Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents
NASA Astrophysics Data System (ADS)
Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie
2016-03-01
A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.
Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetana, Volodymyr; Mudring, Anja-Verena
2016-10-24
With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs 9Pt 4H exhibits a complex crystal structure containing Cs + cations, Pt 2- and H - anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs 9Pt 4H≡4 Cs 2Pt∙CsH.
Lewis-Alleyne, Lesley C; Bassil, Bassem S; Böttcher, Tobias; Röschenthaler, Gerd-Volker
2014-11-14
NHC(Me)SiCl4 (NHC(Me) = 1,3-dimethylimidazolidin-2-ylidene) was used to synthesise novel NHC(Me)-Pt(ii) complexes. An atypical trans-cis isomerisation process was also achieved for [(NHC(Me))2PtCl2], while the synthesis of the unique double-complex salt [(NHC(Me))Pt(cod)Cl] [(NHC(Me))PtCl3] (cod = 1,5-cyclooctadiene) revealed the first-ever N-heterocyclic carbene analogue of the Cossa's salt anion.
21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...
Code of Federal Regulations, 2011 CFR
2011-04-01
... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...
Code of Federal Regulations, 2013 CFR
2013-04-01
... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...
Code of Federal Regulations, 2014 CFR
2014-04-01
... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...
Code of Federal Regulations, 2012 CFR
2012-04-01
... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...
Code of Federal Regulations, 2010 CFR
2010-04-01
... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...
Molten Salt Promoting Effect in Double Salt CO2 Absorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keling; Li, Xiaohong S.; Chen, Haobo
2016-01-01
The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt (generic name). 721.5960 Section 721.5960...,N′-Bis(2-(2-(3-alkyl)thia- zoline) vinyl)-1,4-pheny-lene-dia-mine methyl sulfate double salt... methyl sulfate double salt (PMN P-84-913) is subject to reporting under this section for the significant...
NASA Astrophysics Data System (ADS)
Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.
2015-11-01
Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)6]·2H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.
21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...
21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...
21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...
21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may be safely used in foods for special...
Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J
2011-11-01
Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Otsuka, Takuhiro; Takahashi, Naoto; Fujigasaki, Naoki; Sekine, Akiko; Ohashi, Yuji; Kaizu, Youkoh
1999-03-22
In crystals of double-complex salts [M(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O (M(2+) = Ru(2+), Os(2+); bpy = 2,2'-bipyridine), luminescence from (3)CT state of [M(bpy)(3)](2+) is partially quenched by [Cr(CN)(6)](3)(-) at 77 K and room temperature (RT). This quenching is attributed to intermolecular excitation energy transfer from the (3)CT state of [M(bpy)(3)](2+) to the (2)E(g) state of [Cr(CN)(6)](3)(-). Crystal structure and crystal parameters of [Os(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O: monoclinic, C2, a = 22.384(4) Å, b = 13.827(4) Å, c = 22.186(3) Å, beta = 90.70(2) degrees, V = 6866(2) Å(3), Z = 4, R = 0.0789, R(w) = 0.1932: are almost the same as those of [Ru(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O: monoclinic, C2, a = 22.414(2) Å, b = 13.7686(15) Å, c = 22.207(2) Å, beta = 90.713(8) degrees, V = 6852.9(12) Å(3), Z = 4, R = 0.0554, R(w) = 0.1679. Moreover, these double complex salts have the same distance and relative orientation between donor and acceptor. The rate of intermolecular energy transfer from [M(bpy)(3)](2+) to [Cr(CN)(6)](3)(-) was evaluated by the decay time of luminescence from (3)CT state of [M(bpy)(3)](2+) in single- and double-complex salts. The rate of energy transfer in [Os(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O (4.9 x 10(7) s(-)(1)) is about eight times larger than that in [Ru(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O (6.0 x 10(6) s(-)(1)) at 77 K. The difference of energy transfer rate is brought about by only the spectral overlap between the normalized luminescence spectrum from the (3)CT state of donor ([M(bpy)(3)](2+)) and the normalized excitation spectrum of the (2)E(g) state of acceptor ([Cr(CN)(6)](3)(-)) in the salts. Decay rates of the (3)CT state in [M(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O were measured as a function of temperature. A large enhancement of a decay rate from the (3)CT state was obtained for [Ru(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O as the temperature was increased. This result implies that an additional path from the (3)CT state of [Ru(bpy)(3)](2+) to the (2)T(2g) state of [Cr(CN)(6)](3)(-) would be opened for energy transfer with a rise in temperature in [Ru(bpy)(3)](2)[Cr(CN)(6)]Cl.8H(2)O.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y
1977-04-01
Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained.
Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y
1977-01-01
Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained. Images PMID:866188
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
2016-05-23
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Rishu; Prashanth, Billa; Bawari, Deependra; Mandal, Ushnish; Verma, Aditya; Choudhury, Angshuman Roy; Singh, Sanjay
2017-05-16
Two equivalents of 1-benzyl-3-bromoethylbenzimidazolium bromide couple with Na 2 Se to produce the first selenoether bridged bis-benzimidazolium salt (LH 2 )Br 2 . The nitrate (LH 2 )(NO 3 ) 2 and tetrafluoroborate (LH 2 )(BF 4 ) 2 salts were also synthesized from (LH 2 )Br 2 . The reaction of Hg(OAc) 2 with (LH 2 )Br 2 gave the first pseudo pincer carbene mercury complex, [Hg(L-κ 2 C)][HgBr 4 ] (C1). Different complexes of Pd(ii) with selenoether bridged carbene were obtained using (LH 2 )Br 2 and (LH 2 )(NO 3 ) 2 . Syntheses of these complexes were dependent on the counter anion and the temperature. Thus, the pincer type ionic complex [PdBr(L-κ 3 CSeC)]Br (C2) was isolated at 80 °C and the pseudo pincer type neutral complex cis-[PdBr 2 (L-κ 2 C)] (C3) was isolated at room temperature from (LH 2 )Br 2 and Pd(OAc) 2 in DMSO. The nitrate precursor (LH 2 )(NO 3 ) 2 on palladation with Pd(OAc) 2 afforded [Pd(L-κ 4 C Bz CSeC)]NO 3 (C4) showing an unprecedented intramolecular metallation at the ortho position of the benzyl wingtip of the benzimidazole moiety. The ligand salts and metal complexes have been characterized using HRMS, heteronuclear NMR and IR spectroscopy. Single crystal X-ray structures of the ligand salts (LH 2 )Br 2 and (LH 2 )(BF 4 ) 2 and complexes C1-C4 have also been elucidated. Complex C2 showed good activity for C-C coupling in the mono-Heck reaction of methyl acrylate and arylbromides. Interestingly, the less common bis-arylation was also observed with deactivated arylbromides as the result of double-Heck coupling.
2017-01-01
The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W1/O/W2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W1 is distilled water or 1% abalone hydrolysate, and W2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W1 = distilled water, W2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W1 is water and W2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties. PMID:28515645
Choi, HeeJeong; Kim, Soo-Jin; Lee, Sang-Yoon; Choi, Mi-Jung
2017-01-01
The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W 1 /O/W 2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W 1 is distilled water or 1% abalone hydrolysate, and W 2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W 1 = distilled water, W 2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W 1 is water and W 2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.
Synthesis of pyroglutamic acid derivatives via double michael reactions of alkynones.
Scansetti, Myriam; Hu, Xiangping; McDermott, Benjamin P; Lam, Hon Wai
2007-05-24
In the presence of substoichiometric quantities of potassium tert-butoxide and an additional metal salt, amide-tethered diacids undergo double Michael reactions with alkynones to provide highly functionalized pyroglutamic acid derivatives. The metal salt was found to play an important role in improving the diastereoselectivities of the reactions.
Synthesis and Analysis of Copper Hydroxy Double Salts
ERIC Educational Resources Information Center
Brigandi, Laura M.; Leber, Phyllis A.; Yoder, Claude H.
2005-01-01
A project involving the synthesis of several naturally occurring copper double salts using simple aqueous conditions is reported. The ions present in the compound are analyzed using colorimetric, gravimetric, and gas-analysis techniques appropriate for the first-year laboratory and from the percent composition, the empirical formula of each…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr
2016-10-15
The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less
Aiba, Yuichiro; Honda, Yuta; Komiyama, Makoto
2015-03-02
Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krummacher, Jakob; Heß, Lars-Henning; Balducci, Andrea
2017-09-04
This study investigated the anodic dissolution of Al current collectors in unconventional electrolytes for high voltage electrochemical double-layer capacitors (EDLCs) containing adiponitrile (ADN), 3-cyanopropionic acid methyl ester (CPAME), 2-methyl-glutaronitrile (2-MGN) as solvent, and tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bis(trifluoromethanesulfonyl)imide (Et 4 NTFSI) as conductive salts. To have a comparison with the state-of-the-art electrolytes, the same salts were also used in combination with acetonitrile (ACN). The chemical-physical properties of the electrolytes were investigated. Furthermore, their impact on the anodic dissolution of Al was analyzed in detail as well as the influence of this process on the performance of high voltage EDLCs. The results of this study indicated that in the case of Et 4 NBF 4 -based electrolytes, the use of an alternative solvent is very beneficial for the realization of stable devices. When Et 4 NTFSI is used, the reduced solubility of the complex Al(TFSI) 3 appears to be the key for the realization of advanced electrolytes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
..., nitrogenous: Double salts and mixtures of calcium nitrate and ammonium nitrate.'' This document invites... Marking Branch, Regulations and Rulings, Office of International Trade at (202) 325-0036. SUPPLEMENTARY... calcium nitrate double salt that is primarily used as a fertilizer but is also used for waste water...
Preparation and Analysis of Libethenite: A Project for the First-Year Laboratory
ERIC Educational Resources Information Center
Ginion, Kelly E.; Yoder, Claude H.
2004-01-01
The preparation of libethenite, a double salt of copper(II) phosphate and copper(II) hydroxide presents the opportunity to discuss the prevalence of double salts in the environment, the relationship between solubility and stability in aqueous solution, the origin of the color of transition metal compounds and gravimetric analyses. Typical results…
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-08-14
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-01-01
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418
Lubow, Bruce C.; Ransom, Jason I.
2007-01-01
An aerial survey technique combining simultaneous double-count and sightability bias correction methodologies was used to estimate the population of wild horses inhabiting Adobe Town and Salt Wells Creek Herd Management Areas, Wyoming. Based on 5 surveys over 4 years, we conclude that the technique produced estimates consistent with the known number of horses removed between surveys and an annual population growth rate of 16.2 percent per year. Therefore, evidence from this series of surveys supports the validity of this survey method. Our results also indicate that the ability of aerial observers to see horse groups is very strongly dependent on skill of the individual observer, size of the horse group, and vegetation cover. It is also more modestly dependent on the ruggedness of the terrain and the position of the sun relative to the observer. We further conclude that censuses, or uncorrected raw counts, are inadequate estimates of population size for this herd. Such uncorrected counts were all undercounts in our trials, and varied in magnitude from year to year and observer to observer. As of April 2007, we estimate that the population of the Adobe Town /Salt Wells Creek complex is 906 horses with a 95 percent confidence interval ranging from 857 to 981 horses.
NASA Astrophysics Data System (ADS)
Li, Cang; Wang, Ge; Evans, David G.; Duan, Xue
2004-12-01
Reaction of an aqueous slurry of an Mg 2Al-NO 3 layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg 0.68Al 0.32(OH) 2[Eu(EDTA)] 0.10(CO 3) 0.11·0.66H 2O. The interlayer spacing of the material is 13.8 Å, corresponding to a gallery height of 9.0 Å, which accords with the maximal dimensions (9-10 Å) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)] - alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.
NASA Astrophysics Data System (ADS)
Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue
2006-10-01
An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.
ELASTICITY, DOUBLE REFRACTION AND SWELLING OF ISOELECTRIC GELATIN
Kunitz, M.
1930-01-01
Quincke's researches (1904) have demonstrated that when a 20 per cent gelatin gel is allowed to swell in water it gives rise to positive double refraction, as if the gel were under tensile stresses. If, on the other hand, the gel shrinks on being placed in alcohol it becomes negatively double refractive, as if it were compressed. But the double refraction as found by Quincke lasts only during the process of swelling or shrinking, and disappears as soon as the gel reaches a state of equilibrium. This phenomenon was investigated here and it was found that the reason for the disappearance of the double refraction is due to the fact that at equilibrium the percentage change in the size of a gel is equal in all three dimensions and the strain is therefore uniform. Double refraction persists as long as there is a difference in the elastic strain in the three dimensions of the strained material. It was found that when gels are cast on glass slides or in glass frames, so as to prevent swelling in certain directions, the double refraction produced by swelling at 6°C. persists permanently in the gel as long as it is swollen, and is proportional to the percentage change in the linear dimensions of the gel. Gels made up of various concentrations of isoelectric gelatin of less than 10 per cent when placed in dilute buffer of the same pH as that of the isoelectric point of the gelatin shrink and give rise to negative double refraction, while gels of concentrations of more than 10 per cent swell and give rise to positive double refraction. The double refraction produced in either case when divided by the percentage change in the dimensions of the gel and by its changed concentration gives a constant value both for swelling and shrinking. This constant which stands for the double refraction produced in a gel of unit concentration per unit strain is termed here the optical modulus of elasticity since it is proportional to the internal elastic stress in the swollen gelatin. It was found that the optical modulus of elasticity is the same both for gels cast on slides and in frames, although the mode of swelling is different in the two forms of gels. Gels removed from their glass supports after apparent swelling equilibrium, when placed in dilute buffer, begin to swell gradually in all three dimensions and the double refraction decreases slowly, though it persists for a long time. But the double refraction per unit change in dimension and per unit concentration still remains the same as before, thus proving that the internal elastic stress as indicated by the double refraction is brought about by the resistance of the gel itself to deformation. A study was also made on the effect of salts, acid and base on the double refraction of a 10 per cent gel during swelling. The experiments show that below M/8 salts affect very slightly the optical modulus of elasticity of the gel. At higher concentrations of salts the elasticity of the gel is reduced by some salts and increased by others, while such salts as sodium acetate and sodium and ammonium sulfates do not change the elasticity of the gels at all during swelling. The investigated salts may thus be arranged in this respect in the following approximate series: CaCl2, NaI, NaSCN, NaBr, AlCl3, NaCl, Na acetate, Na2SO4, (NH4)2SO4, Al2SO4 and MgSO4. The first five in the series decrease the elasticity while the last two in the series increase the elasticity of the gels during swelling. Acids and bases in higher concentrations exert a powerful influence on the reduction of the elasticity of the gel but in the range of pH between 2.0 and 10.0 the elasticity remains unaffected. The general conclusions to be drawn from these studies are as follows: 1. Swelling or shrinking produces elastic stresses in gels of gelatin, tensile in the first case and compressive in the second case, both being proportional to the percentage change in the dimensions of the gel. 2. Unsupported gels when immersed in aqueous solutions swell or shrink in such a manner that at equilibrium the percentage change in size is equal in all three dimensions, and the stresses become equalized throughout the gel. 3. Gels cast on glass slides or in frames when immersed in aqueous solutions swell or shrink mostly in one direction, and give rise to unidirectional stresses that can be determined accurately by measuring the double refraction produced. 4. The modulus of elasticity of swelling gelatin gels, as calculated from the double refraction measurements, is the same both for compression and for tension and is proportional to the concentration of gelatin in the gel. 5. The modulus of elasticity of gels during swelling is affected only slightly or not at all by salts at concentrations of less than M/8 and is independent of the pH in the range approximately between 2.0 and 10.0. 6. Higher concentrations of salts affect the modulus of elasticity of gelatin gels and the salts in their effectiveness may be arranged in a series similar to the known Hoffmeister series. 7. Acid and alkali have a strong reducing influence on the elastic modulus of swelling gels. 8. The swelling produced in isoelectric gelatin by salts is due primarily to a change brought about by the salts in the osmotic forces in the gel, but in high concentrations of some salts the swelling is increased by the influence of the salt on the elasticity of the gel. This agrees completely with the theory of swelling of isoelectric gelatin as developed by Northrop and the writer in former publications. 9. The studies of Loeb and the writer on the effect of salts on swelling of gelatin in acid and alkali have been in the range of concentrations of salts where the modulus of elasticity of the gelatin is practically constant, and the specific effect of the various salts has been negligible as compared with the effect of the valency of the ions. In concentrations of salts below M/4 or M/8 the Hoffmeister series plays no rôle. PMID:19872548
NASA Astrophysics Data System (ADS)
Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.
2011-02-01
Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).
PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL
Moore, R.H.
1964-03-24
A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)
Numerical study on tilting salt finger in a laminar shear flow
NASA Astrophysics Data System (ADS)
Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng
2018-02-01
Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.
Shao, Jinzhen; Zhang, Yubo; Yu, Jianlan; Guo, Lin; Ding, Yi
2011-01-01
Thylakoid membrane complexes of rice (Oryza sativa L.) play crucial roles in growth and crop production. Understanding of protein interactions within the complex would provide new insights into photosynthesis. Here, a new "Double-Strips BN/SDS-PAGE" method was employed to separate thylakoid membrane complexes in order to increase the protein abundance on 2D-gels and to facilitate the identification of hydrophobic transmembrane proteins. A total of 58 protein spots could be observed and subunit constitution of these complexes exhibited on 2D-gels. The generality of this new approach was confirmed using thylakoid membrane from spinach (Spinacia oleracea) and pumpkin (Cucurita spp). Furthermore, the proteins separated from rice thylakoid membrane were identified by the mass spectrometry (MS). The stromal ridge proteins PsaD and PsaE were identified both in the holo- and core- PSI complexes of rice. Using molecular dynamics simulation to explore the recognition mechanism of these subunits, we showed that salt bridge interactions between residues R19 of PsaC and E168 of PasD as well as R75 of PsaC and E91 of PsaD played important roles in the stability of the complex. This stromal ridge subunits interaction was also supported by the subsequent analysis of the binding free energy, the intramolecular distances and the intramolecular energy.
FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS
Moore, R.H.
1960-08-01
A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.
Yuwen, Tairan; Xue, Yi; Skrynnikov, Nikolai R
2016-03-29
In the first part of this work (paper 1, Xue, Y. et al. Biochemistry 2014 , 53 , 6473 ), we have studied the complex between the 10-residue peptide Sos and N-terminal SH3 domain from adaptor protein c-Crk. In the second part (this paper), we designed the double mutant of the c-Crk N-SH3 domain, W169F/Y186L, with the intention to eliminate the interactions responsible for tight peptide-protein binding, while retaining the interactions that create the initial electrostatic encounter complex. The resulting system was characterized experimentally by measuring the backbone and side-chain (15)N relaxation rates, as well as binding shifts and (1)H(N) temperature coefficients. In addition, it was also modeled via a series of ∼5 μs molecular dynamics (MD) simulations recorded in a large water box under an Amber ff99SB*-ILDN force field. Similar to paper 1, we have found that the strength of arginine-aspartate and arginine-glutamate salt bridges is overestimated in the original force field. To address this problem we have applied the empirical force-field correction described in paper 1. Specifically, the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across Arg-to-Asp/Glu salt bridges has been increased by 3%. This modification led to MD models in good agreement with the experimental data. The emerging picture is that of a fuzzy complex, where the peptide "dances" over the surface of the protein, making transient contacts via salt-bridge interactions. Every once in a while the peptide assumes a certain more stable binding pose, assisted by a number of adventitious polar and nonpolar contacts. On the other hand, occasionally Sos flies off the protein surface; it is then guided by electrostatic steering to quickly reconnect with the protein. The dynamic interaction between Sos and the double mutant of c-Crk N-SH3 gives rise to only small binding shifts. The peptide retains a high degree of conformational mobility, although it is appreciably slowed down due to its (loose) association with the protein. Note that spin relaxation data are indispensable in determining the dynamic status of the peptide. Such data can be properly modeled only on a basis of bona fide MD simulations, as shown in our study. We anticipate that in future the field will move away from the ensemble view of protein disorder and toward more sophisticated MD models. This will require further optimization of force fields, aimed specifically at disordered systems. Efforts in this direction have been recently initiated by several research groups; the empirical salt-bridge correction proposed in our work falls in the same category. MD models obtained with the help of suitably refined force fields and guided by experimental NMR data will provide a powerful insight into an intricate world of disordered biomolecules.
NASA Astrophysics Data System (ADS)
Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István
2017-07-01
The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
Oral Sustained Release of a Hydrophilic Drug Using the Lauryl Sulfate Salt/Complex.
Kasashima, Yuuki; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Uchida, Shinya; Namiki, Noriyuki
2016-01-01
The objective of this study was to establish the key factor of the lauryl sulfate (LS) salt/complex for sustained release of a hydrophilic drug at various physiological pH levels. Mirabegron is a hydrophilic drug that exhibits pH-dependent solubility. Sodium lauryl sulfate (SLS) bound to mirabegron in a stoichiometric manner. The formation of the LS salt/complex significantly reduced mirabegron solubility and helped achieve sustained release of mirabegron over a wide range of pH levels. In addition to SLS, other additives containing a sulfate group formed salts/complexes with mirabegron and reduced its solubility at different pH levels. Furthermore, octyl sulfate (OS), myristyl sulfate (MS), and cetyl sulfate (CS) salts/complexes, which contain alkyl chains of different lengths, showed a lower solubility than mirabegron and promoted sustained release of mirabegron. The rank order of solubility and dissolution rate were as follows: OS salt/complex>LS salt/complex>MS salt/complex>CS salt/complex, which corresponded to the rank of alkyl chain lengths. We conclude that the presence of a sulfate group and the length of the alkyl chain are key factors of the LS salt/complex for sustained release of a hydrophilic drug at various physiological pH levels.
Eu2P7X and Ba2As7X (X = Br, I): Chiral double-Zintl salts containing heptapnictotricyclane clusters
NASA Astrophysics Data System (ADS)
Dolyniuk, Juli-Anna; Lee, Shannon; Tran, Nhon; Wang, Jian; Wang, Lin-Lin; Kovnir, Kirill
2018-07-01
Chiral double Zintl salts present tunable crystal structures with enhanced structural flexibilities and potential for applications requiring chiral control and enantioselectivity. To accompany the chiral Sr2P7I and Sr2P7Br double Zintl salts reported by us previously, six new chiral Zintl salts of the form Ba2-ySryAs7I (y = 0, 0.23, 2), Eu2P7I, Eu2P7Br, and Eu1.3Ba0.7P7Br have been synthesized and characterized by single crystal X-ray diffraction and SEM-EDS analyses. All new compounds crystallize in the Sohncke space group P213 (No. 198) with variations of P73- (heptaphosphanortricyclane) or As73- (heptaarsanortricyclane) clusters surrounded by alkaline-earth or Eu cations and halogen anions. Band structure calculations predict semiconducting properties for all synthesized compounds. Diffuse reflectance UV-vis spectroscopy indicates that Eu2P7I is a direct bandgap semiconductor with Eg of 1.7 eV.
Stoner, J.D.
1972-01-01
During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.
Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear
NASA Astrophysics Data System (ADS)
Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor
2010-05-01
Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by the LR mode in the system. KEY WORDS: evolution, saline lake, salt finger convection, wind shear, growth competition, longitudinal rolls, transverse rolls, coupled-mode equations.
Stability of iodine in salt fortified with iodine and iron.
Ranganathan, Srinivasaiyengar; Karmarkar, Madhu G; Krupadanam, Muddepaka; Brahmam, Ginnela N V; Rao, Mendhu Vishnuvardhana; Vijayaraghavan, Kamasamudram; Sivakumar, Bhattriprolu
2007-03-01
Determining the stability of iodine in fortified salt can be difficult under certain conditions. Current methods are sometimes unreliable in the presence of iron. To test the new method to more accurately estimate iodine content in double-fortified salt (DFS) fortified with iodine and iron by using orthophosphoric acid instead of sulfuric acid in the titration procedure. A double-blind, placebo-controlled study was carried out on DFS and iodized salt produced by the dry-mixing method. DFS and iodized salt were packed and sealed in color-coded, 0.5-kg, low-density polyethylene pouches, and 25 of these pouches were further packed and sealed in color-coded, double-lined, high-density polyethylene bags and transported by road in closed, light-protected containers to the International Council for the Control of Iodine Deficiency Disorders (ICCIDD), Delhi; the National Institute of Nutrition (NIN), Hyderabad; and the Orissa Unit of the National Nutrition Monitoring Bureau (NNMB), Bhubaneswar. The iodine content of DFS and iodized salt stored under normal room conditions in these places was measured by the modified method every month on the same prescribed dates during the first 6 months and also after 15 months. The iodine content of DFS and iodized salt stored under simulated household conditions was also measured in the first 3 months. After the color code was broken at the end of the study, it was found that the DFS and iodized salt stored at Bhubaneswar, Delhi, and Hyderabad retained more or less the same initial iodine content (30-40 ppm) during the first 6 months, and the stability was not affected after 15 months. The proportion of salt samples having more than 30 ppm iodine was 100% in DFS and iodized salt throughout the study period. Daily opening and closing of salt pouches under simulated household conditions did not result in any iodine loss. The DFS and iodized salt prepared by the dry-mixing method and stored at normal room conditions had excellent iodine stability for more than 1 year.
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...
NASA Technical Reports Server (NTRS)
Dorward, R. C.; Hasse, K. R.
1978-01-01
A comparison is made between measurements of stress-corrosion crack propagation made by a constant-load procedure and by a constant-deflection procedure. Precracked double cantilever beam specimens from 7075 aluminum alloy plate were used. The specimens were oriented in such a way that cracking would begin in the short-transverse plane and would propagate in the rolling direction. The specimens were subjected to a buffered salt-chromate solution and a 3.6% synthetic sea salt solution. The measurements were made optically with a binocular microscope. Stress intensities and crack lengths were calculated and crack velocities were obtained. Velocity was plotted against the average calculated stress intensity. Good agreement between the two methods was found for the salt-chromate solution, although some descrepancies were noted for the artificial sea salt solution.
Salt bridge as a gatekeeper against partial unfolding.
Hinzman, Mark W; Essex, Morgan E; Park, Chiwook
2016-05-01
Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue
The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verifiedmore » by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.« less
Electrolyte salts for nonaqueous electrolytes
Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai
2012-10-09
Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.
Complex fluids with mobile charge-regulating macro-ions
NASA Astrophysics Data System (ADS)
Markovich, Tomer; Andelman, David; Podgornik, Rudi
2017-10-01
We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.
Rheology of polyelectrolyte complex materials
NASA Astrophysics Data System (ADS)
Tirrell, Matthew
Fluid polyelectrolyte complexes, sometimes known as complex coacervates, have rheological properties that are very sensitive to structure and salt concentration. Dynamic moduli of such viscoelastic materials very many orders of magnitude between solutions of no added salt to of order tenth molar salt, typical, for example of physiological saline. Indeed, salt plays a role in the rheology of complex coacervates analogous to that which temperature plays on polymer melts, leading to an empirical observation of what may be termed time-salt or frequency salt superposition. Block copolymers containing complexing ionic blocks also exhibit strong salt sensitivity of their rheological properties. Data representing these phenomena will be presented and discussed. Support from NIST, Department of Commerce, via the Center for Hierarchical Materials Design at Northwestern University and the University of Chicago is gratefully acknowledged.
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P
2003-03-24
The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).
Code of Federal Regulations, 2014 CFR
2014-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2012 CFR
2012-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2013 CFR
2013-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2011 CFR
2011-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
NASA Astrophysics Data System (ADS)
Rajamathi, Jacqueline T.; Ravishankar, N.; Rajamathi, Michael
2005-02-01
Surfactant anion intercalated nickel-zinc and cobalt-zinc layered hydroxy double salts were prepared through a modified acetate hydrolysis route. These organo-inorganic hybrids delaminate readily in alcohols such as 1-butanol to give stable translucent colloids. The extent of delamination and the stability of the colloids obtained are comparable to what has been observed in the case of layered double hydroxides (LDHs). The original layered solid could be obtained either by evaporation of the colloid or precipitation by the addition of a polar solvent such as acetone.
NASA Astrophysics Data System (ADS)
Kulkarni, S. P.; Garg, A. N.
Gamma ray induced decomposition of two series of double nitrates; 2M INO 3⋯Ln(NO 3) 3⋯ x H 2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3M II(NO 3) 2·2Ln III(NO 3) 3⋯24H 2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO -2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH +4 < Rb + ≅ Cs + < Na + < K + and those of cerium NH +4 < Rb +
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
Xiao, Xian; He, Qiang-Hua; Yu, Li-Yan; Wang, Song-Qing; Li, Yang; Yang, Hua; Zhang, Ai-Hua; Ma, Xiao-Hong; Peng, Yu-Jie; Chen, Bing
2017-02-01
The PTP non-receptor type 4 (PTPN4) is an important regulator protein in learning, spatial memory and cerebellar synaptic plasticity; targeting the PDZ domain of PTPN4 has become as attractive therapeutic strategy for human neuroglioma. Here, we systematically examined the complex crystal structures of PTPN4 PDZ domain with its known peptide ligands; a number of charged amino acid residues were identified in these ligands and in the peptide-binding pocket of PDZ domain, which can constitute a complicated salt-bridge network across the complex interface. Molecular dynamics (MD) simulations, binding free energy calculations and continuum model analysis revealed that the electrostatic effect plays a predominant role in domain-peptide binding, while other noncovalent interactions such as hydrogen bonds and hydrophobic forces are also responsible for the binding. The computational findings were then used to guide structure-based optimization of the interfacial salt-bridge network. Consequently, five peptides were rationally designed using the high-affinity binder Cyto8-RETEV (RETEV -COOH ) as template, including four single-point mutants (i.e. Cyto8-mtxe 0 : RETEE -COOH , Cyto8-mtxd -1 : RETDV -COOH , Cyto8-mtxd -3 : RDTEV -COOH and Cyto8-mtxk -4 : KETEV -COOH ) and one double-point mutant (i.e. Cyto8-mtxd -1 k -4 : KETDV -COOH ). Binding assays confirmed that three (Cyto8-mtxd -1 , Cyto8-mtxk -4 and Cyto8-mtxd -1 k -4 ) out of the five designed peptides exhibit moderately or considerably increased affinity as compared to the native peptide Cyto8-RETEV. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced oxidation of acridine orange by aqueous alkaline iodine.
Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum
2016-11-01
The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.
Ink composition for making a conductive silver structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Steven B.; Lewis, Jennifer A.
An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in themore » ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.« less
IUPAC-NIST Solubility Data Series. 104. Lithium Sulfate and its Double Salts in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Sohr, Julia; Voigt, Wolfgang; Zeng, Dewen
2017-06-01
The solubility data for lithium sulfate and its double salts in water are reviewed. Where appropriate, binary, ternary, and multicomponent systems are critically evaluated. The best values were selected on basis of these evaluations and presented in tabular form. Fitting equations and plots are provided. The quantities, units, and symbols used are in accord with IUPAC recommendations. The original data have been reported and, if necessary, transferred into the units and symbols recommended by IUPAC. The literature on solubility data is covered up to the end of 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Simon T.; Lamb, H. Henry
The double complex salt [Pd(NH3)4](ReO4)2 was employed as precursor of supported bimetallic catalysts for selective hydrogenation of furfural. Direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 in flowing H2 at 400 °C yields bimetallic nanoparticles 1–2 nm in size that exhibit significant interaction between the metals, as evidenced by temperature-programmed hydride decomposition (complete suppression of β-PdHx formation), extended X-ray absorption fine structure spectroscopy at the Pd K and Re LIII edges (PdRe distance = 2.72 Å), and scanning transmission electron microscopy with energy dispersive X-ray analysis. In contrast, calcination of [Pd(NH3)4](ReO4)2 on γ-Al2O3 at 350 °C in air and subsequent reduction inmore » H2 at 400 °C results in metal segregation and formation of large (>50 nm) supported Pd particles; Re species cover the Pd particles and γ-Al2O3 support. A PdRe 1:2 catalyst prepared by sequential impregnation and calcination using HReO4 and [Pd(NH3)4](NO3)2 has a similar morphology. The catalyst derived by direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 exhibits remarkably high activity for selective hydrogenation of furfural to furfuryl alcohol (FAL) at 150 °C and 1 atm. Suppression of H2 chemisorption via elimination of Pd threefold sites, as evidenced by CO diffuse-reflectance infrared Fourier transform spectroscopy, correlates with increased FAL selectivity.« less
USDA-ARS?s Scientific Manuscript database
Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...
Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica
NASA Astrophysics Data System (ADS)
Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.
The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.
NASA Astrophysics Data System (ADS)
Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing
2015-02-01
A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.
NASA Technical Reports Server (NTRS)
Kanwischer, H.; Tamme, R.
1985-01-01
Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.
NASA Astrophysics Data System (ADS)
Rajib, Basu; C. Layek, G.
2013-05-01
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy—Rayleigh number depends on cross-diffusive parameters at marginally stationary convection, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy—Rayleigh number increases with increasing value of the solutal Darcy—Rayleigh number in the absence of cross-diffusive parameters. The critical Darcy—Rayleigh number decreases with increasing Soret number, resulting in destabilization of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.
Pan, Wen-Harn; Lai, Ying-Ho; Yeh, Wen-Ting; Chen, Jiunn-Rong; Jeng, Jiann-Shing; Bai, Chyi-Huey; Lin, Ruey-Tay; Lee, Tsong-Hai; Chang, Ku-Chou; Lin, Huey-Juan; Hsiao, Chin-Fu; Chern, Chang-Ming; Lien, Li-Ming; Liu, Chung-Hsiang; Chen, Wei-Hung; Chang, Anna
2017-11-01
Background: Stroke is one of the leading causes of mortality and neurologic deficits. Management measures to improve neurologic outcomes are in great need. Our previous intervention trial in elderly subjects successfully used salt as a carrier for potassium, demonstrating a 41% reduction in cardiovascular mortality by switching to potassium-enriched salt. Dietary magnesium has been associated with lowered diabetes and/or stroke risk in humans and with neuroprotection in animals. Objective: Because a large proportion of Taiwanese individuals are in marginal deficiency states for potassium and for magnesium and salt is a good carrier for minerals, it is justifiable to study whether further enriching salt with magnesium at an amount near the Dietary Reference Intake (DRI) amount may provide additional benefit for stroke recovery. Design: This was a double-blind, randomized controlled trial comprising 291 discharged stroke patients with modified Rankin scale (mRS) ≤4. There were 3 arms: 1 ) regular salt (Na salt) ( n = 99), 2 ) potassium-enriched salt (K salt) ( n = 97), and 3 ) potassium- and magnesium-enriched salt (K/Mg salt) ( n = 95). The NIH Stroke Scale (NIHSS), Barthel Index (BI), and mRS were evaluated at discharge, at 3 mo, and at 6 mo. A good neurologic performance was defined by NIHSS = 0, BI = 100, and mRS ≤1. Results: After the 6-mo intervention, the proportion of patients with good neurologic performance increased in a greater magnitude in the K/Mg salt group than in the K salt group and the Na salt group, in that order. The K/Mg salt group had a significantly increased OR (2.25; 95% CI: 1.09, 4.67) of achieving good neurologic performance compared with the Na salt group. But the effect of K salt alone (OR: 1.58; 95% CI: 0.77, 3.22) was not significant. Conclusions: This study suggests that providing the DRI amount of magnesium and potassium together long term is beneficial for stroke patient recovery from neurologic deficits. This trial was registered at clinicaltrials.gov as NCT02910427. © 2017 American Society for Nutrition.
Fares, Souha A; Habib, Joseph R; Engoren, Milo C; Badr, Kamal F; Habib, Robert H
2016-06-01
Blood pressure exhibits substantial short- and long-term variability (BPV). We assessed the hypothesis that the complexity of beat-to-beat BPV will be differentially altered in salt-sensitive hypertensive Dahl rats (SS) versus rats protected from salt-induced hypertension (SSBN13) maintained on high-salt versus low-salt diet. Beat-to-beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short- and long-range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high-salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt-sensitive and -protected rats exhibited similar complexity indices on low-salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt-protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low-salt diet coupled with similar BPV dynamics suggest a protective role of low-salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Inorganic bromine in organic molecular crystals: Database survey and four case studies
NASA Astrophysics Data System (ADS)
Nemec, Vinko; Lisac, Katarina; Stilinović, Vladimir; Cinčić, Dominik
2017-01-01
We present a Cambridge Structural Database and experimental study of multicomponent molecular crystals containing bromine. The CSD study covers supramolecular behaviour of bromide and tribromide anions as well as halogen bonded dibromine molecules in crystal structures of organic salts and cocrystals, and a study of the geometries and complexities in polybromide anion systems. In addition, we present four case studies of organic structures with bromide, tribromide and polybromide anions as well as the neutral dibromine molecule. These include the first observed crystal with diprotonated phenazine, a double salt of phenazinium bromide and tribromide, a cocrystal of 4-methoxypyridine with the neutral dibromine molecule as a halogen bond donor, as well as bis(4-methoxypyridine)bromonium polybromide. Structural features of the four case studies are in the most part consistent with the statistically prevalent behaviour indicated by the CSD study for given bromine species, although they do exhibit some unorthodox structural features and in that indicate possible supramolecular causes for aberrations from the statistically most abundant (and presumably most favourable) geometries.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Dimic-Misic, Katarina; Hummel, Michael; Paltakari, Jouni; Sixta, Herbert; Maloney, Thad; Gane, Patrick
2015-05-15
Suspensions of mineral pigment and cellulose fibrillar derivatives are materials regularly found in the forest products industries, particularly in paper and board production. Many manufacturing processes, including forming and coating employ flow geometries incorporating extensional flow. Traditionally, colloidal mineral pigment suspensions have been considered to show little to no non-linear behaviour in extensional viscosity. Additionally, recently, nanofibrillar materials, such as microfibrillar (MFC) and nanofibrillar cellulose (NFC), collectively termed MNFC, have been confirmed by their failure to follow the Cox-Merz rule to behave more as particulate material rather than showing polymeric rheological properties when dispersed in water. Such suspensions and their mixtures are currently intensively investigated to enable them to generate likely enhanced composite material properties. The processes frequently involve exposure to increasing levels of ionic strength, coming either from the weak solubility of pigments, such as calcium carbonate, or retained salts arising from the feed fibre source processing. By taking the simple case of polyacrylate stabilised calcium carbonate suspension and comparing the extensional viscosity as a function of post extension capillary-induced Hencky strain on a CaBER extensional rheometer over a range of increasing salt concentration, it has been shown that the regime of constriction changes as the classic DLVO double layer is progressively suppressed. This change is seen to lead to a characteristic double (bimodal) measured viscosity response for flocculated systems. With this novel characteristic established, more complex mixed suspensions of calcium carbonate, clay and MNFC have been studied, and the effects of fibrils versus flocculation identified and where possible separated. This technique is suggested to enable a better understanding of the origin of viscoelasticity in these important emerging water-based suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Department of Amplification: The Perpetual Salt Fountain.
ERIC Educational Resources Information Center
Arons, Arnold B.
1995-01-01
Presents the story of "The Perpetual Salt Fountain" to illustrate some fairly typical ramifications and vagaries in the workings of science. Outlines the discovery of double diffusive convection and uses the fact that it had been observed in the laboratory a century before its independent rediscovery to emphasize the vagaries of…
Tachikawa, Naoki; Yamauchi, Kento; Takashima, Eriko; Park, Jun-Woo; Dokko, Kaoru; Watanabe, Masayoshi
2011-07-28
Electrochemical reactions of sulfur supported on three-dimensionally ordered macroporous carbon in glyme-Li salt molten complex electrolytes exhibit good reversibility and large capacity based on the mass of sulfur, which suggests that glyme-Li salt molten complexes are suitable electrolytes for Li-S batteries.
Water transport and desalination through double-layer graphyne membranes.
Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah
2018-05-16
Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.
Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.
Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D
2010-01-01
Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.
Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A
2016-06-01
The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. © 2016 American Heart Association, Inc.
Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher
2013-01-01
The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.
Oral sustained-release suspension based on a lauryl sulfate salt/complex.
Kasashima, Yuuki; Uchida, Shinya; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Namiki, Noriyuki
2016-12-30
The objective of this study was to evaluate the feasibility of lauryl sulfate (LS) salt/complex as a novel carrier in oral sustained-release suspensions. Mirabegron, which has a pH-dependent solubility, was selected as the model drug. Sodium lauryl sulfate (SLS) was bound to mirabegron in a stoichiometric manner to form an LS salt/complex. LS salt/complex formulation significantly reduced the solubility of mirabegron and helped mirabegron achieve sustained-release over a wide range of pH conditions. Microparticles containing the LS salt/complex were prepared by spray drying with the aqueous dispersion of ethylcellulose (Aquacoat ® ECD). The diameter of the microparticles was less than 200μm, which will help avoid a gritty taste. In vitro results indicated the microparticles had slower dissolution profiles than the LS salt/complex. The dissolution rate could be controlled flexibly by changing the amount of Aquacoat ® ECD. The microparticle suspension retained the desired sustained-release property and dissolution profile after being stored for 30days at 40°C. In addition, the suspension displayed sustained-release behavior in dogs without a pronounced C max peak, which will help prevent side effects. These results suggest that microparticles containing LS salt/complex may be useful as a novel sustained-release suspension for oral delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural properties of scandium inorganic salts
Sears, Jeremiah M.; Boyle, Timothy J.
2016-12-16
Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.
ERIC Educational Resources Information Center
Kay, Gary G.; Michaels, M. Alex; Pakull, Barton
2009-01-01
Background: Psychostimulant treatment may improve simulated driving performance in young adults with attention-deficit/hyperactivity disorder (ADHD). Method: This was a randomized, double-blind, placebo-controlled, crossover study of simulated driving performance with mixed amphetamine salts--extended release (MAS XR) 50 mg/day (Cohort 1) and…
Role of Rayleigh numbers on characteristics of double diffusive salt fingers
NASA Astrophysics Data System (ADS)
Rehman, F.; Singh, O. P.
2018-05-01
Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.
Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos
2018-08-15
This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Europa's Ice-Ocean Interface
NASA Astrophysics Data System (ADS)
Elsenousy, A.; Vance, S.; Bills, B. G.
2014-12-01
This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.
A general access to organogold(iii) complexes by oxidative addition of diazonium salts.
Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K
2016-05-11
At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed.
Fujita, Masahiro; Hiramine, Hayato; Pan, Pengju; Hikima, Takaaki; Maeda, Mizuo
2016-02-02
The thermoresponsive structural transition of poly(N-isopropylacrylamide) (PNIPAAm)-b-DNA copolymers was explored. Molecular assembly of the block copolymers was facilitated by adding salt, and this assembly was not nucleated by the association between DNA strands but by the coil-globule transition of PNIPAAm blocks. Below the lower critical solution temperature (LCST) of PNIPAAm, the copolymer solution remained transparent even at high salt concentrations, regardless of whether DNA was hybridized with its complementary partner to form a double-strand (or single-strand) structure. At the LCST, the hybridized copolymer assembled in spherical nanoparticles, surrounded by double-stranded DNA; subsequently, the non-cross-linking aggregation occurred, while the nanoparticles were dispersed if the salt concentration was low or DNA blocks were unhybridized. When the DNA duplex was denatured to a single-stranded state by heating, the aggregated nanoparticles redispersed owing to the recovery of the steric repulsion of the DNA strands. The changes in the steric and electrostatic effects by hybridization and the addition of salt did not result in any specific attraction between DNA strands but merely decreased the repulsive interactions. The van der Waals attraction between the nanoparticles overcame such repulsive interactions so that the non-cross-linking aggregation of the micellar particles was mediated.
van der Waal, Suzette V; Jiang, Lei-Meng; de Soet, Johannes J; van der Sluis, Lucas W M; Wesselink, Paul R; Crielaard, Wim
2012-10-01
Incomplete disinfection of the root canal system is a major cause of post-treatment disease. This study aimed to investigate the disinfecting property of organic acid salts and sodium chloride (NaCl), in a double-hurdle strategy, on Enterococcus faecalis biofilms. First of all, the high-throughput resazurin metabolism assay (RMA) was used to test a range of organic acid salts. Then, to gain more insight into the efficacy of sorbate salt solutions, 48-h E. faecalis biofilms were evaluated in colony-forming unit (CFU) assays. Chlorhexidine (CHX) and calcium hydroxide [Ca(OH)(2) ] were tested in parallel as controls. Sorbate salt produced the largest and most significant reduction of fluorescence intensity in the RMA assay. Neither NaCl nor potassium sorbate (KS) alone induced a clinically relevant reduction of CFU counts after 1 h. Surprisingly, the combination of the two in a single solution had a synergistic effect on the inactivation of E. faecalis. Potassium sorbate amplified the efficacy of NaCl. Of the salts tested, NaCl with KS eradicated E. faecalis biofilms within 1 h. This study showed that the double-hurdle strategy indeed leads to synergistic efficacy and is a possible next step in the complete disinfection of endodontic infections. © 2012 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Xin, Ling-Yun; Liu, Guang-Zhen; Wang, Li-Ya
2011-06-01
The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2O)] n(1), [Zn(PHDA)(BPP)] n(2), and [Cu 2(PHDA) 2(BPP)] n(3) (H 2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 86 68 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.
Reversible interconversion between a nitrido complex of Os(VI) and an ammino complex of osmium(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipes, D.W.; Bakir, M.; Vitols, S.E.
1990-07-04
The reaction between (N(n-Bu){sub 4})(Os(N)(X){sub 4}) (X = Cl, Br) and 2,2{prime}:6{prime},2{double prime}-terpyridine (tpy) in acetone under reflux gave the salts (Os(N)(typ)(X){sub 2})X. The X-ray crystal structure of (Os(N)(tpy)(Cl){sub 2})Cl showed that the chloride ligands occupy mutually trans axial positions relative to the nitrido ligand. Reduction potentials were measured or estimated at pH = 3 for the intermediate Os(VI/V), Os(V/IV), Os(IV/III), and Os(III/II) couples. From those measurements, it was shown that the Os(V) intermediate, (Os{sup V}(N)(tpy)(Cl){sub 2}), is both a powerful oxidant and a strong reductant, highly unstable with respect to disproportionation into Os(VI) and Os(IV).
NASA Astrophysics Data System (ADS)
Arya, Anil; Sharma, A. L.
2018-01-01
Free-standing solid polymer nanocomposite (PEO-PVC) + LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5 × 10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion = 0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a rechargeable lithium-ion battery system.
Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion
NASA Technical Reports Server (NTRS)
Chen, Chuan F.; Chan, Cho Lik
1996-01-01
Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.
Xue, Yi; Yuwen, Tairan; Zhu, Fangqiang; Skrynnikov, Nikolai R
2014-10-21
Intrinsically disordered proteins (IDPs) often rely on electrostatic interactions to bind their structured targets. To obtain insight into the mechanism of formation of the electrostatic encounter complex, we investigated the binding of the peptide Sos (PPPVPPRRRR), which serves as a minimal model for an IDP, to the c-Crk N-terminal SH3 domain. Initially, we measured ¹⁵N relaxation rates at two magnetic field strengths and determined the binding shifts for the complex of Sos with wild-type SH3. We have also recorded a 3 μs molecular dynamics (MD) trajectory of this complex using the Amber ff99SB*-ILDN force field. The comparison of the experimental and simulated data shows that MD simulation consistently overestimates the strength of salt bridge interactions at the binding interface. The series of simulations using other advanced force fields also failed to produce any satisfactory results. To address this issue, we have devised an empirical correction to the Amber ff99SB*-ILDN force field whereby the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across the Arg-to-Asp and Arg-to-Glu salt bridges has been increased by 3%. Implementing this correction resulted in a good agreement between the simulations and the experiment. Adjusting the strength of salt bridge interactions removed a certain amount of strain contained in the original MD model, thus improving the binding of the hydrophobic N-terminal portion of the peptide. The arginine-rich C-terminal portion of the peptide, freed from the effect of the overstabilized salt bridges, was found to interconvert more rapidly between its multiple conformational states. The modified MD protocol has also been successfully used to simulate the entire binding process. In doing so, the peptide was initially placed high above the protein surface. It then arrived at the correct bound pose within ∼2 Å of the crystallographic coordinates. This simulation allowed us to analyze the details of the dynamic binding intermediate, i.e., the electrostatic encounter complex. However, an experimental characterization of this transient, weakly populated state remains out of reach. To overcome this problem, we designed the double mutant of c-Crk N-SH3 in which mutations Y186L and W169F abrogate tight Sos binding and shift the equilibrium toward the intermediate state resembling the electrostatic encounter complex. The results of the combined NMR and MD study of this engineered system will be reported in the next part of this paper.
Strongly nonlinear dynamics of electrolytes in large ac voltages.
Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik
2010-07-01
We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.
COMPLEX EVOLUTION OF BILE SALTS IN BIRDS
Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.
2010-01-01
Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274
NASA Astrophysics Data System (ADS)
You, Yuzhu
2002-11-01
The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the consequence of the intrusive equatorward flow of upper Circumpolar Deep Water, which carries with it the minimum temperature and very low salinity overlying warm, salty uNADW.
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
NASA Astrophysics Data System (ADS)
Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin
2018-03-01
Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.
Braun, Y; Hassidim, M; Lerner, H R; Reinhold, L
1986-08-01
Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H(+)-translocating Mg(2+)-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN(-) accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H(+)-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN(-) accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN(-) accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO(3) (-) inhibition was observed.
Studies on H+-Translocating ATPases in Plants of Varying Resistance to Salinity 1
Braun, Yael; Hassidim, Miriam; Lerner, Henri R.; Reinhold, Leonora
1986-01-01
Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H+-translocating Mg2+-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN− accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H+-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN− accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN− accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO3− inhibition was observed. Images Fig. 3 PMID:16664942
Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini
2016-08-01
To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.
Reinecke's Salt Revisited. An Undergraduate Project Involving an Unknown Metal Complex.
ERIC Educational Resources Information Center
Searle, Graeme H.; And Others
1989-01-01
Describes 10 experiments for characterizing the chromium complex Reinecke's Salt. The properties of the complex, experimental procedures, and a discussion are provided. Analyses are presented for chromium, total ammonia, thiocyanate, ammonium ion, and hydrate water. Measurement methods are described. (YP)
Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System
NASA Astrophysics Data System (ADS)
Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki
1988-01-01
This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.
The effect of social class on the amount of salt intake in patients with hypertension.
Mazloomy Mahmoodabad, Seyed Saeed; Tehrani, Hadi; Gholian-Aval, Mahdi; Gholami, Hasan; Nematy, Mohsen
2016-12-01
Reducing salt intake is a factor related to life style which can influence the prevention of blood pressure. This study was conducted to assess the impact of social class on the amount of salt intake in patients with hypertension in Iran. This was an observational on the intake of salt, as estimated by Kawasaki formula in a sample from Iranian population, stratified for social background characteristics. The finding in general was that the estimated salt intake was somewhat higher in subjects from a lower social background, while the opposite was true for lipid levels (LDL and HDL cholesterol). There was also a significant correlation between salt intake and the level of systolic blood pressure, but not the level of diastolic blood pressure. Considering high salt intake (almost double the standard amount in Iran), especially in patients with low-social class and the effects of salt on human health, it is suggested to design and perform suitable educational programs based on theories and models of health education in order to reduce salt intake.
Verser, Dan W.; Eggeman, Timothy J.
2009-10-13
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO
2011-11-01
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Volatile organic compound sensing devices
Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.
1995-08-29
Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.
Volatile organic compound sensing devices
Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.
1995-01-01
Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.
ERIC Educational Resources Information Center
Faraone, Stephen V.; Wigal, Sharon B.; Hodgkins, Paul
2007-01-01
Objective: Compare observed and forecasted efficacy of mixed amphetamine salts extended release (MAS-XR; Adderall) with atomoxetine (Strattera) in ADHD children. Method: The authors analyze data from a randomized, double-blind, multicenter, parallel-group, forced-dose-escalation laboratory school study of children ages 6 to 12 with ADHD combined…
Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong
2017-07-31
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
Relative permittivity in the electrical double layer from nonlinear optics
NASA Astrophysics Data System (ADS)
Boamah, Mavis D.; Ohno, Paul E.; Geiger, Franz M.; Eisenthal, Kenneth B.
2018-06-01
Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11 ¯ 02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.
Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi
2005-01-01
Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.
Low Temperature Double-Layer Capacitors Using Asymmetric and Spiro-Type Quaternary Ammonium Salts
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Brandon, Erik J. (Inventor); West, William C. (Inventor)
2014-01-01
Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -80.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1')-bipyrrolidium tetrafluoroborate (SBPBF.sub.4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.
Izod, Keith; Bowman, Lyndsey J; Wills, Corinne; Clegg, William; Harrington, Ross W
2009-05-07
A straightforward Peterson olefination reaction between either [{(Me(2)PhSi)(3)C}Li(THF)] or in situ-generated [(Me(3)Si)(2){Ph(2)P(BH(3))}CLi(THF)(n)] and paraformaldehyde gives the alkenes (Me(2)PhSi)(2)C[double bond, length as m-dash]CH(2) () and (Me(3)Si){Ph(2)P(BH(3))}C[double bond, length as m-dash]CH(2) (), respectively, in good yield. Ultrasonic treatment of with lithium in THF yields the lithium complex [{(Me(2)PhSi)(2)C(CH(2))}Li(THF)(n)](2) (), which reacts in situ with one equivalent of KOBu(t) in diethyl ether to give the potassium salt [{(Me(2)PhSi)(2)C(CH(2))}K(THF)](2) (). Similarly, ultrasonic treatment of with lithium in THF yields the lithium complex [[{Ph(2)P(BH(3))}(Me(3)Si)C(CH(2))]Li(THF)(3)](2).2THF (). The bis(phosphine-borane) [(Me(3)Si){Me(2)(H(3)B)P}CH(Me(2)Si)(CH(2))](2) () may be prepared by the reaction of [Me(2)P(BH(3))CH(SiMe(3))]Li with half an equivalent of ClSiMe(2)CH(2)CH(2)SiMe(2)Cl in refluxing THF. Metalation of with two equivalents of MeLi in refluxing THF yields the lithium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}]Li(THF)(3)](2) (), whereas metalation with two equivalents of MeK in cold diethyl ether yields the potassium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}](2)K(2)(THF)(4)](infinity) () after recrystallisation. X-Ray crystallography shows that, whereas the lithium complex crystallises as a discrete molecular species, the potassium complexes and crystallise as sheet and chain polymers, respectively.
Tracer adsorption in sand-tank experiments of saltwater up-coning
NASA Astrophysics Data System (ADS)
Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.
2012-01-01
SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.
Sediment-water partitioning of inorganic mercury in estuaries.
Turner, A; Millward, G E; Le Roux, S M
2001-12-01
The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter.
Andrews, Casey T; Campbell, Brady A; Elcock, Adrian H
2017-04-11
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Starch-lipid inclusion complexes for aerogel formation
USDA-ARS?s Scientific Manuscript database
Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...
Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes
USDA-ARS?s Scientific Manuscript database
Amylose inclusion complexes were prepared from high amylose corn starch and the HCl salts of hexadecylamine and octadecylamine. Solutions of the complexes were applied to paper at concentrations of 2-4%. After the treated papers were dried, sodium hydroxide solution was applied to convert the adsorb...
Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia
2010-12-01
Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.
Baldys, Stanley; Schalla, Frank E.
2012-01-01
Streamflow was measured at 66 sites from June 6–9, 2010, and at 68 sites from October 16–19, 2010, to identify reaches in the upper Brazos River Basin that were gaining or losing streamflow. Gaining reaches were identified in each of the five subbasins. The gaining reach in the Salt Fork Brazos River Basin began at USGS streamflow-gaging station 08080940 Salt Fork Brazos River at State Highway 208 near Clairemont, Tex. (site SF–6), upstream from where Duck Creek flows into the Salt Fork Brazos River and continued downstream past USGS streamflow-gaging station 08082000 Salt Fork Brazos River near Aspermont, Tex. (site SF–9), to the outlet of the basin. In the Double Mountain Fork Brazos River Basin, a gaining reach from near Post, Tex., downstream to the outlet of the basin was identified. Two gaining reaches were identified in the Clear Fork Brazos River Basin—one from near Roby, Tex., downstream to near Noodle, Tex., and second from Hawley, Tex., downstream to Nugent, Tex. Most of the North Bosque River was characterized as gaining streamflow. Streamflow gains were identified in the main stem of the Brazos River from where the Brazos River main stem forms at the confluence of the Salt Fork Brazos River and Double Mountain Fork Brazos River near Knox City, Tex., downstream to near Seymour, Tex.
Fabrication of transparent ceramics using nanoparticles
Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A
2012-09-18
A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.
Li, Qiang; Cui, Yuanting; Jin, Rongbing; Lang, Hongmei; Yu, Hao; Sun, Fang; He, Chengkang; Ma, Tianyi; Li, Yingsha; Zhou, Xunmei; Liu, Daoyan; Jia, Hongbo; Chen, Xiaowei; Zhu, Zhiming
2017-12-01
High salt intake is a major risk factor for hypertension and is associated with cardiovascular events. Most countries exhibit a traditionally high salt intake; thus, identification of an optimal strategy for salt reduction at the population level may have a major impact on public health. In this multicenter, random-order, double-blind observational and interventional study, subjects with a high spice preference had a lower salt intake and blood pressure than subjects who disliked spicy food. The enjoyment of spicy flavor enhanced salt sensitivity and reduced salt preference. Salt intake and salt preference were related to the regional metabolic activity in the insula and orbitofrontal cortex (OFC) of participants. Administration of capsaicin-the major spicy component of chili pepper-enhanced the insula and OFC metabolic activity in response to high-salt stimuli, which reversed the salt intensity-dependent differences in the metabolism of the insula and OFC. In animal study, OFC activity was closely associated with salt preference, and salty-taste information processed in the OFC was affected in the presence of capsaicin. Thus, interventions related to this region may alter the salt preference in mice through fiber fluorometry and optogenetic techniques. In conclusion, enjoyment of spicy foods may significantly reduce individual salt preference, daily salt intake, and blood pressure by modifying the neural processing of salty taste in the brain. Application of spicy flavor may be a promising behavioral intervention for reducing high salt intake and blood pressure. © 2017 American Heart Association, Inc.
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-15
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts
NASA Astrophysics Data System (ADS)
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-01
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.
Groundwater flow cycling between a submarine spring and an inland fresh water spring
Davis, J. Hal; Verdi, Richard
2014-01-01
Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.
The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Sarah; Li, Yue; Priftis, Dimitrios
2014-06-01
Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less
Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra
2017-10-15
Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.
Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z
2012-02-09
Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.
Batelli, Giorgia; Verslues, Paul E.; Agius, Fernanda; Qiu, Quansheng; Fujii, Hiroaki; Pan, Songqin; Schumaker, Karen S.; Grillo, Stefania; Zhu, Jian-Kang
2007-01-01
The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance. PMID:17875927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Maity, Ramananda; Tichter, Tim; van der Meer, Margarethe; Sarkar, Biprajit
2015-11-14
Mononuclear Pt(II) and the first dinuclear Pt(II) complexes along with a cyclometalated heterobimetallic Ir(III)/Pd(II) complex bearing mesoionic carbene donor ligands are presented starting from the same bis-triazolium salt. The mononuclear Pt(II) complex possesses a free triazole moiety which is generated from the corresponding triazolium salt through an N-demethylation reaction, whereas the mononuclear Ir(III) complex features an unreacted triazolium unit.
[Reason for dietary salt reduction and potential effect on population health--WHO recommendation].
Kaić-Rak, Antoinette; Pucarin-Cvetković, Jasna; Heim, Inge; Skupnjak, Berislav
2010-05-01
It is well known that reduction of salt results in lowering blood pressure and cardiovascular incidents. Daily salt is double the recommended daily quantity and mainly comes from processed food. The assessment of daily salt intake for Croatia is 12 g/day (WHO recommendation is <5 g/day). The main source of sodium is processed food and food prepared in restaurants (77%), natural content of sodium in food (12%), added salt at table (6%) and prepared meals at home (5%). Reduction of salt by 50% would save nearly 180,000 lives per year in Europe. It is necessary to establish better collaboration with food manufacturers in order to reduce the content of salt in processed food and to achieve appropriate salt intake per day in accordance with the WHO recommendation. Further, it is necessary to encourage food manufacturers to produce food and meals with low or reduced salt content (shops, catering, changes in recipes, offer salt substitutions). This kind of collaboration is based on bilateral interests that can result in positive health effects. One of the most important public health tasks is to educate consumers and to give them choice when buying food. This can be achieved by effective campaigns and social marketing, by ensuring a declaration of salt content on the product, or specially designed signs for food products with low or reduced salt content.
USDA-ARS?s Scientific Manuscript database
In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...
Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms
Majid, Dewan S.A.; Prieto, Minolfa C.; Navar, L Gabriel
2015-01-01
Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic link between chronic salt intake and the development of hypertension. PMID:26028244
Reinheimer, Eric W; Olejniczak, Iwona; Łapiński, Andrzej; Swietlik, Roman; Jeannin, Olivier; Fourmigué, Marc
2010-11-01
Four different cation radical salts are obtained upon electrocrystallization of [Cp(2)W(dmit)] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in the presence of the BF(4)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions. In these formally d(1) cations, the WS(2)C(2) metallacycle is folded along the S···S hinge to different extents in the four salts, an illustration of the noninnocent character of the dithiolate ligand. Structural characteristics and the charge distribution on atoms, for neutral and ionized complexes with various folding angles, were calculated using DFT methods, together with the normal vibrational modes and theoretical Raman spectra. Raman spectra of neutral complex [Cp(2)W(dmit)] and its salts formed with BF(4)(-), AsF(6)(-), PF(6)(-), Br(-), and [Au(CN)(2)](-) anions were measured using the red excitation (λ = 632.8 nm). A correlation between the folding angle of the metallacycle and the Raman spectroscopic properties is analyzed. The bands attributed to the C═C and C-S stretching modes shift toward higher and lower frequencies by about 0.3-0.4 cm(-1) deg(-1), respectively. The solid state structural and magnetic properties of the three salts are analyzed and compared with those of the corresponding molybdenum complexes. Temperature dependence of the magnetic susceptibility shows the presence of one-dimensional antiferromagnetic interactions in the BF(4)(-), PF(6)(-), and [Au(CN)(2)](-) salts, while an antiferromagnetic ground state is identified in the Br(-) salt below T(Néel) = 7 K. Interactions are systematically weaker in the tungsten salts than in the isostructural molybdenum analogs, a consequence of the decreased spin density on the dithiolene ligand in the tungsten complexes.
Nielsen, Lise H; Ovesen, Per; Hansen, Mie R; Brantlov, Steven; Jespersen, Bente; Bie, Peter; Jensen, Boye L
2016-11-01
It was hypothesized that primary renal sodium retention blunted the reactivity of the renin-angiotensin-aldosterone system to changes in salt intake in preeclampsia (PE). A randomized, cross-over, double-blinded, dietary intervention design was used to measure the effects of salt tablets or placebo during low-salt diet in PE patients (n = 7), healthy pregnant women (n = 15), and nonpregnant women (n = 13). High-salt intake decreased renin and angiotensin II concentrations significantly in healthy pregnant women (P < .03) and in nonpregnant women (P < .001), but not in PE (P = .58), while decreases in aldosterone and increases in brain natriuretic peptid (BNP) were similar in the groups. In PE patients, uterine and umbilical artery indices were not adversely changed during low-salt diet. Creatinine clearance was significantly lower in PE with no change by salt intake. PE patients displayed alterations of plasma renin and angiotensin II in response to changes in dietary salt intake compatible with a primary increase in renal sodium reabsorption in hypertensive pregnancies. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
2010-01-01
Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates, suggesting that bile salt analysis may have utility in selected paleontological research. PMID:20444292
Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik
2004-11-01
The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.
New layered double hydroxides by prepared by the intercalation of gibbsite
NASA Astrophysics Data System (ADS)
Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.
2015-04-01
New layered double hydroxides (LDHs) with the composition [MAl4(OH)12]Cl2·1.5H2O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH)3, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl2·2H2O and ZnCl2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl4(OH)12](NO3)2·1.5H2O (M=Co, Ni) compounds.
Joo, Hea-Chung; Park, Ki-Min; Lee, Uk
2015-10-01
The title double salt containing two distinct, differently protonated hexa-molybdoplatinate(IV) polyanions, Na6[H5.5 α-PtMo6O24][H4.5 α-PtMo6O24]·29H2O, has been synthesized by a hydro-thermal reaction at ca pH 1.80. The positions of the H atoms in the polyanions were established from difference Fourier maps and confirmed by the inter-polyanion hydrogen bonds, bond-distance elongation, and bond-valence sum (BVS) calculations. The fractional numbers of H atoms in each polyanion are required for charge balance and in order to avoid unrealistically short H⋯H distances in the inter-polyanion hydrogen bonds. Considering the disorder, the refined formula of the title polyanion, {[H5.5 α-PtMo6O24]; polyanion (A) and [H4.5 α-PtMo6O24]; polyanion (B)}(6-), can be rewritten as a set of real formula, viz. {[H6 α-PtMo6O24]; polyanion (A). [H4 α-PtMo6O24]; polyanion (B)}(6-) and {[H5 α-PtMo6O24]; polyanion (A). [H5 α-PtMo6O24]; polyanion (B)}(6-). The polyanion pairs both form dimers of the same formula, viz. {[H10 α-Pt2Mo12O48]}(6-) connected by seven inter-polyanion O-H⋯O hydrogen bonds.
Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys
NASA Astrophysics Data System (ADS)
Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.
2013-03-01
A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.
Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts
NASA Astrophysics Data System (ADS)
Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.
2013-09-01
Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.
NASA Astrophysics Data System (ADS)
Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima
2017-06-01
Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.
Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R
2013-12-02
Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.
Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.
ERIC Educational Resources Information Center
Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.
2003-01-01
Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria
2018-02-28
Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.
Influence of Hydrophobicity on Polyelectrolyte Complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao
Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP)more » with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less
Influence of Hydrophobicity on Polyelectrolyte Complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao
Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less
Influence of Hydrophobicity on Polyelectrolyte Complexation
Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao; ...
2017-11-16
Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Manoj K., E-mail: mmanoj.ssi@gmail.com; Hashmi, S. A.
The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10{sup −3} and 5.9×10{sup −3} S cm{sup −1} for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE.
Extracting renewable energy from a salinity difference using a capacitor.
Brogioli, Doriano
2009-07-31
Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.
Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan
2016-12-22
Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.
76 FR 36571 - Bowdoin National Wildlife Refuge Complex, Malta, MT; Comprehensive Conservation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... fishery due to high salinity levels or shallow water depth. Excluding Holm WPA, the remaining complex is... Thibadeau, and five alternatives for addressing the salinity and blowing salts issue on Bowdoin National... Alternative 2--Divestiture (proposed action). Alternatives for Salinity and Blowing Salts on Bowdoin National...
USDA-ARS?s Scientific Manuscript database
Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...
Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej
2015-01-01
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).
Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej
2015-01-01
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain). PMID:26641889
2013-03-01
24 1. Geography of Great Salt Lake Basin .................................... 24 2. Fog at Salt Lake City...43 1. Moisture in GSL Basin .......................................................... 43 2...imagery over Salt Lake Basin from 1800 UTC 23 January 2009
Sengee, Gerelt-Ireedui; Badraa, Narangerel; Shim, Young K
2008-08-01
We have designed imidazolium and piperazinium salts of pyropheophorbide-a in order to develop effective photosensitizers which have good solubility in polar and non polar media and to reveal the possible influences of the piperazine and imidazole moieties on the biological activities of pyropheophorbide-a. The phototoxicity of those pyropheophorbide-a salts against A549 cells was studied in vitro and compared with that of pyropheophorbide-a. The result showed that complexing piperazine and imidazole into pyropheophorbide-a decreases its dark toxicity without greatly decreasing phototoxicity and, enhances its phototoxicity without greatly increasing dark toxicity, respectively. This work not only describes novel amphiphilic salt complexes of pyropheophobide-a which retain the biological activities of the parent compound pyropheophorbide-a and could be effective candidate for PDT, but also reveals the possibility of developing effective photosensitizers by complexing imidazole and piperazine into other hydrophobic photosensitizers.
Sengee, Gerelt-Ireedui; Badraa, Narangerel; Shim, Young Key
2008-01-01
We have designed imidazolium and piperazinium salts of pyropheophorbide-a in order to develop effective photosensitizers which have good solubility in polar and non polar media and to reveal the possible influences of the piperazine and imidazole moieties on the biological activities of pyropheophorbide-a. The phototoxicity of those pyropheophorbide-a salts against A549 cells was studied in vitro and compared with that of pyropheophorbide-a. The result showed that complexing piperazine and imidazole into pyropheophorbide-a decreases its dark toxicity without greatly decreasing phototoxicity and, enhances its phototoxicity without greatly increasing dark toxicity, respectively. This work not only describes novel amphiphilic salt complexes of pyropheophobide-a which retain the biological activities of the parent compound pyropheophorbide-a and could be effective candidate for PDT, but also reveals the possibility of developing effective photosensitizers by complexing imidazole and piperazine into other hydrophobic photosensitizers. PMID:19325811
Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents
Jones, Alun G.; Davison, Alan; Abrams, Michael J.
1987-01-01
A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.
Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.
Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu
2016-04-19
The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein-polyelectrolyte systems. Hence, the present protein-PEGylated poly(amino acid) mixture provides an ideal water-soluble model system to study the important role of electrostatic interaction in the complexation between proteins and polymers, leading to important new knowledge on the protein-polymer interactions. Moreover, the polyelectrolyte complex micelle formed between protein and PEGylated polymer may provide a good drug delivery vehicle for therapeutic proteins.
García-Guerrero, Estefanía; Pérez-Simón, José Antonio; Sánchez-Abarca, Luis Ignacio; Díaz-Moreno, Irene; De la Rosa, Miguel A; Díaz-Quintana, Antonio
2016-01-01
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
NASA Astrophysics Data System (ADS)
Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.
2000-10-01
The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.
NASA Astrophysics Data System (ADS)
Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan
2014-03-01
We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.
Physics of soft hyaluronic acid-collagen type II double network gels
NASA Astrophysics Data System (ADS)
Morozova, Svetlana; Muthukumar, Murugappan
2015-03-01
Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.
Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S
2016-12-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
NASA Astrophysics Data System (ADS)
Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.
2016-02-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
Alkorta, Ibon; Montero-Campillo, M Merced; Elguero, José; Yáñez, Manuel; Mó, Otilia
2018-06-05
Accurate ab initio calculations reveal that oxyacid beryllium salts yield rather stable complexes with dihydrogen. The binding energies range between -40 and -60 kJ mol-1 for 1 : 1 complexes, remarkably larger than others previously reported for neutral H2 complexes. The second H2 molecule in 1 : 2 complexes is again strongly bound (between -18 and -20 kJ mol-1). The incoming H2 molecules in 1 : n complexes (n = 3-6) are more weakly bound, confirming the preference of Be for tetracoordinated arrangements.
Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.
Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran
2017-08-15
Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Liang, Wuu-Jyh; Chen, Ying-Pin; Wu, Chien-Pang; Kuo, Ping-Lin
2005-12-29
The chemical-covalent polyether-siloxane hybrids (EDS) doped with various amounts of LiClO4 salt were characterized by FT-IR, DSC, TGA, and solid-state NMR spectra as well as impedance measurements. These observations indicate that different types of complexes by the interactions of Li+ and ClO4- ions are formed within the hybrid host, and the formation of transient cross-links between Li+ ions and ether oxygens results in the increase in T(g) of polyether segments and the decrease in thermal stability of hybrid electrolyte. Initially a cation complexation dominated by the oxirane-cleaved cross-link site and PEO block is present, and after the salt-doped level of O/Li+ = 20, the complexation through the PPO block becomes more prominent. Moreover, a significant degree of ionic association is examined in the polymer-salt complexes at higher salt uptakes. A VTF-like temperature dependence of ionic conductivity is observed in all of the investigated salt concentrations, implying that the diffusion of charge carrier is assisted by the segmental motions of the polymer chains. The behavior of ion transport in these hybrid electrolytes is further correlated with the interactions between ions and polymer host.
A simple, dynamic, hydrological model of a mesotidal salt marsh
Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...
Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.
2007-01-01
This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.
Horváth, Gergő; Bencsura, Ákos; Simon, Ágnes; Tochtrop, Gregory P; DeKoster, Gregory T; Covey, Douglas F; Cistola, David P; Toke, Orsolya
2016-02-01
Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3. © 2015 FEBS.
Carbon Dioxide Removal by Salty Aerosols
NASA Astrophysics Data System (ADS)
Gokturk, H.
2016-12-01
Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.
SALT MARSH HABITAT FROM A FISH EYE VIEW: A TEST OF THE DIMENSIONLESS INDEX OF HABITAT COMPLEXITY
Salt marshes are considered important foraging and predator refuge areas for fish, but these functions are rarely measured. The goal of this study was to examine the relationship between the structural complexity of the habitat and fish size in marshes subjected to different wat...
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic oxyacids (generic name). 721.4680 Section 721.4680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...
77 FR 31870 - Final Comprehensive Conservation Plan for the Bowdoin National Wildlife Refuge Complex
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... remaining complex waters do not support a sport fishery due high salinity levels or shallow water depth... addressing the salinity and blowing salts issue on Bowdoin National Wildlife Refuge. The Region 6 Regional... Thibadeau and Alternative 4 for addressing the salinity and blowing salts issue. These preferred...
Tidemand, Kasper D; Schönbeck, Christian; Holm, René; Westh, Peter; Peters, Günther H
2014-09-18
The inclusion complexes of glycoconjugated bile salts with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrins (HP-β-CD) in aqueous solution were investigated by molecular dynamics simulations to provide a molecular explanation of the experimentally observed destabilizing effect of the HP substituents. Good agreement with experimental data was found with respect to penetration depths of CDs. An increased degree of HP substitution (DS) resulted in an increased probability of blocking the cavity opening, thereby hindering the bile salt from entering CD. Further, the residence time of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jong-Ho; Seol, Yongkoo
We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydratemore » turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.« less
Trieu, Kathy; Neal, Bruce; Hawkes, Corinna; Dunford, Elizabeth; Campbell, Norm; Rodriguez-Fernandez, Rodrigo; Legetic, Branka; McLaren, Lindsay; Barberio, Amanda; Webster, Jacqui
2015-01-01
To quantify progress with the initiation of salt reduction strategies around the world in the context of the global target to reduce population salt intake by 30% by 2025. A systematic review of the published and grey literature was supplemented by questionnaires sent to country program leaders. Core characteristics of strategies were extracted and categorised according to a pre-defined framework. A total of 75 countries now have a national salt reduction strategy, more than double the number reported in a similar review done in 2010. The majority of programs are multifaceted and include industry engagement to reformulate products (n = 61), establishment of sodium content targets for foods (39), consumer education (71), front-of-pack labelling schemes (31), taxation on high-salt foods (3) and interventions in public institutions (54). Legislative action related to salt reduction such as mandatory targets, front of pack labelling, food procurement policies and taxation have been implemented in 33 countries. 12 countries have reported reductions in population salt intake, 19 reduced salt content in foods and 6 improvements in consumer knowledge, attitudes or behaviours relating to salt. The large and increasing number of countries with salt reduction strategies in place is encouraging although activity remains limited in low- and middle-income regions. The absence of a consistent approach to implementation highlights uncertainty about the elements most important to success. Rigorous evaluation of ongoing programs and initiation of salt reduction programs, particularly in low- and middle- income countries, will be vital to achieving the targeted 30% reduction in salt intake.
Trieu, Kathy; Neal, Bruce; Hawkes, Corinna; Dunford, Elizabeth; Campbell, Norm; Rodriguez-Fernandez, Rodrigo; Legetic, Branka; McLaren, Lindsay; Barberio, Amanda; Webster, Jacqui
2015-01-01
Objective To quantify progress with the initiation of salt reduction strategies around the world in the context of the global target to reduce population salt intake by 30% by 2025. Methods A systematic review of the published and grey literature was supplemented by questionnaires sent to country program leaders. Core characteristics of strategies were extracted and categorised according to a pre-defined framework. Results A total of 75 countries now have a national salt reduction strategy, more than double the number reported in a similar review done in 2010. The majority of programs are multifaceted and include industry engagement to reformulate products (n = 61), establishment of sodium content targets for foods (39), consumer education (71), front-of-pack labelling schemes (31), taxation on high-salt foods (3) and interventions in public institutions (54). Legislative action related to salt reduction such as mandatory targets, front of pack labelling, food procurement policies and taxation have been implemented in 33 countries. 12 countries have reported reductions in population salt intake, 19 reduced salt content in foods and 6 improvements in consumer knowledge, attitudes or behaviours relating to salt. Conclusion The large and increasing number of countries with salt reduction strategies in place is encouraging although activity remains limited in low- and middle-income regions. The absence of a consistent approach to implementation highlights uncertainty about the elements most important to success. Rigorous evaluation of ongoing programs and initiation of salt reduction programs, particularly in low- and middle- income countries, will be vital to achieving the targeted 30% reduction in salt intake. PMID:26201031
NASA Astrophysics Data System (ADS)
Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali
2018-06-01
Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.
Ghirga, Francesca; D'Acquarica, Ilaria; Delle Monache, Giuliano; Mannina, Luisa; Molinaro, Carmela; Nevola, Laura; Sobolev, Anatoly P; Pierini, Marco; Botta, Bruno
2013-07-19
Resorc[4]arenes 1 and 2, which previously proved to entrap NO(+) cation within their cavities under conditions of host-to-guest excess, were treated with a 10-fold excess of NOBF4 salt in chloroform. Kinetic and spectral UV-visible analyses revealed the formation of isomeric 1:2 complexes as a direct evolution of the previously observed event. Accordingly, three-body 1-(NO(+))2 and 2-(NO(+))2 adducts were built by MM and fully optimized by DFT calculations at the B3LYP/6-31G(d) level of theory. Notably, covalent nitration products 4, 5 and 6, 7 were obtained by reaction of NOBF4 salt with host 1 and 2, respectively, involving macrocycle ring-opening and insertion of a nitro group in one of the four aromatic rings. In particular, compounds 4 and 6, both containing a trans-double bond in the place of the methine bridge, were oxidized to aldehydes 5 and 7, respectively, after addition of water to the reaction mixture. Calculation of the charge and frontier orbitals of the aromatic donor (HOMO) and the NO(+) acceptor (LUMO) clearly suggests an ipso electrophilic attack by a first NO(+) unit on the resorcinol ring, mediated by the second NO(+) unit.
NASA Astrophysics Data System (ADS)
Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali
2017-10-01
Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.
Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu
2014-01-01
Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W
2016-07-12
Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g(-1) in 1 M NaCl at a scan rate of 5 mV·s(-1). Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g(-1).
Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R.; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C.-W.
2016-01-01
Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1. PMID:27404086
NASA Astrophysics Data System (ADS)
Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.
2016-02-01
We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.
Doyle, D A; Wallace, B A
1998-01-01
The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165
Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime
2013-12-19
Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA(-) complexes with the five alkali metal cations are -140.3, -119.4, -104.1, -96.9, and -91.1 kcal/mol, respectively. The induction interactions also contribute to the attraction. In particular, the induction interactions are large in the Li(+) complexes. The induction energies for the five complexes are -46.6, -25.2, -17.5, -13.3, and -10.4 kcal/mol, respectively.
The large scale structures of the Late Permian Zechstein 3 intra-salt stringer, northern Netherlands
NASA Astrophysics Data System (ADS)
van Gent, H.; Strozyk, F.; Urai, J. L.; de Keijzer, M.; Kukla, P. A.
2012-04-01
The three dimensional study of the internal structure of salt structures on the several different scales is of fundamental importance to understand mechanisms of salt tectonics, for intra-salt storage cavern stability, and for drilling in salt-prone petroleum systems with associated problems like borehole instability and overpressured fluids. While most salt-related studies depict salt as structureless bodies, detailed field-, well- and mining gallery mapping have shown an amazing spectrum of brittle, complexly folded, faulted and boudinaged intra-salt layers ("stringers"), but mostly on a very local scale. First detailed insights into these three-dimensionally heterogeneous and very complex structures of the layered evaporites were provided by observations in modern high-resolution 3D seismic data, such as across the Late Permian Zechstein in the Southern Permian Basin (SPB). In the northern Dutch onshore part of the SPB, the Z2 and Z3 halite interface is characterized by the seismically visible reflections of the 30-150 m thick Z3 anhydrite-carbonate layer that clearly resolves the complex intra-salt structure. This stringer shows a high fragmentation into blocks of several tens of meters to kilometres diameter with complexly folded and faulted structures that correlate to the regionally varying deformation stages of the Zechstein, as it is implied by the shape of Top Salt. After an extensive seismic mapping over the entire northern Netherlands, structures observed include an extensive network of thicker zones, inferred to result from early karstification. Later, this template of relatively strong zones was deformed into large scale folds and boudins as the result of salt tectonics. Non-plane-strain salt flow produced complex fold and boudin geometries that overprint each other. There are some indications of a feedback between the early internal evolution of this salt giant and the position of later salt structures. The stringer has a higher density then the surrounding halite, and in the literature there is some controversy concerning the sinking rates of single stringer fragments. We observed no structures indicative of sinking, but conclude that the present-day position of the blocks can be explained by internal folding of the entire salt section. In the end, this study aims at (i) improving the understanding of the development and dynamics of Zechstein halokinesis, (ii) gaining new insights into the 3D internal deformation in salt, and (iii) a linkage of processes in the layered evaporites with the deformation of the enclosing sub- and supra-salt sediments.
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham
2004-03-01
Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.
Formulation and method for preparing gels comprising hydrous aluminum oxide
Collins, Jack L.
2014-06-17
Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.
Formulation and method for preparing gels comprising hydrous cerium oxide
Collins, Jack L; Chi, Anthony
2013-05-07
Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.
USDA-ARS?s Scientific Manuscript database
Water soluble amylose fatty acid and fatty ammonium salt inclusion complexes (AIC) were prepared by jet cooked high amylose corn starch with water soluble salts of long chain fatty acids or fatty amines. The formation of AIC was confirmed by X-ray diffraction of freeze-dried samples. After dissoluti...
Thermal regeneration of an electrochemical concentration cell
Krumpelt, Michael; Bates, John K.
1981-01-01
A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.
Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor
NASA Technical Reports Server (NTRS)
Magill, B. T.; Nauflett, G. W.; Furrow, K. W.
2000-01-01
The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an increased rate of stabilizer depletion occurred in propellants containing monobasic copper salicylate. The study also showed that propellants containing a mixture of bismuth subsalicylate and copper salicylate, had only about one-half the stabilizer depletion rate than those with copper salicylate alone. The copper salicylate catalyzes the decomposition of nitroglycerin, which triggers a chain of events leading to the increased rate of stabilizer depletion. A program has been initiated to coat the ballistic modifier, thus isolating it from the nitroglycerin.
Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN
Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.
2016-01-01
Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277
The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary.
Smith, Joseph A M
2013-01-01
Many sea level rise adaptation plans emphasize the protection of adjacent uplands to allow for inland salt marsh migration, but little empirical information exists on this process. Using aerial photos from 1930 and 2006 of Delaware Estuary coastal habitats in New Jersey, I documented the rate of coastal forest retreat and the rate of inland salt marsh migration across 101.1 km of undeveloped salt marsh and forest ecotone. Over this time, the amount of forest edge at this ecotone nearly doubled. In addition, the average amount of forest retreat was 141.2 m while the amount of salt marsh inland migration was 41.9 m. Variation in forest retreat within the study area was influenced by variation in slope. The lag between the amount of forest retreat and salt marsh migration is accounted for by the presence of Phragmites australis which occupies the forest and salt marsh ecotone. Phragmites expands from this edge into forest dieback areas, and the ability of salt marsh to move inland and displace Phragmites is likely influenced by salinity at both an estuary-wide scale and at the scale of local subwatersheds. Inland movement of salt marsh is lowest at lower salinity areas further away from the mouth of the estuary and closer to local heads of tide. These results allow for better prediction of salt marsh migration in estuarine landscapes and provide guidance for adaptation planners seeking to prioritize those places with the highest likelihood of inland salt marsh migration in the near-term.
Mechanisms of heat and mass transfer across a double-diffusive interface
NASA Astrophysics Data System (ADS)
Ko, B. H.; Smith, K. A.
1984-06-01
Flux measurements in an aqueous two-layer double-diffusive system using heat and NaCl confirmed the existence of a regime in which the ratio of the buoyancy fluxes (BFR) of salt and heat is independent of the stability ratio (R = beta(delta C)/alpha(delta T)). Linear analysis showed that the quiescent system can become unstable to small perturbations even when the lower layer is denser than the upper. If R is large, the most unstable mode presents as an oscillatory, antisymmetric pattern.
NASA Astrophysics Data System (ADS)
Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente
2005-08-01
Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.
Groundwater flow cycling between a submarine spring and an inland fresh water spring.
Davis, J Hal; Verdi, Richard
2014-01-01
Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Salt effects on Origanum majorana fatty acid and essential oil composition.
Baâtour, Olfa; Kaddour, Rym; Mahmoudi, Hela; Tarchoun, Imen; Bettaieb, Iness; Nasri, Nawel; Mrah, Sabah; Hamdaoui, Ghaith; Lachaâl, Mokhtar; Marzouk, Brahim
2011-11-01
The effects of salt on the essential oil yield and fatty acid composition of aerial parts of two marjoram varieties were investigated. Plants with 6 leaves were treated with NaCl (75mM). Salt treatment led to a reduction in aerial part growth. Salinity increased the fatty acid content more significantly in Tunisian variety (TV) than in Canadian variety (CV). CV showed an increase in double-bond index (DBI) and a decrease in malondialdehyde content under salt stress, while the opposite was observed in TV. The DBI was mainly affected by a strong reduction in oleic and linoleic acids in TV, whereas a strong stimulation of linoleic acid in CV was observed. Salt decreased and increased the essential oil yield in TV and CV respectively. The main constituents of the essential oil of TV were trans-hydrate sabinene and terpinen-4-ol, which showed a significant decrease under salt stress. In contrast, the main constituents of the essential oil of CV were sabinene and trans-hydrate sabinene, which showed a significant decrease and increase respectively under salt stress. Marjoram oil is a rich source of many compounds such as essential oils and fatty acids, but the distribution of these compounds differed significantly between the two varieties studied. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong
2017-10-01
Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.
2011-01-01
Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP). Substituting potassium and/or magnesium salts for sodium chloride (NaCl) may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt) with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%), magnesium ammonium potassium chloride, hydrate (25%)] (Smart Salt). Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45) with systolic (S)BP 130-159 mmHg and/or diastolic (D)BP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na), potassium (dU-K) and magnesium (dU-Mg). Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012) and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016). SBP increased (+3.8 mmHg, p = 0.072) slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p < 0.002). Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816 PMID:21888642
Carnal, Fabrice; Stoll, Serge
2011-10-27
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.
Liu, Jing; Coxson, Pamela G.; Penko, Joanne; Goldman, Lee; Bibbins-Domingo, Kirsten; Zhao, Dong
2016-01-01
Objectives To estimate the effects of achieving China’s national goals for dietary salt (NaCl) reduction or implementing culturally-tailored dietary salt restriction strategies on cardiovascular disease (CVD) prevention. Methods The CVD Policy Model was used to project blood pressure lowering and subsequent downstream prevented CVD that could be achieved by population-wide salt restriction in China. Outcomes were annual CVD events prevented, relative reductions in rates of CVD incidence and mortality, quality-adjusted life-years (QALYs) gained, and CVD treatment costs saved. Results Reducing mean dietary salt intake to 9.0 g/day gradually over 10 years could prevent approximately 197 000 incident annual CVD events [95% uncertainty interval (UI): 173 000–219 000], reduce annual CVD mortality by approximately 2.5% (2.2–2.8%), gain 303 000 annual QALYs (278 000–329 000), and save approximately 1.4 billion international dollars (Int$) in annual CVD costs (Int$; 1.2–1.6 billion). Reducing mean salt intake to 6.0 g/day could approximately double these benefits. Implementing cooking salt-restriction spoons could prevent 183 000 fewer incident CVD cases (153 000–215 000) and avoid Int$1.4 billion in CVD treatment costs annually (1.2–1.7 billion). Implementing a cooking salt substitute strategy could lead to approximately three times the health benefits of the salt-restriction spoon program. More than three-quarters of benefits from any dietary salt reduction strategy would be realized in hypertensive adults. Conclusion China could derive substantial health gains from implementation of population-wide dietary salt reduction policies. Most health benefits from any dietary salt reduction program would be realized in adults with hypertension. PMID:26840409
Human deoxyhaemoglobin-2,3-diphosphoglycerate complex low-salt structure at 2.5 A resolution.
Richard, V; Dodson, G G; Mauguen, Y
1993-09-20
The haemoglobin-2,3-diphosphoglycerate complex structure has been solved at 2.5 A resolution using crystals grown from low-salt solutions. The results show some important differences with the precedent haemoglobin-2,3-diphosphoglycerate high-salt structure solved by Arnone. First, we observe a loss of symmetry in the binding site, secondly both of the lysine residues 82 beta interact with 2,3-diphosphoglycerate at the same time, each making two contacts. This level of interaction is in agreement with the functional behaviour of natural haemoglobin mutants with mutations at the 2,3-diphosphoglycerate binding site.
Atomically Precise Interfaces from Non-stoichiometric Deposition
NASA Astrophysics Data System (ADS)
Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell
2015-03-01
Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.
Atomically precise interfaces from non-stoichiometric deposition
NASA Astrophysics Data System (ADS)
Nie, Y. F.; Zhu, Y.; Lee, C.-H.; Kourkoutis, L. F.; Mundy, J. A.; Junquera, J.; Ghosez, Ph.; Baek, D. J.; Sung, S.; Xi, X. X.; Shen, K. M.; Muller, D. A.; Schlom, D. G.
2014-08-01
Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinOn+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control—from just the n=∞ end members (perovskites) to the entire RP homologous series—enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.
Bimetallic complexes and polymerization catalysts therefrom
Patton, Jasson T.; Marks, Tobin J.; Li, Liting
2000-11-28
Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.
Formulation and method for preparing gels comprising hydrous hafnium oxide
Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C
2013-08-06
Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.
Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan, Vikhram Vilasur; Dak, Piyush; Alam, Muhammad A., E-mail: rbashir@illinois.edu, E-mail: alam@purdue.edu
2015-02-02
The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistentmore » simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.« less
Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms
NASA Astrophysics Data System (ADS)
Swaminathan, Vikhram Vilasur; Dak, Piyush; Reddy, Bobby; Salm, Eric; Duarte-Guevara, Carlos; Zhong, Yu; Fischer, Andrew; Liu, Yi-Shao; Alam, Muhammad A.; Bashir, Rashid
2015-02-01
The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ˜250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistent simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.
Kottalanka, Ravi K; Harinath, A; Rej, Supriya; Panda, Tarun K
2015-12-14
We report here a series of alkali and alkaline earth metal complexes, each with a bulky iminopyrrolyl ligand [2-(Ph3CN=CH)C4H3NH] (1-H) moiety in their coordination sphere, synthesized using either alkane elimination or silylamine elimination methods or the salt metathesis route. The lithium salt of molecular composition [Li(2-(Ph3CN=CH)C4H3N)(THF)2] (2) was prepared using the alkane elimination method, and the silylamine elimination method was used to synthesize the dimeric sodium and tetra-nuclear potassium salts of composition [(2-(Ph3CN=CH)C4H3N)Na(THF)]2 (3) and [(2-(Ph3CN=CH)C4H3N)K(THF)0.5]4 (4) respectively. The magnesium complex of composition [(THF)2Mg(CH2Ph){2-(Ph3CN=CH)C4H3N}] (5) was synthesized through the alkane elimination method, in which [Mg(CH2Ph)2(OEt2)2] was treated with the bulky iminopyrrole ligand 1-H in 1 : 1 molar ratio, whereas the bis(iminopyrrolyl)magnesium complex [(THF)2Mg{2-(Ph3CN=CH)C4H3N}2] (6) was isolated using the salt metathesis route. The heavier alkaline earth metal complexes of the general formula {(THF)nM(2-(Ph3CN=CH)C4H3N)2} [M = Ca (7), Sr (8), and n = 2; M = Ba (9), n = 3] were prepared in pure form using two synthetic methods: in the first method, the bulky iminopyrrole ligand 1-H was directly treated with the alkaline earth metal precursor [M{N(SiMe3)2}2(THF)n] (where M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent at ambient temperature. The complexes 7-9 were also obtained using the salt metathesis reaction, which involves the treatment of the potassium salt (4) with the corresponding metal diiodides MI2 (M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent. The molecular structures of all the metal complexes (1-H, 2-9) in the solid state were established through single-crystal X-ray diffraction analysis. The complexes 5-9 were tested as catalysts for the ring-opening polymerization of ε-caprolactone. High activity was observed in the heavier alkaline earth metal complexes 7-9, with a very narrow polydispersity index in comparison to that of magnesium complexes 5 and 6.
Layering of sustained vortices in rotating stratified fluids
NASA Astrophysics Data System (ADS)
Aubert, O.; Le Bars, M.; Le Gal, P.
2013-05-01
The ocean is a natural stratified fluid layer where large structures are influenced by the rotation of the planet through the Coriolis force. In particular, the ocean Meddies are long-lived anticyclonic pancake vortices of Mediterranean origin evolving in the Atlantic Ocean: they have a saltier and warmer core than the sourrounding oceanic water, their diameters go up to 100 km and they can survive for 2 to 3 years in the ocean. Their extensive study using seismic images revealed finestructures surrounding their core (Biescas et al., 2008; Ruddick et al., 2009) corresponding to layers of constant density which thickness is about 40 m and horizontal extent is more than 10 km. These layers can have different origins: salt fingers from a double-diffusive instabilities of salt and heat (Ruddick & Gargett, 2003), viscous overturning motions from a double-diffusive instabilities of salt and momentum (McIntyre, 1970) or global modes of the quasi-geostrophic instability (Nguyen et al., 2011)? As observed by Griffiths & Linden (1981), sustained laboratory anticyclonic vortices created via a continuous injection of isodense fluid in a rotating and linearly stratified layer of salty water are quickly surrounded by layers of constant density. In the continuity of their experiments, we systematically investigated the double-diffusive instability of McIntyre by varying the Coriolis parameter f and the buoyancy frequency N of the background both in experiments and in numerical simulations, and studied the influence of the Schmidt number in numerical simulations. Following McIntyre's approach, typical length and time scales of the instability are well described by a linear stability analysis based on a gaussian model that fits both laboratory and oceanic vortices. The instability appears to be favoured by high Rossby numbers and ratios f/N. We then apply these results to ocean Meddies and conclude about their stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
Improving crop salt tolerance.
Flowers, T J
2004-02-01
Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced tolerance, where properly established, is due to the chance alteration of a factor that is limiting in a complex chain or an effect on signalling remains to be elucidated. After ten years of research using transgenic plants to alter salt tolerance, the value of this approach has yet to be established in the field.
Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...
Thermal regeneration of an electrochemical concentration cell
Krumpelt, M.; Bates, J.K.
1980-05-09
A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.
Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides.
Chakraborty, Subrata; Blacque, Olivier; Berke, Heinz
2015-04-14
The hepta-coordinated isomeric M(NO)Cl3(PN(H)P) complexes {M = Mo, ; W, , PN(H)P = (iPr2PCH2CH2)2NH, (HN atom of PN(H)P syn and anti to the NO ligand)} and the paramagnetic species M(NO)Cl2(PN(H)P) (M = Mo, ; W, ) could be prepared via a new synthetic pathway. The pseudo trigonal bipyramidal amides M(NO)(CO)(PNP) {M = Mo, ; W, ; [PNP](-) = [(iPr2PCH2CH2)2N](-)} were reacted with CO2 at room temperature with CO2 approaching the M[double bond, length as m-dash]N double bond in the equatorial (CO,NO,N) plane trans to the NO ligand and forming the pseudo-octahedral cyclic carbamates M(NO)(CO)(PNP)(OCO) (M = Mo, ; W = ). DFT calculations revealed that the approach to form the isomer is kinetically determined. The amine hydrides M(NO)H(CO)(PN(H)P) {M = Mo, ; W, }, obtained by H2 addition to , insert CO2 (2 bar) at room temperature into the M-H bond generating isomeric mixtures of the η(1)-formato complexes M(NO)(CO)(PN(H)P)(η(1)-OCHO), (M = Mo, ; M = W, ). Closing the stoichiometric cycles for sodium formate formation the isomeric mixtures were reacted with 1 equiv. of Na[N(SiMe3)2] regenerating . Attempts to turn the stoichiometric formate production into catalytic CO2 hydrogenation using in the presence of various types of sterically congested bases furnished yields of formate salts of up to 4%.
FTIR spectra of plasticized grafted natural rubber-LiCF3SO3 electrolytes.
Kumutha, K; Alias, Y
2006-05-15
Chemical modification of natural rubber (NR) has frequently been attempted to improve the performance in specific application. 30% poly(methyl metacrylate) (PMMA) grafted into NR (MG30) has been explored as a potential candidate for polymer electrolytes. The complexation effect of salt and plasticizer in polymer host electrolytes had been investigated using FTIR. The carbonyl stretch of MG30 locates at 1729 cm-1, with the addition of lithium trimethanesulfonate (LiCF3SO3) salt, new band evolves at lower frequency region at 1643-1645 cm-1. The nondegenerate vibrational mode of nus(SO3) of salted electrolytes appearing at 1031-1034 cm-1 comes from 'free' trimethanesulfonate anions and the 1040-1046 cm-1 absorption from the monodentate ion paired with triflates. These indicate MG30-salt interaction. When MG30 and ethylene carbonate (EC) formed film, the CH3 asymmetric bend of MG30 appearing at 1447cm-1 is shifted to 1449 cm-1 in the EC-polymer complex. The CO stretching at 1729 cm-1 also shifted to 1728 cm-1. Hence, the EC-MG30 system is complexed to each other. EC-LiCF3SO3 interactions are indicated by the shifting of CO bending band of EC from 718 cm-1 being shifted to 720 cm-1 in the complex. In Li+-EC interaction where the ring breathing region at 897 cm-1 in EC has shifted to 899 cm-1 in EC-salt spectrum. The band appearing at 1643-1645 cm-1 due to the coordination of Li+<--O-C is still under observation and new peaks at 1779 and 1809 cm-1 are responsible to the carbonyl stretches of EC in plasticized salt-polymer electrolytes.
ERIC Educational Resources Information Center
Burkitt, D. P.
1983-01-01
Discusses the principle environmental/dietary factors related to diseases characteristic of developed countries. Suggests doubling fiber and starch, cutting sugar/salt in half, and cutting fat by one-third. Indicates that alcohol consumption, poor diet, drug abuse and lack of exercise are detrimental to good health. (JM)
Tian, Xiaohe; Wang, Hui; Zhang, Qiong; Zhang, Mingzhu; Zhu, Yingzhong; Chen, Yan; Wu, Jieying; Tian, Yupeng
2018-05-30
Probe for dual-site target distinct subcellular compartments from cytosol and nucleus is an attractive approach, however, which was scarcely reported. Herein, a series of small-molecular thiophene pyridium salt derivatives (MitoNuc1-4) possessing water-soluble, high quantum yield and two-photon activity were rationally designed, and their structures were crystallographic confirmed. Systematic photophysical and biological imaging property investigations were carried out for them. It was found that MitoNuc1-4 exhibit two-photon absorption properties in the near infrared region, and MitoNuc1 has membrane permeability and cationic nature, rendering it to be double labelling of mitochondria and nucleolus in living cells with superb photo-stability and non-invasiveness. It also demonstrated that MitoNuc1 in living cells can monitor mitochondrial division in real time and revealed nucleolar ultrastructure under stimulated emission depletion nanoscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi
2012-08-02
The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.
Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; Smart, Marshall C.; West, William C.
2011-01-01
Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent mixture of acetonitrile (AN) and methyl formate (MF) enables double-layer capacitor cells to operate well below -40 C with a relatively low ESR. Typically, a less than twofold increase in ESR is observed at -65 C relative to room-temperature values, when these modified electrolyte blends are used in prototype cells. Double-layer capacitor coin cells filled with these electrolytes have displayed the lowest measured ESR for an organic electrolyte to date at low temperature (based on a wide range of electrolyte screening studies at JPL). The cells featured high-surface-area (approximately equal to 2,500 m/g) carbon electrodes that were 0.50 mm thick and 1.6 cm in diameter, and coated with a thin layer of platinum to reduce cell resistance. A polyethylene separator was used to electrically isolate the electrodes.
Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra
2018-02-01
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
NASA Astrophysics Data System (ADS)
Guo, Shengchang; Li, Dianqing; Zhang, Weifeng; Pu, Min; Evans, David G.; Duan, Xue
2004-12-01
A large anionic pigment has been intercalated into a layered double hydroxide (LDH) host by ion-exchange of an Mg/Al LDH-nitrate precursor with a solution of C.I. Pigment Red 48:2 (the calcium salt of 4-((5-chloro-4-methyl-2-sulfophenyl)azo)-3-hydroxy-2-naphthalene-carboxylic acid), in ethane-1,2-diol. After intercalation of the pigment, the interlayer distance in the LDH increases from 0.86 to 1.72 nm. Infrared spectra and TG-DTA curves reveal the presence of a complex system of supramolecular host-guest interactions. The UV-visible diffuse reflectance spectra of C.I. Pigment Red 48:2 show marked changes after heating at 200 °C and above, whereas there are no significant changes in the spectra of the intercalated pigment after heating at temperatures up to 300 °C, showing that the thermostability is markedly enhanced by intercalation in the LDH host. The pigment-intercalated LDHs exhibits much higher photostability to UV light than the pristine pigment, in the case of both the pure solids and their composites with polypropylene, as shown by measurement of CIE 1976 L*a*b* color difference ( ΔE) values.
Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.
Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2015-02-01
Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton
2017-04-01
The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may similarly be applied to the seismic interpretation of the natural complex salt structures.
INORGANIC AND ORGANIC ONIUM SALTS
The nitrosonium NO ion absorbs in the infrared between 1/2400 and 1/ 2150 cm. Salts of complex fluoro-acids absorb at higher frequencies than salts...halide adducts generally contain nitrosonium ions . Hexaphenylditin does not undergo marked heterolytic dissociation in nitromethane solution...influencing the covalent-ionic equilibrium are discussed. Infrared spectrum nitrosonium ion ; ionic character in lattice and position nitrosonium ion absorption
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling the surface tension of complex, reactive organic-inorganic mixtures
NASA Astrophysics Data System (ADS)
Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.
2013-01-01
Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.
Membrane formation in liquids by adding an antagonistic salt
NASA Astrophysics Data System (ADS)
Sadakane, Koichiro; Seto, Hideki
2018-03-01
Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.
Improved Low Temperature Performance of Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe
2013-01-01
Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary
Poly/vinyl alcohol/ membranes for reverse osmosis
NASA Technical Reports Server (NTRS)
Katz, M. G.; Wydeven, T., Jr.
1981-01-01
A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.
Do group 1 metal salts form deep eutectic solvents?
Abbott, A P; D'Agostino, C; Davis, S J; Gladden, L F; Mantle, M D
2016-09-14
Mixtures of metal salts such as ZnCl 2 , AlCl 3 and CrCl 3 ·6H 2 O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H 2 O and Na 2 B 4 O 7 ·10H 2 O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na + , which coordinates to the glycerol. 1 H and 23 Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the 1 H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, 1 H and 23 Na T 1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.
Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions.
Fernando, V C Dilukshi; Al Khateeb, Wesam; Belmonte, Mark F; Schroeder, Dana F
2018-05-01
Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4. While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
Cryptographic salting for security enhancement of double random phase encryption schemes
NASA Astrophysics Data System (ADS)
Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto
2017-10-01
Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.
NASA Astrophysics Data System (ADS)
Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue
2004-01-01
The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.
Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine
NASA Astrophysics Data System (ADS)
Emam, Sanaa M.; El Sayed, Ibrahim E. T.; Ayad, Mohamed I.; Hathout, Heba M. R.
2017-10-01
The synthesis of new Shiff base ligands denoted L1, HL2 and HL3 starting from the appropriate aminoneocryptolepine and salicaldehyde were described. The chelation abilities of L1, HL2 and HL3 ligands towards Co(II), Ni(II), Cu(II) and Pd(II) salts have been studied. A series of square planar complexes containing Cu(II) salts, PdCl2 and octahedral chelates containing NiCl2, CoCl2 salts (2 and 7) have been isolated. Also, the pentacoordinated Co(II) complex [Co(L1)2Cl]·Cl.0.5H2O·1.25EtOH (1) has been prepared. The mode of bonding and geometrical structure of complexes has been confirmed by elemental analyses and different spectroscopic methods together with thermal, magnetic moment studies, molecular modeling and X-ray diffraction. Furthermore, the synthesized ligands, in comparison to some of their metal complexes were screened for their anticancer activity against colorectal adenocarcinoma (HT-29) cells. The results showed that Co(II) complexes (1 and 7) exhibited higher anticancer activity when compared to the corresponding ligands.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
Injection-salting of pre rigor fillets of Atlantic salmon (Salmo salar).
Birkeland, Sveinung; Akse, Leif; Joensen, Sjurdur; Tobiassen, Torbjørn; Skåra, Torstein
2007-01-01
The effects of temperature (-1, 4, and 10 degrees C), brine concentration (12% and 25% NaCl), injection volumes, and needle densities were investigated on fillet weight gain (%), salt content (%), fillet contraction (%), and muscle gaping in pre rigor brine-injected fillets of Atlantic salmon (Salmo salar). Increased brine concentration (12% to 25%) significantly increased the initial (< 5 min after injection) and final contraction (24 h after injection) of pre rigor fillets. Increased brine concentration significantly reduced weight gain and increased salt content but had no significant effect on muscle gaping. The temperatures tested did not significantly affect weight gain, fillet contraction, or gaping score. Significant regressions (P < 0.01) between the injection volume and weight gain (range: 2.5% to 15.5%) and salt content (range: 1.7% to 6.5%) were observed for injections of pre rigor fillets. Double injections significantly increased the weight gain and salt content compared to single injections. Initial fillet contraction measured 30 min after brine injection increased significantly (P < 0.01) with increasing brine injection volume but no significant difference in the fillet contraction was observed 12 h after brine injection (range: 7.9% to 8.9%). Brine-injected post rigor control fillets obtained higher weight gain, higher salt content, more muscle gaping, and significantly lower fillet contraction compared to the pre rigor injected fillets. Injection-salting is an applicable technology as a means to obtain satisfactory salt contents and homogenously distribute the salt into the muscle of pre rigor fillets of Atlantic salmon before further processing steps such as drying and smoking.
Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins
NASA Technical Reports Server (NTRS)
Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.
2003-01-01
Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.
SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS
Katzin, L.I.; Sullivan, J.C.
1958-06-24
A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.
Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A
2018-06-07
Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p < 0.0001) and after meal ingestion (p < 0.04; salt > water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
Drought and salt tolerances are complex traits and controlled by multiple genes, environmental factors and their interactions. Drought and salt stresses can result in more than 50% yield loss in Upland cotton (Gossypium hirsutum L.). G. barbadense L. (the source of Pima cotton) carries desirable tra...
NASA Astrophysics Data System (ADS)
Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong
2017-01-01
Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.
Experiments and Modeling in Support of Generic Salt Repository Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James
Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generatingmore » nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.« less
Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing
2018-04-01
Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.
Mateos-Diaz, Eduardo; Sutto-Ortiz, Priscila; Sahaka, Moulay; Byrne, Deborah; Gaussier, Hélène; Carrière, Frédéric
2018-03-01
The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Balzer, K; Schmitt, G; Reiners, C; Goebell, H
1995-01-15
For that reason absorption of bile acids was investigated using the 75Se-homotaurocholate (SeHCAT) in 239 patients with diarrhoea. SeHCAT retention time was measured as 7 day retention time in a whole body counter. An intact bile acid absorption (negative SeHCAT test) was confirmed in 23 healthy volunteers within the range of 11 to 50% (mean +/- double standard deviation). In 135 patients with a possible type I bile salt malabsorption the SeHCAT test was positive in 78%, thus indicating bile salt malabsorption. The test is very sensitive detecting bile salt malabsorption in Crohn's disease, identifying ileal disease more precisely than radiology. The SeHCAT test ascertained type II primary bile salt malabsorption in 7 patients, as well as type III bile salt malabsorption in patients (9 out of 28) with cholecystectomy, vagotomy, partial gastrectomy and chronic pancreatitis. In addition, a positive SeHCAT test indicating bile acid malabsorption was found in 5 out of 11 patients with irritable syndrome, diarrhoeic form, and in 4 out of 12 patients with lactose intolerance. SeHCAT retention should be measured routinely in patients with chronic diarrhoea for which the cause is not obvious.
He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean
2015-11-01
In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
PROCESS FOR SEPARATION OF HEAVY METALS
Duffield, R.B.
1958-04-29
A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022
2013-10-15
A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less
The influence of bile salts on the distribution of simvastatin in the octanol/buffer system.
Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Vukmirović, Saša; Nikolić, Katarina; Agbaba, Danica; Mikov, Momir
2016-01-01
Distribution coefficient (D) is useful parameter for evaluating drugs permeability properties across biological membranes, which are of importance for drugs bioavailability. Given that bile acids are intensively studied as drug permeation-modifying and -solubilizing agents, the aim of this study was to estimate the influence of sodium salts of cholic (CA), deoxycholic (DCA) and 12-monoketocholic acids (MKC) on distribution coefficient of simvastatin (SV) (lactone [SVL] and acid form [SVA]) which is a highly lipophilic compound with extremely low water solubility and bioavailability. LogD values of SVA and SVL with or without bile salts were measured by liquid-liquid extraction in n-octanol/buffer systems at pH 5 and 7.4. SV concentrations in aqueous phase were determined by HPLC-DAD. Chem3D Ultra program was applied for computation of physico-chemical properties of analyzed compounds and their complexes. Statistically significant decrease in both SVA and SVL logD was observed for all three studied bile salts at both selected pH. MKC exerted the most pronounced effect in the case of SVA while there were no statistically significant differences between observed bile salts for SVL. The calculated physico-chemical properties of analyzed compounds and their complexes supported experimental results. Our data indicate that the addition of bile salts into the n-octanol/buffer system decreases the values of SV distribution coefficient at both studied pH values. This may be the result of the formation of hydrophilic complexes increasing the solubility of SV that could consequently impact the pharmacokinetic parameters of SV and the final drug response in patients.
Modeling the surface tension of complex, reactive organic-inorganic mixtures
NASA Astrophysics Data System (ADS)
Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye
2013-11-01
Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.
Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy
Guilinger, Terry R.
1990-01-01
Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.
Bile salt receptor complex activates a pathogenic type III secretion system
Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; ...
2016-07-05
Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure ofmore » VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.« less
Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo
2012-08-01
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
The Salt Overly Sensitive (SOS) pathway: established and emerging roles.
Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia
2013-03-01
Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.
NASA Astrophysics Data System (ADS)
Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei
2018-04-01
The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of the salt deposit generated strike-slip faults in the sub-salt layer and supra-salt layers at the basin boundary (Model A). When changes in the basement occurred within the salt basin, strike-slip faults controlled the deformation styles in the sub-salt layer and shear-zone dominated in the supra-salt layer (Model B). A homogeneous basement and discontinues salt layer formed different accommodation zones in the sub- and supra-salt layers (Model C). In the sub-salt layer the thrusts form imbricate structures on the basal décollement, whereas the supra-salt layer shows overlapping, discontinuous faults and folds with kinds of salt tectonics, and has greater structural variation than the sub-salt layer.
Double symbolic joint entropy in nonlinear dynamic complexity analysis
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-07-01
Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.
NASA Astrophysics Data System (ADS)
Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.
2017-10-01
The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.
Effects of Meat-curing Salts and Temperature on Production of Staphylococcal Enterotoxin B1
McLean, Ruth A.; Lilly, Helen D.; Alford, John A.
1968-01-01
We investigated the effect of time, temperature, and the presence of sodium chloride, nitrates, and nitrites in the medium on the growth and production of enterotoxin B by Staphylococcus aureus. Assays by the double gel-diffusion method showed that maximal enterotoxin B production occurs at the beginning of the stationary phase of growth. Lowering the temperature of incubation decreased the amount of toxin produced without affecting the total amount of growth. Increases in concentration of curing salts reduced toxin production more rapidly than cell growth. The relationship of these observations to food-poisoning outbreaks is briefly discussed. PMID:4967190
Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian
2018-01-01
The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.
Affinity interactions between natural pigments and human whole saliva.
Yao, Jiang-Wu; Lin, Feng; Tao, Tao; Lin, Chang-Jian
2011-03-01
The aim of the present study was to assess the null hypothesis that there are no differences of affinity between pigments and human whole saliva (WS), and the affinity is not influenced by the functional groups of pigments, temperatures, pH values, and salt concentrations. The affinity constants of interactions between WS and theaflavin (TF)/curcumin (Cur)/cyanidin (Cy) were determined by surface plasmon resonance (SPR) and fluorescence quenching. Mass-uptake at various temperatures, pH values, and salt concentrations was also carried out. The order of affinity of the pigments binding to WS is TF>Cur>Cy. A large number of complexes and precipitations of pigments/proteins were formed through a quick, strong, and almost irreversible binding process. The mass-uptake of pigments was affected not only by the functional groups, but also by molecular weight of pigments, temperatures, pH values, and salt concentrations. The complex of pigments may easily and rapidly deposit onto the WS film, and are difficult to remove from the WS surface. However, the complex of pigments can be reduced by properly regulating the physicochemical conditions, such as temperatures, pH values, and salt concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chaban, Galina; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)
2002-01-01
Recent observations from the Galileo satellite indicate that three of the Jupiter moons, Europa, Ganymede, and Callisto, may have subsurface oceans. Possible existence of such ocean and the nature of its composition are of great interest to astrobiologists. Data from Galileo's NIMS spectrometer indicate the possibility of hydrated salts on Europa's surface. To aid in the design of future missions, we investigated infrared spectra of MgSO4-nH20, n=1-3 using ab initio calculations. Geometry, energetics, dipole moments, vibrational frequencies and infrared intensities of pure and hydrated MgSO4 salts were determined. Significant differences are found between vibrational spectra of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies in the complexes are shifted to the red by up to 1,500 - 2,000 per cm. In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. The calculated bands of water and SO2 fragments can serve as markers for the existence of the salt-water complexes on the surface of Jupiter's moon.
NASA Astrophysics Data System (ADS)
Golovanov, A. I.; Sotneva, N. I.
2009-03-01
The Dzhanybek two-dimensional radial-axial mathematical model was developed for water and salt transfer in geosystems of solonetzic complexes of the Northern Caspian region; the model is capable of considering the geochemical links and revealing the features of migration processes between the conjugated elements of the microcatena. The simulation results suggested that the stabilization of salinization-desalinization processes occurs under stable weather conditions within approximately 100 years. When the weather conditions changed (the total moisture pool of the area increased from 1978), the simulation results indicated a tendency toward salinization of dark-colored soils in microdepressions and removal of salts in the upper 1-m thick soil layer on microhighs and microslopes. Predictions for 2040 showed that a deep accumulation of salts in microdepressions and desalinization of soils of microhighs and microslopes will occur under the current weather conditions. Thus, the changes in the halogeochemical capacity of geosystems of solonetzic complexes primarily depend on the climatic conditions, although the capacity value remains almost constant with increasing total water reserves; the changes occur only between the conjugated soils of solonetzic complexes, which is of great importance for predicting the soil-geochemical status of the entire landscape.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
Biesheuvel, P M; Bazant, M Z
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Bazant, M. Z.
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan
2016-09-27
Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.
Jilin Zhang; Yuxi Zhao; Matthew R. Dubay; Steven J. Severtson; Larry E. Gwin; Carl J. Houtman
2013-01-01
Comparisons of properties are made for pressure-sensitive adhesives (PSAs) generated via emulsion polymerization using both conventional and reactive emulsifiers. The emulsifiers are ammonium salts of sulfated nonylphenol ethoxylates with similar chemical structures and hydrophilic−lipophilic balances. The polymerizable surfactant possesses a reactive double...
Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen
2017-10-01
In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Taihee; Park, Min-Sik; Kim, Jeonghun; Kim, Jung Ho
2016-01-01
Electrochemical double layer capacitors (EDLCs) are energy storage devices that have been used for a wide range of electronic applications. In particular, the electrolyte is one of the important components, directly related to the capacitance and stability. Herein, we first report a series of the smallest quaternary ammonium salts (QASs), with ether groups on tails and tetrafluoroborate (BF4) as an anion, for use in EDLCs. To find the optimal structure, various QASs with different sized head groups and ether-containing tail groups were systematically compared. Comparing two nearly identical structures with and without ether groups, QASs with oxygen atoms showed improved capacitance, proving that ions with oxygen atoms move more easily than their counterparts at lower electric fields. Moreover, the ether containing QASs showed low activation energy values of conductivities, leading to smaller IR drops during the charge and discharge processes, resulting in an overall higher capacitance. PMID:28959391
Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate
NASA Astrophysics Data System (ADS)
Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith
2001-11-01
The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-01-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199
Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L
2016-09-26
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
Spectrally narrowed laserlike emission in a novel organic salt, DEST: cooperative emission
NASA Astrophysics Data System (ADS)
Tan, Shida; Mishra, Alpana; Ahyi, Ayayi; Bhowmik, Achintya; Dharmadhikari, Aditya; Thakur, Mrinal
2001-03-01
We have synthesized a novel organic salt, 4'-diethylamino-N-methyl-4-stilbazolium p-toluenesulfonate (DEST). Frequency-doubled pulses (55 ps) from a Nd:YAG laser at 10 Hz repetition rate were used to pump DEST solution in methanol and a 20% conversion efficiency in laserlike emission was observed without external mirrors. The low energy PL quantum efficiency of DEST is very low. The peak of the emission spectrum was at 617 nm and the threshold pump energy for spectral-narrowing was less than 1 μJ. Beyond the threshold, the FWHM of the spectrum was found to have reduced from 70 nm to 14 nm The characteristics are similar to that of another organic salt, SPCD^1, which has been recently reported. Cooperative emission appears to play a dominant role in this emission process. 1. A. K. Bhowmik, A. Dharmadhikari, and M. Thakur, OSA Technical Digest, 467, CLEO (1999).
NASA Astrophysics Data System (ADS)
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-09-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
Yurieva, Olga; Nikiforov, Vadim; O’Donnell, Michael
2017-01-01
Abstract S531 of Escherichia coli RNA polymerase (RNAP) β subunit is a part of RNA binding domain in transcription complex. While highly conserved, S531 is not involved in interactions within the transcription complex as suggested by X-ray analysis. To understand the basis for S531 conservation we performed systematic mutagenesis of this residue. We find that the most of the mutations significantly decreased initiation-to-elongation transition by RNAP. Surprisingly, some changes enhanced the production of full-size transcripts by suppressing abortive loss of short RNAs. S531-R increased transcript retention by establishing a salt bridge with RNA, thereby explaining the R substitution at the equivalent position in extremophilic organisms, in which short RNAs retention is likely to be an issue. Generally, the substitutions had the same effect on bacterial doubling time when measured at 20°. Raising growth temperature to 37° ablated the positive influence of some mutations on the growth rate in contrast to their in vitro action, reflecting secondary effects of cellular environment on transcription and complex involvement of 531 locus in the cell biology. The properties of generated RNAP variants revealed an RNA/protein interaction network that is crucial for transcription, thereby explaining the details of initiation-to-elongation transition on atomic level. PMID:29036608
Corrosion of Steel in a Black Mangrove Environment
1982-10-01
neceaaary and Identify by block number) Black Mangrove Environment Chloride Salts Corrosion Iron- Tannin Complex Steel Tannic Acid Tropic Test Center...identified to be as follows: rain water falling through the mangrove canopy picks up salts and tannins from the black mangroves. The salts...attack steel, forming water-soluble ferric ions. The tannins react DD , JAN 73 •*/J EDITION OF » MOV 65 IS OBSOLETE UNCLASSIFIED SECURITY
Educating Captains For War: Deliberately Designing Professional Military Education
2015-05-23
CCC ) Curricula. Many researchers and scholars have written on the subject of education and offered insights on how to improve curricula based on...curricula were developed. Did the SALT deliberately and sufficiently develop current CCC curricula to enable captains to meet the demands of complex...the SALT underwent to design current CCC curricula, this monograph argues that the SALT used a deliberate design process and has significantly
DNA purification by triplex-affinity capture and affinity capture electrophoresis
Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.
1996-01-01
The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.
Experimental characterization of a solar cooker with thermal energy storage based on solar salt
NASA Astrophysics Data System (ADS)
Coccia, G.; Di Nicola, G.; Tomassetti, S.; Gabrielli, G.; Chieruzzi, M.; Pierantozzi, M.
2017-11-01
High temperature solar cooking allows to cook food fast and with good efficiency. An unavoidable drawback of this technology is that it requires nearly clear-sky conditions. In addition, evening cooking is difficult to be accomplished, particularly on the winter season during which solar radiation availability is limited to a few hours in the afternoon in most of countries. These restrictions could be overcome using a cooker thermal storage unit (TSU). In this work, a TSU based on solar salt was studied. The unit consists of two metal concentric cylindrical vessels, connected together to form a double-walled vessel. The volume between walls was filled with a certain amount of nitrate based phase change material (solar salt). In order to characterize the TSU, a test bench used to assess solar cooker performance was adopted. Experimental load tests with the TSU were carried out to evaluate the cooker performance. The obtained preliminary results show that the adoption of the solar salt TSU seems to allow both the opportunity of evening cooking and the possibility to better stabilize the cooker temperature when sky conditions are variable.
Coupling desalination and energy storage with redox flow electrodes.
Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun
2018-06-26
Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.
Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng
2013-04-05
Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.
Choi, Hoon Young; Park, Hyeong Cheon
2015-01-01
Hypertension is a complex trait determined by both genetic and environmental factors and is a major public health problem due to its high prevalence and concomitant increase in the risk for cardiovascular disease. With the recent large increase of dietary salt intake in most developed countries, the prevalence of hypertension increases tremendously which is about 30% of the world population. There is substantial evidence that suggests some people can effectively excrete high dietary salt intake without an increase in arterial BP, and another people cannot excrete effectively without an increase in arterial BP. Salt sensitivity of BP refers to the BP responses for changes in dietary salt intake to produce meaningful BP increases or decreases. The underlying mechanisms that promote salt sensitivity are complex and range from genetic to environmental influences. The phenotype of salt sensitivity is therefore heterogeneous with multiple mechanisms that potentially link high salt intake to increases in blood pressure. Moreover, excess salt intake has functional and pathological effects on the vasculature that are independent of blood pressure. Epidemiologic data demonstrate the role of high dietary salt intake in mediating cardiovascular and renal morbidity and mortality. Almost five decades ago, Guyton and Coleman proposed that whenever arterial pressure is elevated, pressure natriuresis enhances the excretion of sodium and water until blood volume is reduced sufficiently to return arterial pressure to control values. According to this hypothesis, hypertension can develop only when something impairs the excretory ability of sodium in the kidney. However, recent studies suggest that nonosmotic salt accumulation in the skin interstitium and the endothelial dysfunction which might be caused by the deterioration of vascular endothelial glycocalyx layer (EGL) and the epithelial sodium channel on the endothelial luminal surface (EnNaC) also play an important role in nonosmotic storage of salt. These new concepts emphasize that sodium homeostasis and salt sensitivity seem to be related not only to the kidney malfunction but also to the endothelial dysfunction. Further investigations will be needed to assess the extent to which changes in the sodium buffering capacity of the skin interstitium and develop the treatment strategy for modulating the endothelial dysfunction. PMID:26240595
Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands
Dassanayake, Maheshi; Larkin, John C.
2017-01-01
Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops. PMID:28400779
Probing the inner space of salt-bridged calix[5]arene capsules.
Brancatelli, Giovanna; Gattuso, Giuseppe; Geremia, Silvano; Notti, Anna; Pappalardo, Sebastiano; Parisi, Melchiorre F; Pisagatti, Ilenia
2014-05-02
A combined DOSY and XRD study indicates that a carboxylcalix[5]arene receptor is able to encapsulate α,ω-diamines of appropriate length by means of a proton-transfer-mediated recognition process followed by salt-bridge-assisted bis-endo-complexation.
Fournier, Robert O.; Williams, Marshall L.
1983-01-01
The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model
[Determination of Chloride Salt Solution by NIR Spectroscopy].
Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing
2015-07-01
Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.
Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution
NASA Astrophysics Data System (ADS)
Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.
2017-04-01
The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.
Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.
NASA Astrophysics Data System (ADS)
Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis
2017-04-01
Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.
Dose-Rate Effects in Breaking DNA Strands by Short Pulses of Extreme Ultraviolet Radiation.
Vyšín, Luděk; Burian, Tomáš; Ukraintsev, Egor; Davídková, Marie; Grisham, Michael E; Heinbuch, Scott; Rocca, Jorge J; Juha, Libor
2018-05-01
In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.
NASA Astrophysics Data System (ADS)
Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.
2013-10-01
The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.
dit Frey, Nicolas Frei; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe
2010-01-01
Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway. PMID:20484005
The problem of goitre prevention in India
Ramalingaswami, V.
1953-01-01
Endemic goitre continues to be prevalent in the entire northern submontane region of the Indian subcontinent. Although its etiology is complex, its prevention can be simply and effectively achieved by increasing the iodine intake of the population. The best way of ensuring a continual supply of iodine is by iodization of salt. Indian salt, however, is obtained mostly by solar evaporation of sea water or inland salt water, and is coarse and moist; it is consequently difficult to iodize uniformly. It is also likely that, under the conditions of storage and climate that prevail in India, the loss of iodine from salt iodized with iodide is considerable. The author recommends the iodization of all cooking salt used in the goitrous areas of India with 1 part of iodide to 100,000 parts of salt. PMID:13094515
Diclofenac salts. III. Alkaline and earth alkaline salts.
Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa
2005-11-01
Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.
NASA Astrophysics Data System (ADS)
McCabe, S.; Smith, B. J.; Warke, P. A.
2007-03-01
Historic sandstone structures carry an inheritance, or a ‘memory’, of past stresses that the stone has undergone since its placement in a façade. This inheritance, which conditions present day performance, may be made up of long-term exposure to a combination of low magnitude background environmental factors (for example, salt weathering, temperature and moisture cycling) and, superimposed upon these, less frequent but potentially high magnitude events or ‘exceptional’ factors (for example, lime rendering, severe frost events, fire). The impact of complex histories on the decay pathways of historic sandstone is not clearly understood, but this paper seeks to improve that understanding through the use of a laboratory ‘process combination’ study. Blocks of quartz sandstone (Peakmoor, from NW England) were divided into subsets that experienced different histories (lime rendering and removal, fire and freeze-thaw cycles in isolation and combination) that reflected the event timeline of a real medieval sandstone monument in NE Ireland, Bonamargy Friary (McCabe et al. 2006b). These subsets were then subject to salt weathering cycles using a 10% salt solution of NaCl and MgSO4 that represents the ‘every-day’ stress environment of, for example, sandstone structures in coastal, or polluted urban, location. Block response to salt weathering was monitored by collecting, drying and weighing the debris that was released as blocks were immersed in the salt solution at the beginning of each cycle. The results illustrate the complexity of the stone decay system, showing that seemingly small variations in stress history can produce divergent response to salt weathering cycles. Applied to real-world historic sandstone structures, this concept may help to explain the spatial and temporal variability of sandstone response to background environmental factors on a single façade, and encourage conservators to include the role of stress inheritance when selecting and implementing conservation strategies.
Use of Li.sub.2[B.sub.12H.sub.12] salt to absorb water into polymers
Eastwood, Eric A.; Bowen, III, Daniel E.
2016-08-30
Methods of adjusting the properties of a composition are provided. The compositions comprise a polymer-containing matrix and a filler comprising a hygroscopic salt. Preferred such salts comprise a cage compound selected from the group consisting of borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer.
Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias
2008-08-04
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.
Self-assembly of a double-helical complex of sodium.
Bell, T W; Jousselin, H
1994-02-03
Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.
DNA purification by triplex-affinity capture and affinity capture electrophoresis
Cantor, C.R.; Ito, Takashi; Smith, C.L.
1996-01-09
The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happe, J.A.; Morgan, R.J.; Walkup, C.M.
The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with theirmore » BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.« less
Seismic anisotropy in deforming salt bodies
NASA Astrophysics Data System (ADS)
Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.
2017-12-01
Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.
USDA-ARS?s Scientific Manuscript database
ARS-Media for Excel is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are genera...
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
Zobel, C. Richard; Beer, Michael
1961-01-01
Chemical studies have been carried out on the interaction of DNA with uranyl salts. The effect of variations in pH, salt concentration, and structural integrity of the DNA on the stoichiometry of the salt-substrate complex have been investigated. At pH 3.5 DNA interacts with uranyl ions in low concentration yielding a substrate metal ion complex with a UO2++/P mole ratio of about ½ and having a large association constant. At low pH's (about 2.3) the mole ratio decreases to about ⅓. Destruction of the structural integrity of the DNA by heating in HCHO solutions leads to a similar drop in the amount of metal ion bound. Raising the pH above 3.5 leads to an apparent increase in binding as does increasing the concentration of the salt solution. This additional binding has a lower association constant. Under similar conditions DNA binds about seven times more uranyl ion than bovine serum albumin, indicating useful selectivity in staining for electron microscopy. PMID:13788706
ESBRI: a web server for evaluating salt bridges in proteins.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2008-01-01
Salt bridges can play important roles in protein structure and function and have stabilizing and destabilizing effects in protein folding. ESBRI is a software available as web tool which analyses the salt bridges in a protein structure, starting from the atomic coordinates. In the case of protein complexes, the salt bridges between protein chains can be evaluated, as well as those among specific charged amino acids and the different protein subunits, in order to obtain useful information regard the protein-protein interaction. The service is available at the URL: http://bioinformatica.isa.cnr.it/ESBRI/
Agnès, Charles; Arnault, Jean-Charles; Omnès, Franck; Jousselme, Bruno; Billon, Martial; Bidan, Gérard; Mailley, Pascal
2009-12-28
Boron doped diamond (BDD) functionalization has received an increasing interest during the last few years. Such an infatuation comes from the original properties of BDD, including chemical stability or an electrochemical window, that opens the way for the design of (bio)sensors or smart interfaces. In such a context, diazonium salts appear to be well suited for BDD functionalization as they enable covalent immobilization of functional entities such as enzymes or DNA. In this study we report microcrystalline BDD functionalization with a metallic complex, ruthenium tris(bipyridine), using the p-(tris(bipyridine)Ru(2+))phenyl diazonium salt. Electrografting using cyclic voltammetry (CV) allowed the formation of a ruthenium complex film that was finely characterized using electrochemistry and X-ray photoelectron spectroscopy (XPS). Moreover, we showed that chronopotentiometry (CP) is a convenient tool to monitor Ru complex film deposition through the control of the electrochemical pulse parameters (i.e. current density and pulse duration). Finally, such a control was demonstrated through the correlation between electrochemical and XPS characterizations.
Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC
2006-01-01
Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant growth regulators. PMID:16756665
Duarte, Bernardo; Matos, Ana Rita; Marques, João Carlos; Caçador, Isabel
2018-03-01
Spartina patens is a highly dispersed halophytic grass invader in Mediterranean marshes. It is also characterized by having a high degree of resistance to salinity, one of the main drivers of plant zonation in salt marshes. Nevertheless, the physiological basis behind the extreme resistance of S. patens requires more detailed studies. In the present work, we aimed to study how membrane fatty acid remodeling could contribute to the resistance of this plant to salt. Spartina patens individuals exposed to increasing levels of salinity and its leaf fatty acid profile under lipid peroxidation products evaluated under all tested concentrations. A significant increase in the relative amounts of the saturated fatty acids (SFA) was observed, namely palmitic acid (C16:0), essential for PS II functioning, and stearic (C18:0) acid. The chloroplastidial trans-hexadecenoic acid (C16:1t) as well as the polyunsaturated linoleic (C18:2) and linolenic (C18:3) acids showed significant decreases in all the salt treatments. These changes led to a reduction in the double bond index in salt-treated plants which reflects reduction of the fluidity of the chloroplast membranes, which could contribute to maintain the membrane impermeable to the toxic exogenous Na. Despite the decrease observed in the total fatty acid contents in plants exposed to high salt concentrations the amounts of lipid peroxidation products decreased highlighting the resistance of this species towards toxic exogenous salt concentrations. Membrane fatty acid remodeling could represent an efficient mechanism to maintain the photosynthetic machinery of S. patens highly efficient under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi
2017-01-01
Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.
Code of Federal Regulations, 2010 CFR
2010-07-01
...), (f) (concentration set at 1 percent), (g)(1)(iii), (g)(1), (may be lethal if inhaled or in contact with eyes), (g)(2)(i), (g)(2)(ii), (g)(2)(iv), (g)(2)(v), and (g)(5). The provision of § 721.72(d...
Code of Federal Regulations, 2011 CFR
2011-07-01
...), (f) (concentration set at 1 percent), (g)(1)(iii), (g)(1), (may be lethal if inhaled or in contact with eyes), (g)(2)(i), (g)(2)(ii), (g)(2)(iv), (g)(2)(v), and (g)(5). The provision of § 721.72(d...
Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi
2017-01-01
Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products. PMID:28904625
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Schedule of the United States (``HTSUS'') of a certain CN-9 solution, a hydrated ammonium calcium nitrate..., a hydrated ammonium calcium nitrate double salt that is primarily used as a fertilizer but is also... calcium nitrate and ammonium nitrate.'' Citing Legal Note 2(a)(v) to Chapter 31, HTSUS,\\2\\ the Port of...
Fluid Flow and Solute Transport in the Bullwinkle Field J2 Sand, Offshore Gulf of Mexico
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Hanor, J. S.
2006-12-01
The Bullwinkle field is located in a Pliocene-Pleistocene salt withdrawal minibasin approximately 90 km southwest of New Orleans, Louisiana. Most of the production has been from the prolific "J" sand sequence, a late Pliocene age channel and sheet sand turbidite complex. Salinities of the oil-leg waters (i.e., the pre-production immobile waters located above the original oil-water contact) vary from over 300 g/L near salt to approximately 150 g/L at the original oil-water contact in the J2 sand. Aquifer waters below the original oil-water contact generally have salinities between 150 g/L and 100 g/L. We developed numerical models to simulate fluid flow and associated solute transport in a gently dipping, relatively thin but high permeability sand body such as the J2 sand in Bullwinkle field. Dissolution of salt exposed in the updip portion of a confined aquifer can generate kilometer-scale fluid circulation with velocities of 10-40 cm/yr. Aquifer dips can be less than 5 degrees. Salt dissolution can generate a dense brine throughout a minibasin scale aquifer within 10,000 to 100,000 years. The fluid circulation pattern and amount of salt dissolved depends on permeability, dip, dispersivity, salt available for dissolution, and aquifer thickness. Dissolution of salt is massive, 1 billion kg or more. Salt dissolution within aquifers may be an important process in removing the last few meters of salt to form salt welds. Stratigraphic variations in aquifer salinity may be related to differences in spatial/temporal contact with salt bodies rather than a complex pattern of fluid migration. Once salt dissolution stops, continued density driven flow in minibasin scale aquifers will largely eliminate spatial variations in salinity. Introduction of hydrocarbons must be rapid in order to preserve the observed spatial gradients in oil-leg water salinity. Model simulations indicate that vertical as well as horizontal spatial variations in preproduction oil-leg water salinities may exist. Pre- production spatial distributions of oil-leg and aquifer waters salinities in the J sands of the Bullwinkle field are quantitatively consistent with: fluid circulation driven by updip dissolution of salt; introduction of hydrocarbons which traps oil-leg waters and stops further salt dissolution; and continued mixing of aquifer waters driven by density driven flow until salinity variations are largely eliminated.
Soluble collagen approach to a combination tannage mechanism
USDA-ARS?s Scientific Manuscript database
Although complex salts of Cr(III) sulfate are currently the most effective tanning agents, salts of other metals, including aluminum, have been used either alone or in combination with vegetable tannins or other organic chemicals. In the present study, the interactions of aluminum sulfate, and quebr...
Soluble collagen approach to a combination tannage mechanism
USDA-ARS?s Scientific Manuscript database
Although complex salts of Cr(III) sulfate are currently the most effective tanning agents, salts of other metals, including aluminum, have been used either alone or in combination with vegetable tannins or other organic chemicals. In the present study, the interactions of metallic sulfates, and cond...
A dynamic nitrogen budget model of a Pacific Northwest salt marsh
The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspirati...
Vander Meulen, Kirk A.; Saecker, Ruth M.; Record, M. Thomas
2008-01-01
To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34 bp H′ DNA sequence to the E. coli DNA-remodeling protein Integration Host Factor (IHF). Isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) are applied to determine effects of salt concentration (KCl, KF, KGlutamate (KGlu)), and of the excluded solute glycine betaine, on the binding thermodynamics at 20°C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy-driven, especially at low [salt] (e.g. ΔH°obs = −20.2 kcal · mol−1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]) which is much larger in KCl (38 ± 3 kcal · mol−1M−1) than in KF or KGlu (average 11 ± 2 kcal · mol−1M−1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (−8.8 ± 0.7) as in KF or KGlu (average −4.7 ± 0.6). A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs and ΔH°obs to (i) displacement of a large number of waters of hydration (estimated to be 1.0 (± 0.2) × 103) from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F− and Glu− from this hydration water, relative to the situation with Cl−, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of glycine betaine (GB) on Kobs: dlnKobs/d[GB] = 2.7 ± 0.4 at constant KCl activity, indicating the net release of 150 H2O from anionic surface. PMID:18237740
Chen, Angela X; Jerums, George; Baqar, Sara; Lambert, Elisabeth; Somarajah, Goji; Thomas, Georgina; O'Callaghan, Christopher; MacIsaac, Richard J; Ekinci, Elif I
2015-09-01
Current guidelines recommend low dietary salt intake (LDS) in patients with diabetes to reduce blood pressure (BP). However, low salt intake has been associated with higher mortality rates in people with diabetes. Our aim is to examine the effect of angiotensin II receptor blocker (ARB), telmisartan, with and without dietary sodium chloride (NaCl) supplementation, on BP [mean arterial pressure (MAP)], plasma renin activity (PRA), serum aldosterone level and estimated glomerular filtration rate (eGFR) in hypertensive patients with type 2 diabetes. In a randomized, double-blind, placebo-controlled study (RCT), 28 patients with type 2 diabetes, treated with telmisartan (40 mg daily), received 2 weeks of placebo or NaCl capsules (100 mmol/24 h). Following a 6-week washout, the protocol was repeated in reverse. Twenty-four-hour urinary sodium excretion (24hUNa), ambulatory BP (ABP) monitoring and blood tests were performed before and after each study phase. The telmisartan-associated increase in PRA was blunted by approximately 50% during salt supplementation compared with placebo; median PRA was 2.3 μg/l/h with placebo compared with 1.7 μg/l/h with salt (P<0.001). A trend towards blunting of ARB induced increases in serum aldosterone was also demonstrated. Salt supplementation significantly reduced the MAP lowering effects of telmisartan (P<0.05). The present study demonstrates that salt supplementation blunts the telmisartan induced increase in PRA in patients with type 2 diabetes. © 2015 Authors; published by Portland Press Limited.
Isoprene function in two contrasting poplars under salt and sunflecks.
Behnke, K; Ghirardo, A; Janz, D; Kanawati, B; Esperschütz, J; Zimmer, I; Schmitt-Kopplin, P; Niinemets, Ü; Polle, A; Schnitzler, J P; Rosenkranz, M
2013-06-01
In the present study, biogenic volatile organic compound (BVOC) emissions and photosynthetic gas exchange of salt-sensitive (Populus x canescens (Aiton) Sm.) and salt-tolerant (Populus euphratica Oliv.) isoprene-emitting and non-isoprene-emitting poplars were examined under controlled high-salinity and high-temperature and -light episode ('sunfleck') treatments. Combined treatment with salt and sunflecks led to an increased isoprene emission capacity in both poplar species, although the photosynthetic performance of P. × canescens was reduced. Indeed, different allocations of isoprene precursors between the cytosol and the chloroplast in the two species were uncovered by means of (13)CO2 labeling. Populus × canescens leaves, moreover, increased their use of 'alternative' carbon (C) sources in comparison with recently fixed C for isoprene biosynthesis under salinity. Our studies show, however, that isoprene itself does not have a function in poplar survival under salt stress: the non-isoprene-emitting leaves showed only a slightly decreased photosynthetic performance compared with wild type under salt treatment. Lipid composition analysis revealed differences in the double bond index between the isoprene-emitting and non-isoprene-emitting poplars. Four clear metabolomics patterns were recognized, reflecting systemic changes in flavonoids, sterols and C fixation metabolites due to the lack/presence of isoprene and the absence/presence of salt stress. The studies were complemented by long-term temperature stress experiments, which revealed the thermotolerance role of isoprene as the non-isoprene-emitting leaves collapsed under high temperature, releasing a burst of BVOCs. Engineered plants with a low isoprene emission potential might therefore not be capable of resisting high-temperature episodes.
Growth of fungi in NaCl-MgSO4 brines
NASA Technical Reports Server (NTRS)
Siegel, S. M.; Siegel, B. Z.
1978-01-01
Previous investigations have shown that common fungi of the Penicillium-Aspergillus group can be grown in a variety of brines or on moist salt crystals. This simulates salt flats as well as sizeable waterbodies stabilized as saturated brines such as Don Juan Pond (Antarctica), the Great Salt Lake of Utah, and the Dead Sea in the Jordan Valley. In general, salt media rich in KCl are favored over other alkali halides; the media become more selective as the salt concentration rises and nutrient requirements become more complex. In the present paper, it is shown that media which resemble the Dead Sea salt mix can, in fact, support the growth of selected fungal strains, even in the absence of reduced organic nutrients other than glucose. Such media may serve as models for localized microhabitats on Mars.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted phenyl...
A train of kink folds in the surficial salt of Qom Kuh, Central Iran
NASA Astrophysics Data System (ADS)
Cosgrove, John W.; Talbot, Christopher J.; Aftabi, Pedram
2009-11-01
The many subaerial extrusions of salt current in Iran are smaller and faster versions of steady state extrusions of metamorphic rocks from crustal channels in mountain chains. The extruded salt develops a variety of internal folds as the salt accumulates ductile displacements that can reach metres a year. Weather-induced elastic strains de-stress the outer layers of salt extrusions to a brittle carapace of broken dilated salt. Qom Kuh, situated in Central Iran, is a comparatively small and slow example of a viscous salt fountain and, as a result, its brittle elastic carapace may be thicker than most. This may account for Qom Kuh being the only salt fountain known to have a train of 10 m scale kink folds in its surficial salt. We attribute these folds to lateral shortening and back-shear of a surface-parallel planar mechanical anisotropy in the surficial salt induced by gravitationally driven ductile flow of the underlying salt. When it is dry, the elastic carapace is relatively strong and acts as a stiff corset impeding gravity spreading of the underlying confined salt. However, the carapace weakens and kinks on wetting, allowing the underlying salt to gravity spread. These folds illustrate how the weather can affect gravity spreading of surficial salt masses and how complex the interplay of tectonic and climatic signals can be in "steady state" mountains.
Díez, Alvaro; Forniés, Juan; Larraz, Carmen; Lalinde, Elena; López, José A; Martín, Antonio; Moreno, M Teresa; Sicilia, Violeta
2010-04-05
[Pt(bzq)Cl(CNR)] [bzq = benzoquinolinate; R = tert-butyl ((t)Bu 1), 2-6-dimethylphenyl (Xyl 2), 2-naphthyl (2-Np 3)] complexes have been synthesized and structurally and photophysically characterized. 1 was found to co-crystallize in two distinct pseudopolymorphs: a red form, which exhibits an infinite 1D-chain ([1](infinity)) and a yellow form, which contains discrete dimers ([1](2)), both stabilized by interplanar pi...pi (bzq) and short Pt...Pt bonding interactions. Complex 3, generated through the unexpected garnet-red double salt isomer [Pt(bzq)(CN-2-Np)(2)][Pt(bzq)Cl(2)] 4, crystallizes as yellow Pt...Pt dimers ([3](2)), while 2 only forms pi...pi (bzq) contacting dimers. Their electronic absorption and luminescence behaviors have been investigated. According to Time-Dependent Density Functional Theory (TD-DFT) calculations, the lowest-lying absorption (CH(2)Cl(2)) has been attributed to combined (1)ILCT and (1)MLCT/(1)ML'CT (L = bzq, L' = CNR) transitions, the latter increasing from 1 to 3. In solid state, while the yellow form [1](2) exhibits a green (3)MLCT unstructured emission only at 77 K, the 1-D form [1](infinity) displays a characteristic low-energy red emission (672 nm, 298 K; 744 nm, 77 K) attributed to a mixed (3)MMCT [d(sigma*)-->p(sigma)]/(3)MMLCT [dsigma*(M(2))-->sigma(pi*)(bzq)] excited state. However, upon exposure to standard atmospheric conditions, [1](infinity) shows an irreversible change to an orange-ochre solid, whose emissive properties are similar to those of the crude 1. Complexes 2 and 3 (77 K) exhibit a structured emission from discrete fragments ((3)LC/(3)MLCT), whereas the luminescence of the garnet-red salt 4 is dominated by a low energy emission (680 nm, 298 K; 730 nm, 77 K) arising from a (3)MMLCT excited state. Solvent (CH(2)Cl(2), toluene, 2-MeTHF and CH(3)CN) and concentration-dependent emission studies at 298 K and at 77 K are also reported for 1-3. In CH(2)Cl(2) solution, the low phosphorescent emission band is ascribed to bzq intraligand charge transfer (3)ILCT mixed with metal-to-ligand (L = bzq, L' = CNR) charge transfer (3)MLCT/(3)ML'CT character with the Pt to CNR contribution increasing from 1 to 3, according to computational studies.
A double blind multicentre study of OM-8980 and auranofin in rheumatoid arthritis.
Vischer, T L
1988-01-01
The therapeutic efficacy of the immunomodulator OM-8980 in rheumatoid arthritis was compared with that of auranofin, an oral gold salt, in a double blind, randomised multicentre study lasting six months. Seventy patients were treated with auranofin and 75 with OM-8980. The patients of both groups improved significantly at three and six months for all the clinical parameters observed: Ritchie index, number of swollen joints, morning stiffness, pain, grip strength, intake of non-steroidal anti-inflammatory drugs, and erythrocyte sedimentation rate. No serious side effects were observed in either group. The patients receiving auranofin had more adverse reactions, mainly affecting the gastrointestinal system. PMID:3041924
Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J
2003-02-07
A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.
NASA Astrophysics Data System (ADS)
Leslie, Timothy; James, Nicola C.; Potts, Warren M.; Rajkaran, Anusha
2017-11-01
Estuarine-dependent marine fish species rely on shallow, sheltered and food rich habitats for protection from predators, growth and ultimately recruitment to adult populations. Hence, habitats within estuaries function as critical nursery areas for an abundance of fish species. However, these habitats vary in the degree of nursery function they provide and few studies have quantitatively assessed the relative nursery value of different habitat types within estuaries, particularly in the context of habitat complexity. This study aimed to assess the nursery value of the dominant vegetated habitats, namely the submergent Zostera capensis (Setch.) (seagrass) beds and emergent Spartina maritima (Curtis) Fernald (salt marsh) beds in the Bushmans Estuary, South Africa. Biomass and stem density were sampled seasonally in order to gain insight into the vegetation dynamics of seagrass and salt marsh beds. Aerial cover, canopy height and underwater camera imagery were used to develop multiple complexity indices for prioritizing habitat complexity. The relatively consistent results of the dimensionless indices (interstitial space indices and fractal geometry) suggest that Z. capensis exhibits an overall greater degree of complexity than S. maritima, and hence it can be expected that fish abundance is likely to be higher in Z. capensis beds than in S. maritima habitats. Underwater video cameras were deployed in seagrass, salt marsh and sand flat habitats to assess the relative abundance and behaviour of the estuarine-dependent sparid Rhabosargus holubi (Steindachner 1881) in different habitats. The relative abundance of R. holubi was significantly higher in Z. capensis seagrass than S. maritima salt marsh and sand flats, whilst the behaviour of R. holubi indicated a high degree of habitat use in structured habitats (both Z. capensis and S. martima) and a low degree of habitat use in unstructured sand flat habitats.
Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M
2014-01-01
Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt
Like-charged protein-polyelectrolyte complexation driven by charge patches
NASA Astrophysics Data System (ADS)
Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim
2015-08-01
We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.
Revisiting the NaCl cotransporter regulation by with-no-lysine kinases
Bazúa-Valenti, Silvana
2015-01-01
The renal thiazide-sensitive Na+-Cl− cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter. PMID:25788573
Methods for preparation of cyclopentadienyliron (II) arenes
Keipert, Steven J.
1991-01-01
Two improved methods for preparation of compounds with the structure shown in equation X [(Cp)--Fe--(Ar)].sup.+.sub.b X.sup.b- (X) where Cp is an eta.sup.5 complexed, substituted or unsubstituted, cyclopentadienyl or indenyl anion, Ar is an eta.sup.6 complexed substituted or unsubstituted, pi-arene ligand anad X is a b-valent anion where b is an integer between 1 and 3. The two methods, which differ in the source of the cyclopentadienyl anion - Lewis acid complex, utilize a Lewis acid assisted ligand transfer reaction. The cyclopentadienyl anion ligand, assisted by a Lewis acid is transferred to ferrous ion in the presence of an arene. In the first method, the cyclopentadienyl anion is derived from ferrocene and ferrous chloride. In this reaction, the cyclopentadienyliron (II) arene product is derived partially from ferrocene and partially from the ferrous salt. In the second method, the cyclopentadienyl anion - Lewis acid complex is formed by direct reaction of the Lewis acid with an inorganic cyclopentadienide salt. The cyclopentadienyliron (II) arene product of this reaction is derived entirely from the ferrous salt. Cyclopentadienyliron (II) arene cations are of great interest due to their utility as photoactivatable catalysts for a variety of polymerization reactions.
Sindlinger, Christian P; Lawrence, Samuel R; Acharya, Shravan; Ohlin, C André; Stasch, Andreas
2017-12-12
The salt metathesis reaction of the sterically demanding bis(iminophosphoranyl)methanide alkali metal complexes LM (L - = HC(Ph 2 P[double bond, length as m-dash]NDip) 2 - , Dip = 2,6- i Pr 2 C 6 H 3 ; M = Li, Na, K) with "GaI", InBr or TlBr afforded the monomeric group 13 metal(i) complexes LE:, E = Ga (1), In (2) and Tl (3) in moderate yields, and small quantities of LGaI 2 4 in the case of Ga, respectively. The molecular structures of LE: 1-3 from X-ray single crystal diffraction show them to contain puckered six-membered rings with N,N'-chelating methanide ligands and two-coordinated metal(i) centres. Reduction reactions of LAlI 2 5, prepared by iodination of LAlMe 2 , were not successful and no aluminium(i) congener could be prepared so far. DFT studies on LE:, E = Al-Tl, were carried out and support the formulation as an anionic, N,N'-chelating methanide ligand coordinating to group 13 metal(i) cations. The HOMOs of the molecules for E = Al-In show a dominant contribution from a metal-based lone pair that is high in s-character.
van de Locht, A; Lamba, D; Bauer, M; Huber, R; Friedrich, T; Kröger, B; Höffken, W; Bode, W
1995-11-01
Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.
Britto, Sylvia; Kamath, P Vishnu
2009-12-21
The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.
The electric double layer at a metal electrode in pure water
NASA Astrophysics Data System (ADS)
Brüesch, Peter; Christen, Thomas
2004-03-01
Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.
Majhi, Paresh Kumar; Schnakenburg, Gregor; Streubel, Rainer
2014-11-28
Synthesis of the first P(V)-bridged bis(NHC) ligand 7 was achieved via deprotonation of P(V)-functionalized bis(imidazolium) salt 6, which was obtained via oxidative desulfurization of bis(imidazole-2-thion-4-yl)phosphane 2. Bis(imidazolium) salt 6 was also employed to synthesize the corresponding silver complex 8. All new products were firmly established by spectroscopic and spectrometric methods as well as elemental analysis and, in addition, X-ray crystal structure analysis in the case of 3.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Great Salt Lake Composition and Rare Earth Speciation Analysis
Jiao, Yongqin; Lammers, Laura; Brewer, Aaron
2017-04-19
We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.
Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje
2011-01-01
Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins. PMID:21478158
Upstream kinases of plant SnRKs are involved in salt stress tolerance.
Barajas-Lopez, Juan de Dios; Moreno, Jose Ramon; Gamez-Arjona, Francisco M; Pardo, Jose M; Punkkinen, Matleena; Zhu, Jian-Kang; Quintero, Francisco J; Fujii, Hiroaki
2018-01-01
Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Kim, Doo-Sup; Yoon, Yeo-Seung; Chung, Hoi-Jeong
2011-07-01
Despite the attention that has been paid to restoration of the capsulolabral complex anatomic insertion onto the glenoid, studies comparing the pressurized contact area and mean interface pressure at the anatomic insertion site between a single-row repair and a double-row labral repair have been uncommon. The purpose of our study was to compare the mean interface pressure and pressurized contact area at the anatomic insertion site of the capsulolabral complex between a single-row repair and a double-row repair technique. Controlled laboratory study. Thirty fresh-frozen cadaveric shoulders (mean age, 61 ± 8 years; range, 48-71 years) were used for this study. Two types of repair were performed on each specimen: (1) a single-row repair and (2) a double-row repair. Using pressure-sensitive films, we examined the interface contact area and contact pressure. The mean interface pressure was greater for the double-row repair technique (0.29 ± 0.04 MPa) when compared with the single-row repair technique (0.21 ± 0.03 MPa) (P = .003). The mean pressurized contact area was also significantly greater for the double-row repair technique (211.8 ± 18.6 mm(2), 78.4% footprint) compared with the single-row repair technique (106.4 ± 16.8 mm(2), 39.4% footprint) (P = .001). The double-row repair has significantly greater mean interface pressure and pressurized contact area at the insertion site of the capsulolabral complex than the single-row repair. The double-row repair may be advantageous compared with the single-row repair in restoring the native footprint area of the capsulolabral complex.
NASA Technical Reports Server (NTRS)
Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.
1988-01-01
The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
NASA Astrophysics Data System (ADS)
Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.
2015-06-01
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.
2015-06-21
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less
NASA Astrophysics Data System (ADS)
Qing-Yin, Zhang; Peng, Xie; Xin, Wang; Xue-Wen, Yu; Zhi-Qiang, Shi; Shi-Huai, Zhao
2016-06-01
Organic salts such as spiro-(1,1')-bipyrrolidinium tetrafluoroborate ([SBP][BF4]) dissolved in liquid acetonitrile (ACN) are a new kind of organic salt solution, which is expected to be used as an electrolyte in electrical double layer capacitors (EDLCs). To explore the physicochemical properties of the solution, an all-atom force field is established on the basis of AMBER parameter values and quantum mechanical calculations. Molecular dynamics (MD) simulations are carried out to explore the liquid structure and physicochemical properties of [SBP][BF4] electrolyte at room temperature. The computed thermodynamic and transport properties match the available experimental results very well. The microscopic structures of [SBP][BF4] salt solution are also discussed in detail. The method used in this work provides an efficient way of predicting the properties of organic salt solvent as an electrolyte in EDLCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 21476172 and 51172160), the National High Technology Research and Development Program of China (Grant No. 2013AA050905), and the Natural Science Foundation of Tianjin, China (Grant Nos. 12JCZDJC28400, 14RCHZGX00859, 14JCTPJC00484, and 14JCQNJC07200).
ERIC Educational Resources Information Center
Bushong, Elizabeth J.; Yoder, Claude H.
2009-01-01
The synthesis and analysis of a copper hydroxy nitrate provides an exposure to a simple ionic synthesis, qualitative analysis of copper and nitrate, two gravimetric analyses (copper and nitrate), one volumetric analysis (hydroxide), and a colorimetric analysis (copper). The results allow the student to determine the identity of the double salt and…
NASA Astrophysics Data System (ADS)
Yu, Xuewen; Ruan, Dianbo; Wu, Changcheng; Wang, Jing; Shi, Zhiqiang
2014-11-01
A novel quaternary ammonium salt based on spiro-(1,1‧)-bipyrolidinium tetrafluoroborate (SBP-BF4) has been synthesized and dissolved in propylene carbonate (PC) with 1.5 mol L-1 (M) concentration for electric double-layer capacitors (EDLCs). The physic-chemical properties and electrochemical performance of SBP-BF4/PC electrolyte are investigated. Compared with the standard electrolyte 1.5 M TEMA-BF4 in PC, the novel SBP-BF4/PC electrolyte exhibited much better electrochemical performance due to its smaller cation size, lower viscosity and higher conductivity. The specific discharge capacitance of activated carbon electrode based EDLCs using SBP-BF4/PC electrolyte is 120 F g-1, the energy density and power density can reach 31 kW kg-1 and 6938 W kg-1, respectively, when the working voltage is 2.7 V and current density is 50 mA g-1. The withstand voltage of activated carbon based EDLCs with SBP-BF4/PC electrolyte can reach to 3.2 V, where the stable discharge capacitance and energy density are 121 F g-1 and 43 Wh kg-1, respectively.
Kumar, Vikash; Wollner, Clayton; Kurth, Theresa; Bukowy, John D; Cowley, Allen W
2017-10-01
The goal of the present study was to explore the protective effects of mTORC1 (mammalian target of rapamycin complex 1) inhibition by rapamycin on salt-induced hypertension and kidney injury in Dahl salt-sensitive (SS) rats. We have previously demonstrated that H 2 O 2 is elevated in the kidneys of SS rats. The present study showed a significant upregulation of renal mTORC1 activity in the SS rats fed a 4.0% NaCl for 3 days. In addition, renal interstitial infusion of H 2 O 2 into salt-resistant Sprague Dawley rats for 3 days was also found to stimulate mTORC1 activity independent of a rise of arterial blood pressure. Together, these data indicate that the salt-induced increases of renal H 2 O 2 in SS rats activated the mTORC1 pathway. Daily administration of rapamycin (IP, 1.5 mg/kg per day) for 21 days reduced salt-induced hypertension from 176.0±9.0 to 153.0±12.0 mm Hg in SS rats but had no effect on blood pressure salt sensitivity in Sprague Dawley treated rats. Compared with vehicle, rapamycin reduced albumin excretion rate in SS rats from 190.0±35.0 to 37.0±5.0 mg/d and reduced the renal infiltration of T lymphocytes (CD3 + ) and macrophages (ED1 + ) in the cortex and medulla. Renal hypertrophy and cell proliferation were also reduced in rapamycin-treated SS rats. We conclude that enhancement of intrarenal H 2 O 2 with a 4.0% NaCl diet stimulates the mTORC1 pathway that is necessary for the full development of the salt-induced hypertension and kidney injury in the SS rat. © 2017 American Heart Association, Inc.
Bruun, Susanne Wrang; Søndergaard, Ib; Jacobsen, Susanne
2007-09-05
Hydrated gluten, treated with various salts, was analyzed by near-infrared (NIR) spectroscopy to assess the ability of this method to reveal protein structure and interaction changes in perturbed food systems. The spectra were pretreated with second-derivative transformation and extended multiplicative signal correction for improving the band resolution and removing physical and quantitative spectral variations. Principal component analysis of the preprocessed spectra showed spectral effects that depended on salt type and concentration. Although both gluten texture and the NIR spectra were little influenced by treatment with salt solutions of low concentrations (0.1-0.2 M), they were significantly and diversely affected by treatment with 1.0 M salt solutions. Compared to hydration in water, hydration in 1.0 M sulfate salts caused spectral effects similar to a drying-out effect, which could be explained by salting-out.
High salt solution structure of a left-handed RNA double helix
Popenda, Mariusz; Milecki, Jan; Adamiak, Ryszard W.
2004-01-01
Right-handed RNA duplexes of (CG)n sequence undergo salt-induced helicity reversal, forming left-handed RNA double helices (Z-RNA). In contrast to the thoroughly studied Z-DNA, no Z-RNA structure of natural origin is known. Here we report the NMR structure of a half-turn, left-handed RNA helix (CGCGCG)2 determined in 6 M NaClO4. This is the first nucleic acid motif determined at such high salt. Sequential assignments of non-exchangeable proton resonances of the Z-form were based on the hitherto unreported NOE connectivity path [H6(n)-H5′/H5″(n)-H8(n+1)-H1′(n+1)-H6(n+2)] found for left-handed helices. Z-RNA structure shows several conformational features significantly different from Z-DNA. Intra-strand but no inter-strand base stacking was observed for both CpG and GpC steps. Helical twist angles for CpG steps have small positive values (4–7°), whereas GpC steps have large negative values (−61°). In the full-turn model of Z-RNA (12.4 bp per turn), base pairs are much closer to the helix axis than in Z-DNA, thus both the very deep, narrow minor groove with buried cytidine 2′-OH groups, and the major groove are well defined. The 2′-OH group of cytidines plays a crucial role in the Z-RNA structure and its formation; 2′-O-methylation of cytidine, but not of guanosine residues prohibits A to Z helicity reversal. PMID:15292450
Light scattering methods to test inorganic PCMs for application in buildings
NASA Astrophysics Data System (ADS)
De Paola, M. G.; Calabrò, V.; De Simone, M.
2017-10-01
Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.
Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P
2017-10-01
Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G
2007-06-11
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.
Solar gasification of biomass: design and characterization of a molten salt gasification reactor
NASA Astrophysics Data System (ADS)
Hathaway, Brandon Jay
The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, D.C.
1996-12-31
Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less
Using Nitrogen Stable Isotope Tracers to Track Climate Change Impacts on Coastal Salt Marshes
Climate change impacts on coastal salt marshes are predicted to be complex and multi-faceted. In addition to rising sea level and warmer water temperatures, regional precipitation patterns are also expected to change. At least in the Northeast and Mid-Atlantic U.S., more severe s...
Impregnated metal-polymeric functional beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Volksen, Willi (Inventor)
1980-01-01
Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.
Impregnated metal-polymeric functional beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Volksen, Willi (Inventor)
1978-01-01
Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.
ARS-Media: A spreadsheet tool for calculating media recipes based on ion-specific constraints
USDA-ARS?s Scientific Manuscript database
ARS-Media is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are generated using ...
Reactions of Solvated Ions Final Report
DOE R&D Accomplishments Database
Taube, H.
1962-09-24
Brief summaries are presented on isotopic dilution studies on salts dissolved in CH{sub 3}OH, studies on metal and metal salts in solvents of the amine type, and studies on phosphato complexes of the pentammine Co(III) series. A list of papers published on reactions of solvated ions is included. (N.W.R.)
Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers
NASA Astrophysics Data System (ADS)
Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan
2009-03-01
Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
The Effects of Salt on Rheological Properties of Asphalt after Long-Term Aging
Yu, Xin; Luo, Yilin; Yin, Long
2013-01-01
Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies. PMID:24459450
Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly
NASA Astrophysics Data System (ADS)
Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles
Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.
The effects of salt on rheological properties of asphalt after long-term aging.
Yu, Xin; Wang, Ying; Luo, Yilin; Yin, Long
2013-01-01
Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies.
Clark, Ginevra A; Henderson, J Michael; Heffern, Charles; Akgün, Bülent; Majewski, Jaroslaw; Lee, Ka Yee C
2015-11-24
We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts. Sugar-lipid interactions in the presence of NaCl increased with increasing complexity of the sugar/polyol in the order glycerol ≪ glucose < trehalose. When the anion was altered in the series NaF, NaCl, and NaBr, only minor differences were observed. When comparing LiCl, NaCl, and KCl, sodium chloride had the greatest influence on glucose and trehalose interactions with DPPC. We propose that heterogeneity created by cation binding allows for sugars to bind the lipid headgroups. While cation binding increases in the order K(+) < Na(+) < Li(+), lithium ions may also compete with glucose for binding sites. Thus, both cooperative and competitive factors contribute to the overall influence of salts on sugar-lipid interactions.
Simler, Thomas; Choua, Sylvie; Danopoulos, Andreas A; Braunstein, Pierre
2018-05-18
The double aminolysis reaction of [Co{N(SiMe3)2}2] by the salt 1-(6-((dicyclohexylphosphaneyl)methyl)pyridin-2-yl)-3-(2,6-diisopropylphenyl)-1H-imidazol-3-ium bromide, which contains one phosphane, one pyridine and one imidazolium groups, of formula [o-Cy2PCH2(C5H3N)(o-C3H3N2DiPP)]Br and abbreviated as (CyPNpyrCim)Br, was previously shown to afford the Co(ii) complex [Co(CyP*NaCNHC)Br] (1) containing a dearomatised picolyl moiety in the tridentate, anionic donor ligand CyP*NaCNHC (Na = anionic amido, P* = vinylic P donor). We now report that formation of 1 is preceded by an intermediate tentatively assignable to the 5-coordinate Co(ii) complex [Co(CyPNpyrCNHC){N(SiMe3)2}Br] (2). The reaction of 1 with LiCH2SiMe3 afforded the dark purple, paramagnetic [Co(CyP*NaCNHC)CH2SiMe3] (3) with a low spin d7 CoII; the electronic configurations of 1 and 3 were corroborated by EPR spectroscopy. Addition of excess (≥4 equiv.) H2SiPh2 to a solution of 1 gave the diamagnetic [Co(CyP(SiHPh2)NCNHC)Br] (4) following Si-H activation and silylation of the ligand backbone at the α-CHP. Reduction of CoII to CoI by silanes is uncommon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Phongikaroon, Supathorn; Zhang, Jinsuo
This project addresses the problem of achieving accurate material control and accountability (MC&A) around pyroprocessing electrorefiner systems. Spent nuclear fuel pyroprocessing poses a unique challenge with respect to reprocessing technology in that the fuel is never fully dissolved in the process fluid. In this case, the process fluid is molten, anhydrous LiCl-KCl salt. Therefore, there is no traditional input accountability tank. However, electrorefiners (ER) accumulate very large quantities of fissile nuclear material (including plutonium) and should be well safeguarded in a commercial facility. Idaho National Laboratory (INL) currently operates a pyroprocessing facility for treatment of spent fuel from Experimental Breedermore » Reactor-II with two such ER systems. INL implements MC&A via a mass tracking model in combination with periodic sampling of the salt and other materials followed by destructive analysis. This approach is projected to be insufficient to meet international safeguards timeliness requirements. A real time or near real time monitoring method is, thus, direly needed to support commercialization of pyroprocessing. A variety of approaches to achieving real time monitoring for ER salt have been proposed and studied to date—including a potentiometric actinide sensor for concentration measurements, a double bubbler for salt depth and density measurements, and laser induced breakdown spectroscopy (LIBS) for concentration measurements. While each of these methods shows some promise, each also involves substantial technical complexity that may ultimately limit their implementation. Yet another alternative is voltammetry—a very simple method in theory that has previously been tested for this application to a limited extent. The equipment for a voltammetry system consists of off-the-shelf components (three electrodes and a potentiostat), which results in substantial benefits relative to cost and robustness. Based on prior knowledge of electrochemical reduction potentials for each of the species of interest, voltammetry can be used to quantify concentrations of a variety of elemental species—including uranium, plutonium, minor actinides, and rare earths. Various methods have been tested by other researchers to date—including cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, etc. In most cases, it has been observed that there is a very limited concentration range for which the output can be readily correlated with concentration in the salt. Furthermore, testing to date has been limited to simple ternary salts with only a single element being quantified. While incomplete for application to MC&A for pyroprocessing, these results lead us to believe that voltammetry can be optimized based on salt properties and fundamental electrochemical rate processes to yield a highly accurate and robust method. This project is divided into four tasks jointly executed by three university research groups. This includes experimental measurement of key physical data on the systems of interest, development of a predictive voltammetry model, experimental validation of the voltammetry model, and design/verification of an optimized measurement method. This project supports the goals of the US-ROK Joint Fuel Cycle Study in addition to the NA-24 Office of the National Nuclear Security Agency and the International Atomic Energy Agency (IAEA).« less
Salt effects on an ion-molecule reaction--hydroxide-catalyzed hydrolysis of benzocaine.
Al-Maaieh, Ahmad; Flanagan, Douglas R
2006-03-01
This work investigates the effect of various salts on the rate of a reaction involving a neutral species (benzocaine alkaline hydrolysis). Benzocaine hydrolysis kinetics in NaOH solutions in the presence of different salts were studied at 25 degrees C. Benzocaine solubility in salt solutions was also determined. Solubility data were used to estimate salt effects on benzocaine activity coefficients, and pH was used to estimate salt effects on hydroxide activity coefficients. Salts either increased or decreased benzocaine solubility. For example, solubility increased with 1.0 M tetraethylammonium chloride (TEAC) approximately 3-fold, whereas solubility decreased approximately 35% with 0.33 M Na2SO4. Salt effects on hydrolysis rates were more complex and depended on the relative magnitudes of the salt effects on the activity coefficients of benzocaine, hydroxide ion, and the transition state. As a result, some salts increased the hydrolysis rate constant, whereas others decreased it. For example, the pseudo-first-order rate constant decreased approximately 45% (to 0.0584 h(-1)) with 1 M TEAC, whereas it increased approximately 8% (to 0.116 h(-1)) with 0.33 M Na2SO4. Different salt effects on degradation kinetics can be demonstrated for a neutral compound reacting with an ion. These salt effects depend on varying effects on activity coefficients of reacting and intermediate species.
Analysis of electrolyte transport through charged nanopores.
Peters, P B; van Roij, R; Bazant, M Z; Biesheuvel, P M
2016-05-01
We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968)JCPSA60021-960610.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.
Shalaeva, Daria N; Dibrova, Daria V; Galperin, Michael Y; Mulkidjanian, Armen Y
2015-05-27
Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.
NASA Astrophysics Data System (ADS)
Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham
2014-05-01
The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and Pleistocene (glacial). The models have been thermally calibrated. Consideration of Pleistocene glacial/interglacial cycles was required for thermal calibration as well as to better understand and predict the hydrocarbon phase behavior. References: Koyi, H., Talbot, C.J., Tørudbakken, B.O., 1993, Salt diapirs of the southwest Nordkapp Basin: analogue modelling, Tectonophysics, Volume 228, Issues 3-4, Pages 167-187. Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995, Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In: Jackson, M.P.A., Roberts, D.G., Snelson, S. (eds), Salt tectonics, a global perspective, AAPG Memoir 65, 413-436.
Friction measurements in piston-cylinder apparatus using quartz-coesite reversible transition
NASA Technical Reports Server (NTRS)
Akella, J.
1979-01-01
The value of friction determined by monitoring piston displacement as a function of nominal pressure on compression and decompression cycles at 1273 K is compared with the friction value obtained by reversing the quartz-coesite transition at 1273 and 1073 K in a talc-glass-alsimag cell (Akella and Kennedy, 1971) and a low-friction salt cell (Mirwald et al., 1975). Quenching runs at 1273 K gave double values of friction of 0.25 GPa for the talc-glass-alsimag cell and 0.03 GPa for the salt cell. The piston-displacement technique gave somewhat higher values. Use of piston-displacement hysteresis loops in evaluating the actual pressure on a sample may lead to overestimates for decompression runs and underestimates for compression runs.
Electrophoretic formation of semiconductor layers with adjustable band gap
NASA Astrophysics Data System (ADS)
Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander
2017-11-01
The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.
NASA Astrophysics Data System (ADS)
Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi
2002-11-01
The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.
Biel, Philippe; Mohn, Dirk; Attin, Thomas; Zehnder, Matthias
2017-04-01
A clinically useful all-in-one endodontic irrigant with combined proteolytic and decalcifying properties is still elusive. In this study, the chemical effects of dissolving the tetrasodium salts of 1-hydroxyethane 1,1-diphosphonic acid (Na 4 HEDP) or Na 4 EDTA directly in sodium hypochlorite (NaOCl) irrigants in polypropylene syringes were assessed during the course of 1 hour. The solubility of the salts in water was determined. Their compatibility with 1% and 5% NaOCl was measured by iodometric titration and in a calcium complexation experiment by using a Ca 2+ -selective electrode. The salts dissolved within 1 minute. The dissolution maximum of Na 4 HEDP in water (wt/total wt) was 44.6% ± 1.6%. The corresponding dissolution maximum of Na 4 EDTA was 38.2% ± 0.8%. Na 4 HEDP at 18% in 5% NaOCl caused a mere loss of 16% of the initially available chlorine during 1 hour. In contrast, a corresponding mixture between NaOCl and the Na 4 EDTA salt caused 95% reduction in available chlorine after 1 minute. Mixtures of 3% Na 4 EDTA with 1% NaOCl were more stable, but only for 30 minutes. Na 4 HEDP lost 24% of its calcium complexation capacity after 60 minutes. The corresponding loss for Na 4 EDTA was 34%. The compatibility and solubility of particulate Na 4 HEDP with/in NaOCl solutions are such that these components can be mixed and used for up to 1 hour. In contrast, short-term compatibility of the Na 4 EDTA salt with NaOCl solutions was considerably lower, decreasing at higher concentrations of either compound. Especially for Na 4 HEDP but also for Na 4 EDTA, the NaOCl had little effect on calcium complexation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice
Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel
2016-01-01
Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt tolerant mutants illustrates the complexity of this trait evidencing the breadth of the plant responses to salinity including simultaneous cooperation of alternative or complementary mechanisms. PMID:27733859
[The vanadium compounds: chemistry, synthesis, insulinomimetic properties].
Fedorova, E V; Buriakina, A V; Vorob'eva, N M; Baranova, N I
2014-01-01
The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.
Method for synthesizing metal bis(borano) hypophosphite complexes
Cordaro, Joseph G.
2013-06-18
The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.
Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix
Phan, Anh Tuân; Mergny, Jean-Louis
2002-01-01
Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson–Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C·C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding. PMID:12409451
Katsir, Yael; Marmur, Abraham
2014-01-01
Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528
NASA Astrophysics Data System (ADS)
Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan
2018-04-01
Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.
Method for the preparation of thin-skinned asymmetric reverse osmosis membranes and products thereof
NASA Technical Reports Server (NTRS)
Wydeven, T. J. (Inventor); Katz, M. G.
1984-01-01
A method for preparing water insoluble asymmetric membranes from water soluble polymers is discussed. The process involves casting a film of the polymer, partially drying it, and then contacting it with a concentrated solution of a transition metal salt. The transition metal ions render the polymer insoluable and are believed to form a complex with it. Optionally, the polymer is crosslinked with heat or radiation. The most preferred polymer is poly(vinyl alcohol). The most preferred complexing salt is copper sulfate. The process and the metal ion linked membranes are discussed. The membranes are reverse osmosis membranes.
Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland
NASA Astrophysics Data System (ADS)
Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna
2017-09-01
Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial (pre-mining) conditions. The long-term deformation analysis of the Kłodawa salt mine for year 2014 revealed that stability conditions were fulfilled. Local disturbances indicated in the numerical analysis were connected with high chambers included in the mining field no 1 and complex geological structure in the vicinity of mine workings located in the mining fields no 2 and 3. Moreover, numerical simulations that projected the future extraction progress (till year 2052) showed positive performance. Local weakness zones in the mining field no 7 are associated with occurrence of carnallite layers and intensive mining which are planned in the mining field no 6 at the end of rock salt extraction.
Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin
2013-07-01
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.
Crystal structure of (ethoxyethylidene)dimethylazanium ethyl sulfate
Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi
2015-01-01
In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525
Transgenic plants with enhanced growth characteristics
Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.
2016-09-06
The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.
Electrolytes for high voltage electrochemical double layer capacitors: A perspective article
NASA Astrophysics Data System (ADS)
Balducci, A.
2016-09-01
The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.
The preparation and use of metal salen complexes derived from cyclobutane diamine
NASA Astrophysics Data System (ADS)
Patil, Smita
The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie
2018-06-07
Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.
NASA Astrophysics Data System (ADS)
Sharma, Raj Pal; Bala, Ritu; Sharma, Rajni; Kariuki, B. M.; Rychlewska, Urszula; Warżajtis, Beata
2005-06-01
In an effort to utilize [Co(NH 3) 6] 3+cation as a new host for carboxylate ions, orange coloured crystalline solids of composition [Co(NH 3) 6]Cl(C 8H 5O 4) 2·3H 2O ( 1) and Na[Co(NH 3) 6](C 7H 5O 2) 4·H 2O ( 2) were obtained by reacting hot aqueous solutions of hexaamminecobalt(III) chloride with potassium hydrogen phthalate and sodium benzoate in 1:3 molar ratio, respectively. The title complex salts were characterized by elemental analyses and spectroscopic studies (IR, UV/Visible and NMR). Single crystal X-ray structure determinations revealed the formation of second-sphere coordination complexes based on hydrogen bond interactions. In complex salt 1 only two out of three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced by two CHO4- ions whereas in complex salt 2 all the three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced and the final product was an adduct with another mole of sodium benzoate in solid state. The crystal lattice is stabilized by electrostatic forces of attraction and predominantly N-H⋯O interactions.
Executive Summary of the Cloud Impacts on DoD Operations and Systems - 1988 Workshop (CIDOS - 88)
1988-01-01
over the Great Salt Lake Basin - an example of the complexity of satellite cloud detection. The image is photography #358 from the Large Format...over the Wasatch Range, east of the Great Salt Lake, and over the southern escarpment of the Uinta Mountains (lop right corner). The simple threshold
Problem Definition Study: Lead Beta-Resorcylate
1979-02-01
unless so desig- nated by other authorized documents. -3- »SUMMARY Lead ß-resorcylate is used as a burning rate modifier in solid propel- lant... sediment and biota 3. Acute mammalian toxicity study 4. Chronic mammalian toxicity study 5. Determine the effectiveness of proposed treatment...burning rate moderator in solvent and solventless double base propellents. This salt enters the environment in the wastewater generated during the
An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.
Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias
2012-08-16
An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.
2015-08-04
The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.
Salt bridges: geometrically specific, designable interactions.
Donald, Jason E; Kulp, Daniel W; DeGrado, William F
2011-03-01
Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.
Detecting the Length of Double-stranded DNA with Solid State Nanopores
NASA Astrophysics Data System (ADS)
Li, Jiali; Gershow, Marc; Stein, Derek; Qun, Cai; Brandin, Eric; Wang, Hui; Huang, Albert; Branton, Dan; Golovchenko, Jene
2003-03-01
We report on the use of nanometer scale diameter, solid-state nanopores as single molecule detectors of double stranded DNA molecules. These solid-state nanopores are fabricated in thin membranes of silicon nitride, by ion beam sculpting 1. They produce discrete electronic signals: current blockages, when an electrically biased nanopore is exposed to DNA molecules in aqueous salt solutions. We demonstrate examples of such electronic signals for 3k base pairs (bp) and 10k bp double stranded DNA molecules, which suggest that these molecules are individually translocating through the nanopore during the detection process. The translocating time for the 10k bp double stranded DNA is about 3 times longer than the 3k bp, demonstrating that a solid-state nanopore device can be used to detect the lengths of double stranded DNA molecules. Similarities and differences with signals obtained from single stranded DNA in a biological nanopores are discussed 2. 1. Li, J., Stein, D., McMullan, C., Branton, D. Aziz, M. J. and Golovchenko, J. Ion Beam Sculpting at nanometer length scales. Nature 412, 166-169 (2001). 2. Meller, A., L. Nivon, E. Brandin, Golovchenko, J. & Branton, D. Proc. Natl. Acad. Sci. USA 97, 1079-1084 (2000).
Boixel, Julien; Guerchais, Véronique; Le Bozec, Hubert; Chantzis, Agisilaos; Jacquemin, Denis; Colombo, Alessia; Dragonetti, Claudia; Marinotto, Daniele; Roberto, Dominique
2015-05-07
An unprecedented DTE-based Pt(II) complex, 2(o), which stands as the first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light is presented.
Lely, A Titia; Heerspink, Hiddo J Lambers; Zuurman, Mike; Visser, Folkert W; Kocks, Menno J A; Boomsma, Frans; Navis, Gerjan
2010-12-01
Renin-angiotensin-aldosterone system blockade is a cornerstone in cardiovascular protection. Angiotensin-converting enzyme (ACE)-DD genotype has been associated with resistance to angiotensin-converting enzyme inhibition (ACEi), but data are conflicting. As sodium intake modifies the effect of ACEi as well as the genotype-phenotype relationship, we hypothesize gene-environment interaction between sodium-status, the response to ACEi, and ACE genotype. Thirty-five male volunteers (26 ± 9 years; II n = 6, ID n = 18, DD n = 11) were studied during placebo and ACEi (double blind, enalapril 20 mg/day) on low [7 days 50 mmol Na/day (low salt)] and high [7 days 200 mmol Na/day (high salt)] sodium, with a washout of 6 weeks in-between. After each period mean arterial pressure (MAP) was measured before and during graded infusion of angiotensin II (Ang II). During high salt, ACEi reduced MAP in II and ID, but not in DD [II: 88 (78-94) versus 76 (72-88); ID: 87 (84-91) versus 83 (79-87); both P < 0.05 and DD: 86 (82-96) versus 88 (80-90); ns, P < 0.05 between genotypes]. However, during low salt, ACEi reduced MAP in all genotype groups [II: 83 (78-89) versus 77 (72-83); ID: 88 (84-91) versus 82 (78-86); DD: 84 (80-91) versus 81 (75-85); all P < 0.05]. During high salt + ACEi, the Ang II response was blunted in DD, with an 18% rise in MAP during the highest dose versus 22 and 31% in ID and II (P < 0.05). Low salt annihilated these differences. In healthy participants, the MAP response to ACEi is selectively blunted in DD genotype during high salt, accompanied by blunted sensitivity to Ang II. Low salt corrects both abnormalities. Further analysis of this gene-environment interaction in patients may contribute to strategies for improvement of individual treatment efficacy.
Weak polyelectrolyte complexation driven by associative charging.
Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K
2018-03-21
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Weak polyelectrolyte complexation driven by associative charging
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.
2018-03-01
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja
2017-09-01
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.
Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen
2018-08-15
Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.
How rheological heterogeneities control the internal deformation of salt giants.
NASA Astrophysics Data System (ADS)
Raith, Alexander; Urai, Janos L.
2017-04-01
Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.
NASA Astrophysics Data System (ADS)
Lockhart, L. P.; Flemings, P. B.; Nikolinakou, M. A.; Heidari, M.
2016-12-01
We apply a new pressure prediction approach that couples sonic velocity data, geomechanical modeling, and a critical state soil model to estimate pore pressure from wellbore data adjacent to a salt body where the stress field is complex. Specifically, we study pressure and stress in front of the Mad Dog salt body, in the Gulf of Mexico. Because of the loading from the salt, stresses are not uniaxial; the horizontal stress is elevated, leading to higher mean and shear stresses. For the Mad Dog field, we develop a relationship between velocity and equivalent effective stress, in order to account for both the mean and shear stress effect on pore pressure. We obtain this equivalent effective stress using a geomechanical model of the Mad Dog field. We show that the new approach improves pressure prediction in areas near salt where mean and shear stress are different than the control well. Our methodology and results show that pore pressure is driven by a combination of mean stress and shear stress, and highlight the importance of shear-induced pore pressures. Furthermore, the impact of our study extends beyond salt bodies; the methodology and gained insights are applicable to geological environments around the world with a complex geologic history, where the stress state is not uniaxial (fault zones, anticlines, synclines, continental margins, etc.).
Sacubitril/Valsartan: A Review in Chronic Heart Failure with Reduced Ejection Fraction.
McCormack, Paul L
2016-03-01
Sacubitril/valsartan (Entresto™; LCZ696) is an orally administered supramolecular sodium salt complex of the neprilysin inhibitor prodrug sacubitril and the angiotensin receptor blocker (ARB) valsartan, which was recently approved in the US and the EU for the treatment of chronic heart failure (NYHA class II-IV) with reduced ejection fraction (HFrEF). In the large, randomized, double-blind, PARADIGM-HF trial, sacubitril/valsartan reduced the incidence of death from cardiovascular causes or first hospitalization for worsening heart failure (composite primary endpoint) significantly more than the angiotensin converting enzyme (ACE) inhibitor enalapril. Sacubitril/valsartan was also superior to enalapril in reducing death from any cause and in limiting the progression of heart failure. Sacubitril/valsartan was generally well tolerated, with no increase in life-threatening adverse events. Symptomatic hypotension was significantly more common with sacubitril/valsartan than with enalapril; the incidence of angio-oedema was low. Therefore, sacubitril/valsartan is a more effective replacement for an ACE inhibitor or an ARB in the treatment of HFrEF, and is likely to influence the basic approach to treatment.
Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces
Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.
2016-12-16
The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecularmore » dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less
Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki
2018-03-01
In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.
Iseda, Kazuya
2018-01-01
Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław
2017-12-20
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Double-diffusive instabilities in ancient seawater
NASA Astrophysics Data System (ADS)
Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias
2015-04-01
Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.
Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan
2013-12-15
In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.
Engelsen, Søren Balling; Madsen, Anders Østergaard; Blennow, Andreas; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Larsen, Sine
2003-04-24
The only known in planta substitution of starch is phosphorylation. Whereas the function of starch phosphorylation is poorly understood, phosphorylated starch possesses improved functionality in vitro. Molecular models of native crystalline starch are currently being developed and the starch phosphorylating enzyme has recently been discovered. Accordingly, it is desirable to obtain a more exact description of the molecular structures of phosphorylated starch. We have determined the crystal structure of methyl alpha-D-glucopyranoside 6-O-phosphate as its potassium salt which is thought to be the starch phosphate counterion in vivo. From this structure and previously known glucophosphate structures we describe the possible 6-O-phosphate geometries and through modeling extrapolate the results to the double helical structure of the crystalline part of amylopectin. The geometries of the existing crystal structures of 6-O-phosphate groups were found to belong to two main adiabatic valleys. One of these conformations could be fitted into the double helical amylopectin part without perturbing the double helical amylopectin structure and without creating steric problems for the hexagonal chain-chain packing.
A search for double beta decays of 136Xe to the excited state of 136Ba with EXO-200
NASA Astrophysics Data System (ADS)
Yen, Yung-Ruey; EXO-200 Collaboration
2015-10-01
EXO-200 is one of the most sensitive searches for neutrinoless double beta decay of 136Xe in the world. The experiment uses 110 kg of active enriched liquid xenon in an ultralow background time projection chamber installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 m water equivalent overburden. This detector has demonstrated excellent energy resolution and background rejection capabilities. While the experiment is designed to search for the double beta decays of 136Xe to the ground state of 136Ba, transitions to the excited states of 136Ba are also plausible. The ββ 2 ν decay to the first 0+ excited state of the daughter nuclei has been observed for 100Mo and 150Nd; this particular transition for 136Xe has a theoretical lifetime on the order of 1025 year, which is right around the sensitivity of EXO-200. We present the results from the search of double beta decays to the excited state using two years of EXO-200 data.
NASA Astrophysics Data System (ADS)
Dror, I.; Menahem, A.; Berkowitz, B.
2014-12-01
The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt or organic complex).
Cerqueira, Charlotte; Knudsen, Nils; Ovesen, Lars; Laurberg, Peter; Perrild, Hans; Rasmussen, Lone Banke; Jørgensen, Torben
2011-08-01
Iodization of salt is an effective strategy to prevent iodine deficiency disorders. Recent studies, however, indicate that increasing the iodine intake in a population may give rise to an increased incidence of hypothyroidism, but the association has not been fully clarified. In Denmark, iodization of salt was initiated in 1998 because of mild-to-moderate iodine deficiency. The aim of this study was to evaluate the effect of the raised iodine intake on the nationwide incident use of thyroid hormone replacement therapy (levothyroxine) to treat hypothyroidism. Data on all use of levothyroxine was extracted from the Register of Medicinal Product Statistics during the period 1995-2009 and linked to other nationwide registers by use of the Danish identification number. Persons with previous thyroid surgery were excluded. In the studied period 71,565 incident users were identified. The incidence rate increased 75% in the moderately iodine deficient region (72.2 incident users/100,000 person-years in 1997 to 126.6 in 2008) and 87% in the mildly deficient region (86.9-162.9). When stratified by sex and age-group (00-39, 40-64, 65+) the largest relative increase was seen among women in the youngest age-group, where more than a doubling was seen. The mechanisms behind the increase may be a result of iodine-induced hypothyroidism, although a higher diagnostic activity with regard to thyroid dysfunction and intensified treatment of subclinical hypothyroidism may also play a role. Our findings stress the need for caution when initiating iodine fortification programs to keep the intake within the optimal range, and the need for continuous monitoring.
Gouiaa, Sandra; Khoudi, Habib
2015-09-01
Potassium (K) deficiency is a worldwide problem. Thus, the K biofortification of crops is needed to enhance human nutrition. Tomato represents an ideal candidate for such biofortification programs thanks to its widespread distribution and its easy growth on a commercial scale. However, although tomato is moderately tolerant to abiotic stresses, the crop losses due to salinity can be severe. In this study, we generated transgenic tomato plants over-expressing a Na(+)-K(+)/H(+) exchanger gene (TNHXS1), singly or with H(+)-pyrophosphatase (H(+)-PPiase) gene using a bicistronic construct. Transgenic tomato lines co-expressing both genes (LNV) significantly showed higher salinity tolerance than the wild-type (WT) plans or those expressing the TNHXS1 gene alone (LN). Indeed, under salt stress conditions, double transgenic plants produced higher biomass and retained more chlorophyll and catalase (CAT) activity. In addition, they showed earlier flowering and produced more fruits. To address K deficiencies in humans, an increase of 50% in K content of vegetable products was proposed. In this study, ion content analysis revealed that, under salt stress, fruits from double transgenic plants accumulated 5 times more potassium and 9 times less sodium than WT counterparts. Interestingly, the ionomic analysis of tomato fruits also revealed that LNV had a distinct profile compared to WT and to LN plants. Indeed, LNV fruits accumulated less Fe(2+), Ca(2+), Mg(2+) and Zn(2+), but more Mn(2+). This study demonstrates the effectiveness of bicistronic constructs as an important tool for the enhancement of biofortification and salt stress tolerance in crops. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stability of actin-lysozyme complexes formed in cystic fibrosis disease.
Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah
2016-08-21
Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, L.K.; Xian, W.; Guaqueta, C.
The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozymemore » complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.« less
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes
NASA Astrophysics Data System (ADS)
Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
Loo, Rachel R Ogorzalek; Loo, Joseph A
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.
Influence of concentration polarization on DNA translocation through a nanopore.
Zhai, Shengjie; Zhao, Hui
2016-05-01
Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, Tsukasa; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472; Tamura, Shinji
2010-07-15
Rare-earth ammonium sulfate octahydrates of R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4}.8H{sub 2}O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports. -more » Graphical abstract: Stable temperature range of anhydrous rare-earth ammonium sulfate R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Since the previous reports were based only on thermal analysis, the present work has more accurately determined the exact thermal stability of rare-earth ammonium sulfate solids.« less
Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)
2002-01-01
Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.
Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol)
NASA Astrophysics Data System (ADS)
Schantz, S.; Torell, L. M.; Stevens, J. R.
1988-08-01
Raman spectra of LiClO4 complexed in poly(propylene-glycol) (PPG) have been obtained for concentrations of the monomer to salt ratio (ether oxygen):Li in the range 30:1-5:1. Splitting of the symmetric stretching mode of the ClO4- anion was observed with an intensity profile that varied with salt concentration. This phenomenon indicates a changing environment about the anion. A two-component band analysis leads to the identification of dissociated ions on one hand and solvent-separated ion pairs on the other. The concentration of ion pairs is relatively low compared to that of the dissociated ions, which are predominant for all concentrations. Despite the observed increase in the absolute number of dissociated ions at higher salt concentration, the electrical conductivity is reported to decrease in the same range. This indicates that the number of ``free'' charge carriers is of less importance for the conductivity than the mobility, which is damped in this concentration range. Frequency shifts of the disordered longitudinal-acoustic mode and increased hypersonic velocities, measured with Raman and Brillouin scattering techniques, respectively, indicate increased stiffness of the polymer matrix for increasing salt concentration, which probably results in decreased ion mobility.
Biophysical and biochemical constraints imposed by salt stress: learning from halophytes
Duarte, Bernardo; Sleimi, Noomene; Caçador, Isabel
2014-01-01
Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism. PMID:25566311
Analysis of D-penicillamine by gas chromatography utilizing nitrogen--phosphorus detection.
Rushing, L G; Hansen, E B; Thompson, H C
1985-01-11
A method is presented for the analysis of the "orphan" drug D-penicillamine (D-Pa), which is used for the treatment of the inherited rare copper metabolism dysfunction known as Wilson's disease, by assaying a derivative of the compound by gas chromatography employing a rubidium sensitized nitrogen--phosphorus detector. Analytical procedures are described for the analyses of residues of D-Pa X HCl salt in animal feed and for the analyses of the salt or free base from aqueous solutions by utilizing a single-step double derivatization with diazomethane--acetone. Stability data for D-Pa X HCl in animal feed and for the free base in water are presented. An ancillary fluorescence derivatization procedure for the analysis of D-Pa in water is also reported.
Electrostatic contribution to twist rigidity of DNA.
Mohammad-Rafiee, Farshid; Golestanian, Ramin
2004-06-01
The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution-the electrostatic twist rigidity of DNA is found to be C(elec) approximately 5 nm, which makes up about 7% of its total twist rigidity ( C(DNA) approximately 75 nm). The electrostatic twist rigidity is found, however, to depend only weakly on the salt concentration, because of a competition between two different screening mechanisms: (1) Debye screening by the salt ions in the bulk, and (2) structural screening by the periodic charge distribution along the backbone of the helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
The formation of the doubly stable stratification in the Mediterranean Outflow
NASA Astrophysics Data System (ADS)
Bormans, M.; Turner, J. S.
1990-11-01
The Mediterranean Outflow as it exits from the Strait of Gibraltar can be seen as a gravity current flowing down the slope and mixing with Atlantic Water until it reaches its own density level. Typical salinity and temperature profiles through the core region of a Meddy show that the bottom of the core is colder and saltier than the top, leading to a stably stratified core with respect to double-diffusive processes. The bottom of the core is also more enriched with Mediterranean Water than the top, and this behaviour can be explained by a reduced mixing of the source water with the environment close to the rigid bottom. Although the mechanism involved is different from the actual case, we have successfully produced these doubly stable gradient in some laboratory experiments which incorporate the "filling-box" mechanism. Salt and sugar were used as laboratory analogues of temperature and salt, respectively. The laboratory experiments consisted of supplying a dense input fluid at the surface of a linearly salt stratified environment. We suggest that req, the ratio of the initial volume flux at the source to the volume flux at the equilibrium level, is an important parameter, and that in our experiments this must be in general smaller than 0.1 in order to produce a doubly stable region of salt and sugar. The most relevant experiments had a mixed sugar/salt input which is the analogue of the Mediterranean Outflow as it mixes with Atlantic Water outside the Strait of Gibraltar.
Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).
Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao
2011-11-15
Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Fernández, Alberto; López-Torres, Margarita; Fernández, Jesús J.; Vázquez-García, Digna; Marcos, Ismael
2017-01-01
A laboratory experiment for students in advanced inorganic chemistry is described. In this experiment, students prepare two metal complexes with a potentially bidentate-carbene ligand. The complexes are synthesized by reaction of a bisimidazolium salt with silver(I) oxide or palladium(II) acetate. Silver and palladium complexes are binuclear and…
Basu, Sankar; Mukharjee, Debasish
2017-07-01
There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.
Services Textbook of Explosives
1972-03-01
described the use of wood ashes in this process, whereby, by double- decomposition of calcium nitrate present in the crude salt, a greater yield of true...the Italians had worked on the nitration of hexamine, but had not developed successful processes. In 1945 , however, it was found that the Germans had...of the propellant. It was later, and unexpectedly, found to have the valuable property of absorbing the (acidic) products of decomposition of
The Influence of Magnetic Field on Electrokinetic Potential of Colloidal Particles
NASA Astrophysics Data System (ADS)
Koshoridze, S. I.; Levin, Yu. K.
2018-06-01
The influence of a magnetic field on the electrokinetic potential of colloidal particles in a water flow oversaturated with deposited salts is reported. For the first time, the ionic hydration and dielectric permittivity of water in the double electrical layer are taken into consideration. It is demonstrated that the magnetic field influence is increased with the decreasing dielectric permittivity of water but is decreased due to ionic hydration.
From convection rolls to finger convection in double-diffusive turbulence
NASA Astrophysics Data System (ADS)
Yang, Yantao; Verzicco, Roberto; Lohse, Detlef
2015-11-01
The double diffusive convection (DDC), where the fluid density depends on two scalar components with very different molecular diffusivities, is frequently encountered in oceanography, astrophysics, and electrochemistry. In this talk we report a systematic study of vertically bounded DDC for various control parameters. The flow is driven by an unstable salinity difference between two plates and stabilized by a temperature difference. As the relative strength of temperature difference becomes stronger, the flow transits from a state with large-scale convection rolls, which is similar to the Rayleigh-Bénard (RB) flow, to a state with well-organised salt fingers. When the temperature difference increases further, the flow breaks down to a purely conductive state. During this transit the velocity decreases monotonically. Counterintuitively, the salinity transfer can be enhanced when a stabilising temperature field is applied to the system. This happens when convection rolls are replaced by salt fingers. In addition, we show that the Grossmann-Lohse theory originally developed for RB flow can be directly applied to the current problem and accurately predicts the salinity transfer rate for a wide range of control parameters. Supported by Stichting FOM and the National Computing Facilities (NCF), both sponsored by NWO. The simulations were conducted on the Dutch supercomputer Cartesius at SURFsara.
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman
2017-06-01
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.
NASA Astrophysics Data System (ADS)
Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.
2018-06-01
Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.
Nami, Shahab A A; Husain, Ahmad; Siddiqi, K S; Westcott, Barry L; Kopp-Vaughn, Kristin
2010-01-01
New bimetallic complex salts corresponding to the formulation [Ni(L)][MCl(4)] have been synthesized by the facile reaction between [Ni(L)](ClO(4))(2) and [MCl(2)(PPh(3))(2)] in high yields [where M=Co(II), Zn(II), Hg(II) and L=3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane]. The complexes were characterized by IR, electronic spectra, TGA/DSC, magnetic moment and conductivity measurements. The X-ray crystal structure for [Ni(L)][CoCl(4)] clearly establishes the cationic-anionic interaction. It crystallizes in the space group P1 with unit cell dimensions a=7.1740(15)A, b=8.1583(16)A and c=8.3102(16)A. A square-planar geometry is evident for the [Ni(L)](2+) cation while the anion is found to be tetrahedral. A two-step thermolytic pattern is observed in the pyrolysis of the bimetallic complex salts. Copyright 2009 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Steam jet cooking of starch is an effective, commercially scalable method of preparing amylose for complexing with a variety of ligands. Previous work has shown that dispersions of amylose complexes prepared with fatty acids (such as palmitic) formed a variety of spherulites when cooled under diffe...
Zheng, Guiqiu; He, Lingfeng; Carpenter, David; ...
2016-10-12
The microstructural evaluation and characterization of 316 stainless steel samples that were tested in molten Li 2BeF 4 (FLiBe) salt were investigated in this study for evaluating its performance in high-temperature molten fluoride salts. Recently, 316 stainless steel and FLiBe salt are being actively considered as the main structural alloy and primary coolant of fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). In support of the materials development for the FHR, high-temperature corrosion tests of 316 stainless steel in molten FLiBe salt at 700°C have been conducted in both bare graphitemore » crucibles and 316 stainless steel-lined crucibles in an inert atmosphere for up to 3000 hours. The microstructure of the tested samples was comprehensively characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS. In addition to the noticeable intergranular corrosion attack on surface, the corrosion in terms of the Cr depletion along high angle grain boundaries (15-180º) extended to 22µm in depth after 3000-hour exposure to molten FLiBe salt in graphite crucible. The coherent Σ3 grain boundary appeared high resistance to the Cr depletion. The substantial Cr depletion from the near-to-surface layer induced phase transformation from γ-martensite to α-ferrite phase (FeNi x) during corrosion at 700ºC. Furthermore, the presence of graphite in the molten salt doubled the corrosion attack depth and led to the formation of round Mo2C, hexagonal Cr 7C 3 and needle-like Al 4C 3 phase within the alloy as deep as 50 µm after 3000-hour corrosion testing. Based on the microstructural analysis, the corrosion mechanisms of 316 stainless steel in molten FLiBe salt in different corrosion crucibles were illuminated through schematic diagrams. Additionally, a thermal diffusion controlled corrosion model was developed and validated by experimental data for predicting the long-term corrosion attack depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Guiqiu; He, Lingfeng; Carpenter, David
The microstructural evaluation and characterization of 316 stainless steel samples that were tested in molten Li 2BeF 4 (FLiBe) salt were investigated in this study for evaluating its performance in high-temperature molten fluoride salts. Recently, 316 stainless steel and FLiBe salt are being actively considered as the main structural alloy and primary coolant of fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). In support of the materials development for the FHR, high-temperature corrosion tests of 316 stainless steel in molten FLiBe salt at 700°C have been conducted in both bare graphitemore » crucibles and 316 stainless steel-lined crucibles in an inert atmosphere for up to 3000 hours. The microstructure of the tested samples was comprehensively characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS. In addition to the noticeable intergranular corrosion attack on surface, the corrosion in terms of the Cr depletion along high angle grain boundaries (15-180º) extended to 22µm in depth after 3000-hour exposure to molten FLiBe salt in graphite crucible. The coherent Σ3 grain boundary appeared high resistance to the Cr depletion. The substantial Cr depletion from the near-to-surface layer induced phase transformation from γ-martensite to α-ferrite phase (FeNi x) during corrosion at 700ºC. Furthermore, the presence of graphite in the molten salt doubled the corrosion attack depth and led to the formation of round Mo2C, hexagonal Cr 7C 3 and needle-like Al 4C 3 phase within the alloy as deep as 50 µm after 3000-hour corrosion testing. Based on the microstructural analysis, the corrosion mechanisms of 316 stainless steel in molten FLiBe salt in different corrosion crucibles were illuminated through schematic diagrams. Additionally, a thermal diffusion controlled corrosion model was developed and validated by experimental data for predicting the long-term corrosion attack depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinsuo; Guo, Shaoqiang
Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels.
Abramavicius, Darius; Voronine, Dmitri V.; Mukamel, Shaul
2008-01-01
A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed. PMID:18562293
Gate modulation of proton transport in a nanopore.
Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi
2016-03-14
Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.
Cox, Daniel J; Merkel, R Lawrence; Moore, Melissa; Thorndike, Frances; Muller, Carrie; Kovatchev, Boris
2006-09-01
Automobile accidents are the leading cause of death among adolescents, and collisions are 2 to 4 times more likely to occur among adolescents with attention-deficit/hyperactivity disorder. Studies have demonstrated that stimulants improve driving performance. This study compared 2 long-acting stimulant medications during daytime and evening driving evaluations. Adolescent drivers with attention-deficit/hyperactivity disorder were compared on a driving simulator after taking 72 mg of OROS methylphenidate, 30 mg of mixed amphetamine salts extended release, or placebo in a randomized, double-blind, placebo-controlled, crossover study design. During laboratory testing, adolescents drove a driving simulator at 5:00 pm, 8:00 pm, and 11:00 pm. Driving performance was rated by adolescents and investigators. The study included 35 adolescent drivers with attention-deficit/hyperactivity disorder (19 boys/16 girls). The mean age was 17.8 years. The overall Impaired Driving Score demonstrated that OROS methylphenidate led to better driving performance compared with placebo and mixed amphetamine salts extended release, whereas mixed amphetamine salts extended release demonstrated no statistical improvement over placebo. Specifically, relative to placebo, OROS methylphenidate resulted in less time driving off the road, fewer instances of speeding, less erratic speed control, more time executing left turns, and less inappropriate use of brakes. OROS methylphenidate and mixed amphetamine salts extended release worked equally well for male and female adolescents and equally as well with teenagers who have combined and inattentive subtypes of attention-deficit/hyperactivity disorder. This study validates the use of stimulants to improve driving performance in adolescents with attention-deficit/hyperactivity disorder. In the study, OROS methylphenidate promoted significantly improved driving performance compared with placebo and mixed amphetamine salts extended release.
Ekinci, Elif I; Thomas, Georgina; Thomas, David; Johnson, Cameron; Macisaac, Richard J; Houlihan, Christine A; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George
2009-08-01
OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response.
Ekinci, Elif I.; Thomas, Georgina; Thomas, David; Johnson, Cameron; MacIsaac, Richard J.; Houlihan, Christine A.; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George
2009-01-01
OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response. PMID:19549737
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato
Wang, Kun; Hersh, Hope Lynn; Benning, Christoph
2016-09-06
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun; Hersh, Hope Lynn; Benning, Christoph
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato1[OPEN
Hersh, Hope Lynn
2016-01-01
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance of wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops. PMID:27600812
Transgenic plants with enhanced growth characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.
The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of themore » double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.« less
Low temperature double-layer capacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)
2011-01-01
Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.
Intercalated layered clay composites and their applications
NASA Astrophysics Data System (ADS)
Phukan, Anjali
Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...
ERIC Educational Resources Information Center
Miller, Jon F.; Iglesias, Aquiles; Rojas, Raul
2010-01-01
Assessing the language development of bilingual children can be a challenge--too often, children in the complex process of learning both Spanish and English are under- or over-diagnosed with language disorders. SLPs can change that with "SALT 2010 Bilingual S/E Version" for grades K-3, the first tool to comprehensively assess children's language…
Schorr, U; Distler, A; Sharma, A M
1996-01-01
To examine the effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and parameters of glucose and lipid metabolism in elderly normotensive individuals. We examined 21 healthy men and women aged 60-72 years in a randomized, placebo-controlled, double-blind crossover trial. After reducing dietary salt intake to below 100 mmol/day, study participants were randomly assigned to drink 1.5 l daily of a sodium chloride-rich (sodium 84.5 mmol/l, chloride 63.7 mmol/l, bicarbonate 21.9 mmol/l), a sodium bicarbonate-rich (sodium 39.3 mmol/l, chloride 6.5 mmol/l, bicarbonate 48.8 mmol/l) and a low-sodium (placebo: sodium, chloride and bicarbonate < 0.02 mmol/l) mineral water for 4 weeks each in a three-phase crossover order. Each phase was separated by a 2-week washout period in which the study participants remained on a low-salt diet. Compliance was assessed by biweekly urinary electrolyte excretion and five study participants were excluded from analysis for failing to complete the trial or to fulfil the compliance criteria. Mean arterial blood pressure was significantly lower during the periods of consuming low-sodium -7.0 +/- 7.2 mmHg, P < 0.001) or sodium bicarbonate-rich (-5.7 +/- 6.4 mmHg, P < 0.05) water than at baseline. In contrast, blood pressure during the phase of drinking sodium chloride-rich water was identical to that at baseline. Ambulatory 24 h blood pressure, oral glucose tolerance and plasma lipids were not affected by the different regimens. Urinary calcium excretion was significantly reduced by drinking low-sodium or sodium bicarbonate-rich water but was unchanged under the sodium chloride-rich water. Consumption of sodium chloride-rich mineral water can abolish the blood pressure reduction induced by dietary salt restriction in elderly individuals. Sodium bicarbonate-rich mineral water in conjunction with a low-salt diet may have a beneficial effect on calcium homeostasis.
Del Bene, Janet E; Alkorta, Ibon; Elguero, José
2015-11-11
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.
Irreversible and reversible components in the genesis of hypertension by sodium chloride (salt).
Tekol, Yalcin
2008-01-01
Despite the abundant studies and overwhelming evidences demonstrating the essential role of salt (sodium chloride) for developing "essential" hypertension (EH), the controversies about salt-hypertension (HT) relations are still continuing. One of important mistakes in this topic is assuming that the HT-producing effect of salt is reversible. The present paper explains the complex nature of salt-HT relations. The deduction was made basing on the studies which investigate the relations between salt and HT. Animal experiments show that HT-producing effect of salt contains irreversible and reversible components. The existence of irreversible component manifests itself in this way: the blood pressure (BP) does not recede to the natural values despite removing of salt exposure. The proportion of BP decreasing after salt exposure termination belongs to the reversible component. Available evidences indicate that the irreversible component is developed in utero, during suckling and, generally, in prepubertal period secondary to salt exposure, however, if the salt exposure extends over more than one period, the HT may be intensified. The consequences of salt exposure during early life of human beings have not been investigated as detailed as in experimental animals, however, there are some clinical trials and epidemiological observations indicating that, similar to experimental animals, irreversible and reversible components are also developed in man during the genesis of HT. By the introduction of irreversible and reversible components notion, some obscured items on salt-HT relations can be clarified. For example, some intervention studies could not find dramatic relations between salt and HT, because these interventions modify only the reversible component, but irreversible component remains unchanged. As a result, salt exposure is detrimental for each period of life. For eradication of HT, it is prerequisite to prevent all individuals (especially pregnant or lactating women, and children) from salt exposure. In this condition, the new generation will be free from HT.
Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho
2015-10-01
This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function
Sun, Jingchuan; Li, Huilin; Fernandez-Cid, Alejandra; ...
2014-10-15
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex andmore » an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.« less
Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress
Wang, Yanping; Yang, Li; Zheng, Zhimin; Grumet, Rebecca; Loescher, Wayne; Zhu, Jian-Kang; Yang, Pingfang; Hu, Yuanlei; Chan, Zhulong
2013-01-01
Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms. PMID:23894403
Earth Observations taken by the Expedition 10 crew
2004-11-12
ISS010-E-06681 (12 November 2004) --- Shark Bay, Australia is featured in this image photographed by an Expedition 10 crewmember on the International Space Station (ISS). This image shows large solar salt works developed in Useless Loop and Useless Inlet, Shark Bay, Western Australia. The salt (sodium chloride) is produced when ponds are repeatedly flooded with seawater, which is progressively concentrated by evaporation. This particular salt farm opened in 1967 and expanded operations in the 1990s. Today, this salt farm comprises over 50 ponds, the newest pond in the outermost pond in Useless Inlet, which provides the first evaporation cycle to increase the salinity of the water prior to entering the next pond. Complex chemical and biological adjustments occur in the system each time the configuration of ponds is changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves
2015-03-15
Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less
Jjunju, Fred P M; Li, Anyin; Badu-Tawiah, Abraham; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S; Cooks, R Graham
2013-07-07
Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL(-1)) and over a dynamic range of ∼5 pg μL(-1) to 500 pg μL(-1) (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL(-1).
From an Easily Accessible Pentacarbonylcobalt(I) Salt to Piano-Stool Cations [(arene)Co(CO)2 ].
Meier, Stefan C; Holz, Albina; Schmidt, Alexei; Kratzert, Daniel; Himmel, Daniel; Krossing, Ingo
2017-10-17
The facile synthesis of a pentacarbonyl cobalt(I) salt without the need for a superacid as solvent is presented. This salt, [Co(CO) 5 ] + [Al(OR F ) 4 ] - {R F =C(CF 3 ) 3 }, readily accessible on a multigram scale, undergoes substitution reactions with arenes yielding the hitherto unknown class of two-legged cobalt piano-stool complexes [(arene)Co(CO) 2 ] + with four different arene ligands. Such a substitution chemistry would have been impossible in superacid solution, as the arenes used would have been oxidized and/or protonated. Thus, the general approach described herein may have a wide synthetic use. Additionally, the thermochemistry of the piano-stool complexes is shown to be not easy to describe computationally and most of the established DFT methods overestimate the reaction energies. Only CCSD(T) calculations close to the basis set limit gave energies fully agreeing with the experiment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.
Struch, Niklas; Bannwarth, Christoph; Ronson, Tanya K; Lorenz, Yvonne; Mienert, Bernd; Wagner, Norbert; Engeser, Marianne; Bill, Eckhard; Puttreddy, Rakesh; Rissanen, Kari; Beck, Johannes; Grimme, Stefan; Nitschke, Jonathan R; Lützen, Arne
2017-04-24
By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å 3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state-of-the-art DFT calculations. A remarkably high-spin-stabilizing effect through encapsulation of C 70 was observed. The spin-transition temperature T 1/2 is lowered by 20 K in the host-guest complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex quantum enveloping algebras as twisted tensor products
NASA Astrophysics Data System (ADS)
Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno
1994-12-01
We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.
Mittapelly, Naresh; Rachumallu, Ramakrishna; Pandey, Gitu; Sharma, Shweta; Arya, Abhishek; Bhatta, Rabi Shankar; Mishra, Prabhat Ranjan
2016-04-01
In the present work, we prepared memantine-pamoic acid (MEM-PAM) salt by counter ion exchange in the aqueous phase to reduce the water solubility of MEM hydrochloride (native form) to make it suitable for long acting injection. The ratio of MEM to PAM in salt formation was optimized to maximize the loading efficiency and complexation efficiency. The 2:1 molar ratio of MEM to PAM salt form displayed nearly 95% complexation efficiency and 50% drug loading. The solubility was decreased by a ∼1250 folds. Thermo Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction Analysis (PXRD) studies revealed the formation of new solid phase. Additionally, Nuclear Magnetic Resonance (NMR) spectroscopy confirmed the anhydrous nature of the salt form. Through Fourier transformation infrared spectroscopy (FT-IR) we identified the molecular interactions. Further, the microcrystals of the salt were transformed into nanocrystals (NCs) using high pressure homogenization. The particle size distribution and atomic force microscopy confirmed the monodispersed and spherical shape of the NCs. The in vitro dissolution studies were performed under sink condition in phosphate buffer saline pH 6.8. The results of MTT assay in murine fibroblast 3T3 cell line show that the NCs were less cytotoxic and more tolerable than plain MEM HCl. The in vivo performance of NCs administered as i.m. injection at three different doses in female Sprague-Dawley rats showed that the plasma levels lasted till the 24th day of the study. The pharmacokinetic parameters AUC0-∞ and Cmax increased linearly with increasing dose. Therefore, the results suggest that injectable NCs could represent a therapeutic alternative for the treatment of AD. Copyright © 2016 Elsevier B.V. All rights reserved.
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
Impacts of road salts on leaching behavior of lead contaminated soil.
Wu, Jingjing; Kim, Hwidong
2017-02-15
Research was conducted to explore the effects of road salts on lead leaching from lead contaminated soil samples that were collected in an old residence area in Erie, PA. The synthetic precipitate leaching procedure (SPLP) test was employed to evaluate lead leaching from one of the lead contaminated soils in the presence of various levels of road salts (5%, 10%, 20%, 30% and 40%). The results of the leaching test showed that lead leaching dramatically increased as the road salt content increased as a result of the formation of lead-chloride complexes, but different lead leaching patterns were observed in the presence of NaCl- and CaCl 2 -based road salts at a high content of road salts (>20%). Additional leaching tests that include 30% road salts and different soil samples showed a variety of leaching patterns by soil samples. The sequential extraction of each soil sample showed that a high fraction of organic matter bound lead was associated with lead contamination. The higher the fraction of organic matter bound lead contained in soil, the greater the effects of calcium on reducing lead leaching, observations showed. Copyright © 2016 Elsevier B.V. All rights reserved.