the Si=O and O=H single bonds in the silanol forms are stronger than the Si=X and X=H single bonds in the silanone forms, respectively, even though the Si=X (X D S, Se, and Te) double bonds are much weaker than the Si=O double bondE These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si=S double bond is stronger than the S=O double bond for the tautomeric equilibrium of RSi(=O)SH (R=H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(=S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution.0

  1. Hydridosilylamido complexes of Ta and Mo isolobal with Berry's zirconocenes: syntheses, β-Si-H agostic interactions, catalytic hydrosilylation, and insight into mechanism.

    PubMed

    McLeod, Nicolas A; Kuzmina, Lyudmila G; Korobkov, Ilia; Howard, Judith A K; Nikonov, Georgii I

    2016-02-14

    The syntheses of novel Group 5 and Group 6 hydrosilylamido complexes of the type R(ArN[double bond, length as m-dash])M{N((t)Bu)SiMe2-H}X (M = Ta, R = Cp; M = Mo, R = ArN; X = Cl, H, OBn, Me) are described. The various substituents in the X position seem to play the key role in determining the extent of β-agostic interaction with the Si-H bond. The Mo agostic hydrido complex (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H is a pre-catalyst for the hydrosilylation of carbonyls. The stoichiometric reaction between benzaldehyde and (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H gives the benzoxy complex (ArN[double bond, length as m-dash])2Mo{N((t)Bu)SiMe2-H}(OBn), which showed a similar catalytic reactivity compared to the parent hydride. Mechanistic studies suggest that a non-hydride mechanism is operative.

  2. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  3. Assessing the issue of instability due to Michael adduct formation in novel chemical entities possessing a carbon-carbon double bond during early drug development--applicability of common laboratory analytical protocols.

    PubMed

    Polepally, Akshanth Reddy; Kumar, Venkata V Pavan; Bhamidipati, Ravikanth; Kota, Jagannath; Naveed, Shaik Abdul; Reddy, Karnati Harinder; Mamidi, Rao N V S; Selvakumar, N; Mullangi, Ramesh; Srinivas, Nuggehally R

    2008-09-01

    The discovery of small-molecule novel chemical entities (NCEs) is often a complex play between appropriate structural requirements and optimization of the desired efficacy, safety and pharmacokinetic properties. One of the typical structural variants such as having an active carbon-carbon double bond (alpha, beta-unsaturated carbonyl group) in xenobiotics may lead to stability issues. Such functionalities are extremely reactive, paving way to nucleophilic attack by endogenously occurring and ubiquitous nucleophiles like thiols. While it is easy to make a unilateral decision to not pursue the development of xenobiotics with such functionalities, we question the wisdom of such a decision. In this report, we present in vitro methodologies with appropriate examples to illustrate the ease of assessing the reactivity of the xenobiotics containing double bonds with a known nucleophile. The protocols involve simple reaction procedures followed by measurements using standard laboratory equipments (UV spectrophotometer, HPLC and LC-MS). Our data suggests that not all xenobiotics with carbon-carbon double bonds readily form a Michael's adduct product with glutathione. Hence, the criterion for dropping discovery compounds because of alpha,beta-unsaturated double bonds needs to be reconsidered.

  4. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  5. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  6. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo

    2018-03-01

    The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

  7. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  8. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation.

    PubMed

    Sarkar, Saptarshi; Mallick, Subhasish; Kumar, Pradeep; Bandyopadhyay, Biman

    2018-05-16

    Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene. It was found that the reaction can occur via the addition of ammonia at either the C[double bond, length as m-dash]C or C[double bond, length as m-dash]O bond of ketene. The potential energy surface as well as calculated rate coefficients indicate that under tropospheric conditions, ammonolysis would occur almost exclusively via ammonia addition at the C[double bond, length as m-dash]O bond with negligible contribution from addition at the C[double bond, length as m-dash]C bond. The reaction of ketene with water has also been investigated in order to compare between hydrolysis and ammonolysis, as the former is known to be responsible for the formation of acetic acid. The rate coefficient for the formation of acetamide was found to be ∼106 to 109 times higher than that for the formation of acetic acid from the same ketene source in the troposphere. By means of the relative rate of ammonolysis with respect to hydrolysis, it was shown that acetamide formation would dominate over acetic acid formation at various altitudes in the troposphere.

  9. Bending wavefunctions for linear molecules

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-01-01

    The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.

  10. The effectiveness of an adhesively bonded composite patch repair as applied to a transport aircraft lower wing skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschau, J.J.; Coate, J.E.

    1996-12-31

    Specimens were machined from lower wing skin extrusions of a transport aircraft, precracked under fatigue loading, repaired with a boron/epoxy patch, and subsequently fatigue tested under simulated flight loading conditions to evaluate the effectiveness of an adhesively bonded repair patch. Testing was performed at RT and -54{degrees}C for two configurations: one with the crack running up the integral stiffener (riser), the other running down the riser towards the outer skin surface. Cracks were initiated from a single 6.35 mm diameter hole located in the riser portion of the 7075-T6 wing skin material. Ultrasonic inspections were performed during fatigue loading tomore » determine crack growth and damage underneath the patch. Limited results show the adhesively bonded patch was successful in stopping or greatly reducing any further crack growth. Under laboratory air conditions, no crack growth occurred following 30,000 equivalent flight hours, double the expected life of the patched structure. Similarly at -54{degrees}C, no crack growth was observed for a patched crack growing up the riser following 15,000 EFH. For the case of a crack growing down the riser at the lower test temperature, some crack growth was measured, though at a greatly reduced rate.« less

  11. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.

    PubMed

    Gawthrop, Peter J

    2017-04-01

    Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

  12. 77 FR 51935 - Adjustment of the Amount for the Optional Bond Rider for Proof of NVOCC Financial Responsibility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... for Non- Vessel-Operating Common Carriers (NVOCCs). The final rule is intended to provide NVOCCs with the ability to post a bond with the Commission that satisfies the equivalent of 800,000 Chinese Renminbi, for which the equivalent U.S. Dollar amount has fluctuated since the regulation was first adopted...

  13. Phosphatidylglycerol molecular species of photosynthetic membranes analyzed by high-performance liquid chromatography: theoretical considerations.

    PubMed

    Xu, Y; Siegenthaler, P A

    1996-02-01

    A reversed-phase high-performance liquid chromatography technique was developed to separate, identify, and quantify individual phosphatidylglycerol (PG) molecular species in thylakoid membranes isolated from higher plant leaves. PG was first separated by thin-layer chromatography; then the dinitrobenzoyl derivatives of diacylglycerols produced after phospholipase C hydrolysis of PG were separated by a C18 reversed-phase column and detected at 254 nm. A linear response of the detector was observed in the range of 0.025 to 12 nmol of PG molecular species. It was established that there was an excellent correlation (r = 0.996) between the carbon and double-bond number in the aliphatic residues and the relative retention time of dinitrobenzoyl derivatives. A new equivalent carbon number value (ECN*) which takes into consideration the number of cis-(nc) and trans-(nt) double bonds per molecular species was defined as ECN* = CN - 2nc - nt, where CN is the number of carbon atoms in the aliphatic residues. The logarithm of the retention time increased linearily as a function of ECN* value. However, in this type of correlation, it may happen that two molecular species of PG having distinct relative retention times had the same ECN* value. In this case, the two molecular species can be identified by the linear correlation (r = 1) existing between the reciprocal of the relative retention time and the number of double bonds (0 < or = n < or = 3) in the separate 18:n/delta 3-trans-hexadecenoic acid -16:1(3t)- and 18:n/16:0 molecular species series. The advantages of this method are good separation, cohort elution time, quantitative precision, and predictable retention times of PG molecular species from chloroplast membranes. The method has been used routinely to identify the ten PG molecular species of thylakoid membranes in squash, potato, lettuce, and spinach leaf: 18:3/16:1(3t), 18:3/16:0, 18:2/16:1(3t), 18:2/16:0, 18:1/16:1(3t), 18:1/16:0, 18:0/16:1(3t), 18:0/16:0, 16:0/16:1(3t), and 16:0/16:0.

  14. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    PubMed Central

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  15. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.

  16. Unexpected formation of (E)-4-alkene 1,3-diketones from the three-component reaction of lithium selenolates with 1-(1-alkynyl)cyclopropyl ketones and aldehydes.

    PubMed

    Xu, Jianfeng; Wu, Luling; Huang, Xian

    2011-07-15

    A novel three-component stereoselective synthesis of (E)-4-alkene 1,3-diketones from lithium selenolates, 1-(1-alkynyl)cyclopropyl ketones, and aldehydes is reported. This reaction afforded the products in moderate to good yields with the formation of a new C-Se single bond, a new C-C double bond, and a new C-O double bond.

  17. Preparation of mesoporous alumina particles by spray pyrolysis and application to double bond migration of 2-butene.

    PubMed

    Song, Ki Chang; Kim, Joo Hyun; Kim, Jin Han; Jung, Kyeong Youl; Park, Young-Kwon; Jeon, Jong-Ki

    2011-07-01

    The objective of the present study is to investigate the catalytic performance of mesoporous alumina that were prepared via spray pyrolysis for double bond migration from 2-butene to 1-butene. The mesoporous alumina particles were prepared via spray pyrolysis by changing the types of organic surfactants and Al precursors. The texture and acidic properties of mesoporous alumina were analyzed through N2 adsorption, SEM, ammonia-temperature programmed desorption, and FT-IR of adsorbed pyridine. The morphologies and texture properties of the mesoporous alumina were found to have been strongly influenced by the combination of the Al precursor and the structure-directing agents. The mesoporous alumina samples had two kinds of acidic sites: a Lewis acid site and a H-bonded weak acid site. 1-Butene was produced selectively through double bond migration of 2-butene over all of the mesoporous alumina catalysts. The catalyst prepared by using a chloride compound as an aluminium precursor and CTAC as a structure-directing agent showed the highest activity in the double bond migration of 2-butene, which was attributed to its large surface area and an overall high amount of acid sites.

  18. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-06

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    PubMed

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Gas-phase infrared spectroscopy for determination of double bond configuration of monounsaturated compounds.

    PubMed

    Attygalle, A B; Svatos, A; Wilcox, C; Voerman, S

    1994-05-15

    Gas-phase Fourier-transform infrared spectra allow unambiguous determination of the configuration of the double bonds of long-chain unsaturated compounds bearing RCH=CHR' type bonds. Although the infrared absorption at 970-967 cm-1 has been used previously for the identification of trans bonds, the absorption at 3028-3011 cm-1 is conventionally considered to be incapable of distinguishing cis and trans isomers. In this paper, we present a large number of gas-phase spectra of monounsaturated long-chain acetates which demonstrate that an absorption, highly characteristic for the cis configuration, occurs at 3013-3011 cm-1, while trans compounds fail to show any bands in this region. However, if a double bond is present at the C-2 or C-3 carbon atoms, this cis=CH stretch absorption shows a hypsochromic shift to 3029-3028 and 3018-3017 cm-1, respectively. Similarly, if a cis double bond is present at the penultimate carbon atom, this band appears at 3022-3021 cm-1. All the spectra of trans alkenyl acetates showed the expected C-H wag absorption at 968-964 cm-1. In addition, the spectra of (E)-2-alkenyl acetates show a unique three-peak "finger-print" pattern which allows the identification of the position and configuration of this bond. Furthermore, by synthesizing and obtaining spectra of appropriate deuteriated compounds, we have proved that the 3013-3011 cm-1 band is representative of the C-H stretching vibration of cis compounds of RCH=CHR' type.

  1. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  2. Transition metal atomic multiplets in the ligand K-edge x-ray absorption spectra and multiple oxidation states in the L2,3 emission of strongly correlated compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2014-07-01

    We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, MCrCu). For chromium more than one TM oxidation state is needed to achieve such an agreement. We also show that signature of the TM atomic multiplet can be found at the pre-edge of the fluorine K-edge x-ray absorption spectra. TM atomic multiplet ligand field calculations with a structureless core hole show good agreement with the observed pre-edges in the experimental fluorine absorption spectra. Preliminary results for the comparison between calculated and experimental resonant x-ray emission spectra for nominal CrF2 with more than one oxidation state indicate the presence of three chromium oxidation states in the bulk.

  3. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-01-01

    The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  4. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    USDA-ARS?s Scientific Manuscript database

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  5. First-principles study on C=C defects near SiC/SiO2 interface: Defect passivation by double-bond saturation

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Yamasaki, Takahiro; Nara, Jun; Schimizu, Tatsuo; Kato, Koichi; Ohno, Takahisa

    2018-04-01

    Thermally produced SiC/SiO2 stacking in SiC MOSFETs creates defect-related interfacial states in and around the band gap of SiC. These interfacial states can cause serious reliability problems such as threshold voltage shift, as well as efficiency problems such as channel mobility degradation. Carbon species having C=C double bonds have been suggested as one of the origins of these interfacial states. We have theoretically shown that this type of defect produces interfacial states in and around the band gap of SiC, and that they can be removed by saturating the C=C double bond by reactions with H2 and F2. The single-bond products of these reactions are found to be stable at regular device operation temperatures.

  6. Crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525

  7. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    USGS Publications Warehouse

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  8. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.

  9. Correlated hydrogen bonding fluctuations and vibrational cross peaks in N-methyl acetamide: simulation based on a complete electrostatic density functional theory map.

    PubMed

    Hayashi, Tomoyuki; Mukamel, Shaul

    2006-11-21

    The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.

  10. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin.

    PubMed

    Borin, Veniamin A; Wiebeler, Christian; Schapiro, Igor

    2018-04-17

    The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.

  11. Chiral self-discrimination of the enantiomers of alpha-phenylethylamine derivatives in proton NMR.

    PubMed

    Huang, Shao-Hua; Bai, Zheng-Wu; Feng, Ji-Wen

    2009-05-01

    Two types of chiral analytes, the urea and amide derivatives of alpha-phenylethylamine, were prepared. The effect of inter-molecular hydrogen-bonding interaction on self-discrimination of the enantiomers of analytes has been investigated using high-resolution (1)H NMR. It was found that the urea derivatives with double-hydrogen-bonding interaction exhibit not only the stronger hydrogen-bonding interaction but also better self-recognition abilities than the amide derivatives (except for one bearing two NO(2) groups). The present results suggest that double-hydrogen-bonding interaction promotes the self-discrimination ability of the chiral compounds. Copyright (c) 2009 John Wiley & Sons, Ltd.

  12. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  13. Extension of the analytical window for characterizing aromatic compounds in oils using a comprehensive suite of high-resolution mass spectrometry techniques and double bond equivalence versus carbon number plot

    USGS Publications Warehouse

    Cho, Yunju; Birdwell, Justin E.; Hur, Manhoi; Lee, Joonhee; Kim, Byungjoo; Kim, Sunghwan

    2017-01-01

    In this study, comprehensive two-dimensional (2D) gas chromatography–mass spectrometry (GC–MS), atmospheric pressure photoionization (APPI) quadrupole-Orbitrap mass spectrometry (MS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to study the aromatic fractions of crude oil and oil shale pyrolysates (shale oils). The collected data were compared and combined in the double bond equivalence (DBE) versus carbon number plot to obtain a more complete understanding of the composition of the oil fractions. The numbers of peaks observed by each technique followed the order 2D GC–MS < Orbitrap MS < FT-ICR MS. The class distributions observed by Orbitrap MS and FT-ICR MS were similar to each other but different from that observed by 2D GC–MS. The DBE and carbon number distributions of the 2D GC–MS and Orbitrap MS data were similar for crude oil aromatics. The FT-ICR MS plots of DBE and carbon number showed an extended range of higher values relative to the other methods. For the aromatic fraction of an oil shale pyrolysate generated by the Fischer assay, only a few nitrogen-containing compounds were observed by 2D GC–MS but a large number of these compounds were detected by Orbitrap MS and FT-ICR MS. This comparison clearly shows that the data obtained from these three techniques can be combined to more completely characterize oil composition. The data obtained by Orbitrap MS and FT-ICR MS agreed well with one another, and the combined DBE versus carbon number plot provided more complete coverage of compounds present in the fractions. In addition, the chemical structure information provided by 2D GC–MS could be matched with the chemical formulas in the DBE versus carbon number plots, providing information not available in ultrahigh-resolution MS results. It was therefore concluded that the combination of 2D GC–MS, Orbitrap MS, and FT-ICR MS in the DBE versus carbon number space facilitates structural assignment of heavy oil components.

  14. New antioxidants and antioxidant systems for improvement of the stability of vegetable oils and fish oils

    USDA-ARS?s Scientific Manuscript database

    Most vegetable oils and fish oils contain polyunsaturated fatty acids ranging from 18 carbons with two to three double bonds, to 22 or 24 carbons, and up to six double bonds. Nutritional research over the years has indicated that individual fatty acids from the diet play a complex role in nutrition ...

  15. Theoretical Investigation of the NO3 Radical Addition to Double Bonds of Limonene

    PubMed Central

    Jiang, Lei; Wang, Wei; Xu, Yi-Sheng

    2009-01-01

    The addition reactions of NO3 to limonene have been investigated using ab initio methods. Six different possibilities for NO3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic) have been considered. The negative activation energies for the addition of NO3 to limonene are calculated and the energies of NO3-limonene radical adducts are found to be 14.55 to 20.17 kcal mol-1 more stable than the separated NO3 and limonene at the CCSD(T)/6–31G(d) + CF level. The results also indicate that the endocyclic addition reaction is more energetically favorable than the exocyclic one. PMID:19865516

  16. Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1.

    PubMed

    Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H

    1993-02-01

    Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells.

  17. Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1.

    PubMed Central

    Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H

    1993-01-01

    Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells. PMID:8423164

  18. Double bonds? Studies on the barrier to rotation about the cumulenic C=C bonds of tetraaryl[n]cumulenes (n = 3, 5, 7, 9).

    PubMed

    Buehringer, Martina U; Padberg, Kevin; Phleps, Martin; Maid, Harald; Placht, Christian; Neiss, Christian; Ferguson, Michael; Goerling, Andreas; Tykwinski, Rik R

    2018-03-31

    Bonding is the fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n = 5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n = 3, 5, 7, 9) has been developed and rotational barriers for Z-/E-isomerization have been measured using dynamic VT-NMR spectroscopy. Both experiment and theory confirm a dramatic reduction of the rotational barrier (through estimation of G≠rot for the isomerization) from >24 to 19 to 15 to 11 kcal-1 in [n]cumulenes with n = 3, 5, 7, 9, respectively. Thus, the reduction of cumulenic bonding in longer cumulenes affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  20. Electronic communication in phosphine substituted bridged dirhenium complexes - clarifying ambiguities raised by the redox non-innocence of the C4H2- and C4-bridges.

    PubMed

    Li, Yan; Blacque, Olivier; Fox, Thomas; Luber, Sandra; Polit, Walther; Winter, Rainer F; Venkatesan, Koushik; Berke, Heinz

    2016-04-07

    The mononuclear rhenium carbyne complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([triple bond, length as m-dash]C-Me)(PMe3)4][PF6] (2) was prepared in 90% yield by heating a mixture of the dinitrogen complex trans-[ReCl(N2)(PMe3)4] (1), TlPF6, and an excess of HC[triple bond, length as m-dash]CSiMe3. 2 could be deprotonated with KOtBu to the vinylidene complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([double bond, length as m-dash]C[double bond, length as m-dash]CH2)(PMe3)4] (3) in 98% yield. Oxidation of 3 with 1.2 equiv. of [Cp2Fe][PF6] at -78 °C gave the Cβ-C'β coupled dinuclear rhenium biscarbyne complex trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH2-CH2-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (5) in 92% yield. Deprotonation of 5 with an excess of KOtBu in THF produced the diamagnetic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[double bond, length as m-dash]C[double bond, length as m-dash]CH-CH[double bond, length as m-dash]C[double bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)] complex (E-6(S)) in 87% yield with an E-butadienediylidene bridge. Density functional theory (DFT) calculations of E-6(S) confirmed its singlet ground state. The Z-form of 6 (Z-6(S)) could not be observed, which is in accord with its DFT calculated 17.8 kJ mol(-1) higher energy. Oxidation of E-6 with 2 equiv. of [Cp2Fe][PF6] resulted in the stable diamagnetic dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 complex (E-6[PF6]2) with an ethylenylidene dicarbyne structure of the bridge. The paramagnetic mixed-valence (MV) complex E-6[PF6] was obtained by comproportionation of E-6(S) and E-6[PF6]2 or by oxidation of E-6(S) with 1 equiv. of [Cp2Fe][PF6]. The dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (7[PF6]2) complex, attributed a butynedi(triyl) bridge structure, was obtained by deprotonation of E-6[PF6]2 with KOtBu followed by oxidation with 2 equiv. of [Cp2Fe][PF6]. The neutral complex 7 could be accessed best by reduction of 7[PF6]2 with KH in the presence of 18-crown-6. According to DFT calculations 7 possesses two equilibrating electronic states: diamagnetic 7(S) and triplet 7(F) with ferromagnetically coupled spins. The latter is calculated to be 5.2 kcal mol(-1) lower in energy than 7(S). There is experimental evidence that 7(S) prevails in solution. 7 could not be isolated in the crystalline state and is unstable transforming mainly by H-abstraction to give E-6(S). UV-Vis-NIR spectroscopy for the dinuclear rhenium complexes E-6(S), E-6[PF6] and E-6[PF6]2, as well as EPR spectroscopic and variable-temperature magnetization measurements for the MV complex E-6[PF6] were also conducted. Spectro-electrochemical reduction studies on 7[PF6]2 allowed the characterization of the mono- and direduced forms of 7(+) and 7 by means of IR- and UV-Vis-NIR-spectroscopy and revealed the chemical fate of the higher reduced form.

  1. Effects of double and triple bonds on the spatial representations of odorants in the rat olfactory bulb.

    PubMed

    Johnson, Brett A; Ong, Joan; Lee, Kaman; Ho, Sabrina L; Arguello, Spart; Leon, Michael

    2007-02-01

    Many naturally occurring volatile chemicals that are detected through the sense of smell contain unsaturated (double or triple) carbon-carbon bonds. These bonds can affect odors perceived by humans, yet in a prior study of unsaturated hydrocarbons we found only very minor effects of unsaturated bonds. In the present study, we tested the possibility that unsaturated bonds affect the recognition of oxygen-containing functional groups, because humans perceive odor differences between such molecules. We therefore compared spatial activity patterns across the entire glomerular layer of the rat olfactory bulb evoked by oxygen-containing odorants differing systematically in the presence, position, number, and stereochemistry of unsaturated bonds. We quantified activity patterns by mapping [(14)C]2-deoxyglucose uptake into anatomically standardized data matrices, which we compared statistically. We found that the presence and number of unsaturated bonds consistently affected activity patterns, with the largest effect related to the presence of a triple bond. Effects of bond saturation included a loss of activity in glomeruli strongly activated by the corresponding saturated odorants and/or the presence of activity in areas not stimulated by the corresponding saturated compounds. The position of double bonds also affected patterns of activity, but cis vs. trans configuration had no measurable impact in all five sets of stereoisomers that we studied. These results simultaneously indicate the importance of interactions between carbon-carbon bond types and functional groups in the neural coding of odorant chemical information and highlight the emerging concept that the rat olfactory system is more sensitive to certain types of chemical differences than others. (c) 2006 Wiley-Liss, Inc.

  2. Sequential Diels–Alder/[3,3]-sigmatropic rearrangement reactions of β-nitrostyrene with 3-methyl-1,3-pentadiene

    PubMed Central

    Pipic, Alma; Zeller, Matthias; Tsetsakos, Panagiota

    2013-01-01

    Summary The tin(IV)-catalyzed reaction of β-nitrostyrene with (E)-3-methyl-1,3-pentadiene in toluene afforded two major nitronic ester cycloadducts in 27% and 29% yield that arise from the reaction at the less substituted diene double bond. Also present were four cycloadducts from the reaction at the higher substituted diene double bond, two of which were the formal cycloadducts of (Z)-3-methyl-1,3-pentadiene. A Friedel–Crafts alkylation product from the reaction of the diene, β-nitrostyrene, and toluene was also obtained in 10% yield. The tin(IV)-catalyzed reaction of β-nitrostyrene with (Z)-3-methyl-1,3-pentadiene in dichloromethane afforded four nitronic ester cycloadducts all derived from the reaction at the higher substituted double bond. One cycloadduct was isolated in 45% yield and two others are formal adducts of the E-isomer of the diene. The product formation in these reactions is consistent with a stepwise mechanism involving a zwitterionic intermediate. The initially isolated nitronic ester cycloadducts underwent tin(IV)-catalyzed interconversion, presumably via zwitterion intermediates. Cycloadducts derived from the reaction at the less substituted double bond of (E)-3-methyl-1,3-pentadiene underwent a [3,3]-sigmatropic rearrangement on heating to afford 4-nitrocyclohexenes. Cycloadducts derived from the reaction at the higher substituted diene double bond of either diene failed to undergo a thermal rearrangement. Rates and success of the rearrangement are consistent with a concerted mechanism possessing a dipolar transition state. An initial assessment of substituent effects on the rearrangement process is presented. PMID:24204426

  3. Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons.

    PubMed

    Ng, Nga L; Kroll, Jesse H; Keywood, Melita D; Bahreini, Roya; Varutbangkul, Varuntida; Flagan, Richard C; Seinfeld, John H; Lee, Anita; Goldstein, Allen H

    2006-04-01

    Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a "growth curve", a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied: compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed.

  4. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.

    PubMed

    Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E

    2014-06-17

    A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.

  5. Probing phospholipase a(2) with fluorescent phospholipid substrates.

    PubMed

    Wichmann, Oliver; Gelb, Michael H; Schultz, Carsten

    2007-09-03

    The Foerster resonance energy transfer-based sensor, PENN, measures intracellular phospholipase A(2) (PLA(2)) activity in living cells and small organisms. In an attempt to modify the probe for the detection of particular isoforms, we altered the sn-2 fatty acid in such a way that either one or three of the Z double bonds in arachidonic acid were present in the sensor molecule. Arachidonic-acid-mimicking fatty acids were prepared by copper-mediated coupling reactions. Probes with a single double bond in the 5-position exhibited favorable substrate properties for secretory PLA(2)s. In vitro experiments with the novel unsaturated doubly labeled phosphatidylethanolamine derivatives showed preferred cleavage of the sensor PENN2 (one double bond) by the physiologically important group V sPLA(2), while the O-methyl-derivative PMNN2 was accepted best by the isoform from hog pancreas. For experiments in living cells, we demonstrated that bioactivation via S-acetylthioethyl (SATE) groups is essential for probe performance. Surprisingly, membrane-permeant versions of the new sensors that contained double bonds, PENN2 and PENN3, were only cleaved to a minor extent in HeLa cells while the saturated form, PENN, was well accepted.

  6. Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Štefko, Tomáš

    2017-06-01

    The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.

  7. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  8. On the equivalence between Young's double-slit and crystal double-refraction interference experiments.

    PubMed

    Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric

    2017-08-01

    We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

  9. New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio

    1990-07-01

    Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylatemore » {pi}-bonded through the C{double bond}C double bond to ruthenium.« less

  10. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusualmore » feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.« less

  11. Testing the Concept of Hypervalency: Charge Density Analysis of K[subscript 2]SO[subscript 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmøkel, Mette S.; Cenedese, Simone; Overgaard, Jacob

    2012-10-25

    One of the most basic concepts in chemical bonding theory is the octet rule, which was introduced by Lewis in 1916, but later challenged by Pauling to explain the bonding of third-row elements. In the third row, the central atom was assumed to exceed the octet by employing d orbitals in double bonding leading to hypervalency. Ever since, polyoxoanions such as SO{sub 4}{sup 2-}, PO{sub 4}{sup 3-}, and ClO{sub 4}{sup -} have been paradigmatic examples for the concept of hypervalency in which the double bonds resonate among the oxygen atoms. Here, we examine S-O bonding by investigating the charge densitymore » of the sulfate group, SO{sub 4}{sup 2-}, within a crystalline environment based both on experimental and theoretical methods. K{sub 2}SO{sup 4} is a high symmetry inorganic solid, where the crystals are strongly affected by extinction effects. Therefore, high quality, very low temperature single crystal X-ray diffraction data were collected using a small crystal (30 {micro}m) and a high-energy (30 keV) synchrotron beam. The experimental charge density was determined by multipole modeling, whereas a theoretical density was obtained from periodic ab initio DFT calculations. The chemical bonding was jointly analyzed within the framework of the Quantum Theory of Atoms In Molecules only using quantities derived from an experimental observable (the charge density). The combined evidence suggests a bonding situation where the S-O interactions can be characterized as highly polarized, covalent bonds, with the 'single bond' description significantly prevailing over the 'double bond' picture. Thus, the study rules out the hypervalent description of the sulfur atom in the sulfate group.« less

  12. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding.

    PubMed

    Scheiner, Steve

    2018-05-11

    Tetrel atoms T (T = Si, Ge, Sn, and Pb) can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF₃ group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF₃ group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF₃ groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF₃⁺NH₂(CH₂) n NH₂SnF₃⁺ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH − binds most strongly: OH − > F − > Cl − > Br − > I − . The binding energy of the larger NO₃ − and HCO₃ − anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K⁺ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  13. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.

    PubMed

    Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P

    2015-10-09

    Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced yields. While decreasing the isoelectric point of double disulfide mutants of single domain antibodies may improve protein production, charge addition appears to consistently improve refolding and some charge changes can also improve thermal stability, thus providing a number of benefits making the examination of such mutations worth consideration.

  14. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom transfer reaction.

  15. Relations between Shannon entropy and genome order index in segmenting DNA sequences.

    PubMed

    Zhang, Yi

    2009-04-01

    Shannon entropy H and genome order index S are used in segmenting DNA sequences. Zhang [Phys. Rev. E 72, 041917 (2005)] found that the two schemes are equivalent when a DNA sequence is converted to a binary sequence of S (strong H bond) and W (weak H bond). They left the mathematical proof to mathematicians who are interested in this issue. In this paper, a possible mathematical explanation is given. Moreover, we find that Chargaff parity rule 2 is the necessary condition of the equivalence, and the equivalence disappears when a DNA sequence is regarded as a four-symbol sequence. At last, we propose that S-2(-H) may be related to species evolution.

  16. 26 CFR 1.171-3 - Special rules for certain bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... disbursements method of accounting, and E decides to use annual accrual periods ending on March 1 of each year... any bond premium among the accrual periods by reference to the equivalent fixed rate debt instrument... remaining term of the instrument. The holder also allocates any bond premium among the accrual periods by...

  17. Concise synthesis of the bryostatin A-ring via consecutive C-C bond forming transfer hydrogenations.

    PubMed

    Lu, Yu; Krische, Michael J

    2009-07-16

    Under the conditions of C-C bond forming transfer hydrogenation, 1,3-propanediol 1 engages in double asymmetric carbonyl allylation to furnish the C(2)-symmetric diol 2. Double ozonolysis of 2 followed by TBS protection delivers aldehyde 3, which is subject to catalyst directed carbonyl reverse prenylation via transfer hydrogenation to deliver neopentyl alcohol 4 and, ultimately, the bryostatin A-ring 7. Through use of two consecutive C-C bond forming transfer hydrogenations, the Evans' bryostatin A-ring 7 is prepared in less than half the manipulations previously reported.

  18. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  19. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    PubMed

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  20. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  1. Carotenoid diagenesis in a marine sediment

    NASA Technical Reports Server (NTRS)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  2. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    ERIC Educational Resources Information Center

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  3. Extraction of consensus protein patterns in regions containing non-proline cis peptide bonds and their functional assessment.

    PubMed

    Exarchos, Konstantinos P; Exarchos, Themis P; Rigas, Georgios; Papaloukas, Costas; Fotiadis, Dimitrios I

    2011-05-10

    In peptides and proteins, only a small percentile of peptide bonds adopts the cis configuration. Especially in the case of amide peptide bonds, the amount of cis conformations is quite limited thus hampering systematic studies, until recently. However, lately the emerging population of databases with more 3D structures of proteins has produced a considerable number of sequences containing non-proline cis formations (cis-nonPro). In our work, we extract regular expression-type patterns that are descriptive of regions surrounding the cis-nonPro formations. For this purpose, three types of pattern discovery are performed: i) exact pattern discovery, ii) pattern discovery using a chemical equivalency set, and iii) pattern discovery using a structural equivalency set. Afterwards, using each pattern as predicate, we search the Eukaryotic Linear Motif (ELM) resource to identify potential functional implications of regions with cis-nonPro peptide bonds. The patterns extracted from each type of pattern discovery are further employed, in order to formulate a pattern-based classifier, which is used to discriminate between cis-nonPro and trans-nonPro formations. In terms of functional implications, we observe a significant association of cis-nonPro peptide bonds towards ligand/binding functionalities. As for the pattern-based classification scheme, the highest results were obtained using the structural equivalency set, which yielded 70% accuracy, 77% sensitivity and 63% specificity.

  4. Bonding properties and bond activation of ylides: recent findings and outlook.

    PubMed

    Urriolabeitia, Esteban P

    2008-11-14

    The interaction of phosphorus and nitrogen ylides with metallic precursors has been examined from different points of view. The first one is related to the bonding properties of the ylides. Ylides with a unique stabilizing group bond through different atoms (the Calpha or the heteroatoms); while ylides with two stabilizing groups never coordinate through the Calpha atom. In the second section we examine the cause of the stereoselective coordination of bisylides of phosphorus, nitrogen and arsenic, and of mixed bisylides. We describe here the very interesting conformational preferences found in these systems, which have been determined and characterized. The DFT study of these bisylides has allowed for the characterization of strong intramolecular PO and AsO interactions, as well as moderate CHO[double bond, length as m-dash]C hydrogen bonds as the source of these conformational preferences. The third topic is related to the amazing reactivity of phosphorus ylides in bond activation processes. Depending on the nature of the metallic precursors, ylides can behave as sources of carbenes, of phosphine derivatives, of other ylides or of orthometallated complexes through P[double bond, length as m-dash]C, P-C or C-H bond activation reactions.

  5. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  6. Reliability of the pair-defect-sum approximation for the strength of valence-bond orbitals

    PubMed Central

    Pauling, Linus; Herman, Zelek S.; Kamb, Barclay J.

    1982-01-01

    The pair-defect-sum approximation to the bond strength of a hybrid orbital (angular wave functions only) is compared to the rigorous value as a function of bond angle for seven types of bonding situations, with between three and eight bond directions equivalent by geometrical symmetry operations and with only one independent bond angle. The approximation is seen to be an excellent one in all cases, and the results provide a rationale for the application of this approximation to a variety of problems. PMID:16593167

  7. Generating carbyne equivalents with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhaofeng; Herraiz, Ana G.; Del Hoyo, Ana M.; Suero, Marcos G.

    2018-02-01

    Carbon has the unique ability to bind four atoms and form stable tetravalent structures that are prevalent in nature. The lack of one or two valences leads to a set of species—carbocations, carbanions, radicals and carbenes—that is fundamental to our understanding of chemical reactivity. In contrast, the carbyne—a monovalent carbon with three non-bonded electrons—is a relatively unexplored reactive intermediate; the design of reactions involving a carbyne is limited by challenges associated with controlling its extreme reactivity and the lack of efficient sources. Given the innate ability of carbynes to form three new covalent bonds sequentially, we anticipated that a catalytic method of generating carbynes or related stabilized species would allow what we term an ‘assembly point’ disconnection approach for the construction of chiral centres. Here we describe a catalytic strategy that generates diazomethyl radicals as direct equivalents of carbyne species using visible-light photoredox catalysis. The ability of these carbyne equivalents to induce site-selective carbon-hydrogen bond cleavage in aromatic rings enables a useful diazomethylation reaction, which underpins sequencing control for the late-stage assembly-point functionalization of medically relevant agents. Our strategy provides an efficient route to libraries of potentially bioactive molecules through the installation of tailored chiral centres at carbon-hydrogen bonds, while complementing current translational late-stage functionalization processes. Furthermore, we exploit the dual radical and carbene character of the generated carbyne equivalent in the direct transformation of abundant chemical feedstocks into valuable chiral molecules.

  8. Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs

    NASA Astrophysics Data System (ADS)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2018-03-01

    A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniques.

  9. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jacqueline M.; Blood-Forsythe, Martin A.; Lin, Tze-Chia

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot centermore » dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N interaction, confirming previous speculative assignments of such interactions in other compounds.« less

  10. Correlation of nonorthogonality of best hybrid bond orbitals with bond strength of orthogonal orbitals

    PubMed Central

    Pauling, Linus

    1976-01-01

    An expression is derived for the bond length of two spd orbitals with maximum values in two directions forming a given bond angle by consideration of the nonorthogonality integral of two best orbitals in these directions. This equation is equivalent to the expression derived by formulating the pair of orthogonal orbitals. Similar expressions are derived for spdf orbitals. Applications are made to icosahedral and cuboctahedral bonds and to the packing of nucleons in atomic nuclei. PMID:16578736

  11. Correlation of nonorthogonality of best hybrid bond orbitals with bond strength of orthogonal orbitals.

    PubMed

    Pauling, L

    1976-02-01

    An expression is derived for the bond length of two spd orbitals with maximum values in two directions forming a given bond angle by consideration of the nonorthogonality integral of two best orbitals in these directions. This equation is equivalent to the expression derived by formulating the pair of orthogonal orbitals. Similar expressions are derived for spdf orbitals. Applications are made to icosahedral and cuboctahedral bonds and to the packing of nucleons in atomic nuclei.

  12. The Pariser-Parr-Pople model for trans-polyenes. I. Ab initio and semiempirical study of the bond alternation in trans-butadiene

    NASA Astrophysics Data System (ADS)

    Förner, Wolfgang

    1992-03-01

    Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.

  13. A stable silicon(0) compound with a Si=Si double bond.

    PubMed

    Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R Bruce; Schaefer, Henry F; von R Schleyer, Paul; Robinson, Gregory H

    2008-08-22

    Dative, or nonoxidative, ligand coordination is common in transition metal complexes; however, this bonding motif is rare in compounds of main group elements in the formal oxidation state of zero. Here, we report that the potassium graphite reduction of the neutral hypervalent silicon-carbene complex L:SiCl4 {where L: is:C[N(2,6-Pri2-C6H3)CH]2 and Pri is isopropyl} produces L:(Cl)Si-Si(Cl):L, a carbene-stabilized bis-silylene, and L:Si=Si:L, a carbene-stabilized diatomic silicon molecule with the Si atoms in the formal oxidation state of zero. The Si-Si bond distance of 2.2294 +/- 0.0011 (standard deviation) angstroms in L:Si=Si:L is consistent with a Si=Si double bond. Complementary computational studies confirm the nature of the bonding in L:(Cl)Si-Si(Cl):L and L:Si=Si:L.

  14. Power module packaging with double sided planar interconnection and heat exchangers

    DOEpatents

    Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei

    2015-05-26

    A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.

  15. 30 CFR 285.532 - What happens if my surety wants to terminate the period of liability of my bond?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must provide a replacement bond or alternative form of financial assurance of equivalent or greater... the period of liability of my bond? 285.532 Section 285.532 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES...

  16. Drosophila vitelline membrane assembly: A critical role for an evolutionarily conserved cysteine in the “VM domain” of sV23

    PubMed Central

    Wu, T; Manogaran, A.L; Beauchamp, J.M.; Waring, G.L.

    2010-01-01

    The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved “VM domain” which includes three precisely spaced, evolutionarily conserved, cysteines (CX7CX8C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests reorganization of disulfide bonds may underlie the regulated growth of disulfide-linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly. PMID:20832396

  17. Structure-Activity Correlations with Compounds Related to Abscisic Acid 1

    PubMed Central

    Sondheimer, Ernest; Walton, Daniel C.

    1970-01-01

    Inhibition of cell expansion of excised embryonic axes of Phaseolus vulgaris was used to evaluate the growth-inhibiting activity of abscisic acid and related compounds. None of the 13 compounds tested was as active as abscisic acid. 4-Hydroxyisophorone, a substance representative of the abscisic acid ring system was essentially inactive; cis, trans-3-methylsorbic acid, a compound resembling the side chain of abscisic acid, had low activity; and cis, trans-β-ionylideneacetic acid was one-sixth as active. Loss of the ring double bond results in a drastic decrease in biological activity. Comparison of our results with those reported previously leads to the suggestion that the double bond of the cyclohexyl moiety may have an important function in determining the degree of activity of cis, trans-ionylideneacetic acids. Two modes of action are discussed. It seems possible that the ring double bond is involved in covalent bonding in binding of the abscisic acid analogue to macromolecules. This may require formation of an intermediate epoxide. It can also be argued that stereochemical differences between cyclohexane derivatives are important factors in determining the degree of biological activity. PMID:5423465

  18. Short-term phenotypic plasticity in long-chain cuticular hydrocarbons

    PubMed Central

    Thomas, Melissa L.; Simmons, Leigh W.

    2011-01-01

    Cuticular hydrocarbons provide arthropods with the chemical equivalent of the visually extravagant plumage of birds. Their long chain length, together with the number and variety of positions in which methyl branches and double bonds occur, provide cuticular hydrocarbons with an extraordinary level of information content. Here, we demonstrate phenotypic plasticity in an individual's cuticular hydrocarbon profile. Using solid-phase microextraction, a chemical technique that enables multiple sampling of the same individual, we monitor short-term changes in cuticular hydrocarbon profiles of individual crickets, Teleogryllus oceanicus, in response to a social challenge. We experimentally manipulate the dominance status of males and find that dominant males, on losing fights with other dominant males, change their hydrocarbon profile to more closely resemble that of a subordinate. This result demonstrates that cuticular hydrocarbons can be far more responsive to changes in social dominance than previously realized. PMID:21367785

  19. Strong scaling of general-purpose molecular dynamics simulations on GPUs

    NASA Astrophysics Data System (ADS)

    Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.; Lui, Pak; Spiga, Filippo; Millan, Jaime A.; Morse, David C.; Glotzer, Sharon C.

    2015-07-01

    We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5 ×.

  20. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, withmore » the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in multicomponent systems.« less

  1. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  2. A Case Study of Teacher Responses to a Doubling Error and Difficulty in Learning Equivalent Fractions

    ERIC Educational Resources Information Center

    Ding, Meixia; Li, Xiaobao; Capraro, Mary Margaret; Kulm, Gerald

    2012-01-01

    This study qualitatively explored teachers' responses to doubling errors (e.g., 3/4 x 2 = 6/8) that typically reflect students' difficulties in understanding the "rule" for finding equivalent fractions (e.g., 3/4 x 2/2 = 6/8). Although all teachers claimed to teach for understanding in interviews, their responses varied in terms of effectiveness…

  3. Angles between orthogonal spd bond orbitals with maximum strength.

    PubMed

    Pauling, L

    1976-05-01

    An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90 degrees and 180 degrees , and those with a larger amount, at somewhat smaller angles.

  4. 3-Methyl-4,5-di­hydro­oxazolium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the cation of the title salt, C4H8NO+·C24H20B−, the C—N bond lengths are 1.272 (2), 1.4557 (19) and 1.4638 (19) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3098 (19) Å shows that double-bond character and charge delocalization occurs within the NCO plane of the cation. In the crystal, a C—H⋯π inter­action is present between the methyl­ene H atom of the cation and one phenyl ring of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. PMID:24765023

  5. Crystal structure of (1-eth­oxy­ethyl­idene)di­methyl­aza­nium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the cation of the title salt, C6H14NO+·C24H20B−, the C—N bond lengths are 1.297 (2), 1.464 (2) and 1.468 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.309 (2) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯π inter­actions between the iminium H atoms and the phenyl C atoms of the anion are present. The phenyl rings form aromatic pockets, in which the iminium ions are embedded. PMID:26870564

  6. Exactly solvable Schrödinger equation with double-well potential for hydrogen bond

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2017-05-01

    We construct a double-well potential for which the Schrödinger equation can be exactly solved via reducing to the confluent Heun's one. Thus the wave function is expressed via the confluent Heun's function. The latter is tabulated in Maple so that the obtained solution is easily treated. The potential is infinite at the boundaries of the final interval that makes it to be highly suitable for modeling hydrogen bonds (both ordinary and low-barrier ones). We exemplify theoretical results by detailed treating the hydrogen bond in KHCO3 and show their good agreement with literature experimental data.

  7. Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.

    PubMed

    Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A

    2016-05-17

    The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reductive transformation of V(iii) precursors into vanadium(ii) oxide nanowires.

    PubMed

    Ojelere, Olusola; Graf, David; Ludwig, Tim; Vogt, Nicholas; Klein, Axel; Mathur, Sanjay

    2018-05-15

    Vanadium(ii) oxide nanostructures are promising materials for supercapacitors and electrocatalysis because of their excellent electrochemical properties and high surface area. In this study, new homoleptic vanadium(iii) complexes with bi-dentate O,N-chelating heteroarylalkenol ligands (DmoxCH[double bond, length as m-dash]COCF3, PyCH[double bond, length as m-dash]COCF3 and PyN[double bond, length as m-dash]COCF3) were synthesized and successfully transformed by reductive conversion into VO nanowires. The chemical identity of V(iii) complexes and their redox behaviour were unambiguously established by single crystal X-ray diffraction studies, cyclic voltammetry, spectrometric studies and DFT calculations. Transformation into the metastable VO phase was verified by powder X-ray diffraction and thermo-gravimetry. Transmission electron microscopy and X-ray photoelectron spectroscopy data confirmed the morphology and chemical composition of VO nanostructures, respectively.

  9. Chiroptical Properties of Imines Derived from R-(+)-Norbornenone: The Role of Electronegativity Differences.

    PubMed

    Wiberg, Kenneth B

    2017-11-02

    To allow a comparison with the specific rotations of R-(+)-5-methylenenorbornene (1) and R-(+)-norbornenone (2) we performed calculations at the LC-wPBE/aug-cc-pVTZ level for the imines (5a and 5b) derived from norbornenone and also for their protonated derivative (6). In accord with our results for simpler systems, the specific rotations increase in the order of 1 < 5 < 2 ≈ 6. In addition, the specific rotation of the protonated ketone was calculated and found to be considerably larger than that for 2 or 6. These rotations were found to be linearly dependent on the Hirshfeld charges at the carbon of the exocyclic double bond. This leads to the conclusion that charge transfer from the endocyclic double bond to the π* MO of the exocyclic double bond is an important component of the process that leads to the optical activity of these compounds.

  10. Dihydroceramide desaturase inhibition by a cyclopropanated dihydroceramide analog in cultured keratinocytes.

    PubMed

    Brodesser, Susanne; Kolter, Thomas

    2011-01-01

    Most mammalian sphingolipids contain a 4,5-(E)-double bond. We report on the chemical synthesis of a dihydroceramide derivative that prevents the introduction of the double bond into sphingolipids. Minimal alteration of the parent structure by formally replacing the hydrogen atoms in the 5- and in the 6-position of the sphinganine backbone by a methylene group leads to an inhibitor of dihydroceramide desaturase in cultured cells. In the presence of 10-50 μM of compound (1), levels of biosynthetically formed dihydroceramide and-surprisingly-also of phytoceramide are elevated at the expense of ceramide. The cells respond to the lack of unsaturated sphingolipids by an elevation of mRNAs of enzymes required for sphingosine formation. At the same time, the analysis of proliferation and differentiation markers indicates that the sphingolipid double bond is required to keep the cells in a differentiated state.

  11. Dihydroceramide Desaturase Inhibition by a Cyclopropanated Dihydroceramide Analog in Cultured Keratinocytes

    PubMed Central

    Brodesser, Susanne; Kolter, Thomas

    2011-01-01

    Most mammalian sphingolipids contain a 4,5-(E)-double bond. We report on the chemical synthesis of a dihydroceramide derivative that prevents the introduction of the double bond into sphingolipids. Minimal alteration of the parent structure by formally replacing the hydrogen atoms in the 5- and in the 6-position of the sphinganine backbone by a methylene group leads to an inhibitor of dihydroceramide desaturase in cultured cells. In the presence of 10–50 μM of compound (1), levels of biosynthetically formed dihydroceramide and—surprisingly—also of phytoceramide are elevated at the expense of ceramide. The cells respond to the lack of unsaturated sphingolipids by an elevation of mRNAs of enzymes required for sphingosine formation. At the same time, the analysis of proliferation and differentiation markers indicates that the sphingolipid double bond is required to keep the cells in a differentiated state. PMID:21490810

  12. Methylene-bridged bimetallic bis(imino)pyridine-cobaltous chlorides as precatalysts for vinyl-terminated polyethylene waxes.

    PubMed

    Chen, Qiang; Zhang, Wenjuan; Solan, Gregory A; Liang, Tongling; Sun, Wen-Hua

    2018-05-01

    Four examples of phenol-substituted methylene-bridged bis(imino)pyridines, CH(C6H4-4-OH){2'-(4-C6H2-2,6-R22N[double bond, length as m-dash]CMe)-6'-(2'',6''-R12C6H3N[double bond, length as m-dash]CMe)C5H3N}2 [R1 = R2 = Me L1, R1 = R2 = Et L2, R1 = Et, R2 = Me L3, R1 = iPr, R2 = Me L4], have been synthesized and fully characterized. Treatment of L1-L4 with two equivalents of cobaltous chloride affords the bimetallic complexes, [(L)Co2Cl4] (L = L1Co1, L2Co2, L3Co3, L4Co4), in good yield. The molecular structure of Co1 shows the two metal centers to be separated by a distance of 13.339 Å with each cobalt displaying a distorted trigonal bipyramidal geometry. On activation with either MAO or MMAO, Co1-Co4 exhibited high activities for ethylene polymerization (up to 1.46 × 107 g(PE) mol-1(Co) h-1 at 50 °C) with their relative values influenced by the steric properties of the N-aryl groups: Co1 > Co3 > Co4 > Co2. Highly linear polyethylenes incorporating high degrees of vinyl end-groups are a feature of all the materials produced with the molecular weights of the MAO-promoted systems (Mw range = 2-8 kg mol-1) generally higher than seen with MMAO (Mw range = 1-3 kg mol-1), while the distributions using MMAO are narrower (PDI < 2.0).

  13. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene.

    PubMed

    Teder, Tarvi; Boeglin, William E; Brash, Alan R

    2017-07-01

    Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559-2568, 5; Teder et al. 1862:706-715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC-MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

  14. Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique.

    PubMed

    Mihata, Teruhisa; Fukuhara, Tetsutaro; Jun, Bong Jae; Watanabe, Chisato; Kinoshita, Mitsuo

    2011-03-01

    After rotator cuff repair, the shoulder is immobilized in various abduction positions. However, there is no consensus on the proper abduction angle. To assess the effect of shoulder abduction angle on the biomechanical properties of the repaired rotator cuff tendons among 3 types of double-row techniques. Controlled laboratory study. Thirty-two fresh-frozen porcine shoulders were used. A simulated rotator cuff tear was repaired by 1 of 3 double-row techniques: conventional double-row repair, transosseous-equivalent repair, and a combination of conventional double-row and bridging sutures (compression double-row repair). Each specimen underwent cyclic testing followed by tensile testing to failure at a simulated shoulder abduction angle of 0° or 40° on a material testing machine. Gap formation and failure loads were measured. Gap formation in conventional double-row repair at 0° (1.2 ± 0.5 mm) was significantly greater than that at 40° (0.5 ± 0.3mm, P = .01). The yield and ultimate failure loads for conventional double-row repair at 40° were significantly larger than those at 0° (P < .01), whereas those for transosseous-equivalent repair (P < .01) and compression double-row repair (P < .0001) at 0° were significantly larger than those at 40°. The failure load for compression double-row repair was the greatest among the 3 double-row techniques at both 0° and 40° of abduction. Bridging sutures have a greater effect on the biomechanical properties of the repaired rotator cuff tendon at a low abduction angle, and the conventional double-row technique has a greater effect at a high abduction angle. Proper abduction position after rotator cuff repair differs between conventional double-row repair and transosseous-equivalent repair. The authors recommend the use of the combined technique of conventional double-row and bridging sutures to obtain better biomechanical properties at both low and high abduction angles.

  15. 30 CFR 585.532 - What happens if my surety wants to terminate the period of liability of my bond?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provide a replacement bond or alternative form of financial assurance of equivalent or greater value. BOEM... the period of liability of my bond? 585.532 Section 585.532 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON...

  16. 30 CFR 585.532 - What happens if my surety wants to terminate the period of liability of my bond?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provide a replacement bond or alternative form of financial assurance of equivalent or greater value. BOEM... the period of liability of my bond? 585.532 Section 585.532 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON...

  17. 30 CFR 585.532 - What happens if my surety wants to terminate the period of liability of my bond?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provide a replacement bond or alternative form of financial assurance of equivalent or greater value. BOEM... the period of liability of my bond? 585.532 Section 585.532 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON...

  18. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  19. Angles between orthogonal spd bond orbitals with maximum strength*

    PubMed Central

    Pauling, Linus

    1976-01-01

    An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90° and 180°, and those with a larger amount, at somewhat smaller angles. PMID:16592315

  20. Demonstration of a Bias Tunable Quantum Dots-in-a-Well Focal Plane Array

    DTIC Science & Technology

    2009-01-01

    uniformity and mea- sured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original...first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature...infrared photodetectors ( QWIPs ) with various doping and impurities have produced FPAs capable of detection across much of the infrared spectrum from

  1. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    PubMed

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  2. Determining Double Bond Position in Lipids Using Online Ozonolysis Coupled to Liquid Chromatography and Ion Mobility-Mass Spectrometry.

    PubMed

    Harris, Rachel A; May, Jody C; Stinson, Craig A; Xia, Yu; McLean, John A

    2018-02-06

    The increasing focus on lipid metabolism has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids can exist as any one of a large number of double bond positional isomers, which are indistinguishable by single-stage mass spectrometry alone. Ozonolysis reactions coupled to mass spectrometry have previously been demonstrated as a means for localizing double bonds in unsaturated lipids. Here we describe an online, solution-phase reactor using ozone produced via a low-pressure mercury lamp, which generates aldehyde products diagnostic of cleavage at a particular double bond position. This flow-cell device is utilized in conjunction with structurally selective ion mobility-mass spectrometry. The lamp-mediated reaction was found to be effective for multiple lipid species in both positive and negative ionization modes, and the conversion efficiency from precursor to product ions was tunable across a wide range (20-95%) by varying the flow rate through the ozonolysis device. Ion mobility separation of the ozonolysis products generated additional structural information and revealed the presence of saturated species in a complex mixture. The method presented here is simple, robust, and readily coupled to existing instrument platforms with minimal modifications necessary. For these reasons, application to standard lipidomic workflows is possible and aids in more comprehensive structural characterization of a myriad of lipid species.

  3. 30 CFR 285.532 - What happens if my surety wants to terminate the period of liability of my bond?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provide a replacement bond or alternative form of financial assurance of equivalent or greater value. The... SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE...

  4. (2E,5E)-2,5-Bis(4-hy-droxy-3-meth-oxy-benzyl-idene)cyclo-penta-none ethanol monosolvate.

    PubMed

    Da'i, Muhammad; Yanuar, Arry; Meiyanto, Edy; Jenie, Umar Anggara; Supardjan, Amir Margono

    2013-04-01

    In the title structure, C21H20O5·C2H5OH, the curcumine-type mol-ecule has a double E conformation for the two benzyl-idene double bonds [C=C = 1.342 (4) and 1.349 (4) Å] and is nearly planar with respect to the non-H atoms (r.m.s. deviation from planarity = 0.069 Å). The two phenolic OH groups form bifurcated hydrogen bonds with intra-molecular branches to adjacent meth-oxy O atoms and inter-molecular branches to either a neighbouring mol-ecule or an ethanol solvent mol-ecule. The ethanol O atom donates a hydrogen bond to the keto O atom. These hydrogen bonds link the constituents into layers parallel to (101) in the crystal structure.

  5. Contamination removal using various solvents and methodologies

    NASA Technical Reports Server (NTRS)

    Jeppsen, J. C.

    1989-01-01

    Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.

  6. Molecular analysis on the utilization of oil palm empty fruit bunches fiber as reinforcement for acrylonitrile butadiene styrene biocomposites

    NASA Astrophysics Data System (ADS)

    Hermawan, B.; Nikmatin, S.; Alatas, H.; Sudaryanto; Sukaryo, S. G.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) was one of the solid waste produced by the palm oil factory and were totally plentiful in biomass. OPEFB fiber used as reinforcement of polymer matrix acrylonitrile butadiene styrene (ABS). The use of FTIR is to see that there is no changes in the molecules of the constituent biocomposite ABS and OPEFB. The reactivity of butadiene and styrene through the double bond- π conjugated system, contributed to the bond reaction with the maleic acid as compatibilizer witch is grafted to the system. It is concluded that the posible grafting reaction occurs by the addition of the MAH to the double bond of the butadiene and styrene. The hydroxyl group of cellulose can interact with this maleic acid to form a bond through the carboxyl group.

  7. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    PubMed

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  8. A high level Ab initio study of the anionic hydrogen-bonded complexes FH-CN-, FH-NC-, H2O-CN- and H2O-NC-

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  9. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    PubMed

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    NASA Astrophysics Data System (ADS)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  11. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  12. 78 FR 37277 - CDFI Bond Guarantee Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... the CDFI Fund in the following format: no more than 40 single-sided pages; double spaced; 12 font size... mail to the attention of Lisa Jones, Program Manager, CDFI Bond Guarantee Program, CDFI Fund, U.S... to the attention of Lisa Jones, Program Manager, CDFI Bond Guarantee Program, CDFI Fund, 1801-6215...

  13. Purification and characterization of 9-hexadecenoic acid cis-trans isomerase from pseudomonas sp. strain E-3

    PubMed

    Okuyama; Ueno; Enari; Morita; Kusano

    1998-01-01

    A 9-hexadecenoic acid cis-trans isomerase (9-isomerase) that catalyzed the cis-to-trans isomerization of the double bond of free 9-cis-hexadecenoic acid [16:1(9c)] was purified to homogeneity from an extract of Pseudomonas sp. strain E-3 and characterized. Electrophoresis of the purified enzyme on both incompletely denaturing and denaturing polyacrylamide gels yielded a single band of a protein with a molecular mass of 80 kDa, suggesting that the isomerase is a monomeric protein of 80 kDa. The 9-isomerase, assayed with 16:1(9c) as a substrate, had a specific activity of 22.8 &mgr;mol h-1 (mg protein)-1 and a Km of 117.6 mM. The optimal pH and temperature for catalysis were approximately pH 7-8 and 30 degrees C, respectively. The 9-isomerase catalyzed the cis-to-trans conversion of a double bond at positions 9, 10, or 11, but not that of a double bond at position 6 or 7 of cis-mono-unsaturated fatty acids with carbon chain lengths of 14, 15, 16, and 17. Octadecenoic acids with a double bond at position 9 or 11 were not susceptible to isomerization. These results suggest that 9-isomerase has a strict specificity for both the position of the double bond and the chain length of the fatty acid. The enzyme catalyzed the cis-to-trans isomerization of fatty acids in a free form, and in the presence of a membrane fraction it was also able to isomerize 16:1(9c) esterified to phosphatidylethanolamine. The 9-isomerase was strongly inhibited by catecholic antioxidants such as alpha-tocopherol and nordihydroguaiaretic acid, but was not inhibited by 1, 10-phenanthroline or EDTA or under anoxic conditions. Based on these results, the possible mechanism of catalysis by this enzyme is discussed.

  14. Moving beyond Watson-Crick models of coarse grained DNA dynamics.

    PubMed

    Linak, Margaret C; Tourdot, Richard; Dorfman, Kevin D

    2011-11-28

    DNA produces a wide range of structures in addition to the canonical B-form of double-stranded DNA. Some of these structures are stabilized by Hoogsteen bonds. We developed an experimentally parameterized, coarse-grained model that incorporates such bonds. The model reproduces many of the microscopic features of double-stranded DNA and captures the experimental melting curves for a number of short DNA hairpins, even when the open state forms complicated secondary structures. We demonstrate the utility of the model by simulating the folding of a thrombin aptamer, which contains G-quartets, and strand invasion during triplex formation. Our results highlight the importance of including Hoogsteen bonding in coarse-grained models of DNA.

  15. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  16. Bridging suture makes consistent and secure fixation in double-row rotator cuff repair.

    PubMed

    Fukuhara, Tetsutaro; Mihata, Teruhisa; Jun, Bong Jae; Neo, Masashi

    2017-09-01

    Inconsistent tension distribution may decrease the biomechanical properties of the rotator cuff tendon after double-row repair, resulting in repair failure. The purpose of this study was to compare the tension distribution along the repaired rotator cuff tendon among three double-row repair techniques. In each of 42 fresh-frozen porcine shoulders, a simulated infraspinatus tendon tear was repaired by using 1 of 3 double-row techniques: (1) conventional double-row repair (no bridging suture); (2) transosseous-equivalent repair (bridging suture alone); and (3) compression double-row repair (which combined conventional double-row and bridging sutures). Each specimen underwent cyclic testing at a simulated shoulder abduction angle of 0° or 40° on a material-testing machine. Gap formation and tendon strain were measured during the 1st and 30th cycles. To evaluate tension distribution after cuff repair, difference in gap and tendon strain between the superior and inferior fixations was compared among three double-row techniques. At an abduction angle of 0°, gap formation after either transosseous-equivalent or compression double-row repair was significantly less than that after conventional double-row repair (p < 0.01). During the 30th cycle, both transosseous-equivalent repair (p = 0.02) and compression double-row repair (p = 0.01) at 0° abduction had significantly less difference in gap formation between the superior and inferior fixations than did conventional double-row repair. After the 30th cycle, the difference in longitudinal strain between the superior and inferior fixations at 0° abduction was significantly less with compression double-row repair (2.7% ± 2.4%) than with conventional double-row repair (8.6% ± 5.5%, p = 0.03). Bridging sutures facilitate consistent and secure fixation in double-row rotator cuff repairs, suggesting that bridging sutures may be beneficial for distributing tension equally among all sutures during double-row repair of rotator cuff tears. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  17. (Meth­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the cation of the title salt, C4H10NO+·C24H20B−·C2H3N, the C—N bond lengths are 1.2864 (16), 1.4651 (17) and 1.4686 (16) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2978 (15) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. C—H⋯π inter­actions are present between the methine H atom and two of the phenyl rings of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. The iminium ion is further connected through a C—H⋯N hydrogen bond to the aceto­nitrile mol­ecule. This leads to the formation of a two-dimensional supramolecular pattern along the bc plane. PMID:24765028

  18. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  19. Singlet oxygenation of 1,2-poly/1,4-hexadiene/s

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Rosenberg, M. L.; Gemmer, R. V.

    1979-01-01

    The microstructural changes that occur in cis and trans forms of 1,2-poly(1,4-hexadiene) during methylene blue-photosensitized oxidation were examined by infrared and (C-13)-NMR spectroscopy. The singlet oxygenation of these polymers yielded the expected allylic hydroperoxides accompanied by double bond shifts to new vinyl and trans-vinylene double bonds. The photosensitized oxidation exhibited zero-order kinetics; the relative rates for the cis- and trans-1,2-poly(1,4-hexadiene)s were approximately 3.8:1.0.

  20. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    PubMed

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  1. Effects of CO2 adsorption on proton migration on a hydrated ZrO2 surface: an ab initio molecular dynamics study.

    PubMed

    Sato, Ryuhei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2017-08-02

    Hydration reactions on a carbonate-terminated cubic ZrO 2 (110) surface were analyzed using ab initio molecular dynamics (AIMD) simulations. After hydration reactions, carbonates were still present on the surface at 500 K. However, these carbonates are very weak conjugate bases and only act as steric hindrance in proton hopping processes between acidic chemisorbed H 2 O molecules (Zr-OH 2 ) and monodentate hydroxyl groups (Zr-OH - ). Similar to a carbonate-free hydrated surface, Zr-OH 2 , Zr-OH - , and polydentate hydroxyl groups ([double bond splayed left]OH + ) were observed, while the ratio of acidic Zr-OH 2 was significantly larger than that on the carbonate-free hydrated surface. A thermodynamic discussion and bond property analysis reveal that CO 2 adsorption significantly decreases the basicity of surface oxide ions ([double bond splayed left]O), whereas the acidity of Zr-OH 2 is not affected. As a result, protons released from [double bond splayed left]OH + react with Zr-OH - to form Zr-OH 2 , leading to a deficiency of proton acceptor sites, which decreases the proton conductivity by the hopping mechanism.

  2. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle*

    PubMed Central

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-01-01

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3. To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. PMID:27605664

  3. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.

    PubMed

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-11-11

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H 3 O + through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O 2 bound to heme a 3 To block backward proton movement, the water channel remains closed after O 2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O 2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg 2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu 198 , which bridges the Mg 2+ and Cu A (the initial electron acceptor from cytochrome c) sites, suggest that the Cu A -Glu 198 -Mg 2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg 2+ -containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structures and chemical bonding of B{sub 3}O{sub 3}{sup −/0} and B{sub 3}O{sub 3}H{sup −/0}: A combined photoelectron spectroscopy and first-principles theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li-Juan; Xu, Hong-Guang; Feng, Gang

    We present a combined photoelectron spectroscopy and first-principles theory study on the structural and electronic properties and chemical bonding of B{sub 3}O{sub 3}{sup −/0} and B{sub 3}O{sub 3}H{sup −/0} clusters. The concerted experimental and theoretical data show that the global-minimum structures of B{sub 3}O{sub 3} and B{sub 3}O{sub 3}H neutrals are very different from those of their anionic counterparts. The B{sub 3}O{sub 3}{sup −} anion is characterized to possess a V-shaped OB–B–BO chain with overall C{sub 2v} symmetry (1A), in which the central B atom interacts with two equivalent boronyl (B≡O) terminals via B–B single bonds as well as withmore » one O atom via a B=O double bond. The B{sub 3}O{sub 3}H{sup −} anion has a C{sub s} (2A) structure, containing an asymmetric OB–B–OBO zig-zag chain and a terminal H atom interacting with the central B atom. In contrast, the C{sub 2v} (1a) global minimum of B{sub 3}O{sub 3} neutral contains a rhombic B{sub 2}O{sub 2} ring with one B atom bonded to a BO terminal and that of neutral B{sub 3}O{sub 3}H (2a) is also of C{sub 2v} symmetry, which is readily constructed from C{sub 2v} (1a) by attaching a H atom to the opposite side of the BO group. The H atom in B{sub 3}O{sub 3}H{sup −/0} (2A and 2a) prefers to interact terminally with a B atom, rather than with O. Chemical bonding analyses reveal a three-center four-electron (3c-4e) π hyperbond in the B{sub 3}O{sub 3}H{sup −} (2A) cluster and a four-center four-electron (4c-4e) π bond (that is, the so-called o-bond) in B{sub 3}O{sub 3} (1a) and B{sub 3}O{sub 3}H (2a) neutral clusters.« less

  5. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique.

    PubMed

    Mook, William R; Greenspoon, Joshua A; Millett, Peter J

    2016-01-01

    Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.

  6. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique

    PubMed Central

    Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.

    2016-01-01

    Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. Results: The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Conclusion: Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears. PMID:27733881

  7. Reductive amination of glutaraldehyde 2,4-dinitrophenylhydrazone using 2-picoline borane and high-performance liquid chromatographic analysis.

    PubMed

    Uchiyama, Shigehisa; Sakamoto, Hironari; Ohno, Akiko; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2012-09-21

    A typical method for the measurement of glutaraldehyde (GLA) employs 2,4-dinitrophenylhydrazine (DNPH) to form GLA-DNPhydrazone derivatives. However, this method is subject to analytical errors because GLA-DNPhydrazone is a quaternary bis-derivative and forms three geometric isomers (E-E, E-Z and Z-Z) as a result of the two C[double bond, length as m-dash]N double bonds. To overcome this issue, a method for transforming the C[double bond, length as m-dash]N double bond into a C-N single bond, using reductive amination of DNPhydrazone derivatives, has been applied. The amination reaction of GLA-DNPhydrazones with 2-picoline borane is accelerated with catalytic amounts of acid and is completed within 10 minutes in the presence of 100 mmol L(-1) phosphoric acid. Reduction of GLA-DNPhydrazone by 2-picoline borane is unique and results in the formation of N-(2,4-dinitrophenyl)-1-piperidinamine (DNPPA). NMR and LC-APCI-MS data confirmed the product identification. DNPPA is very stable and did not change when stored for at least four weeks at room temperature. DNPPA has excellent solubility of 14.6 g L(-1) at 20 °C in acetonitrile. The absorption maximum wavelength and the molar absorptivity of DNPPA were 351 nm and 4.2 × 10(4) L mol(-1) cm(-1) respectively. Complete separation between the reduced forms of C1-C10 aldehyde DNPhydrazones, including DNPPA, can be achieved by operating the reversed-phase high-performance liquid chromatograph at 351 nm in gradient mode using a C18 amide column. The reductive amination method for GLA overcomes analytical errors caused by E-E, E-Z and Z-Z geometrical isomers.

  8. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10 9 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  9. Identification of hydrophilic group formation on polymer surface during Ar{sup +} ion irradiation in O{sub 2} environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, J.S.; Choi, W.K.; Jung, H.J.

    1997-12-01

    Ar{sup +} ion irradiation on low density polyethylene (LDPE), and polystyrene (PS) was performed in an O{sub 2} environment in order to improve wettability of polymers to water and to identify the formation of hydrophilic groups originated from chemical reactions on the surface of polymers. Doses of a broad Ar{sup +} ion beam of 1 keV energy were changed from 5 {times} 10{sup 15} to 1 {times} 10{sup 17}/cm{sup 2} and the rate of oxygen gas flowing near the sample surface was varied from 0 to 7 ml/min. The contact angle of polymers was not reduced much by Ar{sup +}more » ion irradiation without oxygen gas. However, it dropped largely to a minimum of 35{degree} and 26{degree} for Ar{sup +} ion irradiation in the presence of flowing oxygen gas on LDPE and PS, respectively. From x-ray photoelectron spectroscopy analysis, it was observed that hydrophilic groups were formed on the surface of polymers through an ion-assisted chemical reaction between the ion-induced unstable chains and oxygen. The newly formed hydrophilic group was identified as {single_bond}(C{double_bond}){single_bond} bond and {single_bond}(C{double_bond}O){single_bond}O{single_bond} bond. The contact angle of polymer was greatly dependent on the hydrophilic group formed on the surface.« less

  10. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    PubMed

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  11. Transtendon, Double-Row, Transosseous-Equivalent Arthroscopic Repair of Partial-Thickness, Articular-Surface Rotator Cuff Tears

    PubMed Central

    Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.

    2014-01-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness. PMID:25473606

  12. Transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears.

    PubMed

    Dilisio, Matthew F; Miller, Lindsay R; Higgins, Laurence D

    2014-10-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness.

  13. (2E,5E)-2,5-Bis(4-hy­droxy-3-meth­oxy­benzyl­idene)cyclo­penta­none ethanol monosolvate

    PubMed Central

    Da’i, Muhammad; Yanuar, Arry; Meiyanto, Edy; Jenie, Umar Anggara; Supardjan, Amir Margono

    2013-01-01

    In the title structure, C21H20O5·C2H5OH, the curcumine-type mol­ecule has a double E conformation for the two benzyl­idene double bonds [C=C = 1.342 (4) and 1.349 (4) Å] and is nearly planar with respect to the non-H atoms (r.m.s. deviation from planarity = 0.069 Å). The two phenolic OH groups form bifurcated hydrogen bonds with intra­molecular branches to adjacent meth­oxy O atoms and inter­molecular branches to either a neighbouring mol­ecule or an ethanol solvent mol­ecule. The ethanol O atom donates a hydrogen bond to the keto O atom. These hydrogen bonds link the constituents into layers parallel to (101) in the crystal structure. PMID:23634071

  14. Effects of damage and thermal residual stresses on the overall elastoplastic behavior of particle-reinforced metal matrix composites

    NASA Astrophysics Data System (ADS)

    Liu, Haitao

    The objective of the present study is to investigate damage mechanisms and thermal residual stresses of composites, and to establish the frameworks to model the particle-reinforced metal matrix composites with particle-matrix interfacial debonding, particle cracking or thermal residual stresses. An evolutionary interfacial debonding model is proposed for the composites with spheroidal particles. The construction of the equivalent stiffness is based on the fact that when debonding occurs in a certain direction, the load-transfer ability will lose in that direction. By using this equivalent method, the interfacial debonding problem can be converted into a composite problem with perfectly bonded inclusions. Considering the interfacial debonding is a progressive process in which the debonding area increases in proportion to external loading, a progressive interfacial debonding model is proposed. In this model, the relation between external loading and the debonding area is established using a normal stress controlled debonding criterion. Furthermore, an equivalent orthotropic stiffness tensor is constructed based on the debonding areas. This model is able to study the composites with randomly distributed spherical particles. The double-inclusion theory is recalled to model the particle cracking problems. Cracks inside particles are treated as penny-shape particles with zero stiffness. The disturbed stress field due to the existence of a double-inclusion is expressed explicitly. Finally, a thermal mismatch eigenstrain is introduced to simulate the inconsistent expansions of the matrix and the particles due to the difference of the coefficients of thermal expansion. Micromechanical stress and strain fields are calculated due to the combination of applied external loads and the prescribed thermal mismatch eigenstrains. For all of the above models, ensemble-volume averaging procedures are employed to derive the effective yield function of the composites. Numerical simulations are performed to analyze the effects of various parameters and several good agreements between our model's predictions and experimental results are obtained. It should be mentioned that all of expressions in the frameworks are explicitly derived and these analytical results are easy to be adopted in other related investigations.

  15. A turn-on fluorescence chemosensor based on a tripodal amine [tris(pyrrolyl-α-methyl)amine]-rhodamine conjugate for the selective detection of zinc ions.

    PubMed

    Balamurugan, Rathinam; Chang, Wen-I; Zhang, Yandison; Fitriyani, Sri; Liu, Jui-Hsiang

    2016-09-21

    A novel tetradendate ligand derived from a tris(pyrrolyl-α-methyl)amine (H3tpa) and rhodamine-based conjugate (PR) has been designed for use as a sensor, synthesized and characterized spectroscopically. PR {(tris(5-rhodamineiminopyrrol-2-ylmethyl)amine)} serves as a selective colorimetric as well as a fluorescent chemosensor for Zn(2+) in acetonitrile/water (1 : 1, v/v). In the presence of Zn(2+), PR exhibited obvious absorption (558 nm) and emission (577 nm) peaks whose intensity increased along with increasing Zn(2+) concentrations. Titration experiments revealed that a large excess of Zn(2+) was required to saturate the absorption (λmax) and emission intensities. Upon the addition of 1000 equivalents of Zn(2+), the fluorescence intensity of the PR underwent an ∼500-fold increase (Φf = 0.34) with the emission maximum at 580 nm. These kinetics studies demonstrated that the absorption and emission changes were proportional to the Zn(2+) concentration. The color of the solution changed from colorless to a dark pink color. The fluorescence of the PR-Zn(2+) complex can be reversibly restored by using ammonium water or by heating. Competitive ion tests revealed that the intensity of PR-Zn(2+) was not suppressed by excess amounts of other metal ions. The counter anions did not exert obvious influences on the absorption and emission profiles. (1)H-NMR and FT-IR spectroscopic investigations of PR and PR-Zn(2+) revealed that the pyrrole motifs, -C[double bond, length as m-dash]N- groups and spirolactam of rhodamine B are capable of coordinating cation guest species. Because each arm of the tripodal ligand tautomerizes independently, only moderate fluorescence enhancement could be seen until all three -C[double bond, length as m-dash]N- groups were coordinated by zinc, which may be due to the spirolactam ring opening mechanism of the rhodamine unit. Once all three -C[double bond, length as m-dash]N- groups were locked by coordinating with excess of Zn(2+), the isomerization was arrested, and PR exhibited highly enhanced fluorescence. In addition, energy optimized structures of PR were found to be cage-like by Gaussian 09, further supporting that it can access a large excess of Zn(2+). Intriguingly, imaging of HeLa cells by using a confocal microscope revealed that this PR probe could be used for biological applications.

  16. Design of a catalyst through Fe doping of the boron cage B10H14 for CO2 hydrogenation and investigation of the catalytic character of iron hydride (Fe-H).

    PubMed

    Qian, Lei; Ma, Kai-Yang; Zhou, Zhong-Jun; Ma, Fang

    2017-12-13

    The innovative catalyst Fe@B 10 H 14 is designed through Fe doping of the boron cage B 10 H 14 and is employed to catalyze CO 2 hydrogenation using a quantum mechanical method. First, the structure of the Fe@B 10 H 14 complex is characterized through calculated 11 B NMR chemical shifts and Raman spectra, and the interactions between Fe and the four H atoms of the opening in the cage are analyzed, which show that various iron hydride (Fe-H) characteristics exist. Subsequently, the potential of Fe@B 10 H 14 as a catalyst for the hydrogenative reduction of CO 2 in the gas phase is computationally evaluated. We find that an equivalent of Fe@B 10 H 14 can consecutively reduce double CO 2 to obtain the double product HCOOH through a two-step reduction, and Fe@B 10 H 12 and Fe@B 10 H 10 are successively obtained. The Fe presents single-atom character in the reduction of CO 2 , which is different from the common iron(ii) catalyzed CO 2 reduction. The calculated total free energy barrier of the first CO 2 reduction is only 8.79 kcal mol -1 , and that of the second CO 2 reduction is 25.71 kcal mol -1 . Every reduction reaction undergoes two key transition states TSC-H and TSO-H. Moreover, the transition state of the C-H bond formation TSC-H is the rate-determining step, where the interaction between π C[double bond, length as m-dash]O * and the weak σ Fe-H bond plays an important role. Furthermore, the hydrogenations of Fe@B 10 H 12 and Fe@B 10 H 10 are investigated, which aim at determining the ability of Fe-H circulation in the Fe doped decaborane complex. We find that the hydrogenation of Fe@B 10 H 10 undergoes a one-step H 2 -adsorbed transition state TSH-adsorb with an energy barrier of 6.42 kcal mol -1 from Fe@B 10 H 12 . Comparing with the hydrogenation of Fe@B 10 H 10 , it is slightly more difficult for the hydrogenation of Fe@B 10 H 12 , where the rate-determining step is the H 2 -cleaved transition state TS2H-H with an energy barrier of 17.38 kcal mol -1 .

  17. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Halogenated 2,5-pyrrolidinediones: synthesis, bacterial mutagenicity in Ames tester strain TA-100 and semi-empirical molecular orbital calculations.

    PubMed

    Freeman, B A; Wilson, R E; Binder, R G; Haddon, W F

    2001-02-20

    The chloroimide 3,3-dichloro-4-(dichloromethylene)-2,5-pyrrolidinedione, a tetrachloroitaconimide, is the principal mutagen produced by chlorination of simulated poultry chiller water. It is the second most potent mutagenic disinfection by-product of chlorination ever reported. Six of seven new synthetic analogs of this compound are direct-acting mutagens in Ames tester strain TA-100. Computed energies of the lowest unoccupied molecular orbital (E(LUMO)) and of the radical anion stability (DeltaH(f)(rad)-DeltaH(f)) from MNDO-PM3 for the chloroimides show a quantitative correlation with the Ames TA-100 bacterial mutagenicity values. The molar mutagenicities of these direct acting mutagenic imides having an exocyclic double bond fit the same linear correlation (lnM(m) vs. E(LUMO); lnM(m) vs. DeltaH(f)(rad)--DeltaH(f)) as the chlorinated 2(5H)-furanones, including the potent mutagen MX, 3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone, a by-product of water chlorination and paper bleaching with chlorine. Mutagenicity data for related haloimides having endocyclic double bonds are also given. For the same number of chlorine atoms, the imides with endocyclic double bonds have significantly higher Ames mutagenicity compared to their structural analogs with exocyclic double bonds, but do not follow the same E(LUMO) or DeltaH(f)(rad)-DeltaH(f) correlation as the exocyclic chloroimides and the chlorinated 2(5H)-furanones.

  19. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.

    PubMed

    Benesch, Matthew G K; Mannock, David A; Lewis, Ruthven N A H; McElhaney, Ronald N

    2014-01-01

    We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five of its analogues on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (βOH, αOH or C=O) and in the position of the double bond (C4-C5 in ring A or C5-C6 in ring B). In the three Δ(5) sterols/steroid series, the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases in the order βOH>αOH>C=O and these differences in concentration are significant. However, in the Δ(4) series, these concentrations are more similar, regardless of polar head group nature or stereochemistry. Similarly, the residual enthalpy of the main phase transition of DPPC at 50 mol.% sterol/steroid, which is inversely related to the miscibility of these compounds in the DPPC bilayer, also increases in the order βOH>αOH>C=O, but this effect is attenuated in the Δ(4) as opposed to the Δ(5) series. Both of these results indicate that the presence of a double bond at C4-C5 in ring A, as compared to a C5-C6 double bond in ring B, reduces the effect of variations in the structure of the polar group at C3 on the properties of the host DPPC bilayer. The movement of the double bond from C5 to C4 in the two sterol pairs results in a greater decrease in the temperature and enthalpy of both the pretransition and the main phase transition, whereas the opposite result is observed in the ketosteroid pair. Similarly, the ability of these compounds to order the DPPC hydrocarbon chains decreases in the order βOH>αOH>C=O in both series of compounds, but in the two sterol pairs, hydrocarbon chain ordering is greater for the Δ(5) than the Δ(4) sterols, whereas the opposite is the case for the steroid pair. All of these results indicate that the typical effects of sterols/steroids in increasing the packing density and thermal stability of fluid lipid bilayers are optimal when an OH group rather than C=O group is present at C3, and that this OH group is more effective in the equatorial rather than the axial orientation. We can explain all of our sterol results by noting that the shift of the double bond from Δ(5) to Δ(4) introduces of a bend in ring A, which in turn destroys the coplanarity of the steroid fused ring system and reduces the goodness of sterol packing in the host DPPC bilayer. However, this conformational change should also occur in the ketosteroid pair, yet our experimental results indicate that the presence of the Δ(4) double bond is less disruptive than a double bond at Δ(5). We suggest that the presence of keto-enol tautomerism in the conjugated Δ(4) ketosteroid, but not in the nonconjugated Δ(5) compound, may provide additional H-bonding opportunities to adjacent DPPC molecules in the bilayer, which can overcome the unfavourable conformational change in ring A induced by the Δ(4) double bond. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Synthetic study on the relationship between structure and sweet taste properties of steviol glycosides.

    PubMed

    Upreti, Mani; Dubois, Grant; Prakash, Indra

    2012-04-05

    The structure activity relationship between the C₁₆-C₁₇ methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C₁₆-C₁₇ methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  1. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.

  2. Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer

    NASA Astrophysics Data System (ADS)

    Jallapuram, Raghavendra; Naydenova, Izabela; Byrne, Hugh J.; Martin, Suzanne; Howard, Robert; Toal, Vincent

    2008-01-01

    Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607 cm-1 corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm-1 corresponding to the carbon-carbon double bond of methylenebisacrylamide using Raman spectroscopy. To study the dependence of the polymerization rate on intensity and to find the dependence parameter, the polymerization rate constant is measured at different intensities. A comparison with a commercially available photopolymer shows that the polymerization rate in this photopolymer is much faster.

  3. Integrated packaging of multiple double sided cooling planar bond power modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flowmore » path to remove heat and increase the power density of the power module.« less

  4. 30 CFR 740.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lease means a Federal coal lease or license issued by the Bureau of Land Management pursuant to the... and part 745 of this chapter. Federal land management agency means a Federal agency having... lease bond means the bond or equivalent security required by 43 CFR part 3400 to assure compliance with...

  5. Sub-millimeter-Wave Equivalent Circuit Model for External Parasitics in Double-Finger HEMT Topologies

    NASA Astrophysics Data System (ADS)

    Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay

    2018-02-01

    We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.

  6. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  7. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  8. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  9. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    PubMed

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  10. Average bond energies between boron and elements of the fourth, fifth, sixth, and seventh groups of the periodic table

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1955-01-01

    The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  12. Tungsten Hydride Phosphorus- and Arsenic-Bearing Molecules with Double and Triple W-P and W-As Bonds.

    PubMed

    Andrews, Lester; Cho, Han-Gook; Fang, Zongtang; Vasiliu, Monica; Dixon, David A

    2018-05-07

    Laser ablation of tungsten metal provides W atoms which react with phosphine and arsine during condensation in excess argon and neon, leading to major new infrared (IR) absorptions. Annealing, UV irradiation, and deuterium substitution experiments coupled with electronic structure calculations at the density functional theory level led to the assignment of the observed IR absorptions to the E≡WH 3 and HE═WH 2 molecules for E = P and As. The potential energy surfaces for hydrogen transfer from PH 3 to the W were calculated at the coupled-cluster CCSD(T)/complete basis set level. Additional weak bands in the phosphide and arsenide W-H stretching region are assigned to the molecules with loss of H from W, E≡WH 2 . The electronic structure calculations show that the E≡WH 3 molecules have a W-E triple bond, the HE═WH 2 molecules have a W-E double bond, and the H 2 E-WH molecules have a W-E single bond. The formation of multiple E-W bonds leads to increasing stability for the isomers.

  13. Double salt crystal structure of hexa-sodium hemiundeca-hydrogen α-hexa-molybdoplatinate(IV) heminona-hydrogen α-hexa-molybdoplatinate(IV) nona-cosa-hydrate: di-hydrogen disordered-mixture double salt.

    PubMed

    Joo, Hea-Chung; Park, Ki-Min; Lee, Uk

    2015-10-01

    The title double salt containing two distinct, differently protonated hexa-molybdoplatinate(IV) polyanions, Na6[H5.5 α-PtMo6O24][H4.5 α-PtMo6O24]·29H2O, has been synthesized by a hydro-thermal reaction at ca pH 1.80. The positions of the H atoms in the polyanions were established from difference Fourier maps and confirmed by the inter-polyanion hydrogen bonds, bond-distance elongation, and bond-valence sum (BVS) calculations. The fractional numbers of H atoms in each polyanion are required for charge balance and in order to avoid unrealistically short H⋯H distances in the inter-polyanion hydrogen bonds. Considering the disorder, the refined formula of the title polyanion, {[H5.5 α-PtMo6O24]; polyanion (A) and [H4.5 α-PtMo6O24]; polyanion (B)}(6-), can be rewritten as a set of real formula, viz. {[H6 α-PtMo6O24]; polyanion (A). [H4 α-PtMo6O24]; polyanion (B)}(6-) and {[H5 α-PtMo6O24]; polyanion (A). [H5 α-PtMo6O24]; polyanion (B)}(6-). The polyanion pairs both form dimers of the same formula, viz. {[H10 α-Pt2Mo12O48]}(6-) connected by seven inter-polyanion O-H⋯O hydrogen bonds.

  14. NMR Spectroscopy and Structural Characterization of Dithiophosphinates Relevant to Minor Actinide Extraction Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott R. Daly; Kevin S. Boland; John R. Klaehn

    2012-02-01

    Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh{sub 4}{sup 1+} counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR{sub 2}, with two equivalents elemental S. This transformation proceeds in two steps - first oxidation of the phosphine and second insertion of S into the H-P bond - and has been used to synthesize a series of dithiophoshinic acids, which were fully characterized, namely HS{sub 2}P(p-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(m-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(o-MeC{sub 6}H{sub 4}){sub 2}, andmore » HS{sub 2}P(o-MeOC{sub 6}H{sub 4}){sub 2}. Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH{sub 4})S{sub 2}PR{sub 2} from HPSR{sub 2} occurs almost instantaneous upon addition of NH{sub 4}OH. Subsequent cation exchange reactions proceed readily with PPh{sub 4}Cl in water, under air, and at ambient conditions to provide analytically pure samples of [PPh{sub 4}][S{sub 2}PR{sub 2}] (R = p-CF{sub 3}C{sub 6}H{sub 4}, m-CF{sub 3}C{sub 6}H{sub 4}, o-CF{sub 3}C{sub 6}H{sub 4}, o-MeC{sub 6}H{sub 4}, o-MeOC{sub 6}H{sub 4}, Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition the S{sub 2}PMe{sub 2}{sup 1-}, S{sub 2}PPh{sub 2}{sup 1-}, and dithiophosphinates with ortho-substituted arene rings were characterized by X-ray crystallography. Structural analysis show that, as opposed to the acids which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S{sub 2}PR{sub 2}{sup 1-} are equivalent. In addition, the presence of large non-coordinating PPh{sub 4}{sup 1+} cations guard against intermolecular P-S {hor_ellipsis} X interactions and insure that the P-S bond is isolated. Overall, this synthetic procedure provides high-purity S{sub 2}PR{sub 2}{sup 1-} compounds necessary for subsequent spectroscopic and theoretical studies.« less

  15. Photoisomerization of Trans Ortho-, Meta-, Para-Nitro Diarylbutadienes: A Case of Regioselectivity.

    PubMed

    Agnihotri, Harsha; Paramasivam, Mahalingavelar; Palakollu, Veerabhadraiah; Kanvah, Sriram

    2015-11-01

    A series of ortho-, meta- and para-substituted trans-nitro aryl (phenyl and pyridyl) butadienes have been synthesized and characterized. The effect of substitution and positional selectivity on their fluorescence and photoisomerization were systematically investigated. Among all dienes, meta- and para-nitro phenyl-substituted derivatives exhibit remarkable solvatochromic emission shifts due to intramolecular charge transfer. On the other hand, ortho derivatives undergo regioselective isomerization upon photoexcitation in contrast to inefficient isomerization of para and meta nitro-substituted dienes. Single crystal X-ray analysis revealed existence of intramolecular hydrogen bonding between the nitro group and the hydrogen of the proximal double bond. This restricts the rotation of the proximal double bond thereby allowing regioselective isomerization. The observations were also supported by NMR spectroscopic studies. © 2015 The American Society of Photobiology.

  16. Reaction of the thermo-labile triazenide Na[tBu3SiNNNSiMe3] with CO2: formation of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2.

    PubMed

    Lerner, H-W; Bolte, M; Wagner, M

    2017-07-11

    The thermo-labile triazenide Na[tBu 3 SiNNNSiMe 3 ] was prepared by the reaction of Me 3 SiN 3 with Na(thf) 2 [SitBu 3 ] in pentane at -78 °C. Treatment of Na[tBu 3 SiNNNSiMe 3 ] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and the carbamine acid (tBu 3 SiO)CONH 2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and carbamine acid (tBu 3 SiO)CONH 2 . At first single crystals of the carbamine acid (tBu 3 SiO)CONH 2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 (monoclinic, space group P2 1 /n).

  17. Influence of laboratory degradation methods and bonding application parameters on microTBS of self-etch adhesives to dentin.

    PubMed

    Erhardt, Maria Carolina G; Pisani-Proença, Jatyr; Osorio, Estrella; Aguilera, Fátima S; Toledano, Manuel; Osorio, Raquel

    2011-04-01

    To evaluate the laboratory resistance to degradation and the use of different bonding treatments on resin-dentin bonds formed with three self-etching adhesive systems. Flat, mid-coronal dentin surfaces from extracted human molars were bonded according to manufacturer's directions and submitted to two challenging regimens: (A) chemical degradation with 10% NaOC1 immersion for 5 hours; and (B) fatigue loading at 90 N using 50,000 cycles at 3.0 Hz. Additional dentin surfaces were bonded following four different bonding application protocols: (1) according to manufacturer's directions; (2) acid-etched with 36% phosphoric acid (H3PO4) for 15 seconds; (3) 10% sodium hypochlorite (NaOClaq) treated for 2 minutes, after H3PO4-etching; and (4) doubling the application time of the adhesives. Two one-step self-etch adhesives (an acetone-based: Futurabond/FUT and an ethanol-based: Futurabond NR/FNR) and a two-step self-etch primer system (Clearfil SE Bond/CSE) were examined. Specimens were sectioned into beams and tested for microtensile bond strength (microTBS). Selected debonded specimens were observed under scanning electron microscopy (SEM). Data (MPa) were analyzed by ANOVA and multiple comparisons tests (alpha= 0.05). microTBS significantly decreased after chemical and mechanical challenges (P< 0.05). CSE showed higher microTBS than the other adhesive systems, regardless the bonding protocol. FUT attained the highest microTBS after doubling the application time. H3PO4 and H3PO4 + NaOCl pretreatments significantly decreased bonding efficacy of the adhesives.

  18. 26 CFR 1.6165-1 - Bonds where time to pay the tax or deficiency has been extended.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exceeding double the amount of the tax with respect to which the extension is granted. Such bond shall be... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Bonds where time to pay the tax or deficiency... THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Extensions of Time for Payment § 1.6165-1...

  19. Unveiling the mechanism of photoinduced isomerization of the photoactive yellow protein (PYP) chromophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, Evgeniy V., E-mail: evgeniy.gromov@pci.uni-heidelberg.de

    2014-12-14

    A detailed theoretical analysis, based on extensive ab initio second-order approximate coupled cluster calculations, has been performed for the S{sub 1} potential energy surface (PES) of four photoactive yellow protein (PYP) chromophore derivatives that are hydrogen bonded with two water molecules and differ merely in the carbonyl substituent. The main focus is put on contrasting the isomerization properties of these four species in the S{sub 1} excited state, related to torsion around the chromophore's single and double carbon-carbon bonds. The analysis provides evidence of the different isomerization behavior of these four chromophore complexes, which relates to the difference in theirmore » carbonyl substituents. While a stable double-bond torsion pathway exists on the S{sub 1} PES of the chromophores bearing the –O–CH{sub 3} and –NH{sub 2} substituents, this is not the case for the –S–CH{sub 3} and –CH{sub 3} substituted species. The presence of the –S–CH{sub 3} group leads to a strong instability of the chromophore with respect to the single-bond twist, whereas in the case of the –CH{sub 3} substituent a crossing of the S{sub 1} and S{sub 2} PESs occurs, which perturbs the pathway. Based on this analysis, the key factors that support the double-bond torsion have been identified. These are (i) the hydrogen bonds at the phenolic oxygen of the chromophore, (ii) the weak electron-acceptor character of the carbonyl group, and (iii) the ethylene-like pattern of the torsion in the beginning of the process. Our results suggest that the interplay between these factors determines the chromophore's isomerization in the solvent environment and in the native PYP environment.« less

  20. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision.

    PubMed

    Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Cabrera-Vivas, Blanca M; Gómez-Reyes, Baldomero; Ramírez, Juan Carlos

    2015-09-26

    During the photoreaction of rhodopsin, retinal isomerizes, rotating the C11[double bond, length as m-dash]C12 π-bond from cis to an all-trans configuration. Unprotonated (UR) or protonated (PR) retinal in the Schiff's base (SB) is related to UV and light vision. Because the UR and PR have important differences in their physicochemical reactivities, we compared the atomic and molecular properties of these molecules using DFT calculations. The C10-C11[double bond, length as m-dash]C12-C13 dihedral angle was rotated from 0° to 180° in 45° steps, giving five conformers, and the following were calculated from them: atomic orbital (AO) contributions to the HOMO and LUMO, atomic charges, bond length, bond order, HOMO, LUMO, hardness, electronegativity, polarizability, electrostatic potential, UV-vis spectra and dipole moment (DM). Similarly, the following were analyzed: the energy profile, hybridization, pyramidalization and the hydrogen-out-of-plane (HOOP) wagging from the H11-C11[double bond, length as m-dash]C12-H12 dihedral angle. In addition, retinal with a water H-bond (HR) in the SB was included for comparison. Interestingly, in the PR, C11 and C12 are totally the LUMO and the HOMO, respectively, and have a large electronegativity difference, which predicts an electron jump in these atoms during photoexcitation. At the same time, the PR showed a longer bond length and lower bond order, with a larger DM, lower HOMO-LUMO gap, lower hardness and higher electronegativity. In addition, the AOs of -45° and -90° conformers changed significantly, from pz to py, during the rotation concomitantly with marked hybridization, smooth pyramidalization and lower HOOP activity. Clearly, the atomic and molecular differences between the UR and PR are overwhelming, including the rotational energy profile and light absorption spectra, which indicates that light absorption of UR and PR is already determined by the retinal characteristics of the SB protonation. The HR-model compared with UR shows a lower energy barrier and a discreet bathochromic effect in the UV region.

  1. Quantum mechanical tunneling in the automerization of cyclobutadiene

    NASA Astrophysics Data System (ADS)

    Schoonmaker, R.; Lancaster, T.; Clark, S. J.

    2018-03-01

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  2. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  3. An Array of Layers in Silicon Sulfides: Chain-like and Ground State Structures

    NASA Astrophysics Data System (ADS)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    While much is known about isoelectronic materials related to carbon nanostructures, such as boron nitride layers and nanotubes, rather less is known about equivalent silicon based materials. Following the recent discovery of phosphorene, we here discuss isoelectronic silicon monosulfide monolayers. We describe a set of anisotropic ground state structures that clearly have a high stability with respect to the near isotropic silicon monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds, which lie at the core of the increased stability, together with a remarkable spd hybridization on Si. The involvement of d orbitals brings more variety to silicon-sulfide based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom. Spanish Ministry of Economy and Competitiveness MINECO, Basque Government (ETORTEK Program 2014), University of the Basque Country (GrantGrant No. IT-366-07) and MPC Material Physics Center - San Sebastián.

  4. Maleate/vinyl ether UV-cured coatings: Effects of composition on curing and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noren, G.K.

    1996-10-01

    The effect of the composition of the maleate polyester and the vinyl ether terminated compound on their UV-curing and properties has been investigated. Linear unsaturated polyester resins based on maleic anhydride and 1,5-pentane diol were synthesized. The molecular weight of the unsaturated polyesters was varied by changing the ratio of maleic anhydride to 1,5-pentane diol and the double bond equivalent weight was varied by replacing maleic anhydride with succinic anhydride. Coating formulations containing these unsaturated polyesters, triethylene glycol divinyl ether and a free radical photoinitiator were crosslinked in the presence of UV light. The coatings were very brittle, exhibiting tensilemore » strengths in the range of 1.5-4.0 MPa and elongations of only 3-7%. Diethyl maleate and isobutyl vinyl ether were effective diluents for reducing viscosity but reduced the cure speed. A vinyl ether urethane oligomer was synthesized and enhanced the flexibility and toughness of the coatings when substituted for triethylene glycol divinyl ether.« less

  5. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  6. Phosphoric acid activation of sugarcane bagasse for removal of o-toluidine and benzidine

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Attahirah, M. H. M. N.; Amirza, A. R. M.

    2018-04-01

    In the effort to find alternatives for low cost adsorbent, activated carbon using sugarcane bagasse (SBAC) has been introduced in this study that has undergo chemical treatment using phosphoric acid to determine the effectiveness of adsorption process in removing o-toluidine and benzidine. Throughout this study, 92.9% of o-toluidine has been successfully removed by SBAC at optimum value of 1.1 g of dosage with contact time of 10 minutes and concentration of 10 mg/L. While benzidine was remove by 83.1% at optimum dosage of 1.1 g with 60 minutes of contact time and at 20 mg/L concentrations. Testing of SEM proves that SBAC has high porosity and comparable to CAC. In FTIR results, shows that CAC has high number of double bond while SBAC shows no double bond at all. Presence of double bond in CAC lead to increase in percentage of removal of adsorbate. After considering other factor such as cost, energy and environmental friendly, it shows that SBAC was considerable to replaced CAC.

  7. n-Nonacosadienes from the marine haptophytes Emiliania huxleyi and Gephyrocapsa oceanica.

    PubMed

    Nakamura, Hideto; Sawada, Ken; Araie, Hiroya; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-03-01

    The hydrocarbons in cultures of marine haptophytes Emiliania huxleyi NIES837 and Gephyrocapsa oceanica NIES1315 were analyzed, and nonacosadienes and hentriacontadienes were detected as the major compounds in both strains. C29 and C31 monoenes and di-, tri- and tetra-unsaturated C33 alkenes were also detected as minor compounds but not C37 and C38 alkenes. The positions of the double bonds in the C29 and C31 alkenes were determined by mass spectrometry of their dimethyl disulfide (DMDS) adducts. Among the four C29 alkenes identified, the most abundant isomer was 2,20-nonacosadiene, and the other three compounds were 1,20-nonacosadiene, 3,20-nonacosadiene and 9-nonacosene, respectively. Hitherto, 2,20-nonacosadiene and 3,20-nonacosadiene were unknown to be natural products. The double bond at the n-9 (ω9) position in these C29 alkenes is hypothesized to be derived from precursors of unsaturated fatty acids possessing an n-9 double bond, such as (9Z)-9-octadecenoic acid. Nonacosadienes have the potential for being used as distinct haptophyte biomarkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    NASA Astrophysics Data System (ADS)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  9. Bond angles in transition metal tetracarbonyl compounds: A further test of the theory of hybrid bond orbitals*

    PubMed Central

    Pauling, Linus

    1978-01-01

    An equation for the bond angles OC—M—CO for tetracarbonyl groups in which the transition metal atom M is enneacovalent, derived from the simple theory of hybrid sp3d5 bond orbitals, is tested by comparison of the calculated values of the angles with the experimental values reported for many compounds containing M(CO)4 groups, especially those with M = Fe, Mn, Re, Cr, or Mo. The importance of the energy of resonance of single bonds and double bonds in stabilizing octahedral complexes of chromium and manganese with carbonyl, phosphine, arsine, and thio groups is also discussed. PMID:16592490

  10. Hawaii Algal Biofuel

    DTIC Science & Technology

    2013-03-01

    155 Figure 56. Ring heater. ....................................................................................................155 Figure 57...structure, the straight chain paraffins are first combined with high pressure hydrogen. The reaction converts them into a hydrogenated ring -like...bonds in the hydrogenated ring -like molecular structure to form many small olefinic double bonds of unsaturated hydrocarbons. The unsaturated

  11. Synthesis, spectroscopic characterization and theoretical calculations of ClF2CC(O)NPCl3 ([chloro(difluor)acetyl]phosphorimidic trichloride).

    PubMed

    Iriarte, Ana G; Cutin, Edgardo H; Argüello, Gustavo A

    2014-01-01

    The synthesis of [chloro(difluor)acetyl]phosphorimidic trichloride (ClF2CC(O)NPCl3), together with a tentative assignment of the vibrational, NMR and mass spectra, are reported. Quantum chemical calculations (MP2 and B3LYP methods with 6-311+G(d) and 6-311+G(2df,p) basis sets) predict three stable conformers in the gas phase (syn, gauche and anti, defined according to the rotation around both the ClCCN and the CCNP dihedral angles). However, only a single C1 symmetry conformer is observed in the liquid phase, possessing the CO double bond in synperiplanar orientation with respect to the PN double bond, and the ClC bond distorted from the plane defined by the CC(O)NP entity. A Natural Bond Orbital (NBO) analysis was carried out for the title compound and related molecules in order to provide an explanation about the electronic properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  13. δ-Deuterium Isotope Effects as Probes for Transition-State Structures of Isoprenoid Substrates

    PubMed Central

    2015-01-01

    The biosynthetic pathways to isoprenoid compounds involve transfer of the prenyl moiety in allylic diphosphates to electron-rich (nucleophilic) acceptors. The acceptors can be many types of nucleophiles, while the allylic diphosphates only differ in the number of isoprene units and stereochemistry of the double bonds in the hydrocarbon moieties. Because of the wide range of nucleophilicities of naturally occurring acceptors, the mechanism for prenyltransfer reactions may be dissociative or associative with early to late transition states. We have measured δ-secondary kinetic isotope effects operating through four bonds for substitution reactions with dimethylallyl derivatives bearing deuterated methyl groups at the distal (C3) carbon atom in the double bond under dissociative and associative conditions. Computational studies with density functional theory indicate that the magnitudes of the isotope effects correlate with the extent of bond formation between the allylic moiety and the electron-rich acceptor in the transition state for alkylation and provide insights into the structures of the transition states for associative and dissociative alkylation reactions. PMID:24665882

  14. Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of beta-substituted pyroglutamic acids and prolines.

    PubMed

    Soloshonok, Vadim A; Ueki, Hisanori; Tiwari, Rohit; Cai, Chaozhong; Hruby, Victor J

    2004-07-23

    This study demonstrates a new strategy for controlling the stereochemical outcome of the Michael addition reactions between nucleophilic glycine equivalents and alpha,beta-unsaturated carboxylic acid derivatives: The addition reactions between achiral Ni(II)-complex of the Schiff base of glycine with o-[N-alpha-pycolylamino]acetophenone and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones were shown to occur at room temperature in the presence of nonchelating organic bases and, most notably, with very high stereoselectivity at both newly formed stereogenic centers. Thus, the chiral 4-phenyl-1,3-oxazolidin-2-one moiety was found to control efficiently both face diastereoselectivities of the glycine derived enolate and the C,C double bond of the Michael acceptor. The new strategy developed in this work is methodologically superior to previous methods, most notably in terms of generality and synthetic efficiency. Excellent chemical yields and diastereoselectivities, combined with the simplicity of the experimental procedures, render the present method of immediate use for preparing various 3-substituted pyroglutamic acids and related amino acids (glutamic acids, glutamines, prolines, etc.) available via conventional transformations of the former.

  15. Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2005-01-01

    Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…

  16. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives.

    PubMed

    Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan

    2017-01-01

    The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.

  17. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT) of calix[4]arene: A TDDFT study

    NASA Astrophysics Data System (ADS)

    Wang, Se; Wang, Zhuang; Hao, Ce

    2016-01-01

    The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.

  18. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway formore » temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the carbonyl bond as is currently accepted, the production and accumulation of acetic acid will likely alter the preferred pathway to one involving addition of water across the ketene C=C double bond as the reaction proceeds.« less

  19. Study of mutual influence of hydrogen bonds in complicated complexes by low-temperature 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Golubev, N. S.; Denisov, G. S.

    1992-07-01

    1H NMR spectra of various acid-base complexes of different stoichiometry at 100-120K in freon mixtures have been obtained. The separate signals of non-equivalent OH-protons, involved in different H-bonds, have allowed us to consider the problem of the mutual influence of these bonds, using a correlation between the δ OH chemical shift and the AΔ H H-bond enthalpy. The mutual strengthening of H-bonds in complexes of the AH⋯AH⋯B type and their weakening in AH⋯B⋯HA complexes have been found, the value of the effect being about 10-30%

  20. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA.

    PubMed

    Leng, Xiaoling; Kinnun, Jacob J; Cavazos, Andres T; Canner, Samuel W; Shaikh, Saame Raza; Feller, Scott E; Wassall, Stephen R

    2018-05-01

    Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯ CD =0.152). EPA-PC (S¯ CD =0.131) is most disordered, while DPA-PC (S¯ CD =0.140) is least disordered. DHA-PC (S¯ CD =0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯ CD =0.169), DHA-PC (S¯ CD =0.178) and DPA-PC (S¯ CD =0.182) is increased less than in OA-PC (S¯ CD =0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The role of living/controlled radical polymerization in the formation of improved imprinted polymers.

    PubMed

    Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E

    2012-06-01

    In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Stereoselective rhodium-catalysed [2+2+2] cycloaddition of linear allene-ene/yne-allene substrates: reactivity and theoretical mechanistic studies.

    PubMed

    Haraburda, Ewelina; Torres, Óscar; Parella, Teodor; Solà, Miquel; Pla-Quintana, Anna

    2014-04-22

    Allene-ene-allene (2 and 5) and allene-yne-allene (3 and 7) N-tosyl and O-linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3 )3 ] was evaluated. Substrates 2 and 5, which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7, which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels-Alder reaction on N-tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  5. The Equivalence of the Methyl Groups in Puckered 3,3-DIMETHYL Oxetane

    NASA Astrophysics Data System (ADS)

    Macario, Alberto; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    The spectroscopic study of molecules with large amplitude vibrations have led to reconsider the concept of molecular structure. Sometimes identifying definite bond lengths and angles is not enough to reproduce the experimental data so one must have information on the large amplitude molecular vibration potential energy function and dynamics. 3,3-dimethyloxetane (DMO) has non-planar ring equilibrium configuration and a double minimum potential function for ring-puckering with a barrier of 47 cm-1. The observation of endocyclic 13C and 18O monosubstituted isotopologues allow to conclude that the ring is puckered. However an interesting feature was observed for the 13C substitutions at the methyl carbon atoms. While two different axial and equatorial 13C-methyl groups spectra are predicted from a rigid non-planar ring DMO model, only one species was found. The observed rotational transitions appear at a frequency close to the average of the frequencies predicted for each isotopologue. The observed lines have the same intensity as that found for the 13C_α isotopomer and double that that found for the 13C_β isotopomer.^c This behaviour evidences that the two methyl groups of DMO are equivalent as could be expected for a planar ring. In this work we show how consideration of the potential function and the path for ring puckering motion to calculate the proper kinetic energy terms allow to reproduce the experimental results. Ab initio computations at the CCSD/6-311++G(d,p) level, tested on related systems, have been done for this purpose. J. A. Duckett, T. L. Smithson, and H. Wieser, J. Mol. Spectrosc. 1978, 69 , 159; J. Mol. Struct. 1979, 56, 157 J. C. López, A. G. Lesarri, R. M. Villamañán and J. L. Alonso, J. Mol. Spectrosc. 1990, 141, 231 R. Sánchez, S. Blanco, A. Lesarri, J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2005, 7, 1157

  6. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  7. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  8. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  9. Two-Photon Study on the Electronic Interactions between the First Excited Singlet States in Carotenoid-Tetrapyrrole Dyads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Pen-Nan; Pillai, Smitha; Gust, Devens

    Electronic interactions between the first excited states (S 1) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S 1-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S 1 state allowed sensitive monitoring of the flow of energy between Car S 1 and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S 1 and that only amore » small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S 1 → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S 1 energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S 1 state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S 1-Pc Q y interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.« less

  10. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  11. Different Roles of Endo- and Exo-cyclic Double Bonds in Limonene Ozonolysis System: Effect of Water and OH Radical Scavengers

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Li, H.; Chen, Z.

    2017-12-01

    Limonene, as an important monoterpene, has a high emission rate both from biogenic and anthropogenic sources. Its doubly unsaturated structure leads to a high potential for secondary organic aerosol formation and a detailed understanding of roles of endo- and exo-cyclic double bonds in limonene ozonolysis is in urgent need. This study provided new insights into the mechanism and effect of both unsaturated bonds oxidation. A low and a high ratio set of [O3]/[limonene] experiments in the presence or absence of OH scavenger (2-butanol or cyclohexane) in the relative humidity (RH) range of 0-90% were conducted. Molar yields of hydrogen peroxide (H2O2) and hydromethyl hydroperoxide (HMHP) both increased rapidly as RH rose from 0 to 50%, then reached a plateau above 70% RH, while peroxyformic acid (PFA) and peroxyacetic acid (PAA) kept increasing with RH. The ozonolysis of exocyclic double bonds showed larger capacity for producing these peroxides than endocyclic ones, resulting in significantly higher yields of H2O2, HMHP, PFA and PAA in limonene ozonolysis than α-pinene when ozone was sufficient. The SOA mass fraction of total peroxides was 50% at high [O3]/[limonene] ratio, whereas only 12% at low ratio. The gas-particle partitioning coefficient of undetected peroxides rose up from (0.8-2.0)×10-3m3μg-1 at 0% RH to (4.0-5.2)×10-3m3μg-1 at 90% RH, indicating some water-dependent channels contributed low-volatility peroxides formation. A box model was employed to simulate the reaction system, and the results obviously underestimated the yield of H2O2, whilst overestimated the yield of undetected peroxides. It is interesting to note that SOA produced at high [O3]/[limonene] ratio could generate considerable amount of H2O2 in the aqueous phase, which may be another source of H2O2 in cloud drops. To elucidate the mechanism further, the yield of OH radicals formed from endocyclic double bonds was found to be about 3 times larger than that from exocyclic double bonds. The profile of OH radical formation as a function of RH demonstrated the existence of water-dependent OH formation pathways. Our results also revealed that different OH scavengers impacted yields of a series of products and their gas-particle partitioning, thus the secondary influence of OH scavengers should be taken into consideration in future studies.

  12. Activation of a Carbon-Oxygen Bond of Benzofuran by Precoordination of Manganese to the Carbocyclic Ring: A Model for Hydrodeoxygenation.

    PubMed

    Zhang; Watson; Dullaghan; Gorun; Sweigart

    1999-08-01

    Stable unsaturated heterocycles such as benzofuran are difficult to remove from petroleum by conventional catalytic hydrotreating. However, in a model system, coordination of Mn(CO)(3)(+) to the aromatic ring of benzofuran activates the C-O bond towards insertion of [Pt(PPh(3))(2)] [Eq. (1)]. The insertion is preceded by precoordination to the furan C=C bond; thus, the 2,3-dihydro analogue of 1, which lacks this double bond, does not undergo insertion of the Pt moiety.

  13. An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Bell, Andrew J.

    2016-04-01

    The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature.

  14. Switching bonds in a DNA gel: an all-DNA vitrimer.

    PubMed

    Romano, Flavio; Sciortino, Francesco

    2015-02-20

    We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.

  15. 77 FR 1658 - Adjustment of the Amount for the Optional Rider for Proof of NVOCC Financial Responsibility for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... its optional China Bond Rider for Non-Vessel-Operating Common Carriers (NVOCCs). The proposed rule is... equivalent of 800,000 Chinese Renminbi, for which the equivalent dollar amount has fluctuated since the... U.S. Non-Vessel- Operating Common Carriers (NVOCCs) to make a cash deposit in a Chinese bank as...

  16. Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: Synthesis and biological evaluation.

    PubMed

    Mesenzani, Ornella; Massarotti, Alberto; Giustiniano, Mariateresa; Pirali, Tracey; Bevilacqua, Valentina; Caldarelli, Antonio; Canonico, Pierluigi; Sorba, Giovanni; Novellino, Ettore; Genazzani, Armando A; Tron, Gian Cesare

    2011-01-15

    In the chalcone scaffold, it is thought that the double bond is an important structural linker but it is likely not essential for the interaction with tubulin. Yet, it may be a potential site of metabolic degradation and interaction with biological nucleophiles. In this letter, we have replaced this olefinic portion of chalcones with two metabolically stable and chemically inert heterocyclic rings, namely triazole or tetrazole. Yet, our biologic data suggest that, unlike in other antitubulinic structures, the olephinic ring might not be merely a structural linker. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  18. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  19. Resolution of concerted versus sequential mechanisms in photo-induced double-proton transfer reaction in 7-azaindole H-bonded dimer

    PubMed Central

    Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael

    1999-01-01

    The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876

  20. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  1. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  2. The discovery and early structural studies of arachidonic acid

    PubMed Central

    Martin, Sarah A.; Brash, Alan R.; Murphy, Robert C.

    2016-01-01

    Arachidonic acid and esterified arachidonate are ubiquitous components of every mammalian cell. This polyunsaturated fatty acid serves very important biochemical roles, including being the direct precursor of bioactive lipid mediators such as prostaglandin and leukotrienes. This 20 carbon fatty acid with four double bonds was first isolated and identified from mammalian tissues in 1909 by Percival Hartley. This was accomplished prior to the advent of chromatography or any spectroscopic methodology (MS, infrared, UV, or NMR). The name, arachidonic, was suggested in 1913 based on its relationship to the well-known arachidic acid (C20:0). It took until 1940 before the positions of the four double bonds were defined at 5,8,11,14 of the 20-carbon chain. Total synthesis was reported in 1961 and, finally, the configuration of the double bonds was confirmed as all-cis-5,8,11,14. By the 1930s, the relationship of arachidonic acid within the family of essential fatty acids helped cue an understanding of its structure and the biosynthetic pathway. Herein, we review the findings leading up to the discovery of arachidonic acid and the progress toward its complete structural elucidation. PMID:27142391

  3. Fabrication of (PPC/NCC)/PVA composites with inner-outer double constrained structure and improved glass transition temperature.

    PubMed

    Cui, Shaoying; Li, Li; Wang, Qi

    2018-07-01

    Improving glass transition temperature (T g ) and mechanical property of the environment-friendly poly(propylene carbonate) via intermacromolecular complexation through hydrogen bonding is attractive and of great importance. A novel and effective strategy to prepare (polypropylene carbonate/nanocrystalline cellulose)/polyvinyl alcohol ((PPC/NCC)/PVA) composites with inner-outer double constrained structure was reported in this work. Outside the PPC phase, PVA, as a strong skeleton at microscale, could constrain the movement of PPC molecular chains by forming hydrogen bonding with PPC at the interface of PPC and PVA phases; inside the PPC phase, the rod-like NCC could restrain the flexible molecular chains of PPC at nanoscale by forming multi-hydrogen bonding with PPC. Under the synergistic effect of this novel inner-outer double constrained structure, T g , mechanical properties and thermal stability of (PPC/NCC)/PVA composite were significantly increased, e.g. T g of the composite researched the maximum value of 49.6 °C, respectively 15.6 °C, 5.7 °C and 4.2 °C higher than that of PPC, PPC/NCC and PPC/PVA composite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection.

    PubMed

    Rosberg-Cody, Eva; Liavonchanka, Alena; Göbel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine

    2011-02-17

    The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  5. Strong correlation in incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-06-01

    Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.

  6. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  7. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  8. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  9. 2-[3-Furyl(hydroxy)methyl]-2,3-dimethylcyclohexanone.

    PubMed

    García, Esther; Mendoza, Virgilio; Guzmán, José Agustín; Maldonado Graniel, Luis Angel; Hernández-Ortega, Simón

    2002-06-01

    Contribution No. 1750 of the Instituto de Quimica, UNAM, Mexico. In the molecule of the title compound, C(13)H(18)O(3), there is a syn relationship between the two vicinal methyl groups. The six-membered ring adopts a chair conformation, with one equatorial and two axial groups, and the furyl group is almost parallel to the ketone group. Intermolecular hydrogen bonds [O[bond]H...O[double bond]C 2.814 (3) A] form chains along [100].

  10. A remarkable enhancement of selectivity towards versatile analytes by a strategically integrated H-bonding site containing phase.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka

    2015-09-28

    A double β-alanylated L-glutamide-derived organic phase has been newly designed and synthesized in such a way that integrated H-bonding (interaction) sites make it very suitable for the separation of versatile analytes, including shape-constrained isomers, and nonpolar, polar and basic compounds. The β-alanine residues introduced into two long-chain alkyl group moieties provide ordered polar groups through H-bonding among the amide groups.

  11. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  12. Organochlorine contaminants in double-crested cormorants from Green Bay, Wisconsin: II. Effects of an extract derived from cormorant eggs on the chicken embryo

    USGS Publications Warehouse

    Powell, D.C.; Aulerich, R.J.; Meadows, J.C.; Tillitt, D.E.; Stromborg, K.L.; Kubiak, T.J.; Giesy, J.P.; Bursian, S.J.

    1997-01-01

    White Leghorn chicken (Gallus domesticus) eggs were injected prior to incubation with one of four concentrations (0.001, 0.01, 0.1, and 1.0 egg-equivalent) of an extract derived from 1,000 double-crested cormorant (Phalacrocorax auritus) eggs collected at Spider Island adjacent to Green Bay in Lake Michigan. One egg-equivalent corresponded to the concentration of contaminants present in an average cormorant egg. This was approximately 322 pg toxic equivalents (TEQs)/g, ww egg with polychlorinatedbiphenyl congener 126 (3,3′,4,4′,5-pentachlorobiphenyl) accounting for over 70% of the TEQs. Injection of 1.0 egg-equivalent resulted in 77% mortality at hatch. The incidence of developmental abnormalities (structural defects or edema) was not affected by injection of the extract. Body weight gain of chicks was reduced in the 1.0 egg-equivalent dose group in the first, second, and third week's post-hatch. Relative brain weights were greater and relative bursa weights were less in the 1.0 egg-equivalent dose group than in the vehicle control at three weeks of age. There were no significant differences in the relative weights of the heart, liver, spleen, testes, or comb among treated and control birds.

  13. Solid-state switch increases switching speed

    NASA Technical Reports Server (NTRS)

    Mcgowan, G. F.

    1966-01-01

    Solid state switch for commutating capacitors in an RC commutated network increases switching speed and extends the filtering or commutating frequency spectrum well into the kilocycle region. The switch is equivalent to the standard double- pole double-throw /DPDT/ relay and is driven from digital micrologic circuits.

  14. Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives.

    PubMed

    Irie, M; Suzuki, K; Watts, D C

    2004-11-01

    The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.

  15. Multiple bonds between transition metals and main-group elements. 73. Synthetic routes to rhenium(V) alkyl and rhenium(VII) alkylidyne complexes. X-ray crystal structures of (. eta. sup 5 -C sub 5 Me sub 5 )Re( double bond O)(CH sub 3 )(CH sub 2 C(CH sub 3 ) sub 3 ) and (. eta. sup 5 -C sub 5 Me sub 5 )(Br) sub 3 Re triple bond CC(CH sub 3 ) sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, W.A.; Felixberger, J.K.; Anwander, R.

    1990-05-01

    Dialkyloxo({eta}{sup 5}pentamethylcyclopentadienyl)rhenium(V) complexes ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(CH{sub 3})R{prime}(R{prime} = C{sub 2}H{sub 5}, CH{sub 2}Si(CH{sub 3}){sub 3}, CH{sub 2}C(CH{sub 3}){sub 3}), 1c-e, have become accessible through alkylation of ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(Cl)(CH{sub 3}) (7) with R{prime}MgCl. 1c-e are the first rhenium complexes containing different alkyl ligands. The neopentyl derivative 1e (R{prime} = CH{sub 2}C(CH{sub 3}){sub 3}) crystallizes in the orthorhombic space group Pbca with a = 960.7 (2), b = 2.844.5 (4), c = 1,260.7 (2) pm, and Z = 8. The X-ray crystal structure was refined to R{sub W} = 3.9%. The chiral molecule shows a distorted tetrahedralmore » geometry around the rhenium center. The tribromide 3b has been structurally characterized. Brown crystals of 3b belong to space group P2{sub 1}/c with unit cell dimensions a = 1,311.5 (2), b = 723.0 (1), c = 1,901.6 (2) pm, {beta} = 92.68 (1){degree}, and Z = 4. The structure exhibits a four-legged piano stool geometry with no trans influence of the neopentylidyne ligand to the bromine atom.« less

  16. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  17. Defects in a nonlinear pseudo one-dimensional solid

    NASA Astrophysics Data System (ADS)

    Blanchet, Graciela B.; Fincher, C. R., Jr.

    1985-03-01

    These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.

  18. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pairmore » of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.« less

  19. Toward reliable modeling of S-nitrosothiol chemistry: Structure and properties of methyl thionitrite (CH3SNO), an S-nitrosocysteine model

    NASA Astrophysics Data System (ADS)

    Khomyakov, Dmitry G.; Timerghazin, Qadir K.

    2017-07-01

    Methyl thionitrite CH3SNO is an important model of S-nitrosated cysteine aminoacid residue (CysNO), a ubiquitous biological S-nitrosothiol (RSNO) involved in numerous physiological processes. As such, CH3SNO can provide insights into the intrinsic properties of the —SNO group in CysNO, in particular, its weak and labile S—N bond. Here, we report an ab initio computational investigation of the structure and properties of CH3SNO using a composite Feller-Peterson-Dixon scheme based on the explicitly correlated coupled cluster with single, double, and perturbative triple excitations calculations extrapolated to the complete basis set limit, CCSD(T)-F12/CBS, with a number of additive corrections for the effects of quadruple excitations, core-valence correlation, scalar-relativistic and spin-orbit effects, as well as harmonic zero-point vibrational energy with an anharmonicity correction. These calculations suggest that the S—N bond in CH3SNO is significantly elongated (1.814 Å) and has low stretching frequency and dissociation energy values, νS—N = 387 cm-1 and D0 = 32.4 kcal/mol. At the same time, the S—N bond has a sizable rotation barrier, △E0≠ = 12.7 kcal/mol, so CH3SNO exists as a cis- or trans-conformer, the latter slightly higher in energy, △E0 = 1.2 kcal/mol. The S—N bond properties are consistent with the antagonistic nature of CH3SNO, whose resonance representation requires two chemically opposite (antagonistic) resonance structures, CH3—S+=N—O- and CH3—S-/NO+, which can be probed using external electric fields and quantified using the natural resonance theory approach (NRT). The calculated S—N bond properties slowly converge with the level of correlation treatment, with the recently developed distinguished cluster with single and double excitations approximation (DCSD-F12) performing significantly better than the coupled cluster with single and double excitations (CCSD-F12), although still inferior to the CCSD(T)-F12 method that includes perturbative triple excitations. Double-hybrid density functional theory (DFT) calculations with mPW2PLYPD/def2-TZVPPD reproduce well the geometry, vibrational frequencies, and the S—N bond rotational barrier in CH3SNO, while hybrid DFT calculations with PBE0/def2-TZVPPD give a better S—N bond dissociation energy.

  20. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.

    1995-01-01

    A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals:  log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term:  log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.

  1. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao

    2018-06-01

    Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.

  2. 1,1,3,3-Tetramethylguanidine solvated lanthanide aryloxides: pre-catalysts for intramolecular hydroalkoxylation.

    PubMed

    Janini, Thomas E; Rakosi, Robert; Durr, Christopher B; Bertke, Jeffrey A; Bunge, Scott D

    2009-12-21

    The synthesis and structural characterization of six 1,1,3,3-tetramethylguanidine (H-TMG) solvated lanthanide aryloxide complexes are reported. Ln[N{Si(CH3)3}2]3 (Ln = Nd, La) was reacted with two equivalents of both H-TMG and HOAr {HOAr = HOC6H2(CMe3)2-2,6 (H-DBP) or HOC6H2(CMe3)2-2,6-CH3-4 (H-4MeDBP)} and one equivelent of ethanol (HOEt) to yield the corresponding [Nd(H-TMG)2(4MeDBP)2(OEt)] (1) and [La(H-TMG)2(DBP)2(OEt)] (2). Compounds 1 and 2 were further reacted with 4-pentyn-1-ol {HO(CH2)3C[triple bond]CH} to isolate [Nd(H-TMG)2(4MeDBP)2{O(CH2)3C[triple bond]CH}] (3) and [La(H-TMG)2(DBP)2{O(CH2)3C[triple bond]CH}] (4), respectively. Three equivalents of HOAr and one equivalent of H-TMG were additionally reacted with Ln[N{Si(CH3)3}2]3 to generate [Nd(4MeDBP)3(H-TMG)] (5) and [La(DBP)3(H-TMG)] (6). In order to examine the formation of 1-6, the interaction of H-TMG and HOAr was further examined in solution and the hydrogen bonded complexes (H-TMG:HOAr), 7 and 8, were isolated. Upon successful isolation of 1-6, the utility of 1, 2, 4 and 5 as pre-catalysts for the intramolecular hydroalkoxylation of 4-pentyn-1-ol was investigated. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and 1H and 13C NMR investigations.

  3. Double proton transfer behavior and one-electron oxidation effect in double H-bonded glycinamide-formic acid complex.

    PubMed

    Li, Ping; Bu, Yuxiang

    2004-11-22

    The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 eV, respectively, where ionization is mainly localized on the glycinamide fragment. Like that ionized glycinamide-formamide complex, the proton transfer in the ionized complex is characterized by a single-well potential, implying that the proton initially attached to amide N4 in the glycinamide fragment cannot be transferred to carbonyl O13 in the formic acid fragment at the geometry of the optimized complex. Copyright 2004 American Institute of Physics.

  4. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  5. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2017-02-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  6. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  7. Tetra­kis(2,3,5,5-tetra­methyl­hexen-2-yl)silane

    PubMed Central

    Meyer-Wegner, Frank; Bolte, Michael; Lerner, Hans-Wolfram

    2014-01-01

    In the title compound, C40H76Si, the Si atom is located on a special position of site symmetry -4. Thus, there is just a quarter of a mol­ecule in the asymmetric unit. The C=C double bonds exhibit a trans configuration. The Si atom and the tert-butyl group are located on the same side of the plane formed by the C=C double bond and its four substituents. The crystal packing shows no short contacts between the mol­ecules and despite the low crystal density (0.980 Mg m−3), there are no significant voids in the structure. PMID:24765057

  8. A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction

    NASA Astrophysics Data System (ADS)

    Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor

    2015-12-01

    We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.

  9. Synthesis of novel 2-cyano substituted glycyrrhetinic acid derivatives as inhibitors of cancer cells growth and NO production in LPS-activated J-774 cells.

    PubMed

    Salomatina, Oksana V; Markov, Andrey V; Logashenko, Evgeniya B; Korchagina, Dina V; Zenkova, Marina A; Salakhutdinov, Nariman F; Vlassov, Valentin V; Tolstikov, Genrikh A

    2014-01-01

    Here we report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring glycyrrhetinic acid bearing a 2-cyano-3-oxo-1-en moiety in the A-ring and double bonds and carbonyl groups in the C, D and E rings. Bioassays using murine macrophage-like and tumor cells show that compound 4, which differs from Soloxolone methyl by the absence of a 9(11)-double bond in the C-ring, displays anti-inflammatory and inhibitory activities with respect to tumor cells with a high selectivity index value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Post-Irradiation Polymerization of a Silorane Composite

    DTIC Science & Technology

    2013-04-26

    methacrylate-based two- step self-etching adhesive system that is necessary to bond the silorane to tooth 3 structure. The dentin bond strength of...the Filtek LS system is equivalent to that of methacrylate-based systems if the Filtek LS primer and adhesive are used. However, siloranes are not...Maj Bryan Wilson 2. Academic Title: Resident, Advanced Education in General· Dentistry Residency (AEGD-2) 3. School/Department/Center: Air Force

  11. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides.

    PubMed

    Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter

    2016-03-01

    Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.

  12. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  13. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan

    2014-01-01

    In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.

  14. Infrared study of matrix-isolated ethyl cyanide: simulation of the photochemistry in the atmosphere of Titan.

    PubMed

    Toumi, A; Piétri, N; Couturier-Tamburelli, I

    2015-11-11

    Low-temperature Ar matrix isolation has been carried out to investigate the infrared spectrum of ethyl cyanide (CH3CH2CN), a molecule present in the atmosphere of Titan. The λ > 120 nm and λ > 230 nm photolysis reactions of ethyl cyanide in an Ar matrix were also performed in order to compare the behaviour of this compound when it is submitted to high and low energetic radiations. These different wavelengths have been used with the aim to reproduce the radiation reaching the various parts of the atmosphere. Several photoproducts have been identified during photolysis such as vinyl cyanide (CH2[double bond, length as m-dash]CHCN), cyanoacetylene (HC3N), and ethylene/hydrogen cyanide (C2H4/HCN), ethylene/hydrogen isocyanide (C2H4/HNC), acetylene/hydrogen cyanide (C2H2/HCN), acetylene/hydrogen isocyanide (C2H2/HNC), and acetylene:methylenimine (C2H2:HNCH2) complexes. Ethyl isocyanide (CH3CH2NC) and a ketenimine form (CH3CH[double bond, length as m-dash]C[double bond, length as m-dash]NH) have been identified as well. Photoproduct identification and spectral assignments were done using previous studies and density functional theory (DFT) calculations with the B3LYP/cc-pVTZ basis set.

  15. Ablation of Dihydroceramide Desaturase Confers Resistance to Etoposide-Induced Apoptosis In Vitro

    PubMed Central

    Siddique, Monowarul M.; Bikman, Benjamin T.; Wang, Liping; Ying, Li; Reinhardt, Erin; Shui, Guanghou; Wenk, Markus R.; Summers, Scott A.

    2012-01-01

    Sphingolipid biosynthesis is potently upregulated by factors associated with cellular stress, including numerous chemotherapeutics, inflammatory cytokines, and glucocorticoids. Dihydroceramide desaturase 1 (Des1), the third enzyme in the highly conserved pathway driving sphingolipid biosynthesis, introduces the 4,5-trans-double bond that typifies most higher-order sphingolipids. Surprisingly, recent studies have shown that certain chemotherapeutics and other drugs inhibit Des1, giving rise to a number of sphingolipids that lack the characteristic double bond. In order to assess the effect of an altered sphingolipid profile (via Des1 inhibition) on cell function, we generated isogenic mouse embryonic fibroblasts lacking both Des1 alleles. Lipidomic profiling revealed that these cells contained higher levels of dihydroceramide than wild-type fibroblasts and that complex sphingolipids were comprised predominantly of the saturated backbone (e.g. sphinganine vs. sphingosine, dihydrosphingomyelin vs. sphingomyelin, etc.). Des1 ablation activated pro-survival and anabolic signaling intermediates (e.g. Akt/PKB, mTOR, MAPK, etc.) and provided protection from apoptosis caused by etoposide, a chemotherapeutic that induces sphingolipid synthesis by upregulating several sphingolipid biosynthesizing enzymes. These data reveal that the double bond present in most sphingolipids has a profound impact on cell survival pathways, and that the manipulation of Des1 could have important effects on apoptosis. PMID:22984457

  16. Molecular structure of Ti8C12 and related complexes.

    PubMed Central

    Pauling, L

    1992-01-01

    Application of valence-bond theory leads to the assignment to the molecule Ti8C12 of a cubic structure, point group Ohm3m, with 8 Ti at the cube corners, +/-(x x x, x, x x [symbol, see text]) where x = 1.78 A, and with 12 C in pairs in the cube faces, +/-(0 y z, [symbol, see text], 0, y z [symbol, see text]) where y = 1.78 A and z = 0.71 A. The Ti-C and C-C bonds have bond number 4/3, corresponding to resonance of single and double bonds in 2:1 ratio. PMID:11607323

  17. An unusual alkylidyne homologation.

    PubMed

    Han, Yong-Shen; Hill, Anthony F; Kong, Richard Y

    2018-02-27

    The reaction of [W([triple bond, length as m-dash]CH)Br(CO) 2 (dcpe)] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane) with t BuLi and SiCl 4 affords the trichlorosilyl ligated neopentylidyne complex [W([triple bond, length as m-dash]C t Bu)(SiCl 3 )(CO) 2 (dcpe)]. This slowly reacts with H 2 O to afford [W([triple bond, length as m-dash]CCH 2 t Bu)Cl 3 (dcpe)] and ultimately H 2 C[double bond, length as m-dash]CH t Bu via an unprecedented alkylidyne homologation in which coordinated CO is the source of the additional carbon atom with potential relevance to the Fischer-Tropsch process.

  18. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  19. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  20. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  1. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  2. Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of beta-phenylethylamine or homoveratrylamine into hetero-double-stranded helical structures.

    PubMed

    Reviriego, Felipe; Sanz, Ana; Navarro, Pilar; Latorre, Julio; García-España, Enrique; Liu-Gonzalez, Malva

    2009-08-21

    Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.

  3. Regioselective cis-trans isomerization of arachidonic double bonds by thiyl radicals: the influence of phospholipid supramolecular organization.

    PubMed

    Ferreri, Carla; Samadi, Abdelouahid; Sassatelli, Fabio; Landi, Laura; Chatgilialoglu, Chryssostomos

    2004-02-04

    Trans unsaturated fatty acids in humans may be originated by two different contributions. The exogenous track is due to dietary supplementation of trans fats and the endogenous path deals with free-radical-catalyzed cis-trans isomerization of fatty acids. Arachidonic acid residue (5c,8c,11c,14c-20:4), which has only two out of the four double bonds deriving from the diet, was used to differentiate the two paths and to assess the importance of a radical reaction. A detailed study on the formation of trans phospholipids catalyzed by the HOCH2CH2S* radical was carried out on L-alpha-phosphatidylcholine from egg lecithin and 1-stearoyl-2-arachidonoyl-L-alpha-phosphatidylcholine (SAPC) in homogeneous solution or in large unilamellar vesicles (LUVET). Thiyl radicals were generated from the corresponding thiol by either gamma-irradiation or UV photolysis, and the reaction course was followed by GC, Ag/TLC, and 13C NMR analyses. The isomerization was found to be independent of cis double bond location (random process) in i-PrOH solution. In the case of vesicles, the supramolecular organization of lipids produced a dramatic change of the isomerization outcome: (i) in egg lecithin, the reactivity of arachidonate moieties is higher than that of oleate and linoleate residues, (ii) in the linoleate residues of egg lecithin, the 9t,12c-18:2 isomer prevailed on the 9c,12t-18:2 isomer (3:1 ratio), and (iii) a regioselective isomerization of SAPC arachidonate residues occurred in the 5 and 8 positions. This effect of "positional preference" indicates that thiyl radicals entering the hydrophobic region of the membrane bilayer start to isomerize polyunsaturated fatty acid residues having the double bonds nearest to the membrane surfaces. We propose that arachidonic acid and its trans isomers can function as biomarkers in membranes for distinguishing the two trans fatty acid-forming pathways.

  4. A broadband double-slot waveguide antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-09-01

    A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.

  5. Selective aliphatic carbon-hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes.

    PubMed

    Bell, Stephen G; Spence, Justin T J; Liu, Shenglan; George, Jonathan H; Wong, Luet-Lok

    2014-04-21

    Protected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site. The addition of the double bond in the cyclohexyl ring of the benzoate ester protected cyclohex-2-enol has a debilitative effect on the activity of the Tyr96Ala mutant with this substrate. However, the Phe87Ala/Tyr96Phe double mutant, which introduces space at a different location in the active site than the Tyr96Ala mutant, was able to efficiently hydroxylate the C-H bonds of 1-cyclohex-2-enyl benzoate at the allylic C-4 position. Mutations at Phe87 improved the selectivity of the oxidation of 1-phenyl-1-cyclohexylethylene to trans-4-phenyl-ethenylcyclohexanol (92%) when compared to single mutants at Tyr96 of P450cam.

  6. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  7. Insight into destabilization mechanism of Mg-based hydrides interstitially co-doped with nonmetals: a DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Zhu, Luying; Yang, Fusheng; Zhang, Zaoxiao; Nyamsi, Serge N.

    2018-04-01

    Mg-based metal hydride is one of the most promising materials for hydrogen energy storage. However, the high thermal stability due to strong bonding effects between the atoms limits its practical application. In order to reduce the thermal stability, a method of doping double nonmetals into Mg-based system was proposed in this study. The density functional theory (DFT) calculation results showed that the thermal stabilities of both the B-N co-doped Mg-based alloy and its hydride are reduced compared with pure Mg-based system. The relative formation enthalpies of the alloy and its hydride are 0.323 and 0.595 eV atom-1, respectively. The values are much higher than those for either singly B- or N-doped Mg-based system. The more significant destabilization by doping double nonmetal elements than single element is mainly attributed to a dual effect in weakening Mg-Ni/NiH4 bonds, caused by criss-cross interactions between B-Ni and N-Mg bonds.

  8. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Zhibin; Lu, Yixuan

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact withmore » a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.« less

  9. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  10. On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy

    PubMed Central

    Yoo, Byung-Kuk; Su, Zixue; Thomas, John Meurig; Zewail, Ahmed H.

    2016-01-01

    Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti4+=O2− double bond transformation to a Ti3+−O1− single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti3+−O1− local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions. PMID:26729878

  11. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  12. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  13. Grafting cavitands on the Si(100) surface.

    PubMed

    Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Busi, Marco; Menozzi, Edoardo; Dalcanale, Enrico; Cristofolini, Luigi

    2006-12-19

    Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.

  14. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  15. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Senanayake, Sanjaya D; Gordon, Wesley O

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450more » and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ALAM,TODD M.

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  17. Synthesis and Characterization of a Hyperbranched Hydrogen Bond Acidic Carbosilane Sorbent Polymer

    DTIC Science & Technology

    2010-01-01

    double bond of HCSA2 (1) electrophilically attacks the ketone carbon of the HFA. The bonds are formed via a pericyclic mechanism which requires formation...val- ues for H, 3.1% and C, 35.4% compared with the theoretical weight percents of H, 2.2%, and C, 34.3%. Fluorine composi- tion numbers were...Srcic, S. Acta Chim Solv 2004, 51, 373–394. 43 Bhadury, P. S.; Dubey, V.; Singh, S.; Saxena, C. J. Fluorine Chem 2005, 126, 1252–1256. 44 Grate, J. W

  18. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) wasmore » rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.« less

  19. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A

    2016-10-11

    The respiratory cytochrome bo 3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQ H ), which is a transient intermediate during the electron-mediated reduction of O 2 to water. It is known that SQ H is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQ H was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1 H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo 3 in a H 2 O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor T z' = 11.8 MHz, whereas for H2, T z' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo 3 Q H site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.

  20. The link between bond forfeiture and pretrial release mechanism: The case of Dallas County, Texas

    PubMed Central

    Morris, Robert G.; Russell-Kaplan, Amanda

    2017-01-01

    Purpose The goal of this study was to evaluate the efficacy of four pretrial jail release mechanisms (i.e., bond types) commonly used during the pretrial phase of the criminal justice process in terms of their ability to discriminate between defendants failing to appear in court (i.e., bond forfeiture). These include attorney bonds, cash bonds, commercial bail bonds, and release via a pretrial services agency. Methods A multi-treatment propensity score matching protocol was employed to assess between-release-mechanism differences in the conditional probability of failure to appear/bond forfeiture. Data were culled from archival state justice records comprising all defendants booked into the Dallas County, Texas jail during 2008 (n = 29,416). Results The results suggest that defendants released via commercial bail bonds were less likely to experience failure to appear leading to the bond forfeiture process compared to equivalent defendants released via cash, attorney, and pretrial services bonds. This finding held across different offense categories. The study frames these differences within a discussion encompassing procedural variation within and between each release mechanism, thereby setting the stage for further research and dialog regarding potential justice reform. PMID:28817579

  1. Theoretical study of geometry relaxation following core excitation: H2O, NH3, and CH4

    NASA Astrophysics Data System (ADS)

    Takahashi, Osamu; Kunitake, Naoto; Takaki, Saya

    2015-10-01

    Single core-hole (SCH) and double core-hole excited state molecular dynamics (MD) calculations for neutral and cationic H2O, NH3, and CH4 have been performed to examine geometry relaxation after core excitation. We observed faster X-H (X = C, N, O) bond elongation for the core-ionized state produced from the valence cationic molecule and the double-core-ionized state produced from the ground and valence cationic molecules than for the first resonant SCH state. Using the results of SCH MD simulations of the ground and valence cationic molecules, Auger decay spectra calculations were performed. We found that fast bond scission leads to peak broadening of the spectra.

  2. Permanganate ion oxidations. IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones.

    PubMed

    Freeman, F; Karchefski, E M

    1976-10-04

    Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.

  3. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer.

    PubMed

    Zhou, Lin; Long, Shitong; Tang, Biao; Chen, Xi; Gao, Fen; Peng, Wencui; Duan, Weitao; Zhong, Jiaqi; Xiong, Zongyuan; Wang, Jin; Zhang, Yuanzhong; Zhan, Mingsheng

    2015-07-03

    We report an improved test of the weak equivalence principle by using a simultaneous 85Rb-87Rb dual-species atom interferometer. We propose and implement a four-wave double-diffraction Raman transition scheme for the interferometer, and demonstrate its ability in suppressing common-mode phase noise of Raman lasers after their frequencies and intensity ratios are optimized. The statistical uncertainty of the experimental data for Eötvös parameter η is 0.8×10(-8) at 3200 s. With various systematic errors corrected, the final value is η=(2.8±3.0)×10(-8). The major uncertainty is attributed to the Coriolis effect.

  4. Evaluation of laminated aluminum plate for shuttle applications

    NASA Technical Reports Server (NTRS)

    Martin, M. J.

    1973-01-01

    Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.

  5. Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.

    PubMed

    Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong

    2012-01-01

    In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.

  6. Deformation effect simulation and optimization for double front axle steering mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Jungang; Zhang, Siqin; Yang, Qinglong

    2013-03-01

    This paper research on tire wear problem of heavy vehicles with Double Front Axle Steering Mechanism from the flexible effect of Steering Mechanism, and proposes a structural optimization method which use both traditional static structural theory and dynamic structure theory - Equivalent Static Load (ESL) method to optimize key parts. The good simulated and test results show this method has high engineering practice and reference value for tire wear problem of Double Front Axle Steering Mechanism design.

  7. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    PubMed

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  8. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies

    PubMed Central

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. PMID:26289739

  9. Electronegativity effects and single covalent bond lengths of molecules in the gas phase.

    PubMed

    Lang, Peter F; Smith, Barry C

    2014-06-07

    This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.

  10. The shortest Th-Th distance from a new type of quadruple bond.

    PubMed

    Hu, Han-Shi; Kaltsoyannis, Nikolas

    2017-02-15

    Compounds featuring unsupported metal-metal bonds between actinide elements remain highly sought after yet confined experimentally to inert gas matrix studies. Notwithstanding this paucity, actinide-actinide bonding has been the subject of extensive computational research. In this contribution, high level quantum chemical calculations at both the scalar and spin-orbit levels are used to probe the Th-Th bonding in a range of zero valent systems of general formula LThThL. Several of these compounds have very short Th-Th bonds arising from a new type of Th-Th quadruple bond with a previously unreported electronic configuration featuring two unpaired electrons in 6d-based δ bonding orbitals. H 3 AsThThAsH 3 is found to have the shortest Th-Th bond yet reported (2.590 Å). The Th 2 unit is a highly sensitive probe of ligand electron donor/acceptor ability; we can tune the Th-Th bond from quadruple to triple, double and single by judicious choice of the L group, up to 2.888 Å for singly-bonded ONThThNO.

  11. Two ways to solve, using Lie group analysis, the fundamental valuation equation in the double-square-root model of the term structure

    NASA Astrophysics Data System (ADS)

    Sinkala, W.

    2011-01-01

    Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.

  12. Improved Kinetic Models for High-Speed Combustion Simulation

    DTIC Science & Technology

    2008-06-01

    142 Appendix F1: USC_Skeletal_Ethylene_chem.inp ....................................................................... 143 ...to form a strong carbonyl double bond ( keto -Q) gaining 80 kcal mol-1, which is sufficient to immediately cleave the weak RO—OH bond (45 kcal mol-1...in the hydroperoxide. Relative to the stabilized adduct this reaction to ( keto -Q+OH), product set is 65.9 kcal mol-1 below the entrance channel

  13. Diastereoselective Synthesis of Seven-Membered Ring trans-Alkenes from Dienes and Aldehydes by Silylene Transfer

    PubMed Central

    Greene, Margaret A.; Prévost, Michel; Tolopilo, Joshua; Woerpel, K. A.

    2012-01-01

    Silver-catalyzed silylene transfer to alkenes formed vinylsilacyclopropanes regioselectively. These allylic silanes underwent additions to aldehydes to form seven-membered ring trans-alkenes with high diastereoselectivity. The high reactivity of the trans alkenes is evidenced by their formal [1,3]-sigmatropic rearrangement reactions and their rapid additions of oxygen–hydrogen bonds across the carbon–carbon double bonds. PMID:22780578

  14. Recent advances in heterobimetallic palladium(II)/copper(II) catalyzed domino difunctionalization of carbon-carbon multiple bonds.

    PubMed

    Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto

    2014-09-21

    The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.

  15. Reversible conversion of valence-tautomeric copper metal-organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: a redox-switchable catalyst for C-H bonds activation reaction.

    PubMed

    Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting

    2015-06-28

    Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.

  16. A note on large gauge transformations in double field theory

    DOE PAGES

    Naseer, Usman

    2015-06-03

    Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  17. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation

    PubMed Central

    Casillas-Ituarte, Nadia N.; Cruz, Carlos H. B.; Lins, Roberto D.; DiBartola, Alex C.; Howard, Jessica; Liang, Xiaowen; Höök, Magnus; Viana, Isabelle F. T.; Sierra-Hernández, M. Roxana; Lower, Steven K.

    2017-01-01

    The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/koff) and dissociation constants (Kd = koff/kon), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 μm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 μm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I (Kdapp = 0.2–0.5 μm, as determined by SPR) compared with the lowest-affinity double-alanine peptide (Kdapp = 3.8 μm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections. PMID:28400484

  18. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation.

    PubMed

    Casillas-Ituarte, Nadia N; Cruz, Carlos H B; Lins, Roberto D; DiBartola, Alex C; Howard, Jessica; Liang, Xiaowen; Höök, Magnus; Viana, Isabelle F T; Sierra-Hernández, M Roxana; Lower, Steven K

    2017-05-26

    The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands ( e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/ k off ) and dissociation constants ( K d = k off / k on ), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 μm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 μm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I ( K d app = 0.2-0.5 μm, as determined by SPR) compared with the lowest-affinity double-alanine peptide ( K d app = 3.8 μm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Vector-based model of elastic bonds for simulation of granular solids.

    PubMed

    Kuzkin, Vitaly A; Asonov, Igor E

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  20. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2017-12-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.

  1. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption.

    PubMed

    Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha

    2018-05-11

    Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.

  2. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  3. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  4. Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: the S0 and S1 PES along the Ce[double bond, length as m-dash]Ce and Ce-Cph torsions.

    PubMed

    Orlandi, Giorgio; Garavelli, Marco; Zerbetto, Francesco

    2017-09-20

    We analyze the highly resolved vibronic structure of the low energy (≤200 cm -1 ) region of the fluorescence and fluorescence excitation spectra of trans-stilbene in supersonic beams. In this spectral region the vibronic structure is associated mainly with vibrational levels of the C e -C e torsion (τ) and the a u combination of the two C e -C ph bond twisting (ϕ). We base this analysis on the well-established S 0 (τ, ϕ) two-dimensional potential energy surface (PES) and on a newly refined S 1 (τ, ϕ) PES. We obtain vibrational eigenvalues and eigenvectors of the anharmonic S 0 (τ, ϕ) and S 1 (τ, ϕ) PES using a numerical procedure based on the Meyer's flexible model [R. Meyer, J. Mol. Spectrosc., 1979, 76, 266]. Then we derive Franck-Condon factors and therefore intensities of the relevant vibronic bands for the S 0 → S 1 excitation and S 1 → S 0 fluorescence spectra. Furthermore, we assess the role of the b g combination of the two C e -C ph bond twisting (ν 48 ) in the structure of the S 1 → S 0 fluorescence spectra. By the use of these results we are able to assign most of the low energy vibrational levels of the S 0 → S 1 excitation spectra and of the fluorescence spectra of the emission from several low energy S 1 vibronic levels. The good agreement between the observed and the computed vibrational structure of the S 0 → S 1 and S 1 → S 0 spectra suggests that the proposed picture of the E 1 (τ, ϕ) and E 0 (τ, ϕ) PES, in particular along the coordinate τ governing trans-cis photo-isomerization in S 1 , is accurate. In S 0 , the barriers for the C e [double bond, length as m-dash]C e torsion and for the a u type C e -C ph bond twisting are 16 080 cm -1 and 3125 cm -1 , respectively, while in S 1 , where the bond orders of the C e [double bond, length as m-dash]C e and C e -C ph bonds are reversed, the two barriers become 1350 cm -1 and 8780 cm -1 , respectively.

  5. 2-Acetyl-1,1,3,3-tetra­methyl­guanidine

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the mol­ecule of the title compound, C7H15N3O, the central C atom is surrounded in a nearly ideal trigonal–planar geometry by three N atoms. The C—N bond lengths in the CN3 unit are 1.3353 (13), 1.3463 (12) and 1.3541 (13) Å, indicating an inter­mediate character between a single and a double bond for each C—N bond. The bonds between the N atoms and the terminal C-methyl groups all have values close to that of a typical single bond [1.4526 (13)–1.4614 (14) Å]. In the crystal, the guanidine mol­ecules are connected by weak C—H⋯O and C—H⋯N hydrogen bonds, generating layers parallel to the ab plane. PMID:23125768

  6. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  7. Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.; Shock, Everett L.

    2000-02-01

    An extensive compilation of experimental data yielding the infinite dilution partial molar Gibbs energy of hydration Δ hGO, enthalpy of hydration Δ hHO, heat capacity of hydration Δ hCpO, and volume V2O, at the reference temperature and pressure, 298.15 K and 0.1 MPa, is presented for hydrocarbons (excluding polyaromatic compounds) and monohydric alcohols. These results are used in a least-squares procedure to determine the numerical values of the corresponding properties of the selected functional groups. The simple first order group contribution method, which in general ignores nearest-neighbors and steric hindrance effects, was chosen to represent the compiled data. Following the precedent established by Cabani et al. (1981), the following groups are considered: CH 3, CH 2, CH, C for saturated hydrocarbons; c-CH 2, c-CH, c-C for cyclic saturated hydrocarbons; CH ar, C ar for aromatic hydrocarbons (containing the benzene ring); C=C, C≡C for double and triple bonds in linear hydrocarbons, respectively; c-C=C for the double bond in cyclic hydrocarbons; H for a hydrogen atom attached to the double bond (both in linear and cyclic hydrocarbons) or triple bond; and OH for the hydroxyl functional group. In addition it was found necessary to include the "pseudo"-group I(C-C) to account for the specific interactions of the neighboring hydrocarbon groups attached to the benzene or cyclic ring (in the latter case only for cis-isomers). Results of this study, the numerical values of the group contributions, will allow in most cases reasonably accurate estimations of Δ hGO, Δ hHO, Δ hCpO, and V2O at 298.15 K, 0.1 MPa for many hydrocarbons involved in geochemical and environmental processes.

  8. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    NASA Astrophysics Data System (ADS)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  9. Analysis of factors influencing the bond strength in roll bonding processes

    NASA Astrophysics Data System (ADS)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  10. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    PubMed

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  11. Enantioselective Construction of 3-Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon N-Allylglyoxylamides.

    PubMed

    Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro

    2015-06-15

    3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. (But­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the title solvated salt, C7H16NO+·C24H20B−·C2H3N, the C—N bond lengths in the cation are 1.2831 (19), 1.467 (2) and 1.465 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2950 (18) Å shows a double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. The two C atoms of the n-butyl group are disordered over the two sites, with refined occupancy ratios of 0.890 (5):0.110 (5) and 0.888 (4):0.112 (4). In the crystal, C—H⋯π inter­actions occur between the methine H atom, H atoms of the –N(CH3)2 and –CH2 groups of the cation, and two of the phenyl rings of the tetra­phenyl­borate anion. The latter inter­action forms an aromatic pocket in which the cation is embedded. Thus, a two-dimensional pattern is created in the ac plane. PMID:24826158

  13. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones.

    PubMed

    Zhang, Ning; Yang, Daoshan; Wei, Wei; Yuan, Li; Nie, Fafa; Tian, Laijin; Wang, Hua

    2015-03-20

    A silver-catalyzed double-decarboxylative protocol has been proposed for the construction of chalcone derivatives via cascade coupling of substituted α-keto acids with cinnamic acids under the mild aqueous conditions. The developed method for constructing C-C bonds via double-decarboxylative reactions is efficient, practical, and environmentally benign by using the readily available starting materials. It should provide a promising synthesis candidate for the formation of diverse and useful chalcone derivatives in the fields of synthetic and pharmaceutical chemistry.

  14. Tunable electroluminescent color for 2, 5-diphenyl -1, 4-distyrylbenzene with two trans-double bonds

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Zhang, Yingfang; Zhao, Yi; Liu, Shiyong; Xie, Zengqi; Xia, Hong; Hanif, Muddasir; Ma, Yuguang

    2005-07-01

    Exciplex emission is observed in electroluminescent (EL) spectrum of an organic light-emitting device (OLED), where 2, 5-diphenyl -1, 4-distyrylbenzene with two trans-double bonds (trans-DPDSB), (8-hydroxyquinoline) aluminum, and N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) are used as light-emitting, electron-transporting, and hole-transporting layers, respectively. This emission can be dramatically weakened by inserting a hole-injecting layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) between the hole-transporting layer and the anode. Consequently, EL color of this OLED is tuned from white to blue. This phenomenon may result from the improvement of hole injection, which shifts the major recombination zone from the NPB/trans-DPDSB interface to the trans-DPDSB layer.

  15. Single-chain polybutadiene organometallic nanoparticles: an experimental and theoretical study† †Electronic supplementary information (ESI) available: Detailed experimental procedures and characterization of ONPs including: 1H and 13C NMR, SEC, DLS, DSC, TGA, UV-vis, GC-MS spectra and computational calculations. See DOI: 10.1039/c5sc04535e Click here for additional data file.

    PubMed Central

    Berkovich, Inbal; Mavila, Sudheendran; Iliashevsky, Olga; Kozuch, Sebastian

    2016-01-01

    High molecular weight polybutadienes and rhodium complexes were used to produce single chain organometallic nanoparticles. Irradiation of high cis-polybutadiene in the presence of a photosensitizer isomerised the double bonds to produce differing cis/trans ratios within the polymer. Notably, a higher cis percentage of carbon–carbon double bonds within the polymer structure led to faster binding of metal ions, as well as their faster removal by competing phosphine ligands. The experimental results were supported and rationalized by DFT computations. PMID:28936327

  16. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers.

    PubMed

    Winnacker, Malte

    2018-05-14

    Pinenes - a group of monoterpenes containing a double bond - are very suitable renewable building blocks for a variety of sustainable polymers and materials. Their abundance from mainly non-edible parts of plants as well as the feasibility to isolate them render these compounds unique amongst the variety of biomass that is utilizable for novel materials. Accordingly, their use for the synthesis of biobased polymers has been investigated intensively, and strong progress has been made with this especially within the past 2-3 years. Direct cationic or radical polymerization via the double bonds as well as polymerization upon their further functionalization can afford a variety of sustainable polymers suitable for many applications, which is summarized in this article. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study on depth profile of heavy ion irradiation effects in poly(tetrafluoroethylene-co-ethylene)

    NASA Astrophysics Data System (ADS)

    Gowa, Tomoko; Shiotsu, Tomoyuki; Urakawa, Tatsuya; Oka, Toshitaka; Murakami, Takeshi; Oshima, Akihiro; Hama, Yoshimasa; Washio, Masakazu

    2011-02-01

    High linear energy transfer (LET) heavy ion beams were used to irradiate poly(tetrafluoroethylene-co-ethylene) (ETFE) under vacuum and in air. The irradiation effects in ETFE as a function of the depth were precisely evaluated by analyzing each of the films of the irradiated samples, which were made of stacked ETFE films. It was indicated that conjugated double bonds were generated by heavy ion beam irradiation, and their amounts showed the Bragg-curve-like distributions. Also, it was suggested that higher LET beams would induce radical formation in high density and longer conjugated C=C double bonds could be generated by the second-order reactions. Moreover, for samples irradiated in air, C=O was produced correlating to the yield of oxygen molecules diffusing from the sample surface.

  18. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    NASA Astrophysics Data System (ADS)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  19. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework showsmore » that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.« less

  20. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experiments in dilution jet mixing effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  2. Experiments in dilution jet mixing - Effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from two-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  3. Isolation and characterization of a uranium(VI)-nitride triple bond

    NASA Astrophysics Data System (ADS)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  4. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.

    PubMed

    Toh, Qiao Yan; McNally, Andrew; Vera, Silvia; Erdmann, Nico; Gaunt, Matthew J

    2013-03-13

    An organocatalytic aldehyde C-H bond arylation process for the synthesis of complex heteroaryl ketones has been developed. By exploiting the inherent electrophilicity of diaryliodonium salts, we have found that a commercial N-heterocyclic carbene catalyst promotes the union of heteroaryl aldehydes and these heteroaromatic electrophile equivalents in good yields. This straightforward catalytic protocol offers access to ketones bearing a diverse array of arene and heteroarene substituents that can subsequently be converted into molecules displaying structural motifs commonly found in medicinal agents.

  5. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  6. The role of amino acid side chains in stabilizing dipeptides: the laser ablation Fourier transform microwave spectrum of Ac-Val-NH2.

    PubMed

    León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L

    2017-09-20

    The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.

  7. Accurate characterization of wafer bond toughness with the double cantilever specimen

    NASA Astrophysics Data System (ADS)

    Turner, Kevin T.; Spearing, S. Mark

    2008-01-01

    The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.

  8. 9 CFR 201.28 - Duplicates of bonds or equivalents to be filed with Regional Supervisors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... duplicates of all endorsements, amendments, riders, indemnity agreements, and other attachments thereto, and... filed with the Regional Supervisor for the region in which the place of business of the registrant or...

  9. 9 CFR 201.28 - Duplicates of bonds or equivalents to be filed with Regional Supervisors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... duplicates of all endorsements, amendments, riders, indemnity agreements, and other attachments thereto, and... filed with the Regional Supervisor for the region in which the place of business of the registrant or...

  10. Ratio of entropy to enthalpy in thermal transitions in biological tissues.

    PubMed

    Jacques, Steven L

    2006-01-01

    Thermal transitions in biological tissues that have been reported in the literature are summarized in terms of the apparent molar entropy (DeltaS) and molar enthalpy (DeltaH) involved in the transition. A plot of DeltaS versus DeltaH for all the data yields a straight line, consistent with the definition of free energy, DeltaG=DeltaH+TDeltaS. Various bonds may be involved in cooperative bond breakage during thermal transitions; however, for the sake of description, the equivalent number of cooperative hydrogen bonds can be cited. Most of the tissue data behave as if 10 to 20 hydrogen bonds are cooperatively broken during coagulation, with one transition, the expression of heat shock protein, involving 90 cooperative hydrogen bonds. The data are consistent with DeltaS=a+bDeltaH, where a=-327.5 J(mol K) and b=31.47 x 10(-4) K(-1). If each additional hydrogen bond adds 19 x 10(3) Jmol to DeltaH, then each additional bond adds 59.8 J(mol K) to DeltaS. Hence, the dynamics of irreversible thermal transitions can be described in terms of one free parameter, the apparent number of cooperative hydrogen bonds broken during the transition.

  11. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies.

    PubMed

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Probing the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters by density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Jie

    2018-05-01

    We present a theoretical investigation on the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters using density functional theoretical calculations. The results showed that both anionic and neutral PtnC2 (n = 1-7) clusters primarily adopt 2D planar chain-shaped or ring-based structures. The two C atoms directly interact with each other to form a Csbnd C bond for n = 1-3, while the two C atoms are separated by the Pt atoms for n = 4-7, except for neutral Pt5C2. Pt4C2- anion and Pt4C2 neutral both show σ plus π double delocalized bonding patterns.

  13. Direction-dependent secondary bonds and their stepwise melting in a uracil-based molecular crystal studied by infrared spectroscopy and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Szekrényes, Zsolt; Nagy, Péter R.; Tarczay, György; Maggini, Laura; Bonifazi, Davide; Kamarás, Katalin

    2018-01-01

    Three types of supramolecular interactions are identified in the three crystallographic directions in crystals of 1,4-bis[(1-hexylurac-6-yl) ethynyl]benzene, a uracil-based molecule with a linear backbone. These three interactions, characterized by their strongest component, are: intermolecular double H-bonds along the molecular axis, London dispersion interaction of hexyl chains connecting these linear assemblies, and π - π stacking of the aromatic rings perpendicular to the molecular planes. On heating, two transitions happen, disordering of hexyl chains at 473 K, followed by H-bond melting at 534 K. The nature of the bonds and transitions was established by matrix-isolation and temperature-dependent infrared spectroscopy and supported by theoretical computations.

  14. First principles study of the electronic and magnetic structures and bonding properties of UCoC2 ternary, characteristic of C-C units

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.

    2013-03-01

    The electronic structure of UCoC2, a di-carbide with the C-C units is examined from ab initio with an assessment of the properties of chemical bonding. The energy-volume equation of state shows large anisotropy effects due to C-C alignment along tetragonal c-axis leading to high linear incompressibility. Relevant features of selective bonding of uranium and cobalt with carbon at two different Wyckoff sites and strong C-C interactions are remarkable. The vibrational frequencies for C⋯C stretching modes indicate closer behavior to aliphatic C-C rather than Cdbnd C double bond. A ferromagnetic ground state is proposed from the calculations.

  15. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire.

    PubMed

    Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C

    2012-05-21

    We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.

  16. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  17. Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents

    PubMed Central

    Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.

    2010-01-01

    Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595

  18. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  20. Double soft graviton theorems and Bondi-Metzner-Sachs symmetries

    NASA Astrophysics Data System (ADS)

    Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu

    2018-05-01

    It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.

  1. Ultrastable assembly and integration technology for ground- and space-based optical systems.

    PubMed

    Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2010-08-01

    Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.

  2. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  3. Cu2+ ions as a paramagnetic probe to study the surface chemical modification process of layered double hydroxides and hydroxide salts with nitrate and carboxylate anions.

    PubMed

    Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; Wypych, Fernando

    2008-04-01

    A layered zinc hydroxide nitrate (Zn5(OH)8(NO3)2.2H2O) and a layered double hydroxide (Zn/Al-NO3) were synthesized by coprecipitation and doped with different amounts of Cu2+ (0.2, 1, and 10 mol%), as paramagnetic probe. Although the literature reports that the nitrate ion is free (with D3h symmetry) between the layers of these two structures, the FTIR spectra of two zinc hydroxide nitrate samples show the C2v symmetry for the nitrate ion, whereas the g ||/A || value in the EPR spectra of Cu2+ is high. This fact suggests bonding of some nitrate ions to the layers of the zinc hydroxide nitrate. The zinc hydroxide nitrate was used as matrix in the intercalation reaction with benzoate, o-chlorobenzoate, and o-iodobenzoate ions. FTIR spectra confirm the ionic exchange reaction and the EPR spectroscopy reveals bonding of the organic ions to the inorganic layers of the zinc hydroxide nitrate, while the layered double hydroxides show only exchange reactions.

  4. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase.

    PubMed

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-05-11

    Conjugated linolenic acids (CLNs), 18:3 Δ(9,11,13), lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ(9,12,15)). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ(9cis,11trans,13cis)) or α-eleostearic acid (18:3 Δ(9cis,11trans,13trans)). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation.

  5. A double-blind comparison of alprazolam, diazepam and placebo in the treatment of anxious out-patients

    PubMed Central

    Davison, K.; Farquharson, R. G.; Khan, M. C.; Majid, A.

    1985-01-01

    1 In a double-blind 28-day comparison of alprazolam, diazepam and placebo, alprazolam 1.5-3 mg/day was of equivalent anxiolytic effect to 15-30 mg diazepam/day and there was some evidence of antidepressant activity by alprazolam, but not diazepam, in neurotic depression. No serious side-effects or laboratory abnormalities were encountered. PMID:2859877

  6. Performance of Electric Double-Layer Capacitor Simulators

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Kodama, Shinsuke; Yamamoto, Masayoshi

    This paper proposes a simulator of EDLC, which realizes the performance equivalent to electric double-layer capacitors (EDLCs). The proposed simulator consists of an electrolytic capacitor and a two-quadrant chopper working as a current source. Its operation principle is described in the first place. The voltage dependence of capacitance of EDLCs is taken into account. The performance of the proposed EDLC simulator is verified by computer simulations.

  7. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Separation behavior of octadecadienoic acid isomers and identification of cis- and trans-isomers using gas chromatography.

    PubMed

    Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei

    2015-01-01

    Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.

  9. DNA hybridization kinetics: zippering, internal displacement and sequence dependence.

    PubMed

    Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2013-10-01

    Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.

  10. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.

    PubMed

    Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.

  11. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Amongmore » those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.« less

  12. Evidence for the Initial Steps of DHA Biohydrogenation by Mixed Ruminal Microorganisms from Sheep Involves Formation of Conjugated Fatty Acids.

    PubMed

    Aldai, Noelia; Delmonte, Pierluigi; Alves, Susana P; Bessa, Rui J B; Kramer, John K G

    2018-01-31

    Incubation of DHA with sheep rumen fluid resulted in 80% disappearance in 6 h. The products were analyzed as their fatty acid (FA) methyl esters by GC-FID on SP-2560 and SLB-IL111 columns. The GC-online reduction × GC and GC-MS techniques demonstrated that all DHA metabolites retained the C22 structure (no evidence of chain-shortening). Two new transient DHA products were identified: mono-trans methylene interrupted-DHA and monoconjugated DHA (MC-DHA) isomers. Identification of MC-DHA was confirmed by their predicted elution using equivalent chain length differences from C18 FA, their molecular ions, and the 22:5 products formed which were the most abundant at 6 h. The 22:5 structures were established by fragmentation of their 4,4-dimethyloxazoline derivatives, and all 22:5 products contained an isolated double bond, suggesting formation via MC-DHA. The most abundant c4,c7,c10,t14,c19-22:5 appeared to be formed by unknown isomerases. Results suggest that the initial biohydrogenation of DHA was analogous to that of C18 FA.

  13. Rabeprazole is equivalent to omeprazole in the treatment of erosive gastro-oesophageal reflux disease. A randomised, double-blind, comparative study of rabeprazole and omeprazole 20 mg in acute treatment of reflux oesophagitis, followed by a maintenance open-label, low-dose therapy with rabeprazole.

    PubMed

    Pace, F; Annese, V; Prada, A; Zambelli, A; Casalini, S; Nardini, P; Bianchi Porro, G

    2005-10-01

    Previous studies have shown similar effects of rabeprazole and omeprazole, when used at the same dose in the treatment of reflux oesophagitis. However, such studies have been conducted as superiority studies but interpreted as equivalence ones. To properly assess the comparative efficacy of rabeprazole and omeprazole in inducing complete endoscopic healing and symptom relief in patients with reflux oesophagitis. Patients (n=560) with Savary-Miller grade I-III reflux oesophagitis were randomised in a double-blind, double-dummy fashion to rabeprazole or omeprazole 20 mg once daily for 4-8 weeks. Then, patients endoscopically healed and symptomatically relieved were openly maintained with rabeprazole 10 mg or 2x10 mg once daily (in the event of clinical and/or endoscopic relapse) for a maximum of 48 weeks. After 4-8 weeks of treatment, healing (primary end-point) was observed in 228/233 (97.9%) patients in the rabeprazole group and in 231/237 (97.5%) in the omeprazole one (equivalence effect demonstrated by p<0.0001 at Blackwelder test and an upper confidence limit at 97.5% of 0.023). However, rabeprazole was faster in inducing heartburn relief than omeprazole (2.8+/-0.2 versus 4.7+/-0.5 days of therapy to reach the first day with satisfactory heartburn relief, p=0.0045 at log-rank test). In the maintenance phase, 15.2% of patients had an endoscopic and/or clinical relapse. Rabeprazole is equivalent to omeprazole in healing reflux oesophagitis, but shows a faster activity on reflux symptoms in the early treatment phase.

  14. Watson-Crick base pairing controls excited-state decay in natural DNA.

    PubMed

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stereoselective Synthesis of 8,12-Furanoeudesmanes from Santonin. Absolute Stereochemistry of Natural Furanoeudesma-1,3-diene and Tubipofurane.

    PubMed

    Blay, Gonzalo; Cardona, Luz; García, Begoña; Pedro, José R.; Sánchez, Juan J.

    1996-05-31

    Ketobutenolide 3, easily obtained from santonin (1), has been transformed into two natural furanoeudesmanes 4 and 5, isolated from Commiphora molmol and Tubipora musica, respectively. trans- And cis-decalin systems were obtained by stereoselective reduction of the C(4)-C(5) double bond in 3 in the following way: hydrogenation of 3 over Pd/C followed by acidic treatment gave the cis isomer 10 as the major product; selective hydrogenation of the C(1)-C(2) double bond with the Wilkinson's catalyst followed by reduction with NaTeH yielded mainly the trans isomer 9. Compounds 9 and 10 were transformed into 4 and 5 in parallel sequences. Optical rotation and CD measurements of the synthetic products revealed that the stereochemistry of both natural products should be revised to their enantiomeric form.

  16. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  17. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  18. The Hammett relationship and reactions in the excited electronic state: hemithioindigo Z/E-photoisomerization.

    PubMed

    Cordes, Thorben; Schadendorf, Torsten; Priewisch, Beate; Rück-Braun, Karola; Zinth, Wolfgang

    2008-01-31

    The photochemical reaction dynamics of a set of photochromic compounds based on thioindigo and stilbene molecular parts (hemithioindigos, HTI) are presented. Photochemical Z/E isomerization around the central double bond occurs with time constants of 216 ps (Z --> E) and 10 ps (E --> Z) for a 5-methyl-hemithioindigo. Chemical substitution on the stilbene moiety causes unusually strong changes in the reaction rate. Electron-donating substituents in the position para to the central double bond (e.g., para-methoxy) strongly accelerate the reaction, while the reaction is drastically slowed by electron-withdrawing groups in this position (e.g., para-nitrile). We correlate the experimental data of seven HTI-compounds in a quantitative manner using the Hammett equation and present a qualitative explanation for the application of ground-state Hammett constants to describe the photoisomerization reaction.

  19. Research in Chemical Kinetics. Annual Report, 1993

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1993-01-01

    Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.

  20. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    PubMed

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  1. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluter, P.M.; Shanklin, J.; Xu, S.

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both asmore » an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.« less

  2. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  3. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  4. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    PubMed Central

    Schlüter, Philipp M.; Xu, Shuqing; Gagliardini, Valeria; Whittle, Edward; Shanklin, John; Grossniklaus, Ueli; Schiestl, Florian P.

    2011-01-01

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators’ sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP Δ9 and a 16:0-ACP Δ4 desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection. PMID:21436056

  5. Biotransformation of linoleic acid and bile acids by Eubacterium lentum.

    PubMed Central

    Eyssen, H; Verhulst, A

    1984-01-01

    Eubacterium lentum is a gram-positive, nonsporeforming, nonmotile, asaccharolytic anaerobe. In the present investigations, 3 E. lentum strains (group E) isolated from rat feces were compared with 30 E. lentum strains (groups A, B, C, and D) previously studied by Macdonald et al. (I. A. Macdonald, J. F. Jellet, D. E. Mahony, and L. V. Holdeman, Appl. Environ. Microbiol. 37:992-1000, 1979). All strains alkalized (pH 8 to 8.5) arginine-containing (2 to 15 mg/ml) culture media, and growth of the majority of the strains was stimulated by arginine. All strains converted linoleic acid into transvaccenic acid by shifting the 12,13-cis double bond of linoleic acid into an 11,12-trans(?) double bond followed by biohydrogenation of the 9,10-cis double bond. Hence, biohydrogenation of linoleic acid is a new general characteristic of E. lentum. The 33 strains were also studied for bile acid deconjugase and hydroxysteroid dehydrogenase (HSDH) activities. The 6 strains in group D were steroid inactive; the 27 strains in groups A, B, C, and E were steroid active. The steroid-active group contained bile acid deconjugase-producing strains (groups C and E, plus strain 116 in group A) and nondeconjugating strains. All nondeconjugating strains of groups A and B developed 7 alpha- and 12 alpha-HSDH activities and contained 3 alpha-HSDH-positive strains and 3 alpha-HSDH-negative strains. Deconjugating strains varied in HSDH activities. PMID:6582800

  6. A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.

    PubMed

    Sipilä, Julius; Nurmi, Harri; Kaukonen, Ann Marie; Hirvonen, Jouni; Taskinen, Jyrki; Yli-Kauhaluoma, Jari

    2005-01-01

    Currently there are several compounds used as drugs or studied as new chemical entities, which have an electron withdrawing group connected to a vinylic double bond in a phenolic or catecholic core structure. These compounds share a common feature--current computational methods utilizing the Hammett type equation for the prediction of ionisation constants fail to give accurate prediction of pK(a)'s for compounds containing the vinylic moiety. The hypothesis was that the effect of electron-withdrawing substituents on the pK(a) of p-vinyl phenols is due to the delocalized electronic structure of these compounds. Thus, this effect should be additive for multiple substituents attached to the vinylic double bond and quantifiable by LFER-based methods. The aim of this study was to produce an improved equation with a reduced tendency to underestimate the effect of the double bond on the ionisation of the phenolic hydroxyl. To this end a set of 19 para-substituted vinyl phenols was used. The ionisation constants were measured potentiometrically, and a training set of 10 compounds was selected to build a regression model (r2 = 0.987 and S.E. = 0.09). The average error with an external test set of six compounds was 0.19 for our model and 1.27 for the ACD-labs 7.0. Thus, we have been able to significantly improve the existing model for prediction of the ionisation constants of substituted p-vinyl phenols.

  7. Unusual Δ7,12,19 C35:3 Alkenone Produced by the Mutant Emiliania huxleyi strain CCMP2758 in Culture

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, Y.; Zhang, Y.; Dillon, J. T.

    2015-12-01

    Alkenones with chain length ranging from C37 to C40 are highly specific biomarkers for certain haptophyte algae in ocean and lake sediments and have been widely used for paleoclimate studies. Short chain alkenones (e.g., C35 and C36) have been found in environmental and culture samples but the origin and structures of these compounds are not fully understood. The benchmark marine alkenone producer, Emiliania huxleyi CCMP2758 strain (the mutant of strain CCMP1742, NEPCC55a) was reported to make 35:2 alkenone when cultured at 15 °C (Prahl et al., 2006). Here we show, when this strain is cultured at lower temperatures (e.g., 4°C), CCMP2758 produces large amount of 35:3 alkenone with unusual double bond positions of Δ7,12,19. We determined the double bond positions of the C35:3 methyl ketonee based on GC-MS analysis of cyclobutylimine derivatives and dimethyl disulfide derivatives respectively, and provide the first temperature calibrations based on the unsaturation ratios of C35 alkenones. Previous studies have found 35:2 alkenone with three methylene interruption in the Black Sea sediment, but it is the first time that an alkenone with a mixed three and five methylene interruption is found. The discovery of short chain alkenones with unusual double bond positions may shed new light to alkenone biosynthesis.

  8. Capacitors with low equivalent series resistance

    NASA Technical Reports Server (NTRS)

    Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor); Fleig, Patrick Franz (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  9. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  10. A randomized trial of the efficacy of a new micronized formulation versus a standard formulation of isotretinoin in patients with severe recalcitrant nodular acne.

    PubMed

    Strauss, J S; Leyden, J J; Lucky, A W; Lookingbill, D P; Drake, L A; Hanifin, J M; Lowe, N J; Jones, T M; Stewart, D M; Jarratt, M T; Katz, I; Pariser, D M; Pariser, R J; Tschen, E; Chalker, D K; Rafal, E S; Savin, R P; Roth, H L; Chang, L K; Baginski, D J; Kempers, S; McLane, J; Eberhardt, D; Leach, E E; Bryce, G; Hong, J

    2001-08-01

    Isotretinoin is very frequently the drug of choice for the management of severe recalcitrant nodular acne. Recently, a new micronized and more bioavailable formulation of isotretinoin has been developed that permits once-daily administration in lower doses than usually used with standard isotretinoin (Accutane), regardless of whether it is taken with or without food. Our purpose was to determine whether micronized isotretinoin and standard isotretinoin are clinically equivalent. In this multicenter, double-blind, double-dummy study, 600 patients with severe recalcitrant nodular acne were treated with either 0.4 mg/kg of micronized isotretinoin once daily without food (n = 300) or 1.0 mg/kg per day of standard isotretinoin in two divided doses with food (n = 300). Lesion counts were monitored over 20 weeks. Both treatment groups in this well-controlled clinical trial experienced an equivalent reduction in the number of total nodules (facial plus truncal). In addition, an equivalent proportion of patients achieved 90% clearance of the total number of nodules. Both formulations had similar results for other efficacy variables. Once-daily use of the micronized and more bioavailable formulation of isotretinoin under fasted conditions is clinically equivalent to the standard twice-daily formulation under fed conditions in the treatment of severe recalcitrant nodular acne.

  11. 3-[Bis(dimethyl­amino)­methyl­ene]-1,1-diphenyl­urea

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C18H22N4O, the C=N and C—N bond lengths in the CN3 unit are 1.3179 (11), 1.3551 (11) and 1.3737 (11) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 115.91 (8), 118.20 (8) and 125.69 (8), showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4529 (12)–1.4624 (12) Å]. The dihedral angle between the phenyl rings is 79.63 (4)°. In the crystal, the mol­ecules are connected via weak C—H⋯O hydrogen bonds, generating chains along [100]. PMID:23284417

  12. N,N,N′,N′-Tetra­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title salt, C5H14N3 +·C24H20B−, the C—N bond lengths in the central CN3 unit are 1.3322 (11), 1.3385 (12) and 1.3422 (12) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 119.51 (8), 119.81 (9) and 120.69 (8)°] and the positive charge is delocalized in the CN3 plane. The bond lengths between the N atoms and the terminal methyl groups all have values close to a typical single bond [1.4597 (12)–1.4695 (13) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476307

  13. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  14. Maxima of |Ψ|2: a connection between quantum mechanics and Lewis structures.

    PubMed

    Lüchow, Arne

    2014-04-30

    The maxima of squared electronic wave functions |Ψ|2 are analyzed for a number of small molecules. They are in principle observables and show considerable chemical insight from first principles. The maxima contain substantial information about the relative electron positions in a molecule, such as the pairing of opposite spin electrons and the Pauli repulsion which are lost in the electron density. Single bond and double bond as well as polar bond pairs and lone pairs are obtained from the maximum analysis. In many cases, we find a correspondence to the electron arrangements in molecules as assumed by Lewis in 1916. Copyright © 2014 Wiley Periodicals, Inc.

  15. Bonding in Some Zintl Phases: A Study by Tin-119 Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbrand, M.; Berry, F. J.; Eisenmann, B.; Kniep, R.; Smart, L. E.; Thied, R. C.

    1995-09-01

    The 119Sn Mössbauer parameters for a range of Zintl phase compounds are reported. The compounds containing tetrahedrally coordinated tin of composition M5SnX3 (M = Na, K; X = P, As, Sb) have chemical isomer shifts close to that of grey-tin and can be considered to be covalently bonded species. The layer structures of composition KSnX (X = As, Sb) and double-layer compounds M Sn2X2 (M = Na, Sr; X = As, Sb) have tin in a distorted octahedral environment. The chemical isomer shifts are closer to that of white-tin and can be interpreted in terms of metallic bonding.

  16. Biomechanical comparison of double-row locking plates versus single- and double-row non-locking plates in a comminuted metacarpal fracture model.

    PubMed

    Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B

    2009-12-01

    Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p < .05). Locking and non-locking double-row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.

  17. Exploration and exploitation of homologous series of bis(acrylamido)alkanes containing pyridyl and phenyl groups: β-sheet versus two-dimensional layers in solid-state photochemical [2 + 2] reactions.

    PubMed

    Garai, Mousumi; Biradha, Kumar

    2015-09-01

    The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N-H⋯Npy versus N-H⋯O=C) and network geometries. In this series, a greater tendency towards the formation of N-H⋯O hydrogen bonds (β-sheets and two-dimensional networks) over N-H⋯N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N-H⋯O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.

  18. The Heat of Formation of HNO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    1995-01-01

    The HNO molecule is of interest in both combustion and atmospheric chemistry. For example, Guadagnini et al. have recently presented ab initio potential energy surfaces for the three lowest lying electronic states of HNO and then used these in examining several chemical reactions that take place in the combustion of nitrogen containing fuels and in the oxidation of atmospheric nitrogen. We have previously studied the ground state potential energy surface (i.e., stationary points along the HNO reversible reaction HON path), vibrational spectrum (using an accurate quartic force field), zero-point energy, and bonding of HNO using coupled-cluster ab initio methods. HNO is also very interesting because of the unique nature of its bonding characteristics. That is, the potential energy surface is very flat along the H-N bonding coordinate thereby giving unusual harmonic and fundamental vibrational frequencies, and the H-N bond energy is rather weak in comparison to other H-N bond energies. In fact, using experimental heats of formation for HNO, H, and NO, the H- bond energy is computed to be only 49.9 kcal/ mol (298 K). However, ab initio calculations of isodesmic reaction energies involving HNO, FNO, ClNO, and several other molecules have shown that there is an inconsistency in the experimental heats of formation of the XNO (X double bond H, F, and Cl) species. Hence the motivation for this study was to determine a very accurate (Delta)H(sub f, sup o) value for HNO using state-of-the-art ab initio methods. Based on many recent studies it is evident that the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), in conjunction with large one-particle basis sets should be reliable to better than +/- 0.8 kcal/mol for this quantity. The computational methodology is described in the next section followed by our results and discussion. Conclusions are presented in the final section.

  19. Drainage characteristics of the 3F MicroStent using a novel film occlusion anchoring mechanism.

    PubMed

    Lange, Dirk; Hoag, Nathan A; Poh, Beow Kiong; Chew, Ben H

    2011-06-01

    To determine whether the overall ureteral flow through an obstructed ureter using the 3F MicroStent™ that uses a novel film occlusion anchoring mechanism is comparable to the flow using a conventional 3F and 4.7F Double-J stent. An in vitro silicone ureter model and an ex vivo porcine urinary model (kidney and ureter) were used to measure the overall flow through obstructed and unobstructed ureters with either a 3F Double-J stent (Cook), 3F MicroStent (PercSys), or 4.7F Double-J stent (Cook). Mean flow rates were compared with descriptive statistics. Mean flow rates through the obstructed silicone ureter (12-mm stone) for the 3F MicroStent, 3F Double-J stent, and 4.7F Double-J stent were 326.7±13.3  mL/min, 283.3±19.2  mL/min, and 356.7±14.1  mL/min, respectively. In the obstructed ex vivo porcine ureter model, the flow as a percentage of free flow was 60%, 53%, and 50 %, respectively. In both ureteral models, flow rates of the 3F MicroStent and 4.7F Double-J stents were not statistically different. The 3F MicroStent demonstrated drainage equivalent to a 4.7F Double-J stent, in both in vitro silicone and ex vivo porcine obstructed urinary models. We have demonstrated the crucial first step that this 3F stent, using a novel film occlusion anchoring mechanism, has equivalent, if not slightly improved, drainage rates when compared with its larger counterpart.

  20. Introducing new reactivity descriptors: "Bond reactivity indices." Comparison of the new definitions and atomic reactivity indices.

    PubMed

    Sánchez-Márquez, Jesús

    2016-11-21

    A new methodology to obtain reactivity indices has been defined. This is based on reactivity functions such as the Fukui function or the dual descriptor and makes it possible to project the information of reactivity functions over molecular orbitals instead of the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecule's natural bond orbitals (bond reactivity indices) because these orbitals (with physical meaning) have the advantage of being very localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology gives a reactivity index for every Natural Bond Orbital (NBO), and we have verified that they have equivalent information to the reactivity functions. A representative set of molecules has been used to test the new definitions. Also, the bond reactivity index has been related with the atomic reactivity one, and complementary information has been obtained from the comparison. Finally, a new atomic reactivity index has been defined and compared with previous definitions.

  1. Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7

    NASA Astrophysics Data System (ADS)

    Ortigoza, M. Alcántara; Rahman, T. S.

    2008-04-01

    Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.

  2. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  3. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  4. An ab initio study of HCuCO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1994-01-01

    HCuCO is studied using a large Gaussian basis set at the coupled cluster singles and doubles level of theory, including a perturbational estimate of the connected triples (CCSD(T)). In contrast with CuCO, HCuCO is linear. The Cu-CO bond in HCuCO is significantly stronger than in CuCO. These differences between HCuCO and CuCO are discussed in terms of theCu-H bond polarizing the Cu 4s electron away from the CO.

  5. Stimulatory effect of fibroblast-derived prostaglandin E₂ on keratinocyte stratification in the skin equivalent.

    PubMed

    Arai, Koji Y; Fujioka, Atsuko; Okamura, Ryoko; Nishiyama, Toshio

    2014-01-01

    Epidermal-dermal interaction plays important roles in physiological events such as wound healing. In this study, we examined a double paracrine mechanism between keratinocytes and fibroblasts through interleukin-1 (IL-1) and an IL-1-induced inflammatory mediator prostaglandin E₂ (PGE₂) using the skin equivalent. The epidermal layer of the skin equivalent expressed high levels of IL-1α mRNA (IL1A mRNA) and relatively low levels of IL-1β mRNA (IL1B mRNA). IL1A mRNA was not detected in fibroblasts. Fibroblasts also expressed low but not negligible levels of IL1B mRNA only in the presence of keratinocytes. Expression of prostaglandin-endoperoxide synthase 2 mRNA (PTGS2 mRNA) and production of PGE₂ in three-dimensionally cultured fibroblasts were noticeably stimulated by co-culture with keratinocytes, whereas PTGS2 mRNA expression in the epidermal layer was very low. In addition, hydroxyprostaglandin dehydrogenase 15-(NAD) mRNA was highly expressed in keratinocytes but not in fibroblasts, and exogenous IL-1β stimulated PTGS2 mRNA expression in the dermal equivalent. The thickness of the epidermal layer and the number of MKI67-positive keratinocytes in the skin equivalent were decreased by treatment with indomethacin, and the decrease recovered when exogenous PGE₂ was added. These results indicate that keratinocytes stimulate their own proliferation through a double paracrine mechanism mediated by IL-1 and PGE₂. © 2014 by the Wound Healing Society.

  6. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  7. Synthesis and Functional Assessment of a Novel Fatty Acid Probe, ω-Ethynyl Eicosapentaenoic Acid Analog, to Analyze the in Vivo Behavior of Eicosapentaenoic Acid.

    PubMed

    Tokunaga, Tomohisa; Watanabe, Bunta; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2017-08-16

    Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost completely suppressed. These results indicated that eEPA mimics EPA well and is useful for analyzing the in vivo behavior of EPA.

  8. Metabolic modeling of dynamic brain 13C NMR multiplet data: Concepts and simulations with a two-compartment neuronal-glial model

    PubMed Central

    Shestov, Alexander A.; Valette, Julien; Deelchand, Dinesh K.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2016-01-01

    Metabolic modeling of dynamic 13C labeling curves during infusion of 13C-labeled substrates allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies performed in the brain to date have only modeled time courses of total isotopic enrichment at individual carbon positions (positional enrichments), not taking advantage of the additional dynamic 13C isotopomer information available from fine-structure multiplets in 13C spectra. Here we introduce a new 13C metabolic modeling approach using the concept of bonded cumulative isotopomers, or bonded cumomers. The direct relationship between bonded cumomers and 13C multiplets enables fitting of the dynamic multiplet data. The potential of this new approach is demonstrated using Monte-Carlo simulations with a brain two-compartment neuronal-glial model. The precision of positional and cumomer approaches are compared for two different metabolic models (with and without glutamine dilution) and for different infusion protocols ([1,6-13C2]glucose, [1,2-13C2]acetate, and double infusion [1,6-13C2]glucose + [1,2-13C2]acetate). In all cases, the bonded cumomer approach gives better precision than the positional approach. In addition, of the three different infusion protocols considered here, the double infusion protocol combined with dynamic bonded cumomer modeling appears the most robust for precise determination of all fluxes in the model. The concepts and simulations introduced in the present study set the foundation for taking full advantage of the available dynamic 13C multiplet data in metabolic modeling. PMID:22528840

  9. Insertion of terminal alkyne into Pt-N bond of the square planar [PtI2(Me2phen)] complex.

    PubMed

    Benedetti, Michele; De Castro, Federica; Lamacchia, Vincenza; Pacifico, Concetta; Natile, Giovanni; Fanizzi, Francesco P

    2017-11-21

    The reactivity of [PtX 2 (Me 2 phen)] complexes (X = Cl, Br, I; Me 2 phen = 2,9-dimethyl-1,10-phenanthroline) with terminal alkynes has been investigated. Although the dichlorido species [PtCl 2 (Me 2 phen)] exhibits negligible reactivity, the bromido and iodido derivatives lead in short time to the formation of five-coordinate Pt(ii) complexes of the type [PtX 2 (Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] (X = Br, I; R = Ph, n-Bu), in equilibrium with the starting reagents. Similar to analogous complexes with simple acetylene, the five coordinate species can also undergo dissociation of an halido ligand and formation of the transient square-planar cationic species [PtX(Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] + . This latter can further evolve to give an unusual, sparingly soluble square planar product where the former terminal alkyne is converted into a :C[double bond, length as m-dash]C(H)(R) moiety with the α-carbon bridging the Pt(ii) core with one of the two N-donors of coordinated Me 2 phen. The final product [PtX 2 {κ 2 -N,C-(Z)-N[combining low line]1-N10-C[combining low line][double bond, length as m-dash]C(H)(R)}] (N1-N10 = 2,9-dimethyl-1,10-phenanthroline; X = Br, I) contains a Pt-N-C-C-N-C six-membered chelate ring in a square planar Pt(ii) coordination environment.

  10. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  11. catena-Poly[[[di-aqua-bis-[1,2-bis-(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis-(pyridin-4-yl)diazene] bis-(perchlorate)].

    PubMed

    Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego

    2013-06-01

    In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2} n , the coordination environment of the cationic Cu(II) atom is distorted octa-hedral, formed by pairs of symmetry-equivalent 1,2-bis-(pyridin-4-yl)diazene ligands, bridging 1,2-bis-(pyridin-4-yl)diazene ligands and two non-equivalent water mol-ecules. The 1,2-bis-(pyridin-4-yl)diazene mol-ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the Cu(II) atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium-strong O-H⋯O hydrogen bonds with graph set R 4 (4)(12). The water mol-ecules, which are coordinated to the Cu(II) atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π-π inter-action [centroid-centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C-H⋯O inter-actions also occur.

  12. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  13. Influence of Bond Coat on HVOF-Sprayed Gradient Cermet Coating on Copper Alloy

    NASA Astrophysics Data System (ADS)

    Ke, Peng; Cai, Fei; Chen, Wanglin; Wang, Shuoyu; Ni, Zhenhang; Hu, Xiaohong; Li, Mingxi; Zhu, Guanghong; Zhang, Shihong

    2017-06-01

    Coatings are required on mold copper plates to prolong their service life through enhanced hardness, wear resistance, and oxidation resistance. In the present study, NiCr-30 wt.%Cr3C2 ceramic-metallic (cermet) layers were deposited by high velocity oxy-fuel (HVOF) spraying on different designed bond layers, including electroplated Ni, HVOF-sprayed NiCr, and double-decker Ni-NiCr. Annealing was also conducted on the gradient coating (GC) with NiCr bond layer to improve the wear resistance and adhesion strength. Coating microstructure was investigated by scanning electron microscopy and x-ray diffraction analysis. Mechanical properties including microhardness, wear resistance, and adhesion strength of the different coatings were evaluated systematically. The results show that the types of metallic bond layer and annealing process had a significant impact on the mechanical properties of the GCs. The GCs with electroplated Ni bond layer exhibited the highest adhesion strength (about 70 MPa). However, the GC with HVOF-sprayed NiCr bond layer exhibited better wear resistance. The wear resistance and adhesion strength of the coating with NiCr metallic bond layer were enhanced after annealing.

  14. Photoinduced Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence of the Components.

    PubMed

    Sigalov, Mark V; Shainyan, Bagrat A; Sterkhova, Irina V

    2017-09-01

    A series of 7-hydroxy-2-methylidene-2,3-dihydro-1H-inden-1-ones with 2-pyrrolyl (3), 4-dimethylaminophenyl (4), 4-nitrophenyl (5), and carboxyl group (6) as substituents at the exocyclic double bond was synthesized in the form of the E-isomers (4-6) or predominantly as the Z-isomer (3) which in solution is converted to the E-isomer. The synthesized compounds and their model analogues were studied by NMR spectroscopy, X-ray analysis, and MP2 theoretical calculations. The E-isomers having intramolecular O-H···O═C hydrogen bond are converted by UV irradiation to the Z-isomers having bifurcated O-H···O···H-X hydrogen bond. Unexpected shortening (and, thus, strengthening) of the O-H···O═C component of the bifurcated hydrogen bond upon the formation of the C═O···H-X hydrogen bond was found experimentally, proved theoretically (MP2), and explained by a roundabout interaction of the H-donor (HX) and H-acceptor (C═O) via the system of conjugated bonds.

  15. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.

  16. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  17. Predicting the structural and electronic properties of two-dimensional single layer boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Cheng, Xin-Lu

    2018-02-01

    Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.

  18. Unstable optical resonator loss calculations using the prony method.

    PubMed

    Siegman, A E; Miller, H Y

    1970-12-01

    The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.

  19. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement.

    PubMed

    Hafezeqoran, Ali; Koodaryan, Roodabeh

    2017-09-21

    Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.

  20. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  1. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  2. Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris.

    PubMed

    Feng, Juan; Wang, Qian; Wu, Yi-Shi; Ai, Xi-Cheng; Zhang, Xu-Jia; Huang, You-Guo; Zhang, Xing-Kang; Zhang, Jian-Ping

    2004-01-01

    We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.

  3. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  4. Neutron Diffraction Structure of Melampodin: Its Role in the Reclassification of the Germacranolides

    PubMed Central

    Watkins, Steven F.; Fischer, Nikolaus H.; Bernal, Ivan

    1973-01-01

    The precise crystal and molecular structure of melampodin, C21H24O9, was determined from three-dimensional neutron diffraction data collected by counter techniques and phases by direct statistical methods. Crystals are orthorhombic, P212121, a = 8,990(9), b = 14.352(14), c = 16.294(16) Å, V = 2102 Å3, d(calc.) = 1.328 g·cm-3, Z = 4 molecules per unit cell. The structural model was refined by full matrix least-squares of 2303 observed independent reflections, with all 54 atoms treated anisotropically, to R(F) = 5.0%. Hydrogen bonds link melampodin molecules together in the solid state. The conformation of the cyclodeca-1,5-diene ring is such that one intraannular hydrogen atom interacts strongly with one double bond, but there is little or no transannular interaction between double bonds. Strain in the ten-membered ring and in the trans-fused lactone ring is discussed, as are chemical implications of the unsymmetric epoxide in the epoxyangelic acid side chain. The previously suggested reclassification of germacranolide sesquiterpene lactones into four subgroups is supported, and a new convention for configurational representations of the four subgroups is proposed. PMID:16592106

  5. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki

    2011-05-15

    Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) is one of the most widely used analytical methods. In this article, we highlight recent advances using DNPH provided by our studies over past seven years. DNPH reacts with carbonyls to form corresponding stable 2,4-DNPhydrazone derivatives (DNPhydrazones). This method may result in analytical error because DNPhydrazones have both E- and Z-stereoisomers caused by the CN double bond. Purified aldehyde-2,4-DNPhydrazone demonstrated only the E-isomer, but under UV irradiation and the addition of acid, both E- and Z-isomers were seen. In order to resolve the isometric problem, a method for transforming the CN double bond of carbonyl-2,4-DNPhydrazone into a C-N single bond, by reductive amination using 2-picoline borane, has been developed. The amination reactions of C1-C10 aldehyde DNPhydrazones are completely converted into the reduced forms and can be analyzed with high-performance liquid chromatography. As a new application using DNPH derivatization, the simultaneous measurement of carbonyls with carboxylic acids or ozone is described in this review. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Photoisomerization around a fulvene double bond: coherent population transfer to the electronic ground state?

    PubMed

    Ioffe, Ilya; Dobryakov, Alexander L; Granovsky, Alexander A; Ernsting, Nikolaus P; Lustres, J Luis Pérez

    2011-07-11

    Photoisomerization around a central fulvene-type double bond is known to proceed through a conical intersection at the perpendicular geometry. The process is studied with an indenylidene-dihydropyridine model compound, allowing the use of visible excitation pulses. Transient absorption shows that 1) stimulated emission shifts to the red and loses oscillator strength on a 50 fs timescale, and 2) bleach recovery is highly nonexponential and not affected by solvent viscosity or methyl substitution at the dihydropyridine ring. Quantum-chemical calculations are used to explain point 1 as a result of initial elongation of the central C=C bond with mixing of S(2) and S(1) states. From point 2 it is concluded that internal conversion of S(1)→S(0) does not require torsional motion to the fully perpendicular state. The S(1) population appears to encounter a sink on the torsional coordinate before the conical intersection is reached. Rate equations cannot model the observed ground-state recovery adequately. Instead the dynamics are best described with a strongly damped oscillatory contribution, which could indicate coherent S(1)-S(0) population transfer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental studies on the nature of bonding of DNA/bipyridyl-(ethylenediamine)platinum(II) and DNA/netropsin complexes in solution and oriented wet-spun films

    NASA Astrophysics Data System (ADS)

    Marlowe, R. L.; Szabo, A.; Lee, S. A.; Rupprecht, A.

    2002-03-01

    The stability of complexes of NaDNA with bipyridyl-(ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)]) and with netropsin has been studied using two techniques: (i) ultraviolet melting experiments were done on NaDNA/[(bipy)Pt(en)], showing that the [(bipy)Pt(en)] ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA/[(bipy)Pt(en)] and of NaDNA/netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA/netropsin, then for pure NaDNA, and lastly for the NaDNA/[(bipy)Pt(en)]. These results are indicative that the [(bipy)Pt(en)] complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)] to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.

  8. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  9. CARBINOLAMINES AND GEMINAL DIOLS IN AQUEOUS ENVIRONMENTAL ORGANIC CHEMISTRY

    EPA Science Inventory

    Organic chemistry textbooks generally treat geminal diols as curiosities-exceptions to the stability of the C=O double bond. However, most aldehydes of environmental significance, to wit, trichloroethanal (chloral), methanala (formaldehyde), ethanal (acetaldehyde), and propanal ...

  10. Microwave emulations and tight-binding calculations of transport in polyacetylene

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.

  11. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE PAGES

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-14

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  12. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    NASA Astrophysics Data System (ADS)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-01

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  13. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  14. One-electron-mediated rearrangements of 2,3-disiladicarbene.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Roesky, Herbert W; Aysin, Rinat R; Leites, Larissa A; Neudeck, Sven; Lübben, Jens; Dittrich, Birger; Holzmann, Nicole; Hermann, Markus; Frenking, Gernot

    2014-06-25

    A disiladicarbene, (Cy-cAAC)2Si2 (2), was synthesized by reduction of Cy-cAAC:SiCl4 adduct with KC8. The dark-colored compound 2 is stable at room temperature for a year under an inert atmosphere. Moreover, it is stable up to 190 °C and also can be characterized by electron ionization mass spectrometry. Theoretical and Raman studies reveal the existence of a Si═Si double bond with a partial double bond between each carbene carbon atom and silicon atom. Cyclic voltammetry suggests that 2 can quasi-reversibly accept an electron to produce a very reactive radical anion, 2(•-), as an intermediate species. Thus, reduction of 2 with potassium metal at room temperature led to the isolation of an isomeric neutral rearranged product and an anionic dimer of a potassium salt via the formation of 2(•-).

  15. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.

    PubMed

    Jia, Haiyan; Huang, Zhangjun; Fei, Zhaofu; Dyson, Paul J; Zheng, Zhen; Wang, Xinling

    2016-11-16

    Hydrogels are polymeric materials that have a relatively high capacity for holding water. Recently, a double network (DN) technique was developed to fabricate hydrogels with a toughness comparable to rubber. The mechanical properties of DN hydrogels may be attributed to the brittle sacrificial bonding network of one hydrogel, facilitating stress dispersion, combined with ductile polymer chains of a second hydrogel. Herein, we report a novel class of tunable DN hydrogels composed of a polyurethane hydrogel and a stronger, dipole-dipole and H-bonding interaction reinforced (DHIR) hydrogel. Compared to conventional DN hydrogels, these materials show remarkable improvements in mechanical recovery, modulus, and yielding, with excellent self-healing and self-gluing properties. In addition, the new DN hydrogels exhibit excellent tensile and compression strengths and possess shape-memory properties, which make them promising for applications in engineering, biomedicine, and other domains where load bearing is required.

  16. Single and double C-Cl-activation of methylene chloride by P,N-ligand coordinated rhodium complexes.

    PubMed

    Blank, Benoît; Glatz, Germund; Kempe, Rhett

    2009-02-02

    Two in one: The simultaneous formation of bimetallic mu-methylene bridged Rh(III) complexes as well as dimeric Rh(III) complexes with terminal chloromethyl groups is observed for P,N-ligand stabilized Rh(I) complexes by C-Cl bond activation of methylene chloride. A mechanistic proposal for the formation of both activation products is also discussed. The synthesis of Rh(I) complexes with P-functionalized aminopyridine ligands is reported as well as the first simultaneous observation of a single and double activation of C-Cl bonds of methylene chloride affording both a dimeric Rh(III) complex bearing terminal CH(2)Cl groups in addition to a binuclear Rh(III) complex with a bridging mu-CH(2) group. The structures of the oxidative addition products were obtained by X-ray diffraction studies and NMR experiments were performed to elucidate some aspects of the reaction pathway.

  17. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  18. Partially linearized external models to active-space coupled-cluster through connected hextuple excitations.

    PubMed

    Xu, Enhua; Ten-No, Seiichiro L

    2018-06-05

    Partially linearized external models to active-space coupled-cluster through hextuple excitations, for example, CC{SDtqph} L , CCSD{tqph} L , and CCSD{tqph} hyb, are implemented and compared with the full active-space CCSDtqph. The computational scaling of CCSDtqph coincides with that for the standard coupled-cluster singles and doubles (CCSD), yet with a much large prefactor. The approximate schemes to linearize the external excitations higher than doubles are significantly cheaper than the full CCSDtqph model. These models are applied to investigate the bond dissociation energies of diatomic molecules (HF, F 2 , CuH, and CuF), and the potential energy surfaces of the bond dissociation processes of HF, CuH, H 2 O, and C 2 H 4 . Among the approximate models, CCSD{tqph} hyb provides very accurate descriptions compared with CCSDtqph for all of the tested systems. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol formore » the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.« less

  20. Identification of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid in Pseudomonas sp. strain E-3.

    PubMed

    Okuyama, H; Enari, D; Shibahara, A; Yamamoto, K; Morita, N

    1996-06-01

    A cell-free extract of Pseudomonas sp. strain E-3 catalyzed the conversion of 9-cis-hexadecenoic acid [16:1(9c)] to 9-trans-hexadecenoic acid [16:1(9t)] in the free acid form and when 16:1(9c) was esterified to phosphatidylethanolamine (PE). The cytosolic fraction catalyzed the isomerizations of free 16:1(9c) by itself and of 16:1(9c) esterified to PE in the presence of the membrane fraction. Tracer experiments using [2,2-2H2]16:1(9c) demonstrated that the isomerization of free 16:1(9c) occurred independently of the isomerization of 16:1(9c) esterified to PE, indicating that this bacterium has two types of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid.

  1. Interactions of Kraft lignin and wheat gluten during biomaterial processing: evidence for the role of phenolic groups.

    PubMed

    Kaewtatip, Kaewta; Menut, Paul; Auvergne, Remi; Tanrattanakul, Varaporn; Morel, Marie-Helene; Guilbert, Stephane

    2010-04-14

    The chemical interactions between Kraft lignin and wheat gluten under processing conditions were investigated by determining the extent of the protein network formation. To clarify the role of different chemical functions found in lignin, the effect of Kraft lignin was compared with that of an esterified lignin, in which hydroxyl groups had been suppressed by esterification, and with a series of simple aromatics and phenolic structures with different functionalities (conjugated double bonds, hydroxyl, carboxylic acid, and aldehyde). The protein solubility was determined by using the Kjeldahl method. The role of the hydroxyl function was assessed by the significantly lower effect of esterified lignin. The importance of the phenolic radical scavenging structure is evidenced by the effect of guaiacol, which results in a behavior similar to that of the Kraft lignin. In addition, the significant effect of conjugated double bonds on gluten reactivity, through nucleophilic addition, was demonstrated.

  2. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    DTIC Science & Technology

    2008-07-11

    Nucleotide Base pairs Hydrogen bonds FIG. 1: Ladder structure of DNA showing the Watson - Crick bonding of the bases A, T, G, and C which are suspended by a...protected against unwanted action of chemicals and proteins. The three-dimensional structure of DNA is the famed Watson - Crick double-helix, the equilibrium...quantitative analysis [88]. [1] A. Kornberg and T. A. Baker, DNA Replication (W. H. Freeman, New York, 1992). [2] J. D. Watson and F. H. C. Crick

  3. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    PubMed

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  4. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  5. Role of Secondary Low-Energy Electrons in the Concomitant Chemoradiation Therapy of Cancer

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Hunting, Darel J.; Ayotte, Patrick; Sanche, Léon

    2008-05-01

    Solid films of DNA with and without the chemotherapeutic agent cisplatin bonded to guanine were bombarded with electrons of 1, 10, 100, and 60 000 eV causing single and double strand breaks. In the presence of cisplatin this damage was increased by factors varying from 1.3 to 4.4 owing to an increase in bond dissociation triggered by the formation of transient anions. This mechanism may lie at the basis of the efficiency of concomitant cisplatin-radiation therapy.

  6. Ergodic Transition in a Simple Model of the Continuous Double Auction

    PubMed Central

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen. PMID:24558377

  7. Ergodic transition in a simple model of the continuous double auction.

    PubMed

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent M/M/1 queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen.

  8. Structure of water clusters on graphene: A classical molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro

    2018-03-01

    The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.

  9. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle.

    PubMed

    Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L

    2008-08-05

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  10. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities.

    PubMed

    Zhang, Ning; Weir, Michael D; Romberg, Elaine; Bai, Yuxing; Xu, Hockin H K

    2015-07-01

    Secondary caries at the tooth-restoration margins remains a main reason for restoration failure. The objectives of this study were to: (1) combine protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) to develop a new dental adhesive with double benefits of protein-repellent and antibacterial capabilities for the first time; and (2) investigate the effects on protein adsorption, anti-biofilm activity, and dentin bond strength. MPC and DMAHDM were incorporated into Scotchbond Multi-Purpose (SBMP) primer and adhesive. Dentin shear bond strengths were measured using extracted human molars. Protein adsorption onto the adhesive resin surfaces was determined by the micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production and live/dead staining of biofilms on resins. Incorporation of 7.5% MPC and 5% DMAHDM into primer and adhesive did not adversely affect the dentin shear bond strength (p>0.1). The resin with 7.5% MPC+5% DMAHDM had protein adsorption that was nearly 20-fold less than SBMP control (p<0.05). The resin with 7.5% MPC+5% DMAHDM had much stronger antibacterial effects than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on the resin with 7.5% MPC+5% DMAHDM were reduced by more than 4 orders of magnitude, compared to SBMP control. The use of double agents (protein-repellent MPC+antibacterial DMAHDM) in dental adhesive achieved much stronger inhibition of biofilms than using each agent alone. The novel protein-repellent and antibacterial bonding agent is promising to reduce biofilm/plaque buildup and reduce recurrent caries at the tooth-restoration margins. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  12. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes withmore » intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  13. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo,L.; Drury, J.; Penning, T.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We havemore » determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  14. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  15. Reliable four-point flexion test and model for die-to-wafer direct bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabata, T., E-mail: toshiyuki.tabata@cea.fr; Sanchez, L.; Fournel, F.

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, bothmore » D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.« less

  16. Non-cycloplegic spherical equivalent refraction in adults: comparison of the double-pass system, retinoscopy, subjective refraction and a table-mounted autorefractor.

    PubMed

    Vilaseca, Meritxell; Arjona, Montserrat; Pujol, Jaume; Peris, Elvira; Martínez, Vanessa

    2013-01-01

    To evaluate the accuracy of spherical equivalent (SE) estimates of a double-pass system and to compare it with retinoscopy, subjective refraction and a table-mounted autorefractor. Non-cycloplegic refraction was performed on 125 eyes of 65 healthy adults (age 23.5±3.0 years) from October 2010 to January 2011 using retinoscopy, subjective refraction, autorefraction (Auto kerato-refractometer TOPCON KR-8100, Japan) and a double-pass system (Optical Quality Analysis System, OQAS, Visiometrics S.L., Spain). Nine consecutive measurements with the double-pass system were performed on a subgroup of 22 eyes to assess repeatability. To evaluate the trueness of the OQAS instrument, the SE laboratory bias between the double-pass system and the other techniques was calculated. The SE mean coefficient of repeatability obtained was 0.22D. Significant correlations could be established between the OQAS and the SE obtained with retinoscopy (r=0.956, P<0.001), subjective refraction (r=0.955, P<0.001) and autorefraction (r=0.957, P<0.001). The differences in SE between the double-pass system and the other techniques were significant (P<0.001), but lacked clinical relevance except for retinoscopy; Retinoscopy gave more hyperopic values than the double-pass system -0.51±0.50D as well as the subjective refraction -0.23±0.50D; More myopic values were achieved by means of autorefraction 0.24±0.49D. The double-pass system provides accurate and reliable estimates of the SE that can be used for clinical studies. This technique can determine the correct focus position to assess the ocular optical quality. However, it has a relatively small measuring range in comparison with autorefractors (-8.00 to +5.00D), and requires prior information on the refractive state of the patient.

  17. Non-cycloplegic spherical equivalent refraction in adults: comparison of the double-pass system, retinoscopy, subjective refraction and a table-mounted autorefractor

    PubMed Central

    Vilaseca, Meritxell; Arjona, Montserrat; Pujol, Jaume; Peris, Elvira; Martínez, Vanessa

    2013-01-01

    AIM To evaluate the accuracy of spherical equivalent (SE) estimates of a double-pass system and to compare it with retinoscopy, subjective refraction and a table-mounted autorefractor. METHODS Non-cycloplegic refraction was performed on 125 eyes of 65 healthy adults (age 23.5±3.0 years) from October 2010 to January 2011 using retinoscopy, subjective refraction, autorefraction (Auto kerato-refractometer TOPCON KR-8100, Japan) and a double-pass system (Optical Quality Analysis System, OQAS, Visiometrics S.L., Spain). Nine consecutive measurements with the double-pass system were performed on a subgroup of 22 eyes to assess repeatability. To evaluate the trueness of the OQAS instrument, the SE laboratory bias between the double-pass system and the other techniques was calculated. RESULTS The SE mean coefficient of repeatability obtained was 0.22D. Significant correlations could be established between the OQAS and the SE obtained with retinoscopy (r=0.956, P<0.001), subjective refraction (r=0.955, P<0.001) and autorefraction (r=0.957, P<0.001). The differences in SE between the double-pass system and the other techniques were significant (P<0.001), but lacked clinical relevance except for retinoscopy; Retinoscopy gave more hyperopic values than the double-pass system -0.51±0.50D as well as the subjective refraction -0.23±0.50D; More myopic values were achieved by means of autorefraction 0.24±0.49D. CONCLUSION The double-pass system provides accurate and reliable estimates of the SE that can be used for clinical studies. This technique can determine the correct focus position to assess the ocular optical quality. However, it has a relatively small measuring range in comparison with autorefractors (-8.00 to +5.00D), and requires prior information on the refractive state of the patient. PMID:24195036

  18. 30 CFR 773.17 - Permit conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the performance bond or other equivalent guarantee in effect pursuant to subchapter J of this.... (e) The permittee shall take all possible steps to minimize any adverse impact to the environment or public health and safety resulting from noncompliance with any term or condition or the permit, including...

  19. Piperidine-1-carboximidamide

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C6H13N3, the C=N and C—N bond lengths in the CN3 unit are 1.3090 (17), and 1.3640 (17) (C–NH2) and 1.3773 (16) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 116.82 (12), 119.08 (11) and 124.09 (11)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The piperidine ring is in a chair conformation. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming a two-dimensional network along the ac plane. PMID:23284550

  20. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    NASA Astrophysics Data System (ADS)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  1. Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters.

    PubMed

    Mizuse, Kenta; Hamashima, Toru; Fujii, Asuka

    2009-11-05

    To investigate hydrogen bond network structures of tens of water molecules, we report infrared spectra of moderately size (n)-selected phenol-(H2O)n (approximately 10 < or = n < or = approximately 50), which have essentially the same network structures as (H2O)(n+1). The phenyl group in phenol-(H2O)(n) allows us to apply photoionization-based size selection and infrared-ultraviolet double resonance spectroscopy. The spectra show a clear low-frequency shift of the free OH stretching band with increasing n. Detailed analyses with density functional theory calculations indicate that this shift is accounted for by the hydrogen bond network development from highly strained ones in the small (n < approximately 10) clusters to more relaxed ones in the larger clusters, in addition to the cooperativity of hydrogen bonds.

  2. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.

    One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less

  3. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.

    PubMed

    Song, Xinyu; Han, Xiaoyue; Yu, Fabiao; Zhang, Jinjin; Chen, Lingxin; Lv, Changjun

    2018-01-15

    Formaldehyde (FA) is an endogenously produced reactive carbonyl species (RCS) through biological metabolic processes whose concentration is closely related to human health and disease. Noninvasive and real-time detection of FA concentration in organisms is very important for revealing the physiological and pathological functions of FA. Herein, we design and synthesize a reversible fluorescent probe BOD-NH 2 for the detection of FA in living cells and in vivo. The probe is composed of two moieties: the BODIPY fluorophore and the primary amino group response unit. The probe undergoes an intracellular aldimine condensation reaction with FA and forms imine (C[double bond, length as m-dash]N) which will result in C[double bond, length as m-dash]N isomerization and rotation to turn-off the fluorescence of the probe. It is important that the probe can show a reversible response to FA. The probe BOD-NH 2 has been successfully applied for detecting and imaging FA in the cytoplasm of living cells. BOD-NH 2 is capable of detecting fluctuations in the levels of endogenous and exogenous FA in different types of living cells. The probe can be used to visualize the FA concentration in fresh hippocampus and the probe can further qualitatively evaluate the FA concentrations in ex vivo-dissected organs. Moreover, BOD-NH 2 can also be used for imaging in mice. The above applications make our new probe a potential chemical tool for the study of physiological and pathological functions of FA in cells and in vivo.

  4. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    PubMed Central

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  5. Structure-mutagenicity relationship of kaurenoic acid from Xylopia sericeae (Annonaceae).

    PubMed

    Cavalcanti, B C; Ferreira, J R O; Moura, D J; Rosa, R M; Furtado, G V; Burbano, R R; Silveira, E R; Lima, M A S; Camara, C A G; Saffi, J; Henriques, J A P; Rao, V S N; Costa-Lotufo, L V; Moraes, M O; Pessoa, C

    2010-08-30

    Kaurane diterpenes are considered important compounds in the development of new highly effective anticancer chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to the possibility that they induce secondary tumours in cancer patients. In this context, we evaluated the genotoxic and mutagenic potential of the natural diterpenoid kaurenoic acid (KA), i.e. (-)-kaur-16-en-19-oic acid, isolated from Xylopia sericeae St. Hill, using several standard in vitro and in vivo protocols (comet, chromosomal aberration, micronucleus and Saccharomyces cerevisiae assays). Also, an analysis of structure-activity relationships was performed with two natural diterpenoid compounds, 14-hydroxy-kaurane (1) and xylopic acid (2), isolated from X. sericeae, and three semi-synthetic derivatives of KA (3-5). In addition, considering the importance of the exocyclic double bond (C16) moiety as an active pharmacophore of KA cytotoxicity, we also evaluated the hydrogenated derivative of KA, (-)-kauran-19-oic acid (KAH), to determine the role of the exocyclic bond (C16) in the genotoxic activity of KA. In summary, the present study shows that KA is genotoxic and mutagenic in human peripheral blood leukocytes (PBLs), yeast (S. cerevisiae) and mice (bone marrow, liver and kidney) probably due to the generation of DNA double-strand breaks (DSB) and/or inhibition of topoisomerase I. Unlike KA, compounds 1-5 and KAH are completely devoid of genotoxic and mutagenic effects under the experimental conditions used in this study, suggesting that the exocyclic double bond (C16) moiety may be the active pharmacophore of the genetic toxicity of KA. 2010 Elsevier B.V. All rights reserved.

  6. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  7. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases

    PubMed Central

    Kurian, P.; Dunston, G.; Lindesay, J.

    2015-01-01

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme’s displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations—a possible signature of quantum entanglement—may be explained by such a mechanism. PMID:26682627

  9. 26 CFR 1.818-3 - Amortization of premium and accrual of discount.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required under section 818(b) on account of accruable discounts. (f) Denial of double inclusion. Any amount... section shall not be includible in gross income under section 1232(a) (relating to the taxation of bonds...

  10. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes

    PubMed Central

    2014-01-01

    Background Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes. Results Recombinant S. cerevisiae BY4741∆Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity. Conclusions The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes. PMID:24767246

  11. Equivalence of Szegedy's and coined quantum walks

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-09-01

    Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

  12. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC

    PubMed Central

    2012-01-01

    A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486

  13. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Li, Xianhai; Mao, Song; Li, Longjiang; Ke, Baolin; Zhang, Qin

    2018-06-01

    Effects of carbon chain length, carbon chain isomerism, Cdbnd C double bonds number on fatty acid adsorption on FAP (0 0 1) surface have been investigated based on DFT. The results revealed that fatty acid collector can form stable adsorption configuration at Ca1 (surf) site. Chemical adsorption was formed between O (mole) of fatty acid collector and the Ca1 (surf) of fluorapatite (0 0 1) surface; hydrogen bond adsorption was formed between the H (mole) of fatty acid and the O (surf) of-[PO4]- of FAP (0 0 1) surface. Fatty acid collectors and FAP (0 0 1) surface are bonding by means of the hybridization of O (mole) 2p and Ca (surf) 4d orbitals, H (mole) 1s and O (surf) 2p orbital. The analysis of adsorption energy, DOS, electron density, Mulliken charge population and Mulliken bond population revealed that with the carbon chain growing within certain limits, the absolute value of the adsorption energy and the overlapping area between the DOS curve of O (mole) and Ca (surf) was greater, while that of H (mole) 1s and O (surf) 2p basically remained unchanged. As Cdbnd C double bonds of fatty acids increased within certain limits, the adsorption energy and the overlapping area between the state density curve of O (mole) and Ca (surf), H (mole) and O (surf) basically remained unchanged. The substituent groups of fatty acid changed, the absolute value of the adsorption energy and the overlapping area between the state density curve had a major change. The influence of fatty acids adsorption on FAP (0 0 1) surface depends mainly on the interaction between O (mole) and Ca (surf).

  14. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  15. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    PubMed

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  16. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE PAGES

    Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...

    2017-05-01

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  17. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.; Glasbrenner, J. K.; Flint, R.

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  18. Accurate bond energies of hydrocarbons from complete basis set extrapolated multi-reference singles and doubles configuration interaction.

    PubMed

    Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A

    2011-12-09

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular design of flotation collectors: A recent progress.

    PubMed

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 7 CFR 987.45 - Withholding restricted dates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purchase on the open market a volume of dates equivalent to the deferred obligation. Such bonding rate..., with the approval of the Secretary, minimum standards for inspection of field-run dates and appropriate..., satisfy all or any part of his obligation to withhold restricted dates by setting aside field-run dates or...

Top