Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films.
Aissou, Karim; Mumtaz, Muhammad; Portale, Giuseppe; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges
2017-05-01
The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6.
Makeyev, E V; Bamford, D H
2000-01-04
In nature, synthesis of both minus- and plus-sense RNA strands of all the known double-stranded RNA viruses occurs in the interior of a large protein assembly referred to as the polymerase complex. In addition to other proteins, the complex contains a putative polymerase possessing characteristic sequence motifs. However, none of the previous studies has shown template-dependent RNA synthesis directly with an isolated putative polymerase protein. In this report, recombinant protein P2 of double-stranded RNA bacteriophage phi6 was purified and demonstrated in an in vitro enzymatic assay to act as the replicase. The enzyme efficiently utilizes phage-specific, positive-sense RNA substrates to produce double-stranded RNA molecules, which are formed by newly synthesized, full-length minus-strands base paired with the plus-strand templates. P2-catalyzed replication is also shown to be very effective with a broad range of heterologous single-stranded RNA templates. The importance and implications of these results are discussed.
NASA Technical Reports Server (NTRS)
Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)
1999-01-01
Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.
Formation of template-switching artifacts by linear amplification.
Chakravarti, Dhrubajyoti; Mailander, Paula C
2008-07-01
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.
Kamonsutthipaijit, Nuntaporn
2017-01-01
Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K. PMID:28553508
Tagawa, Miho; Shohda, Koh-ichiroh; Fujimoto, Kenzo; Sugawara, Tadashi; Suyama, Akira
2007-01-01
Template-directed DNA photoligation has been applied to a method to construct heat-resistant two-dimensional (2D) DNA arrays that can work as scaffolds in bottom-up assembly of functional biomolecules and nano-electronic components. DNA double-crossover AB-staggered (DXAB) tiles were covalently connected by enzyme-free template-directed photoligation, which enables a specific ligation reaction in an extremely tight space and under buffer conditions where no enzymes work efficiently. DNA nanostructures created by self-assembly of the DXAB tiles before and after photoligation have been visualized by high-resolution, tapping mode atomic force microscopy in buffer. The improvement of the heat tolerance of 2D DNA arrays was confirmed by heating and visualizing the DNA nanostructures. The heat-resistant DNA arrays may expand the potential of DNA as functional materials in biotechnology and nanotechnology. PMID:17982178
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun, E-mail: zhqw1888@sohu.co; College of Chemical Engineering, Harbin Institute of Technology, Harbin 150001; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001
2010-11-15
We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs havingmore » different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted« less
A prebiotic template-directed peptide synthesis based on amyloids.
Rout, Saroj K; Friedmann, Michael P; Riek, Roland; Greenwald, Jason
2018-01-16
The prebiotic replication of information-coding molecules is a central problem concerning life's origins. Here, we report that amyloids composed of short peptides can direct the sequence-selective, regioselective and stereoselective condensation of amino acids. The addition of activated DL-arginine and DL-phenylalanine to the peptide RFRFR-NH 2 in the presence of the complementary template peptide Ac-FEFEFEFE-NH 2 yields the isotactic product FRFRFRFR-NH 2 , 1 of 64 possible triple addition products, under conditions in which the absence of template yields only single and double additions of mixed stereochemistry. The templating mechanism appears to be general in that a different amyloid formed by (Orn)V(Orn)V(Orn)V(Orn)V-NH 2 and Ac-VDVDVDVDV-NH 2 is regioselective and stereoselective for N-terminal, L-amino-acid addition while the ornithine-valine peptide alone yields predominantly sidechain condensation products with little stereoselectivity. Furthermore, the templating reaction is stable over a wide range of pH (5.6-8.6), salt concentration (0-4 M NaCl), and temperature (25-90 °C), making the amyloid an attractive model for a prebiotic peptide replicating system.
Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent.
Li, Yunqi; Tan, Haibo; Salunkhe, Rahul R; Tang, Jing; Shrestha, Lok Kumar; Bastakoti, Bishnu Prasad; Rong, Hongpan; Takei, Toshiaki; Henzie, Joel; Yamauchi, Yusuke; Ariga, Katsuhiko
2016-12-20
We introduce a simple method to prepare hollow carbon nanospheres (HCNs) by using triblock copolymer poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) micelles as a new class of soft-templates. Simply by changing the solvent we can prepare ultra-small sized micelles of the triblock copolymer PS-b-P2VP-b-PEO soft template to obtain HCNs with ultra-small diameters (43 nm) and hollow cores (19 nm). Furthermore, we use these HCNs to make electric double-layer capacitors (EDLCs) that exhibit superior performance.
Formation of oligonucleotide-PNA-chimeras by template-directed ligation
NASA Technical Reports Server (NTRS)
Koppitz, M.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
DNA sequences have previously been reported to act as templates for the synthesis of PNA, and vice versa. A continuous evolutionary transition from an informational replicating system based on one polymer to a system based on the other would be facilitated if it were possible to form chimeras, that is molecules that contain monomers of both types. Here we show that ligation to form chimeras proceeds efficiently both on PNA and on DNA templates. The efficiency of ligation is primarily determined by the number of backbone bonds at the ligation site and the relative orientation of template and substrate strands. The most efficient reactions result in the formation of chimeras with ligation junctions resembling the structures of the backbones of PNA and DNA and with antiparallel alignment of both components of the chimera with the template, that is, ligations involving formation of 3'-phosphoramidate and 5'-ester bonds. However, double helices involving PNA are stable both with antiparallel and parallel orientation of the two strands. Ligation on PNA but not on DNA templates is, therefore, sometimes possible on templates with reversed orientation. The relevance of these findings to discussions of possible transitions between genetic systems is discussed.
NASA Astrophysics Data System (ADS)
Sun, Yanqing; Zhou, Yuming; Wang, Zhiqiang; Ye, Xiaoyun
2009-02-01
The purpose of this study was to control the fabrication of nanocomposites at the nanoscale interface by collagen templated synthesis of Zn-Al layered double hydroxides (LDHs) assisted by γ-methacryloxypropyl trimethoxy silane (KH570) with further treatment of graft polymerization. The results show that collagen directs the growth of LDHs into curved nanorods by length of 300 nm in perfect consistency with collagen chain in both the size and flexility under the essential hydrophobic environment on the solid surface provided by KH570. The nanorods are aggregated into thin curved platelets due to strong interaction between collagen molecules themselves and strong interaction between collagen and LDH sheets. By further treatment of graft polymerization, the adjacent curved platelets encircle into numerous hollows via chemical linkage, achieving polyporous nanocomposites. Nanohybrid materials with this structure are especially interesting for applications as biosensors or supported catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Dong, Tianchen; Kajiwara, Yuya
2014-06-16
Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.
Pal, Bikash; Chang, Chun-Hsiung; Zeng, Cian-Jhe; Lin, Chih-Hsiu
2017-12-11
Pentacene is one of the most versatile organic semiconductors. New synthetic strategies to construct the pentacene skeleton are imperative to produce pentacene derivatives with appropriate solubility, stability, and optoelectronic properties for various applications. This paper describes a template-directed approach to pentacene derivatives. In the retrosynthesis, the acene skeleton is viewed as a laddered double strand polyene instead of the more intuitive linearly fused hexagons. Based on this vision, the template strand of polyene is constructed with Wittig olefination, whereas the second strand is accomplished with Knoevenagel condensation to produce pentacene and tetracene derivatives. The synthetic scheme is flexible enough to generate an array of acene derivatives with substitution patterns that were hitherto difficult to access. Amphiphilic pentacene and tetracene derivatives were also synthesized by the template strategy. One pentacene based amphiphilic rod-coil molecule undergoes self-assembly to form helical wire structures that were visualized with TEM. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T
2010-06-16
Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.
NASA Astrophysics Data System (ADS)
Agarwal, Rashmi A.; Gupta, Neeraj K.; Singh, Rajan; Nigam, Shivansh; Ateeq, Bushra
2017-03-01
A simple synthesis route for growth of Ag/AgO nanoparticles (NPs) in large quantitative yields with narrow size distribution from a functional, non-activated, Ni (II) based highly flexible porous coordination polymer (PCP) as a template has been demonstrated. This template is a stable storage media for the NPs larger than the pore diameters of the PCP. From EPR study it was concluded that NPs were synthesized via two mechanisms i.e. acid formation and the redox activity of the framework. Size range of Ag/AgO NPs is sensitive to choice of solvent and reaction time. Direct use of Ag/AgO@Ni-PCP shows influential growth inhibition towards Escherichia coli and the pathogen Salmonella typhimurium at extremely low concentrations. The pristine template shows no cytotoxic activity, even though it contains Ni nodes in the framework.
Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
Paix, Alexandre; Folkmann, Andrew; Seydoux, Geraldine
2017-05-15
The ability to introduce targeted edits in the genome of model organisms is revolutionizing the field of genetics. State-of-the-art methods for precision genome editing use RNA-guided endonucleases to create double-strand breaks (DSBs) and DNA templates containing the edits to repair the DSBs. Following this strategy, we have developed a protocol to create precise edits in the C. elegans genome. The protocol takes advantage of two innovations to improve editing efficiency: direct injection of CRISPR-Cas9 ribonucleoprotein complexes and use of linear DNAs with short homology arms as repair templates. The protocol requires no cloning or selection, and can be used to generate base and gene-size edits in just 4days. Point mutations, insertions, deletions and gene replacements can all be created using the same experimental pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Nucleic acid duplexes incorporating a dissociable covalent base pair
NASA Technical Reports Server (NTRS)
Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.
Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang
2013-08-01
A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.
Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang).
Eichenseer, Christiane; Will, Julia; Rampf, Markus; Wend, Süsen; Greil, Peter
2010-01-01
The three-dimensional, highly oriented pore channel anatomy of native rattan (Calamus rotang) was used as a template to fabricate biomorphous hydroxyapatite (Ca(5)(PO(4))(3)OH) ceramics designed for bone regeneration scaffolds. A low viscous hydroxyapatite-sol was prepared from triethyl phosphite and calcium nitrate tetrahydrate and repeatedly vacuum infiltrated into the native template. The template was subsequently pyrolysed at 800 degrees C to form a biocarbon replica of the native tissue. Heat treatment at 1,300 degrees C in air atmosphere caused oxidation of the carbon skeleton and sintering of the hydroxyapatite. SEM analysis confirmed detailed replication of rattan anatomy. Porosity of the samples measured by mercury porosimetry showed a multimodal pore size distribution in the range of 300 nm to 300 microm. Phase composition was determined by XRD and FT-IR revealing hydroxyapatite as the dominant phase with minimum fractions of CaO and Ca(3)(PO(4))(2). The biomorphous scaffolds with a total porosity of 70-80% obtained a compressive strength of 3-5 MPa in axial direction and 1-2 MPa in radial direction of the pore channel orientation. Bending strength was determined in a coaxial double ring test resulting in a maximum bending strength of approximately 2 MPa.
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia
1992-01-01
A scenario is proposed for the non-enzymatic self-replication of short RNA molecules. The self-replication of an oligopyrimidine strand is considered and the process of template-directed synthesis based on recognition within a double helix is discussed. Replication mechanisms are suggested for selected oligonucleotides. The mechanisms are based on Watson-Crick base pairing between complementary nucleotides as well as Hoogsteen base pairing between a duplex and the complementary third strand. It is suggested that self-replication based on these mechanisms may be accomplished but may result in a substantial amount of misinformation transfer when mixed oligonucleotides are used.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
Nucleic acid duplexes incorporating a dissociable covalent base pair
Gao, Kui; Orgel, Leslie E.
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299
A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein
NASA Technical Reports Server (NTRS)
Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen
2004-01-01
A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.
NASA Astrophysics Data System (ADS)
Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun
2018-03-01
In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.
Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar
2017-01-01
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei
2017-07-01
Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural Features of a Picornavirus Polymerase Involved in the Polyadenylation of Viral RNA
Kempf, Brian J.; Kelly, Michelle M.; Springer, Courtney L.; Peersen, Olve B.
2013-01-01
Picornaviruses have 3′ polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3Dpol) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3Dpol influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3Dpol that resulted in shorter or longer 3′ poly(A) tails in virion RNA. These mutations could disrupt structural features of 3Dpol required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3Dpol in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3Dpol and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3Dpol involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands. PMID:23468507
LDH nanocages synthesized with MOF templates and their high performance as supercapacitors
NASA Astrophysics Data System (ADS)
Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong
2013-11-01
Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures. Electronic supplementary information (ESI) available: Experimental details, XRD, TEM, SEM, and XPS images. See DOI: 10.1039/c3nr03829g
Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao
2016-05-15
A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01 μg/mL and 0.03 μg/mL for theophylline, 0.05 μg/mL and 0.17 μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Weisshart, Klaus; Chow, Connie S.; Coen, Donald M.
1999-01-01
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ∼15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ∼2-fold faster than did Pol and dissociated ∼10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ∼30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented. PMID:9847307
Method for promoting specific alignment of short oligonucleotides on nucleic acids
Studier, F. William; Kieleczawa, Jan; Dunn, John J.
1996-01-01
Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.
Venuti, A; Di Russo, C; del Grosso, N; Patti, A M; Ruggeri, F; De Stasio, P R; Martiniello, M G; Pagnotti, P; Degener, A M; Midulla, M
1985-01-01
A fast-growing strain of human hepatitis A virus was selected and characterized. The virus has the unusual property of developing a strong cytopathic effect in tissue culture in 7 to 10 days. Sequences of the viral genome were cloned into recombinant plasmids with the double-stranded replicative form as a template for the reverse transcription of cDNA. Restriction analysis and direct sequencing indicate that this strain is different from that described by Ticehurst et al. (Proc. Natl. Acad. Sci. USA 80:5885-5889, 1983) in the region that presumptively codes for the major capsid protein VP1, but both isolates have conserved large areas of homology in the untranslated 5'-terminal sequences of the genome. Images PMID:2997478
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon
2013-09-21
SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.
Chen, Jinyang; Ji, Xinghu; Tinnefeld, Philip; He, Zhike
2016-01-27
In this work, a multifunctional template for selective formation of fluorescent silver nanoclusters (AgNCs) or copper nanoparticles (CuNPs) is put forward. This dumbbell-shaped (DS) DNA template is made up of two cytosine hairpin loops and an adenine-thymine-rich double-helical stem which is closed by the loops. The cytosine loops act as specific regions for the growth of AgNCs, and the double-helical stem serves as template for the CuNPs formation. By carefully investigating the sequence and length of DS DNA, we present the optimal design of the template. Benefiting from the smart design and facile synthesis, a simple, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection is proposed. Through the systematic comparison, it is found that the strategy based on CuNPs formation is more sensitive for ATP assay than that based on AgNCs synthesis, and the detection limitation was found to be 81 pM. What's more, the CuNPs formation-based method is successfully applied in the detection of ATP in human serum as well as the determination of cellular ATP. In addition to small target molecule, the sensing strategy was also extended to the detection of biomacromolecule (DNA), which illustrates the generality of this biosensor.
The chemical end-ligation of homopyrimidine oligodeoxyribonucleotides within a DNA triple helix.
Li, T; Weinstein, D S; Nicolaou, K
1997-03-01
Triple-helical nucleic acids, first reported in the late 1950s, are receiving attention for their possible involvement in controlling gene expression. Certain sequences of DNA are believed to form local triple-helical structures (H-form DNA), although this has not been directly observed in vivo. Studies carried out in our laboratories have suggested that self-replicating oligonucleotides could have been involved in chemical evolution via triple-helical intermediates. In addition to self-replication mechanisms, elucidating processes for the nonenzymatic elongation of biologically relevant polymers remains an important challenge in understanding the origin of life. To this end, we have studied a novel ligation of oligodeoxyribonucleotides that lie within a triple helix. The chemical end-ligation of homopyrimidine oligodeoxyribonucleotides on a triple helix is reported. This selective process, induced by cyanoimidazole, is facilitated by a template effect of the DNA aggregate and occurs between the 3' end (hydroxyl) of the third minor-groove-bound strand and the 5' end (phosphate) of the antiparallel oligopyrimidine strand. Double-helical homopurine/homopyrimidine DNA can serve as a template for the elongation of oligonucleotides in a manner that has not been described previously. The end-ligation of homopyrimidine oligomers, a nonenzymatic process, proceeds via a requisite triple-helical intermediate and constitutes an efficient and selective method for the template-directed elongation of nucleic acids. Such a process could conceivably have been involved in the elongation of primordial information-bearing biopolymers.
Directional templates for real-time detection of coronal axis rotated faces
NASA Astrophysics Data System (ADS)
Perez, Claudio A.; Estevez, Pablo A.; Garate, Patricio
2004-10-01
Real-time face and iris detection on video images has gained renewed attention because of multiple possible applications in studying eye function, drowsiness detection, virtual keyboard interfaces, face recognition, video processing and multimedia retrieval. In this paper, a study is presented on using directional templates in the detection of faces rotated in the coronal axis. The templates are built by extracting the directional image information from the regions of the eyes, nose and mouth. The face position is determined by computing a line integral using the templates over the face directional image. The line integral reaches a maximum when it coincides with the face position. It is shown an improvement in localization selectivity by the increased value in the line integral computed with the directional template. Besides, improvements in the line integral value for face size and face rotation angle was also found through the computation of the line integral using the directional template. Based on these results the new templates should improve selectivity and hence provide the means to restrict computations to a fewer number of templates and restrict the region of search during the face and eye tracking procedure. The proposed method is real time, completely non invasive and was applied with no background limitation and normal illumination conditions in an indoor environment.
Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.
2015-01-01
The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995
Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M
2015-01-01
The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of "all β proteins" (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another "all β protein" structure in complex with an irreversible bound protein as well as a reversible protein-protein interface (our "Rosetta Stone" effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature.
LDH nanocages synthesized with MOF templates and their high performance as supercapacitors.
Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong
2013-12-07
Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.
Hu, W S; Bowman, E H; Delviks, K A; Pathak, V K
1997-01-01
Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed. PMID:9223494
Lian, Ziru; Wang, Jiangtao
2017-09-15
Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.
Template-directed synthesis on the pentanucleotide CpCpGpCpC
NASA Technical Reports Server (NTRS)
Inoue, T.; Joyce, G. F.; Grzeskowiak, K.; Orgel, L. E.; Brown, J. M.; Reese, C. B.
1984-01-01
Experiments in which CpCpGpCpC is used as a template to facilitate the co-oligomerization of 2-MeImpG and 2-MeImpC are described. It is shown that 3' to 5' prime-linked pGpGpCpGpG, whose sequence is complementary to that of the template, is substantially the most adundant pentameric product of the template-directed reaction. The yield of pGpGpCpGpG is never large (less than 20 percent), presumably becauase off-template reactions consume template-directed products. Thus pGpGpCpGpG is converted to the various isomers of G5C and G4C2 by off-template terminal addition of G or C. The 3' to 5' isomer of GpG is elongated on the template to give GpGpC, GpGpCpG, and GpGpCpGpG, while the 2' to 5' isomer does not initiate the synthesis of detectable amounts of longer oligomers.
Luckett, Tim; Bhattarai, Priyanka; Phillips, Jane; Agar, Meera; Currow, David; Krastev, Yordanka; Davidson, Patricia M
2015-11-01
A drive to promote advance care planning at a population level has led to a proliferation of online advance care directive (ACD) templates but little information to guide consumer choice. The current study aimed to appraise the quality of online ACD templates promoted for use in Australia. A systematic review of online Australian ACD templates was conducted in February 2014. ACD templates were identified via Google searches, and quality was independently appraised by two reviewers against criteria from the 2011 report A National Frameworkfor Advance Care Directives. Bias either towards or against future medical treatment was assessed using criteria designed to limit subjectivity. Fourteen online ACD templates were included, all of which were available only in English. Templates developed by Southern Cross University best met the framework criteria. One ACD template was found to be biased against medical treatment--the Dying with Dignity Victoria Advance Healthcare Directive. More research is needed to understand how online resources can optimally elicit and record consumers' individual preferences for future care. Future iterations of the framework should address online availability and provide a simple rating system to inform choice and drive quality improvement.
Luites, J W H; Wymenga, A B; Blankevoort, L; Kooloos, J M G; Verdonschot, N
2011-01-01
Femoral graft placement is an important factor in the success of anterior cruciate ligament (ACL) reconstruction. In addition to improving the accuracy of femoral tunnel placement, Computer Assisted Surgery (CAS) can be used to determine the anatomic location. This is achieved by using a 3D femoral template which indicates the position of the anatomical ACL center based on endoscopically measurable landmarks. This study describes the development and application of this method. The template is generated through statistical shape analysis of the ACL insertion, with respect to the anteromedial (AM) and posterolateral (PL) bundles. The ligament insertion data, together with the osteocartilage edge on the lateral notch, were mapped onto a cylinder fitted to the intercondylar notch surface (n = 33). Anatomic variation, in terms of standard variation of the positions of the ligament centers in the template, was within 2.2 mm. The resulting template was programmed in a computer-assisted navigation system for ACL replacement and its accuracy and precision were determined on 31 femora. It was found that with the navigation system the AM and PL tunnels could be positioned with an accuracy of 2.5 mm relative to the anatomic insertion centers; the precision was 2.4 mm. This system consists of a template that can easily be implemented in 3D computer navigation software. Requiring no preoperative images and planning, the system provides adequate accuracy and precision to position the entrance of the femoral tunnels for anatomical single- or double-bundle ACL reconstruction.
Tsai, Jenn-Kai; Tu, Yu-Shin
2017-03-15
In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs) were successfully fabricated by attaching a double anti-reflection (AR) layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA) film and a polydimethylsiloxane (PDMS) film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO) template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO₂) nanoparticles (NPs) with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO) glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC) and conversion efficiency from 14.77 to 15.79 mA/cm² and from 6.26% to 6.79%, respectively.
Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR
Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott
2004-01-01
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281
N7 logic via patterning using templated DSA: implementation aspects
NASA Astrophysics Data System (ADS)
Bekaert, J.; Doise, J.; Gronheid, R.; Ryckaert, J.; Vandenberghe, G.; Fenger, G.; Her, Y. J.; Cao, Y.
2015-07-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern.
Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates
2007-01-01
highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met
Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G
2017-02-01
The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.
NASA Astrophysics Data System (ADS)
Zhu, Feng-Xia; Zhao, Pu-Su; Sun, Xiao-Jun; An, Li-Tao; Deng, Yong; Wu, Jia-Min
2017-11-01
Bridged diamino-functionalized periodic mesoporous organosilicas [BD-PMO(Et), Et = ethyl] materials were synthesized directly by co-condensation of 2-bis (triethoxysilyl)ethane (BTEE) and 1,4-bis[3-(tirmethoxysilyl)-propyl]ethylenediamino (BTMSEN) under acidic conditions with pluronic triblock copolymer P123 as a template. The nitrogen content in BD-PMO(Et) could be adjusted up to 40% without disturbing the ordered mesoporous structure. These materials were proved to be effective heterogeneous catalysts for the liquid-phase reactions such as Knoevenagel and Henry condensations as well as in the intermolecular cross-double-Michael addition reaction between α-methyl-β-nitrostyrene and α, β-unsaturated ketone. They exhibited comparable catalytic activities with homogeneous catalyst piperazine and can be reused for several times without any negative environmental impact.
Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages
Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.
2001-01-01
The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748
Sun, Li; Zhou, Hua; Li, Li; Yao, Ying; Qu, Haonan; Zhang, Chengli; Liu, Shanhu; Zhou, Yanmei
2017-08-09
Heteroatom-doped hierarchical porous carbon materials derived from the potential precursors and prepared by a facile, effective, and low-pollution strategy have recently been particularly concerned in different research fields. In this study, the interconnected nitrogen/sulfur-codoped hierarchically porous carbon materials have been successfully obtained via one-step carbonization of the self-assembly of [Phne][HSO 4 ] (a protic ionic liquid originated from dilute sulfuric acid and phenothiazine by a straightforward acid-base neutralization) and the double soft-template of OP-10 and F-127. During carbonization process, OP-10 as macroporous template and F-127 as mesoporous template were removed, while [Phne][HSO 4 ] not only could be used as carbon, nitrogen, and sulfur source, but also as a pore forming agent to create micropores. The acquired carbon materials for supercapacitor not only hold a large specific capacitance of 302 F g -1 even at 1.0 A g -1 , but also fine rate property with 169 F g -1 at 10 A g -1 and excellent capacitance retention of nearly 100% over 5000 circulations in 6 M KOH electrolyte. Furthermore, carbon materials also present eximious rate performance with 70% in 1 M Na 2 SO 4 electrolyte.
Rate in template-directed polymer synthesis.
Saito, Takuya
2014-06-01
We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.
Lamm, Ayelet T; Stadler, Michael R; Zhang, Huibin; Gent, Jonathan I; Fire, Andrew Z
2011-02-01
We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.
A comparison of RNA with DNA in template-directed synthesis
NASA Technical Reports Server (NTRS)
Zielinski, M.; Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
2000-01-01
Nonenzymatic template-directed copying of RNA sequences rich in cytidylic acid using nucleoside 5'-(2-methylimidazol-1-yl phosphates) as substrates is substantially more efficient than the copying of corresponding DNA sequences. However, many sequences cannot be copied, and the prospect of replication in this system is remote, even for RNA. Surprisingly, wobble-pairing leads to much more efficient incorporation of G opposite U on RNA templates than of G opposite T on DNA templates.
NASA Technical Reports Server (NTRS)
Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1999-01-01
The template-directed oligomerization of nucleoside-5'-phosphoro-2-methyl imidazolides on standard oligonucleotide templates has been studied extensively. Here, we describe experiments with templates in which inosinic acid (I) is substituted for guanylic acid, or 2,6-diaminopurine nucleotide (D) for adenylic acid. We find that the substitution of I for G in a template is strongly inhibitory and prevents any incorporation of C into internal positions in the oligomeric products of the reaction. The substitution of D for A, on the contrary, leads to increased incorporation of U into the products. We found no evidence for the template-directed facilitation of oligomerization of A or I through A-I base pairing. The significance of these results for prebiotic chemistry is discussed.
Wang, Jie; Tang, Jing; Ding, Bing; Chang, Zhi; Hao, Xiaodong; Takei, Toshiaki; Kobayashi, Naoya; Bando, Yoshio; Zhang, Xiaogang; Yamauchi, Yusuke
2018-04-01
Metal-organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self-template strategy is developed to prepare MOF networks. In this work, layered double-metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self-sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network-derived carbon materials retain the flake morphology and exhibit a unique honeycomb-like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target-oriented applications as exemplified by the electrochemical application in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2017-11-01
Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lermusiaux, Laurent; Bidault, Sebastien
2016-03-01
The nanometer-scale sensitivity of plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. In particular, single nanostructure scattering spectroscopy provides a direct estimation of interparticle distances in gold nanoparticle (AuNP) dimers linked by a short DNA double-strand [M. P. Busson et al, Nano Lett. 11, 5060 (2011)]. We demonstrate here that this spectroscopic information can be inferred from simple widefield measurements on a calibrated color camera [L. Lermusiaux et al, ACS Nano 9, 978 (2015)]. This allows us to analyze the influence of electrostatic and steric interparticle interactions on the morphology of DNA-templated AuNP groupings. Furthermore, polarization-resolved measurements on a color CCD provide a parallel imaging of AuNP dimer orientations. We apply this spectroscopic characterization to identify dimers featuring two different conformations of the same DNA template. In practice, the biomolecular scaffold contains a hairpin-loop that opens after hybridization to a specific DNA sequence and increases the interparticle distance [L. Lermusiaux et al, ACS Nano 6, 10992 (2012)]. These results open exciting perspectives for the parallel sensing of single specific DNA strands using plasmon rulers. We discuss the limits of this approach in terms of the physicochemical stability and reactivity of these nanostructures and demonstrate the importance of engineering the AuNP surface chemistry, in particular using amphiphilic ligands [L. Lermusiaux and S. Bidault, Small (2015), in press].
Template optimization and transfer in perceptual learning.
Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi
2016-08-01
We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning.
NASA Technical Reports Server (NTRS)
Ertem, G.; Ferris, J. P.
1997-01-01
The synthesis of oligoguanylates [oligo(G)s] is catalyzed by a template of oligocytidylates [oligo(C)s] containing 2',5'- and 3',5'-linked phosphodiester bonds with and without incorporated C5'ppC groupings. An oligo(C) template containing exclusively 2',5'-phosphodiester bonds also serves as a template for the synthesis of complementary oligo(G)s. The oligo(C) template was prepared by the condensation of the 5'-phosphorimidazolide of cytidine on montmorillonite clay. These studies establish that RNA oligomers prepared by mineral catalysis, or other routes on the primitive earth, did not have to be exclusively 3',5'-linked to catalyze template-directed synthesis, since oligo(C)s containing a variety of linkage isomers serve as templates for the formation of complementary oligo(G)s. These findings support the postulate that origin of the RNA world was initiated by the RNA oligomers produced by polymerization of activated monomers formed by prebiotic processes.
Chromosome rearrangements via template switching between diverged repeated sequences
Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.
2014-01-01
Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035
Cloning nanocrystal morphology with soft templates
NASA Astrophysics Data System (ADS)
Thapa, Dev Kumar; Pandey, Anshu
2016-08-01
In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.
Triple helix purification and sequencing
Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.
1995-01-01
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.
Triple helix purification and sequencing
Wang, R.; Smith, L.M.; Tong, X.E.
1995-03-28
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.
NASA Astrophysics Data System (ADS)
Carbeck, Jeffrey; Petit, Cecilia
2004-03-01
Current efforts in nanotechnology use one of two basic approaches: top-down fabrication and bottom-up assembly. Top-down strategies use lithography and contact printing to create patterned surfaces and microfluidic channels that, in turn, can corral and organize nanoscale structures. Bottom-up approaches use templates to direct the assembly of atoms, molecules, and nanoparticles through molecular recognition. The goal of this work is to integrate these strategies by first patterning and orienting DNA molecules through top-down tools so that single DNA chains can then serve as templates for the bottom-up construction of hetero-structures composed of proteins and nanoparticles, both metallic and semi-conducting. The first part of this talk focuses on the top-down strategies used to create microscopic patterns of stretched and aligned molecules of DNA. Specifically, it presents a new method in which molecular combing -- a process by which molecules are deposited and stretched onto a surface by the passage of an air-water interface -- is performed in microchannels. This approach demonstrates that the shape and motion of this interface serve as an effective local field directing the chains dynamically as they are stretched onto the surface. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the air-water interface directs the local orientation and curvature of the molecules. This ability to control both the placement and orientation of chains has implication for the use of this technique in genetic analysis and in the bottom up approach to nanofabrication.The second half of this talk presents our bottom-up strategy, which allows placement of nanoparticles along individual DNA chains with a theoretical resolution of less than 1 nm. Specifically, we demonstrate the sequence-specific patterning of nanoparticles via the hybridization of functionalized complementary probes to surface-bound chains of double-stranded DNA. Using this technique, we demonstrate the ability to assemble metals, semiconductors, and a composite of both on a single molecule.
Saunders, K; Lucy, A; Stanley, J
1991-01-01
We have analysed DNA from African cassava mosaic virus (ACMV)-infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and detected ACMV-specific DNAs by blot-hybridisation. ACMV DNA forms including the previously characterised single-stranded, open-circular, linear and supercoiled DNAs along with five previously uncharacterised heterogeneous DNAs (H1-H5) were resolved. The heterogeneous DNAs were characterised by their chromatographic properties on BND-cellulose and their ability to hybridise to strand-specific and double-stranded probes. The data suggest a rolling circle mechanism of DNA replication, based on the sizes and strand specificity of the heterogeneous single-stranded DNA forms and their electrophoretic properties in relation to genome length single-stranded DNAs. Second-strand synthesis on a single-stranded virus-sense template is evident from the position of heterogeneous subgenomic complementary-sense DNA (H3) associated with genome-length virus-sense template (VT) DNA. The position of heterogeneous virus-sense DNA (H5), ranging in size from one to two genome lengths, is consistent with its association with genome-length complementary-sense template (CT) DNA, reflecting virus-sense strand displacement during replication from a double-stranded intermediate. The absence of subgenomic complementary-sense DNA associated with the displaced virus-sense strand suggests that replication proceeds via an obligate single-stranded intermediate. The other species of heterogeneous DNAs comprised concatemeric single-stranded virus-sense DNA (H4), and double-stranded or partially single-stranded DNA (H1 and H2). Images PMID:2041773
MgO-templated carbon as a negative electrode material for Na-ion capacitors
NASA Astrophysics Data System (ADS)
Kado, Yuya; Soneda, Yasushi
2016-12-01
In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.
Remote site-selective C–H activation directed by a catalytic bifunctional template
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-01-01
Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068
Break-induced telomere synthesis underlies alternative telomere maintenance
Dilley, Robert L.; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D.; Wondisford, Anne R.; Greenberg, Roger A.
2017-01-01
Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance. PMID:27760120
NASA Astrophysics Data System (ADS)
Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong
2016-01-01
In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.
Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea.
Shuttleworth, Gillian; Fogg, Mark J; Kurpiewski, Michael R; Jen-Jacobson, Linda; Connolly, Bernard A
2004-03-26
Archaeal family B DNA polymerases contain a specialised pocket that binds tightly to template-strand uracil, causing the stalling of DNA replication. The mechanism of this unique "template-strand proof-reading" has been studied using equilibrium binding measurements, DNA footprinting, van't Hoff analysis and calorimetry. Binding assays have shown that the polymerase preferentially binds to uracil in single as opposed to double-stranded DNA. Tightest binding is observed using primer-templates that contain uracil four bases in front of the primer-template junction, corresponding to the observed stalling position. Ethylation interference analysis of primer-templates shows that the two phosphates, immediately flanking the uracil (NpUpN), are important for binding; contacts are also made to phosphates in the primer-strand. Microcalorimetry and van't Hoff analysis have given a fuller understanding of the thermodynamic parameters involved in uracil recognition. All the results are consistent with a "read-ahead" mechanism, in which the replicating polymerase scans the template, ahead of the replication fork, for the presence of uracil and halts polymerisation on detecting this base. Post-stalling events, serving to eliminate uracil, await full elucidation.
Zheng, Bo; Chen, Xu-Dong; Zheng, Shao-Liang; Holm, R. H.
2012-01-01
Syntheses of five types of tungsten-iron-sulfur/selenium clusters–incomplete cubanes, single cubanes, edge-bridged double cubanes (EBDCs), PN-type clusters, and double-cuboidal clusters–have been devised based on the concept of template-assisted assembly. The template reactant is six-coordinate [(Tp*)WVIS3]1−, which in the assembly systems organizes FeII,III and sulfide/selenide into cuboidal [(Tp*)WFe2S3] or cubane [(Tp*)WFe3S3Q] units. With appropriate terminal iron ligation, these units are capable of independent existence or may be transformed into higher nuclearity species. Selenide is used as a surrogate for sulfide in cluster assembly in order to determine by X-ray structures the position occupied by an external chalcogenide nucleophile or an internal chalcogenide atom in product clusters. Specific incorporation of selenide is demonstrated by formation of [WFe3S3Se]2+,3+ cubane cores. Reductive dimerization of the cubane leads to the EBDC core [W2Fe6S6Se2]2+ containing μ4-Se sites. Reaction of these species with HSe− affords the PN-type cores [W2Fe6S6Se3]1+ in which selenide occupies μ6-Se and μ2-Se sites. Reaction of [(Tp*)WS3]1−, FeCl2, and Na2Se results in the double cuboidal [W2Fe4S6Se3]2+,0 core with μ2-Se and μ4-Se bridges. It is highly probable that in analogous sulfide-only assembly systems, external and internal sulfide reactants occupy corresponding positions in cluster products. The results further demonstrate the viability of template-assisted cluster synthesis inasmuch as the reduced (Tp*)WS3 unit is present in all clusters. Structures, zero-field Mössbauer data, and redox potentials are presented for all cluster types. (Tp* = tris(pyrazolyl)hydroborate(1−)) PMID:22424175
Zhou, Zhixue; Du, Yan; Dong, Shaojun
2011-07-01
Double-strand DNA (dsDNA) can act as an efficient template for the formation of copper nanoparticles (Cu NPs) at low concentration of CuSO(4), and the formed Cu NPs have excellent fluorescence, whereas a single-strand DNA (ssDNA) template does not support Cu NPs' formation. This property of dsDNA-Cu NPs makes it suitable for DNA sensing. However, exploration of dsDNA-Cu NPs applied in biological analysis is still at an early stage. In this regard, we report herein for the first time a sensitive, cost-effective, and simple aptamer sensor (aptasensor) using dsDNA-Cu NPs as fluorescent probe. The design consists of a dsDNA with reporter DNA (here, aptamer) as template for the formation of Cu NPs, and the formed dsDNA-Cu NPs show high fluorescence. Using adenosine triphosphate (ATP) as a model analyte, the introduction of ATP triggers the structure switching of reporter DNA to form aptamer-ATP complex, causing the destruction of the double helix and thus no formation of the Cu NPs, resulting in low fluorescence. The preferable linear range (0.05-500 μM), sensitivity (LOD 28 nM), and simplicity for the detection of ATP indicate that dsDNA-Cu NPs may have great prospects in the field of biological analysis. We also use this novel fluorescent probe to determine ATP in 1% human serum and human adenocarcinoma HeLa cells. The dsDNA-Cu NPs probes provide recovery of 104-108% in 1% human serum and a prominent fluorescent signal is obtained in cellular ATP assay, revealing the practicality of using dsDNA-Cu NPs for the determination of ATP in real samples. Besides, this design is simply based on nucleic acid hybridization, so it can be generally applied to other aptamers for label-free detection of a broad range of analytes. Successful detection of cocaine with detection limit of 0.1 μM demonstrates its potential to be a general method.
Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology
NASA Technical Reports Server (NTRS)
Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan
2004-01-01
We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.
Design strategy for integrating DSA via patterning in sub-7 nm interconnects
NASA Astrophysics Data System (ADS)
Karageorgos, Ioannis; Ryckaert, Julien; Tung, Maryann C.; Wong, H.-S. P.; Gronheid, Roel; Bekaert, Joost; Karageorgos, Evangelos; Croes, Kris; Vandenberghe, Geert; Stucchi, Michele; Dehaene, Wim
2016-03-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCPs). As a result, the insertion of DSA for IC fabrication is being actively considered for the sub-7nm nodes. At these nodes the DSA technology could alleviate costs for multiple patterning and limit the number of litho masks that would be required per metal layer. One of the most straightforward approaches for DSA implementation would be for via patterning through templated DSA, where hole patterns are readily accessible through templated confinement of cylindrical phase BCP materials. Our in-house studies show that decomposition of via layers in realistic circuits below the 7nm node would require at least many multi-patterning steps (or colors), using 193nm immersion lithography. Even the use of EUV might require double patterning in these dimensions, since the minimum via distance would be smaller than EUV resolution. The grouping of vias through templated DSA can resolve local conflicts in high density areas. This way, the number of required colors can be significantly reduced. For the implementation of this approach, a DSA-aware mask decomposition is required. In this paper, our design approach for DSA via patterning in sub-7nm nodes is discussed. We propose options to expand the list of DSA-compatible via patterns (DSA letters) and we define matching cost formulas for the optimal DSA-aware layout decomposition. The flowchart of our proposed approach tool is presented.
NASA Astrophysics Data System (ADS)
Chen, Yong; Zhao, Hui; Han, Bing
2014-12-01
In this paper, we have developed a simple, facile, and efficient approach to synthesize polyaniline fibers (PANI fibers) from aniline in the presence of (NH4)2S2O8 with sodium dodecyl benzene sulfonate (SDBS) and L-camphorsulfonic acid (L-CSA) as double templates. The chemical constituents of the composites are characterized by Fourier transformation infrared spectroscopy (FTIR). The results demonstrate that the PANI fibers were synthesized successfully. The morphology of the composites was characterized by scanning electron microscopy (SEM). The SEM and UV-Vis images show an interesting growth and doping process. Moreover, cyclic voltammetry (CV) was used to characterize the electrochemical properties of PANI microfibers. They also give a pair of redox peaks and have better operation stability, which indicates that the composites show distinct electrochemical performance. So the PANI microfibers would have potential applications in the fields of analytical chemistry, bioanalysis, etc.
NASA Astrophysics Data System (ADS)
Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.
2018-01-01
Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn
Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: {yields} Glass-slices were used as a template to induce formation and assembly of aragonite. {yields} Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. {yields} Planes were always appeared in these as-synthesized samples. {yields} Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theorymore » was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.« less
Jacobi, Ashley M; Rettig, Garrett R; Turk, Rolf; Collingwood, Michael A; Zeiner, Sarah A; Quadros, Rolen M; Harms, Donald W; Bonthuis, Paul J; Gregg, Christopher; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B; Behlke, Mark A
2017-05-15
Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.; ...
2016-07-15
Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here,more » we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.
Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here,more » we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.« less
Effect of Co-Solutes on Template-Directed Nonenzymatic Copying of RNA
NASA Astrophysics Data System (ADS)
Bapat, N. V.; Rajamani, S.
2017-07-01
Given the heterogeneous nature of the prebiotic milieu, we report here, the effect of presence of lipid vesicles and Polyethylene Glycol (PEG) as co-solutes on the rate and accuracy of enzyme-free template-directed RNA primer extension reactions.
NASA Technical Reports Server (NTRS)
Stribling, R.; Miller, S. L.
1991-01-01
Previous attempts to produce nonenzymatic template-directed oligomerizations of activated pyrimidines on polypurine templates have been unsuccessful. The only efficient reactions are those where the template is composed primarily of pyrimidines, especially cytosine. Because molecular evolution requires that a synthesized daughter polynucleotide be capable of acting as a template for the synthesis of the original polynucleotide, the one-way replication achieved thus far is inadequate to initiate an evolving system. Several uracil analogs were used in this investigation in order to search for possible replacements for uracil. The monomers used in this investigation were the imidazolides of UMP, xanthosine 5'-monophosphate, the bis-monophosphates of the acyclic nucleosides of uracil, and 2,4-quinazolinedione. The concentrations of various salts, buffers, pH, and temperature were among the different variables investigated in attempts to find conditions that would permit template-directed oligomerizations. Although the different monomers in this study demonstrated varying abilities to form very short oligomers, we were unable to detect any enhancement of this oligomerization that could be attributed to the poly(A) template. Although special conditions might be found that would allow purine-rich templates to work, these reactions cannot be considered robust. The results of our experiments suggest that pyrimidines were not part of the original replicating system on the primitive Earth. It has already been shown that ribose is an unlikely component of the first replicating systems, and we now suggest that phosphate was absent as well. This is due to the low solubility of phosphate in the present ocean (3 x 10(-6) M), as well as the difficulty of prebiotic activation of phosphates.
Synthesis of RNA oligomers on heterogeneous templates
NASA Technical Reports Server (NTRS)
Ertem, G.; Ferris, J. P.
1996-01-01
The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.
Vertical Carbon Nanotube Device in Nanoporous Templates
NASA Technical Reports Server (NTRS)
Sands, Timothy (Inventor); Fisher, Timothy Scott (Inventor); Bashir, Rashid (Inventor); Maschmann, Matthew Ralph (Inventor)
2014-01-01
A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X; Lin, J; Diwanji, T
2014-06-01
Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients weremore » instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and Varian Medical Systems, Palo Alto, CA.« less
Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy.
Rodríguez-Velázquez, Eustolia; Taboada, Pablo; Alatorre-Meda, Manuel
2017-08-31
Macroscopic hollow polymeric particles are attractive materials for various applications such as surgery, food industry, agriculture, etc. However, protocols reporting their synthesis have hitherto made use of organic solvents and/or sacrificial templates, compromising the encapsulation of different bioactive compounds and the process yield. Here, millimeter-size, hollow polymeric particles were synthesized, for the first time, in a solvent- and template free manner onto superhydrophobic surfaces (SHS). The particles were produced upon assembly and double superficial crosslinking of liquid droplets of DNA and methacrylamide chitosan aqueous solutions (CH:MA), leading to liquid-core particles with a hardened hydrogel shell. The particles displayed appealing physical and biological properties. The millimeter-size hydrogel shell, resulting from the double ionic/covalent crosslinking of CH:MA, endowed the hollow particles with softness to the touch and an outstanding structural stability against manipulation by hand and with forceps. Meanwhile, the liquid DNA core guaranteed a biocompatible cell encapsulation followed by a superior release and proliferation of viable cells, as compared to solid CH:MA particles prepared as a blank. Particles with these characteristics show promise for surgical protocols practiced in Tissue Engineering and Regenerative Medicine, where manipulable and biocompatible synthetic implants are often needed to supply living cells and other sensitive bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy.
Rodríguez-Velázquez, Eustolia; Taboada, Pablo; Alatorre-Meda, Manuel
2017-12-01
Macroscopic hollow polymeric particles are attractive materials for various applications such as surgery, food industry, agriculture, etc. However, protocols reporting their synthesis have hitherto made use of organic solvents and/or sacrificial templates, compromising the encapsulation of different bioactive compounds and the process yield. Here, millimeter-size, hollow polymeric particles were synthesized, for the first time, in a solvent- and template free manner onto superhydrophobic surfaces (SHS). The particles were produced upon assembly and double superficial crosslinking of liquid droplets of DNA and methacrylamide chitosan aqueous solutions (CH:MA), leading to liquid-core particles with a hardened hydrogel shell. The particles displayed appealing physical and biological properties. The millimeter-size hydrogel shell, resulting from the double ionic/covalent crosslinking of CH:MA, endowed the hollow particles with softness to the touch and an outstanding structural stability against manipulation by hand and with forceps. Meanwhile, the liquid DNA core guaranteed a biocompatible cell encapsulation followed by a superior release and proliferation of viable cells, as compared to solid CH:MA particles prepared as a blank. Particles with these characteristics show promise for surgical protocols practiced in Tissue Engineering and Regenerative Medicine, where manipulable and biocompatible synthetic implants are often needed to supply living cells and other sensitive bioactive compounds. Copyright © 2017. Published by Elsevier B.V.
New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.
Lama, Lodoe; Seidl, Christine I; Ryan, Kevin
2014-01-01
Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.
Two distinct mechanisms ensure transcriptional polarity in double-stranded RNA bacteriophages.
Yang, Hongyan; Makeyev, Eugene V; Butcher, Sarah J; Gaidelyte, Ausra; Bamford, Dennis H
2003-01-01
In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of phi6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, phi8 and phi13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn(2+) to produce minus-sense copies on phi13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including phi13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form.
Two Distinct Mechanisms Ensure Transcriptional Polarity in Double-Stranded RNA Bacteriophages
Yang, Hongyan; Makeyev, Eugene V.; Butcher, Sarah J.; Gaidelyte·, Aušra; Bamford, Dennis H.
2003-01-01
In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of φ6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, φ8 and φ13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn2+ to produce minus-sense copies on φ13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including φ13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form. PMID:12502836
NASA Astrophysics Data System (ADS)
Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.
2008-03-01
In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.
Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael
2016-01-01
Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698
Template-directed instrumentation in total knee arthroplasty: cost savings analysis.
Hsu, Andrew R; Gross, Christopher E; Bhatia, Sanjeev; Levine, Brett R
2012-11-01
The use of digital radiography and templating software in total knee arthroplasty (TKA) continues to become more prevalent as the number of procedures performed increases every year. Template-directed instrumentation (TDI) is a novel approach to surgical planning that combines digital templating with limited intraoperative instruments. The purpose of this study was to evaluate the financial implications and radiographic outcomes of using TDI to direct instrumentation during primary TKA. Over a 1-year period, 82 consecutive TKAs using TDI were retrospectively reviewed. Patient demographics and preoperative templated sizes of predicted components were recorded, and OrthoView digital planning software (OrthoView LLC, Jacksonville, Florida was used to determine the 2 most likely tibial and femoral component sizes for each case. This sizing information was used to direct component vendors to prepare 3 lightweight instrument trays based on these sizes. The sizes of implanted components and the number of total trays required were documented. A cost savings analysis was performed to compare TDI and non-TDI surgical expenses for TKA. In 80 (97%) of 82 cases, the prepared sizes determined by TDI using 3 instrument trays were sufficient. Preoperative templating correctly predicted the size of the tibial and femoral component sizes in 90% and 83% of cases, respectively. The average number of trays used with TDI was 3.0 (range, 3-5 trays) compared with 7.5 (range, 6-9 trays) used in 82 preceding non-TDI TKAs. Based on standard fees to sterilize and package implant trays (approximately $26 based on a survey of 10 orthopedic hospitals performing TKA), approximately $9612 was saved by using TDI over the 1-year study period. Overall, digital templating and TDI were a simple and cost-effective approach when performing primary TKA. Copyright 2012, SLACK Incorporated.
[Investigation of RNA viral genome amplification by multiple displacement amplification technique].
Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin
2013-06-01
In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.
Rational design of mesoporous metals and related nanomaterials by a soft-template approach.
Yamauchi, Yusuke; Kuroda, Kazuyuki
2008-04-07
We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.
NASA Astrophysics Data System (ADS)
Khan, Muhammad Ibrahim
Limitation of near future scaling down of conventional silicon technology stimulated the quest for alternative technologies in nanometer-scale materials and devices in recent years. Since the discovery of carbon nanotubes, there has been great interest in the synthesis and characterization of other one-dimensional materials. Nanorods, wires, belts, and tubes make up one particular class of anisotropic nanomaterials, which are considered quasi one-dimensional structures. Nanowires are promising materials for many novel applications, ranging from chemical and biological sensors to optical and electronic devices. This is not only because of their unique geometry, but also because they possess many unique physical properties, including electrical, magnetic, optical, as well as mechanical properties. In this dissertation, we describe the synthesis, structure and properties of nanowires of various inorganic materials fabricated simply by filling up pores or via in a template by means of electrochemical deposition (ECD). The architecture of the porous template defines the wire shape, direction and size. Because of the extreme aspect ratios of these 3D porous membranes, most physical and chemical vapor deposition techniques are ill suited for this template-directed growth technique and template directed fabrication is found to be superior in terms of low cost, high throughput, high volume, and ease of production. Also multicomponent nanowires can be grown simply by switching the solution composition or in some cases even in the same solution by switching the deposition potential. The nanowires can be released from the template matrix by chemical dissolution of the template. Based on the successful fabrication of elemental and multicomponent nanowires we have designed and fabricated InSb nanowire based field effect transistor (FET) devices on Si substrate. InSb is well known for its direct narrow band gap (0.18 eV at 300 K) with a very high electron mobility (8x10 4 cm2 V-1 s-1 at 300 K), electron velocity, and ballistic length (up to 0.7 mum at 300 K) of any known semiconductor. We demonstrated InSb nanowire devices at different diameter range from 30nm to 200nm using template directed technique which promises smaller feature sizes and an alternate, more economical path to atomic-scale computing structures than top-down lithography.
Sun, Jie; Sun, Di; Yuan, Shuai; Tian, Dongxu; Zhang, Liangliang; Wang, Xingpo; Sun, Daofeng
2012-12-14
A series of C(3i)-symmetric bicapped trigonal antiprismatic Cd(8) cages [2X@Cd(8)L(6)(H(2)O)(6)]⋅n Y⋅solvents (X = Cl(-), Y = NO(3)(-), n = 2: MOCC-4; X = Br(-), Y = NO(3)(-), n = 2: MOCC-5; X = NO(3)(-), Y = NO(3)(-), n = 2: MOCC-6; X = NO(3)(-), Y = BF(4)(-), n = 2: MOCC-7; X = NO(3)(-), Y = ClO(4)(-), n = 2: MOCC-8; X = CO(3)(2-), n = 0: MOCC-9), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO(3)(2-) template for MOCC-9 was generated in situ by two-step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC-8 was carried out and showed anion-size selectivity. All of the cage-like compounds emit strong luminescence at room temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip
2015-02-11
Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.
Improved Low Temperature Performance of Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe
2013-01-01
Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary
Killelea, Tom; Ghosh, Samantak; Tan, Samuel S; Heslop, Pauline; Firbank, Susan J; Kool, Eric T; Connolly, Bernard A
2010-07-13
Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.
Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template
NASA Astrophysics Data System (ADS)
Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed
2014-12-01
Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).
Rolling-circle amplification under topological constraints
Kuhn, Heiko; Demidov, Vadim V.; Frank-Kamenetskii, Maxim D.
2002-01-01
We have performed rolling-circle amplification (RCA) reactions on three DNA templates that differ distinctly in their topology: an unlinked DNA circle, a linked DNA circle within a pseudorotaxane-type structure and a linked DNA circle within a catenane. In the linked templates, the single-stranded circle (dubbed earring probe) is threaded, with the aid of two peptide nucleic acid openers, between the two strands of double-stranded DNA (dsDNA). We have found that the RCA efficiency of amplification was essentially unaffected when the linked templates were employed. By showing that the DNA catenane remains intact after RCA reactions, we prove that certain DNA polymerases can carry out the replicative synthesis under topological constraints allowing detection of several hundred copies of a dsDNA marker without DNA denaturation. Our finding may have practical implications in the area of DNA diagnostics. PMID:11788721
Double life of centrioles: CP110 in the spotlight.
Bettencourt-Dias, Mónica; Carvalho-Santos, Zita
2008-01-01
Centrioles lead an important double life: they can give rise to the centrosome or convert to basal bodies and template cilia. Little is known about the control of centriole fate. Spektor and colleagues have now identified a centriolar complex, composed of CP110 and CEP97, which inhibits centriole to basal body conversion, preventing cilia formation. This work paves the way to understanding centriole and cilia biogenesis, which are two processes misregulated in human diseases, such as cancer and polycystic kidney disease.
Growth of Au and ZnS nanostructures via engineered peptide and M13 bacteriophage templates.
Chung, Sungwook; Chung, Woo-Jae; Wang, Debin; Lee, Seung-Wuk; De Yoreo, James J
2018-04-25
We demonstrate directed nucleation of Au and ZnS patterns on templates comprised of functional peptides and an M13 bacteriophage. We discuss the control over nucleation in terms of the interplay between enhanced ion binding and reduced interfacial energy resulting from the presence of the templates.
NASA Technical Reports Server (NTRS)
Wu, T.; Orgel, L. E.
1992-01-01
We have used [32P]-labeled hairpin oligonucleotides to study template-directed synthesis on templates containing one or more A or T residues within a run of C residues. When nucleoside-5'-phosphoro(2-methyl)imidazolides are used as substrates, isolated A and T residues function efficiently in facilitating the incorporation of U and A, respectively. The reactions are regiospecific, producing mainly 3'-5'-phosphodiester bonds. Pairs of consecutive non-C residues are copied much less efficiently. Limited synthesis of CA and AC sequences on templates containing TG and GT sequences was observed along with some synthesis of the AA sequences on templates containing TT sequences. The other dimer sequences investigated, AA, AG, GA, TA, and AT, could not be copied. If A is absent from the reaction mixture, misincorporation of G residues is a significant reaction on templates containing an isolated T residue or two consecutive T residues. However, if both A and G are present, A is incorporated to a much greater extent than G. We believe that wobble-pairing between T and G is responsible for misincorporation when only G is present.
De Santis, Daniele; Canton, Luciano Claudio; Cucchi, Alessandro; Zanotti, Guglielmo; Pistoia, Enrico; Nocini, Pier Francesco
2010-01-01
Computer-assisted surgery is based on computerized tomography (CT) scan technology to plan the placement of dental implants and a computer-aided design/computer-aided manufacturing (CAD-CAM) technology to create a custom surgical template. It provides guidance for insertion implants after analysis of existing alveolar bone and planning of implant position, which can be immediately loaded, therefore achieving esthetic and functional results in a surgical stage. The absence of guidelines to treat dentulous areas is often due to a lack of computer-assisted surgery. The authors have attempted to use this surgical methodology to replace residual teeth with an immediate implantoprosthetic restoration. The aim of this case report is to show the possibility of treating a dentulous patient by applying a computer-assisted surgical protocol associated with the use of a double surgical template: one before extraction and a second one after extraction of selected teeth.
Remote site-selective C-H activation directed by a catalytic bifunctional template.
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-03-23
In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.
Moyer, Tyler C; Holland, Andrew J
2015-01-01
The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.
Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication
Martinez, Matthew P.; Wacker, Amanda L.; Bruck, Irina; Kaplan, Daniel L.
2017-01-01
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described. PMID:28383499
Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes
NASA Astrophysics Data System (ADS)
Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.
2016-06-01
We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d
Pyrene-nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies.
Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Kowalski, Konrad
2017-01-01
Fluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CH 2 CH 2 -thymine ( 2 ) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T 10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base-base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T 10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA) 10 -T 10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.
New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III
Lama, Lodoe; Seidl, Christine I; Ryan, Kevin
2014-01-01
Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3′ end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells. PMID:25764216
Onozawa, Masahiro; Zhang, Zhenhua; Kim, Yoo Jung; Goldberg, Liat; Varga, Tamas; Bergsagel, P Leif; Kuehl, W Michael; Aplan, Peter D
2014-05-27
We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.
Precision genome editing in the CRISPR era.
Salsman, Jayme; Dellaire, Graham
2017-04-01
With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.
Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering
NASA Astrophysics Data System (ADS)
Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.
2015-02-01
Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Peng; Zhang Milin; Hou Hongwei
2008-03-04
A novel strategy has been put forward to prepare hierarchical dendrites of silver nanorods via a simple integration method using 'Devarda's template' as a reducing agent and architecture template with the assistance of ultrasonic waves, in which the template was firstly fabricated and employed. The individual silver dendrite is composed of a long central trunk with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunk. The results reveal that the dendrites are single crystalline in nature and interestingly prove that the silver single crystal has the preferential orientation in <1 1 1> directionmore » in normal conditions. The contrast experiments demonstrated that both 'Devarda's template' and the ultrasonic irradiation are necessary for building hierarchically silver dendrites in a water system. Moreover, the experimental results show that the dendrites of silver nanorods are the superior electrode materials for the electrochemical sensors to detect directly NO{sub 2}{sup -} in aqueous solution.« less
NASA Astrophysics Data System (ADS)
He, Christine; Gállego, Isaac; Laughlin, Brandon; Grover, Martha A.; Hud, Nicholas V.
2017-04-01
Many hypotheses concerning the nature of early life assume that genetic information was once transferred through the template-directed synthesis of RNA, before the emergence of coded enzymes. However, attempts to demonstrate enzyme-free, template-directed synthesis of nucleic acids have been limited by 'strand inhibition', whereby transferring information from a template strand in the presence of its complementary strand is inhibited by the stability of the template duplex. Here, we use solvent viscosity to circumvent strand inhibition, demonstrating information transfer from a gene-length template (>300 nt) within a longer (545 bp or 3 kb) duplex. These results suggest that viscous environments on the prebiotic Earth, generated periodically by water evaporation, could have facilitated nucleic acid replication—particularly of long, structured sequences such as ribozymes. Our approach works with DNA and RNA, suggesting that viscosity-mediated replication is possible for a range of genetic polymers, perhaps even for informational polymers that may have preceded RNA.
Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template
NASA Technical Reports Server (NTRS)
Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie E.
1997-01-01
Prebiotic syntheses of chiral monomers always yield racemic mixtures. Living systems, however, utilize L-amino acids and D-nucleotides in their biopolymers. The generation of optical asymmetry by selection and amplification in an autocatalytic process is, therefore, an important element in many theories of the origin of life. Replication of polynucleotides in template-directed syntheses is an obvious candidate for such an amplification step in a pre-'RNA world'. A serious objection to this suggestion is the observation that the efficiency of template-directed syntheses of RNA is limited by enantiomeric cross-inhibition. Peptide Nucleic Acids (PNAs), amide-linked, nonchiral analogues of RNA, have been 'copied' into RNA and constitute an alternative to chiral polynucleotides as an informational replicating system. Here, we use PNA as model for a hypothetical, nonchiral precursor of RNA in experiments re-examining enantiomeric cross-inhibition. We find that enantiomeric cross-inhibition is as serious in the polymerization of nucleotides on a PNA template as it is on a conventional RNA or DNA template.
Functional Programming with C++ Template Metaprograms
NASA Astrophysics Data System (ADS)
Porkoláb, Zoltán
Template metaprogramming is an emerging new direction of generative programming. With the clever definitions of templates we can force the C++ compiler to execute algorithms at compilation time. Among the application areas of template metaprograms are the expression templates, static interface checking, code optimization with adaption, language embedding and active libraries. However, as template metaprogramming was not an original design goal, the C++ language is not capable of elegant expression of metaprograms. The complicated syntax leads to the creation of code that is hard to write, understand and maintain. Although template metaprogramming has a strong relationship with functional programming, this is not reflected in the language syntax and existing libraries. In this paper we give a short and incomplete introduction to C++ templates and the basics of template metaprogramming. We will enlight the role of template metaprograms, and some important and widely used idioms. We give an overview of the possible application areas as well as debugging and profiling techniques. We suggest a pure functional style programming interface for C++ template metaprograms in the form of embedded Haskell code which is transformed to standard compliant C++ source.
Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.
Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z
2010-04-14
A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.
Implant-Related Gingival Recession: Pilot Case Series Presents Novel Technique and Scoring Template.
El Askary, Abd El Salam; Ghallab, Noha A; Tan, Shuh-Chern; Rosen, Paul S; Shawkat, Ahmad
2016-07-01
This article introduces a novel protocol for the predictable treatment of Class II division 2 implantrelated gingival recession and presents an innovative acrylic template for scoring the peri-implant soft-tissue gain, used before and after treatment. Ten patients with Class II division 2 single-implant-related gingival recession received combined double-papillary flap approximation and rotated subepithelial connective tissue grafting from the palate, along with any preferred optimal grafting technique that suits the type of preexisting defect. Clinical gingival recession was recorded using a scoring template at 4, 6, and 9 months postoperatively. At the end of the 9-month follow-up period, 80% of the cases showed improved soft-tissue coverage; two patients showed significant wound complications that were related to poor home-care measures. The scoring method used can be considered a diagnostic and prognostic tool for better understanding of implant-related gingival recession.
Conversion of Radiology Reporting Templates to the MRRT Standard.
Kahn, Charles E; Genereaux, Brad; Langlotz, Curtis P
2015-10-01
In 2013, the Integrating the Healthcare Enterprise (IHE) Radiology workgroup developed the Management of Radiology Report Templates (MRRT) profile, which defines both the format of radiology reporting templates using an extension of Hypertext Markup Language version 5 (HTML5), and the transportation mechanism to query, retrieve, and store these templates. Of 200 English-language report templates published by the Radiological Society of North America (RSNA), initially encoded as text and in an XML schema language, 168 have been converted successfully into MRRT using a combination of automated processes and manual editing; conversion of the remaining 32 templates is in progress. The automated conversion process applied Extensible Stylesheet Language Transformation (XSLT) scripts, an XML parsing engine, and a Java servlet. The templates were validated for proper HTML5 and MRRT syntax using web-based services. The MRRT templates allow radiologists to share best-practice templates across organizations and have been uploaded to the template library to supersede the prior XML-format templates. By using MRRT transactions and MRRT-format templates, radiologists will be able to directly import and apply templates from the RSNA Report Template Library in their own MRRT-compatible vendor systems. The availability of MRRT-format reporting templates will stimulate adoption of the MRRT standard and is expected to advance the sharing and use of templates to improve the quality of radiology reports.
1988-10-03
DNA replication showed an average of 2.5 primers per M13 DNA circle. The measurement of the double stranded length from individual replicative intermediates by electron microscopy was within the accuracy of 10% standard deviation. The product length distribution obtained from the HSV-1 DNA polymerase catalyzed replication of M13 DNA primed with a specific pentadecamer and in the presence of E. Coli SSB protein showed a near Poisson distribution. Replication of the same primer-template system or DNA primase primed M13 DNA template by calf thymus DNA polymerase a showed a
Ordered nanoparticle arrays formed on engineered chaperonin protein templates
NASA Technical Reports Server (NTRS)
McMillan, R. Andrew; Paavola, Chad D.; Howard, Jeanie; Chan, Suzanne L.; Zaluzec, Nestor J.; Trent, Jonathan D.
2002-01-01
Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 microm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.
NASA Astrophysics Data System (ADS)
Wu, Junwei; Liu, Yanchen; Cui, Yanhui; Ouyang, Jue; Baker, Andrew P.; Li, Zuohua; Zhang, Huayu
2018-02-01
Two mesoporous carbon foam (MCF) with nitrogen and oxygen dual doped are fabricated through facile templated hydrothermal process. One using fumed silica as single template is named S-MCF, and another using fumed silica and Pluronic F127 as double templates is named D-MCF. When using Pluronic F127 as an auxiliary template, the D-MCF shows different porous architecture and surface chemical nature from S-MCF, thus they behave differently as cathode materials in Li-O2 batteries. The D-MCF electrode exhibits a slight lower discharge capacity and an increased overpotential than that of S-SCF due to the decreased surface area and oxygen content. However, a better cycle stability was proved for the D-MCF electrode because of its higher nitrogen and lower oxygen content. When further composited with RuO2 nanoparticles, the RuO2/D-MCF cathode can operate 160 cycles with capacity cutoff of 500 mAh g-1, and this prolonged cycle life, compared to the 102 cycles of S-MCF cathode, verifies the superior electrochemical stability of D-MCF further and illuminates the crucial role of carbon substrate in the cathodes of Li-O2 batteries.
Kang, Eunae; Jeon, Gumhye; Kim, Jin Kon
2013-07-21
The mesoporous carbon nanofiber arrays that stand on carbon-gold double-layer current collectors are synthesized by self-assembly of a PS-b-PEO copolymer and resol in AAO templates for a high-power micro-supercapacitor at high current densities.
Yang, Haifeng; Shi, Qihui; Liu, Xiaoying; Xie, Songhai; Jiang, Decheng; Zhang, Fuqiang; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan
2002-12-07
Large-diameter-sized mesoporous carbon monoliths with bicontinuous cubic structure of Ia3d symmetry have been synthesized by using mesoporous silica monoliths as hard templates; such carbon monoliths show potential application of advanced electrodes and electrochemical double layer capacitors.
Zhang, Shiguo; Ikoma, Ai; Ueno, Kazuhide; Chen, Zhengjian; Dokko, Kaoru; Watanabe, Masayoshi
2015-05-11
Nitrogen/sulfur-co-doped mesoporous carbon (Phen-HS) was obtained through direct carbonization of a single protic salt, that is, 1,10-phenanthrolinium dibisulfate ([Phen][2 HSO4 ]), in the presence of a colloidal silica template without the use of additional acid or metal catalysts for prepolymerization prior to carbonization. Phen-HS was prepared in a relatively high yield (30.0 %) and has a large surface area (1161 m(2) g(-1) ), large pore volume (2.490 cm(3) g(-1) ), large mesopores (≈12 nm), narrow pore-size distribution (7-16 nm), and high nitrogen (7.5 at %) and sulfur (1.3 at %) contents. The surface area/pore-size distribution is much higher/narrower than that of most reported carbon materials obtained from traditional precursors by using the same template. Phen-HS was directly used as an electrocatalyst for the oxygen reduction reaction (ORR) and as an electrode material for supercapacitors. As an efficient metal-free catalyst, Phen-HS exhibited good electrocatalytic activity toward the ORR in a 0.1 M KOH aqueous solution, which is comparable to the activity of a commercial Pt/C catalyst. Electrochemical measurements for Phen-HS used in a double-layer capacitor showed high specific capacitances of 160 and 140 F g(-1) in 1 M H2 SO4 and 6 M KOH, respectively, with good rate capabilities and high cycling stabilities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mojtahedi, Mitra; Fouquier d'Hérouël, Aymeric; Huang, Sui
2014-01-01
Digital PCR (dPCR) exploits limiting dilution of a template into an array of PCR reactions. From this array the number of reactions that contain at least one (as opposed to zero) initial template is determined, allowing inferring the original template concentration. Here we present a novel protocol to efficiently infer the concentration of a sample and its optimal dilution for dPCR from few targeted qPCR assays. By taking advantage of the real-time amplification feature of qPCR as opposed to relying on endpoint PCR assessment as in standard dPCR prior knowledge of template concentration is not necessary. This eliminates the need for serial dilutions in a separate titration and reduces the number of necessary reactions. We describe the theory underlying our approach and discuss experimental moments that contribute to uncertainty. We present data from a controlled experiment where the initial template concentration is known as proof of principle and apply our method on directly monitoring transcript level change during cell differentiation as well as gauging amplicon numbers in cDNA samples after pre-amplification. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Saranathan, Vinodkumar; Osuji, Chinedum O; Mochrie, Simon G J; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R; Prum, Richard O
2010-06-29
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.
2010-01-01
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870
Design of multi-phase dynamic chemical networks
NASA Astrophysics Data System (ADS)
Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-08-01
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
Huang, Xinhua; Kim, Seok; Heo, Min Seon; Kim, Ji Eun; Suh, Hongsuk; Kim, Il
2013-10-01
An easy template-free approach to the fabrication of pure carbon microspheres has been achieved via direct pyrolysis of as-prepared polyaromatic hydrocarbons including polynaphthalene and polypyrene. The polyaromatics were synthesized from aromatic hydrocarbons (AHCs) using anhydrous zinc chloride as the Friedel-Crafts catalyst and chloromethyl methyl ether as a cross-linker. The experimental results show that the methylene bridges between phenyl rings generate a hierarchical porous polyaromatic precursor to form three-dimensionally (3D) interconnected micro-, meso-, and macroporous networks during carbonization. These hierarchical porous carbon aggregates of spherical carbon spheres exhibit faster ion transport/diffusion behavior and increased surface area usage in electric double-layer capacitors. Furthermore, micropores are present in the 3D interconnected network inside the cross-linked AHC-based carbon microspheres, thus imparting an exceptionally large, electrochemically accessible surface area for charge accumulation.
Biometric template transformation: a security analysis
NASA Astrophysics Data System (ADS)
Nagar, Abhishek; Nandakumar, Karthik; Jain, Anil K.
2010-01-01
One of the critical steps in designing a secure biometric system is protecting the templates of the users that are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric template protection is the template transformation approach, where the template, consisting of the features extracted from the biometric trait, is transformed using parameters derived from a user specific password or key. Only the transformed template is stored and matching is performed directly in the transformed domain. In this paper, we formally investigate the security strength of template transformation techniques and define six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two wellknown template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template transformation techniques must consider also consider the computational complexity of obtaining a complete pre-image of the transformed template in addition to the complexity of recovering the original biometric template.
Sliding over the Blocks in Enzyme-Free RNA Copying – One-Pot Primer Extension in Ice
Löffler, Philipp M. G.; Groen, Joost; Dörr, Mark; Monnard, Pierre-Alain
2013-01-01
Template-directed polymerization of RNA in the absence of enzymes is the basis for an information transfer in the ‘RNA-world’ hypothesis and in novel nucleic acid based technology. Previous investigations established that only cytidine rich strands are efficient templates in bulk aqueous solutions while a few specific sequences completely block the extension of hybridized primers. We show that a eutectic water/ice system can support Pb2+/Mg2+-ion catalyzed extension of a primer across such sequences, i.e. AA, AU and AG, in a one-pot synthesis. Using mixtures of imidazole activated nucleotide 5′-monophosphates, the two first “blocking” residues could be passed during template-directed polymerization, i.e., formation of triply extended products containing a high fraction of faithful copies was demonstrated. Across the AG sequence, a mismatch sequence was formed in similar amounts to the correct product due to U·G wobble pairing. Thus, the template-directed extension occurs both across pyrimidine and purine rich sequences and insertions of pyrimidines did not inhibit the subsequent insertions. Products were mainly formed with 2′-5′-phosphodiester linkages, however, the abundance of 3′–5′-linkages was higher than previously reported for pyrimidine insertions. When enzyme-free, template-directed RNA polymerization is performed in a eutectic water ice environment, various intrinsic reaction limitations observed in bulk solution can then be overcome. PMID:24058695
Killelea, Tom; Ghosh, Samantak; Tan, Samuel S.; Heslop, Pauline; Firbank, Susan; Kool, Eric T.; Connolly, Bernard A.
2010-01-01
Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describes uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at the +2 position explains the stimulation of the polymerase 3′-5′ proof reading exonuclease, observed with deaminated bases at this location. A β hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double stranded DNA. This denatures the two complementary primer bases and directs the resulting 3′ single-stranded extension towards the exonuclease active site. Finally the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using non-polar isosteres. Affinity for both 2,4 difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4 difluorobenzene is seen, confirming a role for shape recognition. PMID:20527806
Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.
2014-01-01
The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273
Reisch, Christopher R; Prather, Kristala L J
2017-01-05
The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a "guide" RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, E. coli lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting E. coli chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in E. coli, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Paix, Alexandre; Wang, Yuemeng; Smith, Harold E.; Lee, Chih-Yung S.; Calidas, Deepika; Lu, Tu; Smith, Jarrett; Schmidt, Helen; Krause, Michael W.; Seydoux, Geraldine
2014-01-01
Homology-directed repair (HDR) of double-strand DNA breaks is a promising method for genome editing, but is thought to be less efficient than error-prone nonhomologous end joining in most cell types. We have investigated HDR of double-strand breaks induced by CRISPR-associated protein 9 (Cas9) in Caenorhabditis elegans. We find that HDR is very robust in the C. elegans germline. Linear repair templates with short (∼30–60 bases) homology arms support the integration of base and gene-sized edits with high efficiency, bypassing the need for selection. Based on these findings, we developed a systematic method to mutate, tag, or delete any gene in the C. elegans genome without the use of co-integrated markers or long homology arms. We generated 23 unique edits at 11 genes, including premature stops, whole-gene deletions, and protein fusions to antigenic peptides and GFP. Whole-genome sequencing of five edited strains revealed the presence of passenger variants, but no mutations at predicted off-target sites. The method is scalable for multi-gene editing projects and could be applied to other animals with an accessible germline. PMID:25249454
Illuminating the Intricate Details of Tremor and Slow Slip Using an Array of Arrays
NASA Astrophysics Data System (ADS)
Creager, K. C.; Vidale, J. E.; Sweet, J. R.; Chestler, S.; Ghosh, A.
2014-12-01
Our Array of Arrays experiment consisted of eight 1-km aperture arrays, each containing 10-20 three-component continuously recording stations. One of these arrays ran continuously for five years and the others for more than one year. We applied frequency-domain beam forming to each array, and a multi-beam back projection method to detect and locate tremor on the Cascadia subduction plate interface every minute. We have also used the arrays to detect and locate over 10,000 tiny repeating Low-Frequency Earthquakes (LFEs) in dozens of distinct families. Repeating events are detected by autocorrelating every 6-s window with every other one during many 1-hour periods and stacking them across several stations to find repeating events. Clean templates are built for each family by iteratively scanning for new repeats and stacking them into the previous template. LFE catalogs are obtained by scanning templates through years of continuous data. Waveform similarities across LFEs and across stations within arrays are used to estimate seismic moment, double-difference event locations and source spectra. These methods have revealed fascinating space-time patterns in both tremor and LFEs that shed light on the propagation modes of slow slip earthquakes on the subduction plate interface including tremor streaks that propagate 100 km/hour parallel to relative plate motion, Rapid Tremor Reversals that propagate at 10 km/hour, and up to 4 times variations in the 0.4 km/hour along-strike propagation speed of the main rupture front that indicates sticky spots on the plate interface. Rather than following a standard Gutenberg-Richter power-law relation, the distributions of seismic moment of LFEs within each family follow an exponential law, allowing estimates of characteristic size. LFEs for a given family cluster in time. Going up dip, time between LFE bursts vary systematically from about a week to a year, durations from an hour to several days, and characteristic moment magnitudes from 1.25 to 1.85. The characteristic moment for up dip LFEs is thus 8 times bigger than their down-dip counter parts. Double-difference locations indicate that many of the families occur on patches that are elongated in the direction of relative plate motion, perhaps related to structural features on the plate interface.
McLawhorn, Alexander S; Carroll, Kaitlin M; Blevins, Jason L; DeNegre, Scott T; Mayman, David J; Jerabek, Seth A
2015-10-01
Template-directed instrumentation (TDI) for total knee arthroplasty (TKA) may streamline operating room (OR) workflow and reduce costs by preselecting implants and minimizing instrument tray burden. A decision model simulated the economics of TDI. Sensitivity analyses determined thresholds for model variables to ensure TDI success. A clinical pilot was reviewed. The accuracy of preoperative templates was validated, and 20 consecutive primary TKAs were performed using TDI. The model determined that preoperative component size estimation should be accurate to ±1 implant size for 50% of TKAs to implement TDI. The pilot showed that preoperative template accuracy exceeded 97%. There were statistically significant improvements in OR turnover time and in-room time for TDI compared to an historical cohort of TKAs. TDI reduces costs and improves OR efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C
2018-08-31
DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.
Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies
Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof
2017-01-01
Fluorescent pyrene–linker–nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene–C(O)CH2CH2–thymine (2) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base–base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA)10–T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells. PMID:29259662
Graphene Emerges as a Versatile Template for Materials Preparation.
Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong
2016-05-01
Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remote site-selective C-H activation directed by a catalytic bifunctional template
NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-03-01
In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.
Priming and the guidance by visual and categorical templates in visual search.
Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L
2014-01-01
Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.
Role of Replication and CpG Methylation in Fragile X Syndrome CGG Deletions in Primate Cells
Nichol Edamura, Kerrie; Leonard, Michelle R.; Pearson, Christopher E.
2005-01-01
Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation. PMID:15625623
Development of template and mask replication using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-09-01
The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.
Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya
2017-03-23
We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC 33 ). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.
NASA Astrophysics Data System (ADS)
Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya
2017-03-01
We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.
Positioning growth of NPB crystalline nanowires on the PTCDA nanocrystal template.
Wang, Hong; Lin, Haiping; Fan, Xing; Ostendorp, Stefan; Wang, Yandong; Huang, Lizhen; Jiang, Lin; Li, Youyong; Wilde, Gerhard; Fuchs, Harald; Wang, Wenchong; Chi, Lifeng
2018-05-31
Non-planar organic molecules often form amorphous films via vapor phase deposition on surfaces. In this study, we demonstrate for the first time that direct crystalline growth of non-planar NPB is possible when the orientation of initially deposited molecules on a PTCDA nanocrystal template is controlled to make it analogous to the structure of the molecular crystal. The crystalline NPB nanowires can be further positioned by controlling the site-selective growth of PTCDA nanocrystal templates at pre-determined locations. Short channel bottom contact OFET array with the NPB nanowires directly grown on electrodes were subsequently fabricated. The hole mobility of NPB nanowires is improved by 40-fold in comparison to that of the amorphous films.
NASA Astrophysics Data System (ADS)
Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko
2015-02-01
MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.
Replication of tobacco mosaic virus RNA.
Buck, K W
1999-01-01
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA. PMID:10212941
Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi
2015-03-15
Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert cervical pedicle screws safely. 3.
Chen, Cheng-Meng; Zhang, Qiang; Huang, Chun-Hsien; Zhao, Xiao-Chen; Zhang, Bing-Sen; Kong, Qing-Qiang; Wang, Mao-Zhang; Yang, Yong-Gang; Cai, Rong; Sheng Su, Dang
2012-07-21
A three-dimensional bubble graphene film, with controllable and uniform macropores and tailorable microstructure, was fabricated by a facile hard templating strategy and exhibit extraordinary electrochemical capacitance with high rate capability (1.0 V s(-1)).
Template-Directed Crystallization of High Energy Materials
2014-04-01
objectives of this grant were to (a) examine the solution crystallization of RDX , HMX and CL-20 from a variety of solvents, withdetailed analysis of...crystal nucleation templates and (c) to assess the growth of RDX , HMX and CL-20 on these templates. High explosives, crystallization, RDX , CL-20...crystallization of RDX , HMX and CL-20 from a variety of solvents, with detailed analysis of their phase, size, and morphological properties; (b) to
Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
Hess, Gaelen T; Tycko, Josh; Yao, David; Bassik, Michael C
2017-10-05
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology. Copyright © 2017 Elsevier Inc. All rights reserved.
Lai, Q Q; Liu, M D; Gu, C C; Nie, H G; Xu, X J; Li, Z H; Yang, Z; Huang, S M
2016-02-21
Evaluating DNA methyltransferase (MTase) activity has received considerable attention due to its significance in the fields of early cancer clinical diagnostics and drug discovery. Herein, we proposed a novel label-free fluorescence method for MTase activity assay by coupling double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) with an endonuclease-assisted signal transduction system. In this strategy, dsDNA molecules were first methylated by DNA adenine methylation (Dam) MTase and then cleaved by the methylation-sensitive restriction endonuclease DpnI. The cleaved DNA fragments could not act as efficient templates for the formation of fluorescent CuNPs and thus no fluorescence signal was produced. Under optimized experimental conditions, the developed strategy exhibited a sensitive fluorescence response to Dam MTase activity. This strategy was also demonstrated to provide an excellent platform to the inhibitor screening for Dam MTase. These results demonstrated the great potential for the practical applications of the proposed strategy for Dam MTase activity assay.
Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W
2017-11-14
Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.
Spain, Elaine; McArdle, Hazel; Keyes, Tia E; Forster, Robert J
2013-08-07
Suspensions of electrocatalytic platinum nanoparticles with radii as small as 78.9 ± 3.5 nm that are functionalised with DNA only in one region have been created using templated electrodeposition. The integrity of the bound DNA following nanoparticle desorption from the electrode is demonstrated by detecting attomolar concentrations of DNA without the need for molecular, e.g., PCR or NASBA, amplification. Double potential step approaches coupled with interface engineering via nucleation sites allows PtNPs to be created with controlled particle size and density in a facile and reproducible manner.
Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander
2017-07-25
Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.
Design of the hairpin ribozyme for targeting specific RNA sequences.
Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A
1997-01-01
The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.
Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; ...
2014-12-11
Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less
A generic rate equation for catalysed, template-directed polymerisation.
Hofmeyr, Jan-Hendrik S; Gqwaka, Olona P C; Rohwer, Johann M
2013-09-02
Biosynthetic networks link to growth and reproduction processes through template-directed synthesis of macromolecules such as polynucleotides and polypeptides. No rate equation exists that captures this link in a way that it can effectively be incorporated into a single computational model of the overall process. This paper describes the derivation of such a generic steady-state rate equation for catalysed, template-directed polymerisation reactions with varying monomer stoichiometry and varying chain length. The derivation is based on a classical Michaelis-Menten mechanism with template binding and an arbitrary number of chain elongation steps that produce a polymer composed of an arbitrary number of monomer types. The rate equation only requires the identity of the first dimer in the polymer sequence; for the remainder only the monomer composition needs be known. Further simplification of a term in the denominator yielded an equation requiring no positional information at all, only the monomer composition of the polymer; this equation still gave an excellent estimate of the reaction rate provided that either the monomer concentrations are at least half-saturating, or the polymer is very long. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Ocola, Leonidas E; Divan, Ralu; Doxastakis, Manolis; Ferrier, Nicola J; de Pablo, Juan; Nealey, Paul F
2017-02-28
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; ...
2016-12-22
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP- b-PS- b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domainsmore » and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. As a result, this research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.« less
Activation of Remote meta-C–H Bonds Assisted by an “End-on” Template
Leow, Dasheng; Li, Gang; Mei, Tiansheng; Yu, Jin-Quan
2012-01-01
Controlling positional selectivity of C–H activation in molecules possessing multiple inequivalent C–H bonds is one of the most important challenges in developing synthetically useful C–H activation reactions. One widely used approach utilizes σ-chelating directing groups to achieve ortho-selectivity through conformational rigid five- or six-membered cyclic pre-transition states (TS).1–14 We envisioned that an “end-on” chelating template capable of delivering catalysts to previously inaccessible remote meta-C–H bonds via a macrocyclic cyclophane-like pre-TS could overcome the limitations imposed by traditional ortho-directing groups. Herein, we report a class of readily removable nitrile-containing templates that direct the activation of distal meta-C–H bonds (≥ 10 bonds away) of a tethered arene. We attribute this new mode of C–H activation to the weak “end-on” coordination of the linear nitrile group to metal center, as previously observed by Schwarz in the study of remote C–H activation of alkyl nitriles in gas phase.15, 16 The coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C–H activation event. Remarkably, this template overrides electronic and steric biases and ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids), thus constituting a fundamentally new mode of directed C–H activation that is anticipated to be widely adopted. PMID:22739317
A hospital-specific template for benchmarking its cost and quality.
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-10-01
Develop an improved method for auditing hospital cost and quality tailored to a specific hospital's patient population. Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, New York, and Texas between 2004 and 2006. A template of 300 representative patients from a single index hospital was constructed and used to match 300 patients at 43 hospitals that had a minimum of 500 patients over a 3-year study period. From each of 43 hospitals we chose 300 patients most resembling the template using multivariate matching. We found close matches on procedures and patient characteristics, far more balanced than would be expected in a randomized trial. There were little to no differences between the index hospital's template and the 43 hospitals on most patient characteristics yet large and significant differences in mortality, failure-to-rescue, and cost. Matching can produce fair, directly standardized audits. From the perspective of the index hospital, "hospital-specific" template matching provides the fairness of direct standardization with the specific institutional relevance of indirect standardization. Using this approach, hospitals will be better able to examine their performance, and better determine why they are achieving the results they observe. © Health Research and Educational Trust.
Chen, Xiaojun; Xu, Lu; Wang, Wei; Li, Xing; Sun, Yi; Politis, Constantinus
2016-09-01
The surgical template is a guide aimed at directing the implant placement, tumor resection, osteotomy and bone repositioning. Using it, preoperative planning can be transferred to the actual surgical site, and the precision, safety and reliability of the surgery can be improved. However, the actual workflow of the surgical template design and manufacturing is quite complicated before the final clinical application. The major goal of the paper is to provide a comprehensive reference source of the current and future development of the template design and manufacturing for relevant researchers. Expert commentary: This paper aims to present a review of the necessary procedures in the template-guided surgery including the image processing, 3D visualization, preoperative planning, surgical guide design and manufacturing. In addition, the template-guided clinical applications for various kinds of surgeries are reviewed, and it demonstrated that the precision of the surgery has been improved compared with the non-guided operations.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-12-01
In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Physical controls on directed virus assembly at nanoscale chemical templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, C L; Chung, S; Chatterji, A
2006-05-10
Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less
NASA Astrophysics Data System (ADS)
Bakre, Pratibha V.; Tilve, S. G.
2018-05-01
Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.
Volkmann, Niels
2004-01-01
Reduced representation templates are used in a real-space pattern matching framework to facilitate automatic particle picking from electron micrographs. The procedure consists of five parts. First, reduced templates are constructed either from models or directly from the data. Second, a real-space pattern matching algorithm is applied using the reduced representations as templates. Third, peaks are selected from the resulting score map using peak-shape characteristics. Fourth, the surviving peaks are tested for distance constraints. Fifth, a correlation-based outlier screening is applied. Test applications to a data set of keyhole limpet hemocyanin particles indicate that the method is robust and reliable.
Template-directed control of crystal morphologies.
Meldrum, Fiona C; Ludwigs, Sabine
2007-02-12
Biominerals are characterised by unique morphologies, and it is a long-term synthetic goal to reproduce these synthetically. We here apply a range of templating routes to investigate whether a fascinating category of biominerals, the single crystals with complex forms, can be produced using simple synthetic methods. Macroporous crystals with sponge-like morphologies identical to that of sea urchin skeletal plates were produced on templating with a sponge-like polymer membrane. Similarly, patterning of individual crystal faces was achieved from the micrometer to nanometer scale through crystallisation on colloidal particle monolayers and patterned polymer thin films. These experiments demonstrate the versatility of a templating approach to producing single crystals with unique morphologies.
Metallization of Self-Assembled DNA Templates for Electronic Circuit Fabrication
NASA Astrophysics Data System (ADS)
Uprety, Bibek
This work examines the deposition of metallic and semiconductor elements onto self-assembled DNA templates for the fabrication of nanodevices. Biological molecules like DNA self-assemble into a variety of 2- and 3-D architectures without the need for patterning tools. The templates can also be designed to controllably place functional nanomaterials with molecular precision. These characteristics make DNA an attractive template for fabricating electronic circuits. However, electrically conductive structures are needed for electronic applications. While metallized DNA nanostructures have been demonstrated, the ability to make thin, continuous wires that are electrically conductive still represents a formidable challenge. DNA-templated wires have generally been granular in appearance with a resistivity approximately two to three orders of magnitude higher than that of the bulk material. An improved method for the metallization of DNA origami is examined in this work that addresses these challenges of size, morphology and conductivity of the metallized structure. Specifically, we demonstrated a metallization process that uses gold nanorod seeds followed by anisotropic electroless (autocatalytic) plating to provide improved morphology and greater control of the final metallized width of conducting metal lines. Growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately four times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 nm to 29 nm were characterized, and resistivity values as low as 8.9 x 10-7 -m were measured, which represent some of the smallest nanowires and the lowest resistivity values reported in the literature. The metallization procedure developed on smaller templates was also successfully applied to metallize bigger DNA templates of tens of micrometers in length. In addition, a polymer-assisted annealing process was discovered to possibly improve the resistivity of DNA metal nanowires. Following metallization of bigger DNA origami structures, controlled placement of nanorods on a DNA breadboard to make rectangular, square and T-shaped metallic structures was also demonstrated. For site-specific placement, we modified the surface of the gold nanorods with single-stranded DNA. The rods were then attached to DNA templates via complementary base-pairing between the DNA on the nanorods and the attachment strands engineered into the DNA "breadboard" template. Gaps between the nanorods were then filled controllably via anisotropic plating to make 10 nm diameter continuous metallic structures. Finally, controlled placement of metal (gold) - semiconductor (tellurium) materials on a single DNA origami template was demonstrated. The combination of molecularly directed deposition of different nanomaterials and anisotropic metallization presented in this work represents important progress towards the creation of nanoelectronic devices from self-assembled biological templates.
Nucleic Acid Templated Reactions for Chemical Biology.
Di Pisa, Margherita; Seitz, Oliver
2017-06-21
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.
2013-11-15
Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less
NASA Astrophysics Data System (ADS)
Tsai, Chia-Lung; Liu, Hsueh-Hsing; Chen, Jun-Wei; Lu, Chien-Pin; Ikenaga, Kazutada; Tabuchi, Toshiya; Matsumoto, Koh; Fu, Yi-Keng
2017-12-01
We demonstrate that the light output power of deep ultraviolet light-emitting diodes (DUV-LEDs) can be improved by introducing an intrinsic last quantum barrier interlayer to a high quality AlN template. The light output power of the DUV-LEDs can be doubled by substituting the last quantum barrier with an intrinsic last quantum barrier (u-LQB)/Mg-doped LQB for only pure u-LQB in the same thickness with a 35 A/cm2 injection current. It is believed that the improved performance of the DUV LED could be attributed to the decreased diffusion of Mg tunneling into MQW and the reduction of sub-band parasitic emissions.
Zeng, Huan; Wang, Yuzhi; Liu, Xiaojie; Kong, Jinhuan; Nie, Chan
2012-05-15
Molecular imprinted polymers (MIPs) were prepared using rutin as the template, different reagents as the functional monomer and different reagents as the cross-linker by solution polymerization. Several parameters that would influence the performance of MIPs were investigated including the type of functional monomer (single or double) and cross-linker (single or double), and the molar ratio of the template, the functional monomer and the cross-linker. The optimum synthesis conditions of MIPs were found to be bi-monomers (acrylamide-co-2-vinyl pyridine, 3:1) and bi-crosslinker (ethylene glycol dimethacrylate-co-divinylbenzene, 3:1). The ratio of the template, the functional monomer and the cross-linker was found to be 1:6:20. MIPs synthesized under these conditions were filled into the cartridges as the adsorbents of solid-phase extraction (SPE). A competition test was conducted to authenticate the selectivity and the specificity of molecularly imprinted solid-phase extraction (MISPE) for rutin using the mixture solution of standard rutin and its structural analogs including quercetin, naringenin and kaempferol. Compared with purchased SPE including C(18), silica and PCX, MISPE showed better selectivity and enrichment property for rutin in the extracted solutions of Chinese medicinal plants than any others. The mean recoveries were 85.93% (RSD: 3.04%, n=3) for Saururus chinensis (Lour.) Bail and 88.61% (RSD: 3.36%, n=3) for Flos Sophorae, respectively, which indicated that the optimized rutin-MIPs possess the value of practical application. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Li; Li, Xu; Wang, Ziru; Shen, Yun; Liu, Ming
2017-10-01
TiO2 microtubes with a yam-like surface were prepared for the first time through a simple and efficient double soaking sol-gel route by utilizing Platanus acerifolia seed fibers as bio-templates. The physicochemical properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer Emmett Teller (BET) surface analysis and Ultraviolet-visible absorption spectroscopy (UV-vis). The results showed that the obtained TiO2 microtubes had an anatase phase and were composed of a smooth internal wall and a rough yam-like external wall with an average diameter of 24 μm and the wall thickness of 2 μm. The surface area and pore volume of the as-prepared TiO2 microtubes reached 128.271 m2/g and 0.149 cm3/g, respectively. The UV-vis analysis displayed a favorable extension of light absorption capacity of TiO2 microtubes. The synthetic mechanism was preliminarily discussed as well. The moisture in the natural fiber templates facilitated the mild hydrolysis of titanium sol, leaving a prime layer on the surface of the fibers, and subsequently assisted in the successful preparation of TiO2 microtubes with a yam-like surface without requiring specific control of hydrolysis. Photocatalytic experiments indicated that the as-obtained TiO2 microtubes exhibited a higher efficiency than commercial P25 in the degradation of tetracycline hydrochloride.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
Template-directed chemistry and the origins of the RNA world
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia
1994-01-01
Prompted by the growing number of reports about reactions catalyzed by ribozymes, this paper summarizes mechanistic and kinetic aspects of template-directed (TD) chemistry important for the synthesis of a diverse population of polynucleotides and analogues possibly up to 100 units long. Assuming that this chemistry takes place in a microenvironment conducive to life under the constant influx of mM concentrations of activated monomeric building blocks, the proposed scenario represents a working hypothesis for the prebiotic synthesis of the RNA world.
Marq, Jean-Baptiste; Kolakofsky, Daniel; Garcin, Dominique
2010-06-11
Arenavirus and bunyavirus RNA genomes are unusual in that they are found in circular nucleocapsids, presumably due to the annealing of their complementary terminal sequences. Moreover, arenavirus genome synthesis initiates with GTP at position +2 of the template rather than at the precise 3' end (position +1). After formation of a dinucleotide, 5' pppGpC(OH) is then realigned on the template before this primer is extended. The net result of this "prime and realign" mechanism of genome initiation is that 5' pppG is found as an unpaired 5' nucleotide when the complementary genome ends anneal to form a double-stranded (dsRNA) panhandle. Using 5' pppRNA made in vitro and purified so that all dsRNA side products are absent, we have determined that both this 5' nucleotide overhang, as well as mismatches within the dsRNA (as found in some arenavirus genomes), clearly reduce the ability of these model dsRNAs to induce interferon upon transfection into cells. The presence of this unpaired 5' ppp-nucleotide is thus another way that some viruses appear to use to avoid detection by cytoplasmic pattern recognition receptors.
Lau, Kai Lin; Sleiman, Hanadi F
2016-07-26
Given its highly predictable self-assembly properties, DNA has proven to be an excellent template toward the design of functional materials. Prominent examples include the remarkable complexity provided by DNA origami and single-stranded tile (SST) assemblies, which require hundreds of unique component strands. However, in many cases, the majority of the DNA assembly is purely structural, and only a small "working area" needs to be aperiodic. On the other hand, extended lattices formed by DNA tile motifs require only a few strands; but they suffer from lack of size control and limited periodic patterning. To overcome these limitations, we adopt a templation strategy, where an input strand of DNA dictates the size and patterning of resultant DNA tile structures. To prepare these templating input strands, a sequential growth technique developed in our lab is used, whereby extended DNA strands of defined sequence and length may be generated simply by controlling their order of addition. With these, we demonstrate the periodic patterning of size-controlled double-crossover (DX) and triple-crossover (TX) tile structures, as well as intentionally designed aperiodicity of a DX tile structure. As such, we are able to prepare size-controlled DNA structures featuring aperiodicity only where necessary with exceptional economy and efficiency.
NASA Technical Reports Server (NTRS)
Wu, Xiaolin; Delgado, Guillermo; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert
2003-01-01
Replacement of adenine by 2,6-diaminopurine-two nucleobases to be considered equivalent from an etlological point of view-strongly enhances the stability of TNA/TNA, TNA/RNA, or TNA/DNA duplexes and efficiently accelerates template-directed ligation of TNA ligands.
Structured Nanowires for Spectra-Tuned and Spectra-Multiplexed Sensing THZ Generation
2015-04-08
anodic aluminum oxide membranes ( AAO ) as templates. We...nanowires were fabricated by direct current electrochemical deposition technique using diameter-modulated anodic aluminum oxide membranes ( AAO ) as...throughout this project was the technique of atomic layer deposition (ALD) into anodized alumina oxide ( AAO ) templates. Aluminum , when
Cheating the Business Template: Filling in the Blanks
ERIC Educational Resources Information Center
Mechenbier, Mahli Xuan
2011-01-01
Business professionals often use standard templates when composing documents, and teachers of business writing direct students to textbook examples to use as sample formats. Good instructors do want to provide their students with informative examples of what is expected, especially in an online course environment where students cannot raise their…
Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H
2014-08-01
The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Itoi, Hiroyuki; Nishihara, Hirotomo; Kogure, Taichi; Kyotani, Takashi
2011-02-09
Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.
A Hospital-Specific Template for Benchmarking its Cost and Quality
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-01-01
Objective Develop an improved method for auditing hospital cost and quality tailored to a specific hospital’s patient population. Data Sources/Setting Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, New York, and Texas between 2004 and 2006. Study Design A template of 300 representative patients from a single index hospital was constructed and used to match 300 patients at 43 hospitals that had a minimum of 500 patients over a 3-year study period. Data Collection/Extraction Methods From each of 43 hospitals we chose 300 patients most resembling the template using multivariate matching. Principal Findings We found close matches on procedures and patient characteristics, far more balanced than would be expected in a randomized trial. There were little to no differences between the index hospital’s template and the 43 hospitals on most patient characteristics yet large and significant differences in mortality, failure-to-rescue, and cost. Conclusion Matching can produce fair, directly standardized audits. From the perspective of the index hospital, “hospital-specific” template matching provides the fairness of direct standardization with the specific institutional relevance of indirect standardization. Using this approach, hospitals will be better able to examine their performance, and better determine why they are achieving the results they observe. PMID:25201167
Optimizing Multi-Station Template Matching to Identify and Characterize Induced Seismicity in Ohio
NASA Astrophysics Data System (ADS)
Brudzinski, M. R.; Skoumal, R.; Currie, B. S.
2014-12-01
As oil and gas well completions utilizing multi-stage hydraulic fracturing have become more commonplace, the potential for seismicity induced by the deep disposal of frac-related flowback waters and the hydraulic fracturing process itself has become increasingly important. While it is rare for these processes to induce felt seismicity, the recent increase in the number of deep injection wells and volumes injected have been suspected to have contributed to a substantial increase of events = M 3 in the continental U.S. over the past decade. Earthquake template matching using multi-station waveform cross-correlation is an adept tool for investigating potentially induced sequences due to its proficiency at identifying similar/repeating seismic events. We have sought to refine this approach by investigating a variety of seismic sequences and determining the optimal parameters (station combinations, template lengths and offsets, filter frequencies, data access method, etc.) for identifying induced seismicity. When applied to a sequence near a wastewater injection well in Youngstown, Ohio, our optimized template matching routine yielded 566 events while other template matching studies found ~100-200 events. We also identified 77 events on 4-12 March 2014 that are temporally and spatially correlated with active hydraulic fracturing in Poland Township, Ohio. We find similar improvement in characterizing sequences in Washington and Harrison Counties, which appear to be related to wastewater injection and hydraulic fracturing, respectively. In the Youngstown and Poland Township cases, focal mechanisms and double difference relocation using the cross-correlation matrix finds left-lateral faults striking roughly east-west near the top of the basement. We have also used template matching to determine isolated earthquakes near several other wastewater injection wells are unlikely to be induced based on a lack of similar/repeating sequences. Optimized template matching utilizes high-quality reliable stations within pre-existing seismic networks and is therefore a cost-efficient monitoring strategy for identifying and characterizing potentially induced seismic sequences.
Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates
2015-01-01
We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication. PMID:26402066
Mongkolwat, Pattanasak; Channin, David S; Kleper, Vladimir; Rubin, Daniel L
2012-01-01
In a routine clinical environment or clinical trial, a case report form or structured reporting template can be used to quickly generate uniform and consistent reports. Annotation and image markup (AIM), a project supported by the National Cancer Institute's cancer biomedical informatics grid, can be used to collect information for a case report form or structured reporting template. AIM is designed to store, in a single information source, (a) the description of pixel data with use of markups or graphical drawings placed on the image, (b) calculation results (which may or may not be directly related to the markups), and (c) supplemental information. To facilitate the creation of AIM annotations with data entry templates, an AIM template schema and an open-source template creation application were developed to assist clinicians, image researchers, and designers of clinical trials to quickly create a set of data collection items, thereby ultimately making image information more readily accessible.
Channin, David S.; Rubin, Vladimir Kleper Daniel L.
2012-01-01
In a routine clinical environment or clinical trial, a case report form or structured reporting template can be used to quickly generate uniform and consistent reports. Annotation and Image Markup (AIM), a project supported by the National Cancer Institute’s cancer Biomedical Informatics Grid, can be used to collect information for a case report form or structured reporting template. AIM is designed to store, in a single information source, (a) the description of pixel data with use of markups or graphical drawings placed on the image, (b) calculation results (which may or may not be directly related to the markups), and (c) supplemental information. To facilitate the creation of AIM annotations with data entry templates, an AIM template schema and an open-source template creation application were developed to assist clinicians, image researchers, and designers of clinical trials to quickly create a set of data collection items, thereby ultimately making image information more readily accessible. © RSNA, 2012 PMID:22556315
NASA Astrophysics Data System (ADS)
Duran, Cihangir
Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241 +/- 17 kJ/mol for the samples with 15.4 wt% seeds. The dielectric and piezoelectric properties were enhanced in samples with better orientation (i.e., high texture fraction (f) and narrow degree of orientation parameter (r) in the texture direction). The presence of nonferroelectric phases (V2O5 or Nb2O5-based) at the grain boundaries suppressed the observed dielectric properties, especially at the transition temperature. (Abstract shortened by UMI.)
Kim, Jiae; Roberts, Anne; Yuan, Hua; Xiong, Yong; Anderson, Karen S.
2012-01-01
Human immunodeficiency virus type-1 (HIV-1) requires reverse transcriptase (RT) and HIV-1 nucleocapsid protein (NCp7) for proper viral replication. HIV-1 NCp7 has been shown to enhance various steps in reverse transcription including tRNA initiation and strand transfer which may be mediated through interactions with RT as well as RNA and DNA oligonucleotides. With the use of DNA oligonucleotides, we have examined the interaction of NCp7 with RT and the kinetics of reverse transcription during (+)-strand synthesis with an NCp7-facilitated annealed primer-template. Using a pre-steady state kinetics approach, the NCp7-annealed primer-template has a substantial increase (3-7 fold) in the rate of incorporation (kpol) by RT as compared to heat annealed primer-template with single nucleotide incorporation. There was also a 2-fold increase in the binding affinity constant (Kd) of the nucleotide. These differences in kpol and Kd were not through direct interactions between HIV-1 RT and NCp7. When examining extension by RT, the data suggests that the NCp7-annealed primer-template facilitates the formation of a longer product more quickly compared to the heat annealed primer-template. This enhancement in rate is mediated through interactions with NCp7’s zinc fingers and N-terminal domain and nucleic acids. The NCp7-annealed primer-template also enhances the fidelity of RT (3-fold) by slowing the rate of incorporation of an incorrect nucleotide. Taken together, this study elucidates a new role of NCp7 by facilitating DNA-directed DNA synthesis during reverse transcription by HIV-1 RT that may translate into enhanced viral fitness and offers an avenue to exploit for targeted therapeutic intervention against HIV. PMID:22210155
Farrell, Richard A; Petkov, Nikolay; Morris, Michael A; Holmes, Justin D
2010-09-15
Self-assembled nanoscale porous architectures, such as mesoporous silica (MPS) films, block copolymer films (BCP) and porous anodic aluminas (PAAs), are ideal hosts for templating one dimensional (1D) nano-entities for a wide range of electronic, photonic, magnetic and environmental applications. All three of these templates can provide scalable and tunable pore diameters below 20 nm [1-3]. Recently, research has progressed towards controlling the pore direction, orientation and long-range order of these nanostructures through so-called directed self-assembly (DSA). Significantly, the introduction of a wide range of top-down chemically and physically pre-patterning substrates has facilitated the DSA of nanostructures into functional device arrays. The following review begins with an overview of the fundamental aspects of self-assembly and ordering processes during the formation of PAAs, BCPs and MPS films. Special attention is given to the different ways of directing self-assembly, concentrating on properties such as uni-directional alignment, precision placement and registry of the self-assembled structures to hierarchal or top-down architectures. Finally, to distinguish this review from other articles we focus on research where nanostructures have been utilised in part to fabricate arrays of functioning devices below the sub 50 nm threshold, by subtractive transfer and additive methods. Where possible, we attempt to compare and contrast the different templating approaches and highlight the strengths and/or limitations that will be important for their potential integration into downstream processes. Copyright 2010 Elsevier Inc. All rights reserved.
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-01
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209
NASA Astrophysics Data System (ADS)
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-01
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-05
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.
Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair
Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas
2016-01-01
Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961
Direct electrodeposition of porous gold nanowire arrays for biosensing applications.
Zhang, Xinyi; Li, Dan; Bourgeois, Laure; Wang, Huanting; Webley, Paul A
2009-02-02
Nanochannel alumina templates are used as templates for fabrication of porous gold nanowire arrays by a direct electrodeposition method. After modification with glucose oxidase, a porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose. The picture shows an SEM image of a nanowire array after removal of the alumina template by acid dissolution. We report the fabrication of porous gold nanowire arrays by means of a one-step electrodeposition method utilizing nanochannel alumina templates. The microstructure of gold nanowires depends strongly on the current density. The formation of porous gold nanowires is attributed to disperse crystallization under conditions of low nucleation rate. Interfacial electron transport through the porous gold nanowires is studied by electrochemical impedance spectroscopy. Cyclic voltammetric studies on the porous gold nanowire arrays reveal a low-potential electrocatalytic response towards hydrogen peroxide. The properties of the glucose oxidase modified porous gold nanowire array electrode are elucidated and compared with those of nonporous enzyme electrodes. The glucose oxidase modified porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose.
Templated sequence insertion polymorphisms in the human genome
NASA Astrophysics Data System (ADS)
Onozawa, Masahiro; Aplan, Peter
2016-11-01
Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.
Kolls, Brad J; Lai, Amy H; Srinivas, Anang A; Reid, Robert R
2014-06-01
The purpose of this study was to determine the relative cost reductions within different staffing models for continuous video-electroencephalography (cvEEG) service by introducing a template system for 10/20 lead application. We compared six staffing models using decision tree modeling based on historical service line utilization data from the cvEEG service at our center. Templates were integrated into technologist-based service lines in six different ways. The six models studied were templates for all studies, templates for intensive care unit (ICU) studies, templates for on-call studies, templates for studies of ≤ 24-hour duration, technologists for on-call studies, and technologists for all studies. Cost was linearly related to the study volume for all models with the "templates for all" model incurring the lowest cost. The "technologists for all" model carried the greatest cost. Direct cost comparison shows that any introduction of templates results in cost savings, with the templates being used for patients located in the ICU being the second most cost efficient and the most practical of the combined models to implement. Cost difference between the highest and lowest cost models under the base case produced an annual estimated savings of $267,574. Implementation of the ICU template model at our institution under base case conditions would result in a $205,230 savings over our current "technologist for all" model. Any implementation of templates into a technologist-based cvEEG service line results in cost savings, with the most significant annual savings coming from using the templates for all studies, but the most practical implementation approach with the second highest cost reduction being the template used in the ICU. The lowered costs determined in this work suggest that a template-based cvEEG service could be supported at smaller centers with significantly reduced costs and could allow for broader use of cvEEG patient monitoring.
NASA Astrophysics Data System (ADS)
Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.
2016-02-01
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
NASA Technical Reports Server (NTRS)
Orgel, L. E.
1986-01-01
The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.
The Pendulum Weaves All Knots and Links
NASA Astrophysics Data System (ADS)
Starrett, John
2003-08-01
From a topological point of view, periodic orbits of three dimensional dynamical systems are knots, that is, circles (S∧1) embedded in the three sphere (S∧3) or in R∧3. The ensemble of periodic orbits comprising the skeleton of a 3-D strange attractor form a link: a collection of (not necessarily linked) knots. Joan Birman and Robert Williams used a topological device known as the template, a branched two-manifold that results when the stable direction is collapsed out of an attractor, to analyze the knot and link types appearing in the geometric Lorenz attractor. More recently, Robert Ghrist has shown the existence of universal templates: templates that support all knot and link types. I show that the template constructed from the geometric attractor of a forced physical pendulum contains a universal template as a subtemplate, and therefore the orbit set of the pendulum contains every knot and link type.
Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming
2015-06-24
Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.
Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W; Waddell, M Brett; Guy, R Kiplin; Luthman, Kristina; Grøtli, Morten
2015-01-01
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.
Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction
Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W.; Waddell, M. Brett; Guy, R. Kiplin; Luthman, Kristina; Grøtli, Morten
2015-01-01
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein—protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay. PMID:26427060
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-07-22
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.
Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM)
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-01-01
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient’s body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient’s surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians. PMID:28773730
Performance Evaluation of Fusing Protected Fingerprint Minutiae Templates on the Decision Level
Yang, Bian; Busch, Christoph; de Groot, Koen; Xu, Haiyun; Veldhuis, Raymond N. J.
2012-01-01
In a biometric authentication system using protected templates, a pseudonymous identifier is the part of a protected template that can be directly compared. Each compared pair of pseudonymous identifiers results in a decision testing whether both identifiers are derived from the same biometric characteristic. Compared to an unprotected system, most existing biometric template protection methods cause to a certain extent degradation in biometric performance. Fusion is therefore a promising way to enhance the biometric performance in template-protected biometric systems. Compared to feature level fusion and score level fusion, decision level fusion has not only the least fusion complexity, but also the maximum interoperability across different biometric features, template protection and recognition algorithms, templates formats, and comparison score rules. However, performance improvement via decision level fusion is not obvious. It is influenced by both the dependency and the performance gap among the conducted tests for fusion. We investigate in this paper several fusion scenarios (multi-sample, multi-instance, multi-sensor, multi-algorithm, and their combinations) on the binary decision level, and evaluate their biometric performance and fusion efficiency on a multi-sensor fingerprint database with 71,994 samples. PMID:22778583
Sexual Violence on the College Campus: A Template for Compliance with Federal Policy
ERIC Educational Resources Information Center
McMahon, Patricia Pasky
2008-01-01
Objective: The author introduces a template, the Model Policy for the Prevention and Response to Sexual Assault, to assist institutions of higher education to benchmark campus policy compliance with federal laws directed at sexual assault. The author presents a detailed review of policy criteria recommended by the National Institute of Justice.…
Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.
2007-10-01
Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.
Lu, Hanxin; Pise-Masison, Cynthia A; Fletcher, Terace M; Schiltz, R Louis; Nagaich, Akhilesh K; Radonovich, Michael; Hager, Gordon; Cole, Philip A; Brady, John N
2002-07-01
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. One key property of the coactivators is the presence of histone acetyltransferase (HAT) activity, which enables p300/CBP to modify nucleosome structure. The data presented in this manuscript demonstrate that full-length p300 and CBP facilitate transcription of a reconstituted chromatin template in the presence of Tax and CREB. The ability of p300 and CBP to activate transcription from the chromatin template is dependent upon the HAT activity. Moreover, the coactivator HAT activity must be tethered to the template by Tax and CREB, since a p300 mutant that fails to interact with Tax did not facilitate transcription or acetylate histones. p300 acetylates histones H3 and H4 within nucleosomes located in the promoter and 5' proximal regions of the template. Nucleosome acetylation is accompanied by an increase in the level of binding of RNA polymerase II transcription factor TFIID and RNA polymerase II to the promoter. Interestingly, we found distinct transcriptional activities between CBP and p300. CBP, but not p300, possesses an N-terminal activation domain which directly activates Tax-mediated HTLV-1 transcription from a naked DNA template. Finally, using the chromatin immunoprecipitation assay, we provide the first direct experimental evidence that p300 and CBP are associated with the HTLV-1 long terminal repeat in vivo.
Directed deposition of inorganic oxide networks on patterned polymer templates
NASA Astrophysics Data System (ADS)
Ford, Thomas James Robert
Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.
Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.
Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan
2011-02-22
Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein.
NASA Astrophysics Data System (ADS)
Zeimer, Ute; Jeschke, Joerg; Mogilatenko, Anna; Knauer, Arne; Kueller, Viola; Hoffmann, Veit; Kuhn, Christian; Simoneit, Tino; Martens, Martin; Wernicke, Tim; Kneissl, Michael; Weyers, Markus
2015-11-01
The effects of the template on the optical and structural properties of Al0.75Ga0.25N/Al0.8Ga0.2N multiple quantum well (MQWs) laser active regions have been investigated. The laser structures for optical pumping were grown on planar c-plane AlN/sapphire as well as on thick epitaxially laterally overgrown (ELO) AlN layers on patterned AlN/sapphire. Two ELO AlN/sapphire templates were investigated, one with a miscut of the sapphire surface to the m-direction with an angle of 0.25°, the other with a miscut angle of 0.25° to the sapphire a-direction. The MQWs are studied by atomic force microscopy, plan-view cathodoluminescence (CL) at room temperature and 83 K as well as transmission electron microscopy using high-angle annular dark-field imaging and energy-dispersive x-ray spectroscopy. The results are compared to optical pumping measurements. It was found that the surface morphology of the templates determines the lateral wavelength distribution in the MQWs observed by spectral CL mappings. The lateral wavelength spread is largest for the laser structures grown on ELO AlN with miscut to sapphire a-direction caused by the local variation of the MQW thicknesses and the Ga incorporation at macrosteps on the ELO-AlN. A CL peak wavelength spread of up to 7 nm has been found. The MQWs grown on planar AlN/sapphire templates show a homogeneous wavelength distribution. However, due to the high threading dislocation density and the resulting strong nonradiative recombination, laser operation could not be achieved. The laser structures grown on ELO AlN/sapphire show optically pumped lasing with a record short wavelength of 237 nm.
Lai, Shenzhi; Ouyang, Xiaoli; Cai, Changqun; Xu, Wensheng; Chen, Chunyan; Chen, Xiaoming
2017-05-01
The surface imprinting technique has been developed to overcome the mass-transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface-imprinted microspheres were prepared by a template-oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface-modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO 2 ). Afterwards, PMAA@SiO 2 was densely adsorbed with (S)-amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross-linking the carboxyl group of PMAA@SiO 2 with ethylene glycol diglycidyl ether. The surface-imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S)-amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Site-specific colloidal crystal nucleation by template-enhanced particle transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
2016-10-01
The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly. Here, we circumvented this fundamental limitation by designing templates with spatially varying feature sizes, in this case moiré patterns, which in the presence of short-range depletion attraction presented surface energy gradients for the diffusing colloids. The templates serve a dual purpose: first, directing the particles to target sites by enhancing their surface mean-free paths and second, dictating the size and symmetry of the growing crystallites. Using optical microscopy, we directly followed the nucleation and growth kinetics of colloidal islands on these surfaces at the single-particle level. We demonstrate nucleation control, with high fidelity, in a regime that has remained unaccessed in theoretical, numerical, and experimental studies on atoms and molecules as well. Our findings pave the way for fabricating nontrivial surface architectures composed of complex colloids and nanoparticles as well.
Vilanova, Neus; Rodríguez-Abreu, Carlos; Fernández-Nieves, Alberto; Solans, Conxita
2013-06-12
A novel approach for the synthesis of silicone capsules using double W/O/W emulsions as templates is introduced. The low viscosity of the silicone precursors enables the use of microfluidic techniques to accurately control the size and morphology of the double emulsion droplets, which after cross-linking result in the desired monodisperse silicone capsules. Their shell thickness can be finely tuned, which in turn allows control over their permeability and mechanical properties; the latter are particularly important in a variety of practical applications where the capsules are subjected to large external forces. The potential of these capsules for controlled release is also demonstrated using a model hydrophilic substance.
Petretta, Robert; Strelzow, Jason; Ohly, Nicholas E; Misur, Peter; Masri, Bassam A
2015-12-01
Templating is an important aspect of preoperative planning for total hip arthroplasty and can help determine the size and positioning of the prosthesis. Historically, templating has been performed using acetate templates over printed radiographs. As a result of the increasing use of digital imaging, surgeons now either obtain additional printed radiographs solely for templating purposes or use specialized digital templating software, both of which carry additional cost. The purposes of this study was to compare acetate templating of digitally calibrated images on an LCD monitor to digital templating in terms of (1) accuracy; (2) reproducibility; and (3) time efficiency. Acetate onlay templating was performed directly over digital radiographs on an LCD monitor and was compared with digital templating. Five separate observers participated in this study templating on 52 total hip arthroplasties. For the acetate templating, the digital images were magnified to the scaled reference on the templates provided by the manufacturer (ratio 1.2:1) before templating using a 25-mm marker as a reference. Both the acetate and digital templating results were then compared with the actual implanted components to determine accuracy. Interobserver and intraobserver variability was determined by an intraclass correlation coefficient. Observers recorded time to complete templating from the time of complete upload of patients' imaging onto the system to completion of templating. Both acetate and digital templates demonstrated moderate accuracy in predicting within one size of the eventual implanted acetabular cup (77% [199 of 260]; 70% [181 of 260], respectively; p = 0.050; 95% confidence interval [CI], 0.058-0.32), whereas acetate templating was better at predicting the femoral stem compared to digital templating (75% [195 of 260]; 60% [155 of 260], respectively; p < 0.001; 95% CI, 0.084-0.32). Acetate templating showed moderate to substantial interobserver agreement (cup intraclass correlation coefficient [ICC] = 0.55; 95% CI, 0.14-0.86; femoral ICC = 0.75; 95% CI, 0.39-0.95) and both methods showed almost perfect intraobserver agreement in reproducibility (acetate cup ICC = 0.82; 95% CI, 0.66-0.97; acetate femoral ICC = 0.86; 95% CI, 0.74-0.97; digital cup ICC = 0.82; 95% CI, 0.68-0.97; digital femoral ICC = 0.88; 95% CI, 0.77-1.0). Acetate templating could be performed more quickly (acetate mean 119 seconds; range, 37-220 seconds versus 154 seconds; range, 73-343 seconds; p < 0.001). Acetate onlay templating on digitally calibrated images can be a reliable substitute for digital templating using specialized software. It is quicker to perform and much less expensive. Hospitals and practices need not purchase expensive software, particularly at lower volume centers. Level III, diagnostic study.
The fabrication of subwavelength anti-reflective nanostructures using a bio-template
NASA Astrophysics Data System (ADS)
Xie, Guoyong; Zhang, Guoming; Lin, Feng; Zhang, Jin; Liu, Zhongfan; Mu, Shichen
2008-03-01
This paper describes a paradigm, a simple, low-cost and conventional approach to the fabrication of large-area subwavelength anti-reflective nanostructures on films directly with a bio-template. Specifically, the nano-nipple arrays on the surface of cicada wings have been precisely replicated to a PMMA (polymethyl methacrylate) film with high reproducibility by a technique of replica molding, which mainly involves two processes: one is that a negative Au mold is prepared directly from the bio-template of the cicada wing by thermal deposition; the other is that the Au mold is used to obtain the replica of the nanostructures on the original cicada wing by casting polymer. The reflectance spectra measurement shows that the replicated PMMA film can considerably reduce reflectivity at its surface over a large wavelength range from 250 to 800 nm, indicating that the anti-reflective property has also been inherited by the PMMA film.
NASA Astrophysics Data System (ADS)
Salgado, R.; Arteaga, G. C.; Arias, J. M.
2018-04-01
Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.
The expanding polymerase universe.
Goodman, M F; Tippin, B
2000-11-01
Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.
A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids
NASA Astrophysics Data System (ADS)
Wang, Hsiao-Fang; Ho, Rong-Ming
2015-03-01
Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.« less
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka; ...
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Additionally a RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σ A dissociation.« less
Self-Assembly of Supramolecular Composites under Cylindrical Confinement
NASA Astrophysics Data System (ADS)
Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting
2014-03-01
Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.
Xin, Wenbo; De Rosa, Igor M; Cao, Yang; Yin, Xunqian; Yu, Hang; Ye, Peiyi; Carlson, Larry; Yang, Jenn-Ming
2018-04-19
We report a facile synthesis of Au nanowires (AuNWs) with a high aspect ratio (l/D) of up to 5000 on a plasma activated graphene template with ultrasound assistance. We demonstrate that the ultrasonication induced symmetry breaking of Au clusters facilitates the growth of AuNWs from the embryonic stages. Furthermore, the growth mechanism of AuNWs is systematically investigated using high resolution electron transmission microscopy (HRTEM), which reveals the unique role of the defective graphene template in directing the growth of AuNWs.
Li, Na; Yang, Gongzheng; Sun, Yong; Song, Huawei; Cui, Hao; Yang, Guowei; Wang, Chengxin
2015-05-13
Transparency has never been integrated into freestanding flexible graphene paper (FF-GP), although FF-GP has been discussed extensively, because a thin transparent graphene sheet will fracture easily when the template or substrate is removed using traditional methods. Here, transparent FF-GP (FFT-GP) was developed using NaCl as the template and was applied in transparent and stretchable supercapacitors. The capacitance was improved by nearly 1000-fold compared with that of the laminated or wrinkled chemical vapor deposition graphene-film-based supercapacitors.
Synthesis of Five‐Porphyrin Nanorings by Using Ferrocene and Corannulene Templates
Liu, Pengpeng; Hisamune, Yutaka; Peeks, Martin D.; Odell, Barbara; Gong, Juliane Q.; Herz, Laura M.
2016-01-01
Abstract The smallest and most strained member of a family of π‐conjugated cyclic porphyrin oligomers was synthesized by using pentapyridyl templates based on ferrocene and corannulene. Both templates are effective for directing the synthesis of the butadiyne‐linked cyclic pentamer, despite the fact that the radii of their N5 donor sets are too small by 0.5 Å and 0.9 Å, respectively (from DFT calculations). The five‐porphyrin nanoring exhibits a structured absorption spectrum and its fluorescence extends to 1200 nm, reflecting strong π conjugation and Herzberg–Teller vibronic coupling. PMID:27213825
Information transfer from peptide nucleic acids to RNA by template-directed syntheses
NASA Technical Reports Server (NTRS)
Schmidt, J. G.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1997-01-01
Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.; ...
2017-08-08
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers
Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.
1977-01-01
DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713
Berkley, Holly; Barnes, Matthew; Carnahan, David; Hayhurst, Janet; Bockhorst, Archie; Neville, James
2017-03-01
To describe the use of template-based screening for risk of infectious disease exposure of patients presenting to primary care medical facilities during the 2014 West African Ebola virus outbreak. The Military Health System implemented an Ebola risk-screening tool in primary care settings in order to create early notifications and early responses to potentially infected persons. Three time-sensitive, evidence-based screening questions were developed and posted to Tri-Service Workflow (TSWF) AHLTA templates in conjunction with appropriate training. Data were collected in January 2015, to assess the adoption of the TSWF-based Ebola risk-screening tool. Among encounters documented using TSWF templates, 41% of all encounters showed use of the TSWF-based Ebola risk-screening questions by the fourth day. The screening rate increased over the next 3 weeks, and reached a plateau at approximately 50%. This report demonstrates the MHS capability to deploy a standardized, globally applicable decision support aid that could be seen the same day by all primary care clinics across the military health direct care system, potentially improving rapid compliance with screening directives. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
Kang, Young-Hoon; Munashingha, Palinda Ruvan; Lee, Chul-Hwan; Nguyen, Tuan Anh; Seo, Yeon-Soo
2012-01-01
Saccharomyces cerevisiae Mph1 is a 3–5′ DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3′ to 5′ directionality, Mph1 displaced 3′-flap substrates in double-fixed or equilibrating flap substrates. Surprisingly, Mph1 displaced the 5′-flap strand more efficiently than the 3′ flap strand from double-flap substrates, which is not expected for a 3–5′ DNA helicase. For this to occur, Mph1 required a threshold size (>5 nt) of 5′ single-stranded DNA flap. Based on the unique substrate requirements of Mph1 defined in this study, we propose that the helicase/ATPase activity of Mph1 play roles in converting multiple-stranded DNA structures into structures cleavable by processing enzymes such as Fen1. We also found that the helicase activity of Mph1 was used to cause structural alterations required for restoration of replication forks stalled due to damaged template. The helicase properties of Mph1 reported here could explain how it resolves D-loop structure, and are in keeping with a model proposed for the error-free damage avoidance pathway. PMID:22090425
End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays
NASA Astrophysics Data System (ADS)
Peckys, Diana B.; de Jonge, Niels; Simpson, Michael L.; McKnight, Timothy E.
2008-10-01
We report the effective and site-specific binding of long double stranded (ds)DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications.
Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang
2013-04-01
Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.
Evidence that MEK1 positively promotes interhomologue double-strand break repair
Terentyev, Yaroslav; Johnson, Rebecca; Neale, Matthew J.; Khisroon, Muhammad; Bishop-Bailey, Anna; Goldman, Alastair S. H.
2010-01-01
During meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1. It has been proposed that Mek1 establishes the bias by creating a barrier to sister chromatid repair, as distinct from enforcing strand invasion with the homologue. We looked for evidence that Mek1 positively stimulates strand invasion of the homologue. This was done by analysing repair of DSBs induced by the VMA1-derived endonuclease (VDE) and flanked by directly repeated sequences that can be used for intrachromatid single-strand annealing (SSA). SSA competes with interhomologue strand invasion significantly more successfully when Mek1 function is lost. We suggest the increase in intrachromosomal SSA reflects an opportunistic default repair pathway due to loss of a MEK1 stimulated bias for strand invasion of the homologous chromosome. Making use of an inhibitor sensitive mek1-as1 allele, we found that Mek1 function influences the repair pathway throughout the first4–5 h of meiosis. Perhaps reflecting a particular need to create bias for successful interhomologue events before chromosome pairing is complete. PMID:20223769
Autoclave method for rapid preparation of bacterial PCR-template DNA.
Simmon, Keith E; Steadman, Dewey D; Durkin, Sarah; Baldwin, Amy; Jeffrey, Wade H; Sheridan, Peter; Horton, Rene; Shields, Malcolm S
2004-02-01
An autoclave method for preparing bacterial DNA for PCR template is presented, it eliminates the use of detergents, organic solvents, and mechanical cellular disruption approaches, thereby significantly reducing processing time and costs while increasing reproducibility. Bacteria are lysed by rapid heating and depressurization in an autoclave. The lysate, cleared by microcentrifugation, was either used directly in the PCR reaction, or concentrated by ultrafiltration. This approach was compared with seven established methods of DNA template preparation from four bacterial sources which included boiling Triton X-100 and SDS, bead beating, lysozyme/proteinase K, and CTAB lysis method components. Bacteria examined were Enterococcus and Escherichia coli, a natural marine bacterial community and an Antarctic cyanobacterial-mat. DNAs were tested for their suitability as PCR templates by repetitive element random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE) analysis. The autoclave method produced PCR amplifiable template comparable or superior to the other methods, with greater reproducibility, much shorter processing time, and at a significantly lower cost.
Formation of Polymer Particles by Direct Polymerization on the Surface of a Supramolecular Template.
Schmuck, Carsten; Li, Mao; Zellermann, Elio
2018-04-06
Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging due to the often weak non-covalent interactions between the self-assembled template and the monomers before polymerization. We herein describe that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Onto the surface of these nanoparticles negatively charged diacetylene monomers can be attached which after UV polymerization lead to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrated intriguing thermal hysteresis phenomenon. The template nanoparticle could be disassembled through the treatment with organic base which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation
NASA Astrophysics Data System (ADS)
Dadras, Sedigheh; Faraji, Maryam
2018-05-01
In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.
NASA Astrophysics Data System (ADS)
Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee
2017-07-01
The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.
Whiter, Richard A.; Boughey, Chess; Smith, Michael
2018-01-01
Abstract Nanowires of the ferroelectric co‐polymer poly(vinylidenefluoride‐co‐triufloroethylene) [P(VDF‐TrFE)] are fabricated from solution within nanoporous templates of both “hard” anodic aluminium oxide (AAO) and “soft” polyimide (PI) through a facile and scalable template‐wetting process. The confined geometry afforded by the pores of the templates leads directly to highly crystalline P(VDF‐TrFE) nanowires in a macroscopic “poled” state that precludes the need for external electrical poling procedure typically required for piezoelectric performance. The energy‐harvesting performance of nanogenerators based on these template‐grown nanowires are extensively studied and analyzed in combination with finite element modelling. Both experimental results and computational models probing the role of the templates in determining overall nanogenerator performance, including both materials and device efficiencies, are presented. It is found that although P(VDF‐TrFE) nanowires grown in PI templates exhibit a lower material efficiency due to lower crystallinity as compared to nanowires grown in AAO templates, the overall device efficiency was higher for the PI‐template‐based nanogenerator because of the lower stiffness of the PI template as compared to the AAO template. This work provides a clear framework to assess the energy conversion efficiency of template‐grown piezoelectric nanowires and paves the way towards optimization of template‐based nanogenerator devices.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less
Lazinski, David W; Camilli, Andrew
2013-01-01
The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.
A facile and low-cost micro fabrication material: flash foam.
He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong
2015-08-28
Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost.
Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.
Zhang, Zijie; Liu, Juewen
2016-03-01
Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.
Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C.; Morse, Daniel E.
2006-01-01
The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein’s catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (γ-Ga2O3). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518
Sanders, Ashley D; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Lansdorp, Peter M
2017-06-01
The ability to distinguish between genome sequences of homologous chromosomes in single cells is important for studies of copy-neutral genomic rearrangements (such as inversions and translocations), building chromosome-length haplotypes, refining genome assemblies, mapping sister chromatid exchange events and exploring cellular heterogeneity. Strand-seq is a single-cell sequencing technology that resolves the individual homologs within a cell by restricting sequence analysis to the DNA template strands used during DNA replication. This protocol, which takes up to 4 d to complete, relies on the directionality of DNA, in which each single strand of a DNA molecule is distinguished based on its 5'-3' orientation. Culturing cells in a thymidine analog for one round of cell division labels nascent DNA strands, allowing for their selective removal during genomic library construction. To preserve directionality of template strands, genomic preamplification is bypassed and labeled nascent strands are nicked and not amplified during library preparation. Each single-cell library is multiplexed for pooling and sequencing, and the resulting sequence data are aligned, mapping to either the minus or plus strand of the reference genome, to assign template strand states for each chromosome in the cell. The major adaptations to conventional single-cell sequencing protocols include harvesting of daughter cells after a single round of BrdU incorporation, bypassing of whole-genome amplification, and removal of the BrdU + strand during Strand-seq library preparation. By sequencing just template strands, the structure and identity of each homolog are preserved.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-01-01
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602
NASA Astrophysics Data System (ADS)
Shindel, Matthew M.
Developing processes to fabricate inorganic architectures with designer functionalities at increasingly minute length-scales is of chief concern in the fields of nanotechnology and nanoscience. This enterprise requires assembly mechanisms with the capacity to tailor both the spatial arrangement and material composition of a system's constituent building blocks. To this end, significant advances can be made by turning to biology, as the natural world has evolved the ability to generate intricate nanostructures, which can potentially be employed as templates for inorganic nanosystems. We explore this biotemplating methodology using two-dimensional streptavidin crystals, investigating the ability of the protein lattice to direct the assembly of ordered metallic nanoparticle arrays. We demonstrate that the adsorption of nanoparticles on the protein monolayer can be induced through both electrostatic and molecular recognition (ligand-receptor) interactions. Furthermore, the dynamics of adsorption can be modulated through both environmental factors (e.g. pH), and by tailoring particle surface chemistry. When the characteristic nanoparticle size is on the order of the biotemplate's unit-cell dimension, electrostatically-mediated adsorption occurs in a site-specific manner. The nanoparticles exhibit a pronounced preference for adhering to the areas between protein molecules. The two-dimensional structure of the resultant nanoparticle ensemble consequently conforms to that of the underlying protein crystal. Through theoretical calculations, simulation and experiment, we show that interparticle spacing in the templated array is influenced by the screened-coulombic repulsion between particles, and can thus be tuned by controlling ionic strength during deposition. Templating ordered nanoparticle arrays via ligand-receptor mediated adsorption, and the constrained growth of metallic nanoparticles directly on the protein lattice from ionic precursors are also examined. Overall, this work demonstrates that the streptavidin crystal system possesses unique utility for nanoscale, directed-assembly applications.
ERIC Educational Resources Information Center
Dobozy, Eva
2012-01-01
In this paper, the five interlocking de Bono LAMS sequences are introduced as a new form of generic template designs. This transdisciplinary knowledge-mobilising strategy is based on Edward de Bono's attention-directing ideas and thinking skills, commonly known as the CoRT tools. The development of the de Bono LAMS sequence series is an important…
Sequence-Controlled Polymerization on Facially Amphiphilic Templates at Interfaces
2016-06-14
controlled chain growth polymerization. We will synthesize a ?- conjugated “parent” polymer by iterative exponential growth (IEG), attach cyclic olefin...template that is programmed to direct sequence- controlled chain growth polymerization. We will synthesize a ?- conjugated “parent” polymer by iterative...polymerization. We will synthesize a π- conjugated “parent” polymer by organometallic iterative exponential growth (IEG),2 attach cyclic olefin “daughter
Soft-Template Construction of 3D Macroporous Polypyrrole Scaffolds.
Liu, Shaohua; Wang, Faxing; Dong, Renhao; Zhang, Tao; Zhang, Jian; Zheng, Zhikun; Mai, Yiyong; Feng, Xinliang
2017-04-01
A bottom-up approach toward 3D hierarchical macroporous polypyrrole aerogels is demonstrated via soft template-directed synthesis and self-assembly of ultrathin polypyrrole nanosheets in solution, which present interconnected macropores, ultrathin walls, and large specific surface areas, thereby exhibiting a high capacity, satisfactory rate capability, and excellent cycling stability for Na-ion storage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microscale assembly directed by liquid-based template.
Chen, Pu; Luo, Zhengyuan; Güven, Sinan; Tasoglu, Savas; Ganesan, Adarsh Venkataraman; Weng, Andrew; Demirci, Utkan
2014-09-10
A liquid surface established by standing waves is used as a dynamically reconfigurable template to assemble microscale materials into ordered, symmetric structures in a scalable and parallel manner. The broad applicability of this technology is illustrated by assembling diverse materials from soft matter, rigid bodies, individual cells, cell spheroids and cell-seeded microcarrier beads. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zaman, Mohammed Shahriar; Haberer, Elaine D.
2014-10-01
Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu2O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap of 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaman, Mohammed Shahriar; Haberer, Elaine D., E-mail: haberer@ucr.edu; Materials Science and Engineering Program, University of California, Riverside, California 92521
Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu₂O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap ofmore » 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.« less
Sheng, Zhao Min; Hong, Cheng Yang; Dai, Xian You; Chang, Cheng Kang; Chen, Jian Bin; Liu, Yan
2015-04-01
We demonstrate a new sulfur (S)-doping templated approach to fabricate highly nanoporous graphitic nanocages (GNCs) by air-oxidizing the templates in the graphitic shells to create nanopores. Sulfur can be introduced, when Fe@C core-shell nanoparticles are prepared and then S-doped GNCs can be obtained by removing their ferrous cores. Due to removing S-template, both the specific surface area (from 540 to 850 m2 g(-1)) and the mesopore volume (from 0.44 to 0.9 cm3 g(-1)) of the graphitic nanocages have sharply risen. Its high specific surface area improves catalyst loading to provide more reaction electro-active sites while its high mesopore volume pro- motes molecule diffusion across the nanocages, making it an excellent material to support Pt/Ru catalysts for direct methanol fuel cells.
Broadband moth-eye antireflection coatings on silicon
NASA Astrophysics Data System (ADS)
Sun, Chih-Hung; Jiang, Peng; Jiang, Bin
2008-02-01
We report a bioinspired templating technique for fabricating broadband antireflection coatings that mimic antireflective moth eyes. Wafer-scale, subwavelength-structured nipple arrays are directly patterned on silicon using spin-coated silica colloidal monolayers as etching masks. The templated gratings exhibit excellent broadband antireflection properties and the normal-incidence specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis (RCWA) model. We further demonstrate that two common simulation methods, RCWA and thin-film multilayer models, generate almost identical prediction for the templated nipple arrays. This simple bottom-up technique is compatible with standard microfabrication, promising for reducing the manufacturing cost of crystalline silicon solar cells.
Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate.
Zhu, Haifeng; Ai, Sufen; He, Qiang; Cui, Yue; Li, Junbai
2007-07-01
Direct adsorption of gold nanoparticles in the inner of alumina template and following immersion of polystyrene (PS) dichloromethane solution in the template resulted in the fabrication of composite nanotubes of PS and gold nanoparticles. Several methods have been used to characterize the tubular structure. Nanostructured sodium aluminates were formed when the anodic alumina oxide membrane was dissolved by the sodium hydroxide. A "flower" shape was found after etching the template while the synthesis process was recorded as function of a time. The results demonstrate that the shape and size of the aluminates nanostructure can be controlled by etching time and the pore diameter of the alumina membrane.
Experimental evaluation of fingerprint verification system based on double random phase encoding
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki; Yamaguchi, Masahiro; Yachida, Masuyoshi; Ohyama, Nagaaki; Tashima, Hideaki; Obi, Takashi
2006-03-01
We proposed a smart card holder authentication system that combines fingerprint verification with PIN verification by applying a double random phase encoding scheme. In this system, the probability of accurate verification of an authorized individual reduces when the fingerprint is shifted significantly. In this paper, a review of the proposed system is presented and preprocessing for improving the false rejection rate is proposed. In the proposed method, the position difference between two fingerprint images is estimated by using an optimized template for core detection. When the estimated difference exceeds the permissible level, the user inputs the fingerprint again. The effectiveness of the proposed method is confirmed by a computational experiment; its results show that the false rejection rate is improved.
Katagiri, Kiyofumi; Shishijima, Yoshinori; Koumoto, Kunihito; Inumaru, Kei
2018-01-01
pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.
Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Matsuoka, Fumiaki; Suh, Hyo Seon
Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. Inmore » situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.« less
Intermediate Templates Guided Groupwise Registration of Diffusion Tensor Images
Jia, Hongjun; Yap, Pew-Thian; Wu, Guorong; Wang, Qian; Shen, Dinggang
2010-01-01
Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image. PMID:20851197
Siden, Rivka; Kem, Ravie; Ostrenga, Andrew; Nicksy, Darcy; Bernhardt, Brooke; Bartholomew, Joy
2014-06-01
The increased use of oral chemotherapy for the treatment of cancer introduces new challenges for patients and caregivers. Among them are the ability to swallow oral solid dosage forms, the proper administration of the agents and the safe-handling of chemotherapeutic drugs in the home. Since these drugs are hazardous, proper preparation, administration, and disposition introduces a variety of safety issues. The increased toxicity of these drugs coupled with complicated dosing regimens and the occasional need to dilute the drug or measure a liquid dosage form require careful instruction of the patient and/or caregivers. The purpose of this project was to create templates for writing patient instruction brochures. A group of clinicians specializing in oncology from several institutions in the United States and Canada met through a series of conference calls. The group included pharmacists with a specialty in pediatric oncology, investigational drug pharmacists, and an oncology nurse practitioner. National guidelines and practices at each institution were used for the creation of templates to be used in developing templates for medication and formulation-specific instruction brochures. The group developed six templates. The templates ranged in scope from instructions on the administration of intact tablets or capsules to directions on opening capsules or crushing tablets and mixing the content with foods or liquids. Thirty-three drug-specific brochures were developed using the templates. Templates of patient brochures and drug-specific brochures on the safe handling of chemotherapy in the home can be created using a collaborative, multi-institutional approach.
Hierarchically structured activated carbon for ultracapacitors
NASA Astrophysics Data System (ADS)
Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul
2016-02-01
To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.
NASA Astrophysics Data System (ADS)
Jamil, Farinaa Md; Sulaiman, Mohd Ali; Ibrahim, Suhaina Mohd; Masrom, Abdul Kadir; Yahya, Muhd Zu Azhan
2017-12-01
A series of mesoporous carbon sample was synthesized using silica template, SBA-15 with two different pore sizes. Impregnation method was applied using glucose as a precursor for converting it into carbon. An appropriate carbonization and silica removal process were carried out to produce a series of mesoporous carbon with different pore sizes and surface areas. Mesoporous carbon sample was then assembled as electrode and its performance was tested using cyclic voltammetry and impedance spectroscopy to study the effect of ion transportation into several pore sizes on electric double layer capacitor (EDLC) system. 6M KOH was used as electrolyte at various scan rates of 10, 20, 30 and 50 mVs-1. The results showed that the pore size of carbon increased as the pore size of template increased and the specific capacitance improved as the increasing of the pore size of carbon.
Break-induced replication and recombinational telomere elongation in yeast.
McEachern, Michael J; Haber, James E
2006-01-01
When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.
Tao, Lu; Yu, Dan; Zhou, Junshuang; Lu, Xiong; Yang, Yunxia; Gao, Faming
2018-05-01
The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m 2 g pt -1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation of remote meta-C-H bonds assisted by an end-on template.
Leow, Dasheng; Li, Gang; Mei, Tian-Sheng; Yu, Jin-Quan
2012-06-27
Functionalization of unactivated carbon-hydrogen (C-H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C-H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C-H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C-H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C-H activation to a weak 'end-on' interaction between the linear nitrile group and the metal centre. The 'end-on' coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C-H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).
NASA Astrophysics Data System (ADS)
Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.
2017-08-01
Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.
DNA-Templated Introduction of an Aldehyde Handle in Proteins.
Kodal, Anne Louise B; Rosen, Christian B; Mortensen, Michael R; Tørring, Thomas; Gothelf, Kurt V
2016-07-15
Many medical and biotechnological applications rely on protein labeling, but a key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by simple residue-specific random labeling, but generally requires genetic engineering. Using site-selective DNA-templated reductive amination, we created DNA-protein conjugates with control over labeling stoichiometry and without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing the coupling of a second reactive DNA strand in the vicinity of a protein metal-binding site. We demonstrate DNA-templated reductive amination for His6 -tagged proteins and metal-binding proteins, including IgG1 antibodies. We also used a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde on the protein. This functions as a handle for further modifications with desired labels. In addition to directing the aldehyde positioning, the DNA provides a straightforward route for purification between reaction steps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guan, Buyuan; Wang, Xue; Xiao, Yu; Liu, Yunling; Huo, Qisheng
2013-03-21
A very simple cooperative template-directed coating method is developed for the preparation of core-shell, hollow, and yolk-shell microporous carbon nanocomposites. Particularly, the cationic surfactant C16TMA(+)·Br(-) used in the coating procedure improves the core dispersion in the reaction media and serves as the soft template for mesostructured resorcinol-formaldehyde resin formation, which results in the uniform polymer and microporous carbon shell coating on most functional cores with different surface properties. The core diameter and the shell thickness of the nanocomposites can be precisely tailored. This approach is highly reproducible and scalable. Several grams of polymer and carbon nanocomposites can be easily prepared by a facile one-pot reaction. The Au@hydrophobic microporous carbon yolk-shell catalyst favors the reduction of more hydrophobic nitrobenzene than hydrophilic 4-nitrophenol by sodium borohydride, which makes this type of catalyst@carbon yolk-shell composites promising nanomaterials as selective catalysts for hydrophobic reactants.
Lowekamp, Bradley C; Chen, David T; Ibáñez, Luis; Blezek, Daniel
2013-01-01
SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK) designed to facilitate rapid prototyping, education and scientific activities via high level programming languages. ITK is a templated C++ library of image processing algorithms and frameworks for biomedical and other applications, and it was designed to be generic, flexible and extensible. Initially, ITK provided a direct wrapping interface to languages such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed ITK's complex templated interface, SimpleITK was designed to provide an easy to use and simplified interface to ITK's algorithms. It includes procedural methods, hides ITK's demand driven pipeline, and provides a template-less layer. Also SimpleITK provides practical conveniences such as binary distribution packages and overloaded operators. Our user-friendly design goals dictated a departure from the direct interface wrapping approach of WrapITK, toward a new facade class structure that only exposes the required functionality, hiding ITK's extensive template use. Internally SimpleITK utilizes a manual description of each filter with code-generation and advanced C++ meta-programming to provide the higher-level interface, bringing the capabilities of ITK to a wider audience. SimpleITK is licensed as open source software library under the Apache License Version 2.0 and more information about downloading it can be found at http://www.simpleitk.org.
Muench, Falk; Schaefer, Sandra; Hagelüken, Lorenz; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Kleebe, Hans-Joachim; Brötz, Joachim; Vaskevich, Alexander; Rubinstein, Israel; Ensinger, Wolfgang
2017-09-13
Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.
Servo-integrated patterned media by hybrid directed self-assembly.
Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David
2014-11-25
A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.
Martínez-Martínez, Antonio J; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T
2014-11-14
The regioselectivity of deprotonation reactions between arene substrates and basic metalating agents is usually governed by the electronic and/or coordinative characteristics of a directing group attached to the benzene ring. Generally, the reaction takes place in the ortho position, adjacent to the substituent. Here, we introduce a protocol by which the metalating agent, a disodium-monomagnesium alkyl-amide, forms a template that extends regioselectivity to more distant arene sites. Depending on the nature of the directing group, ortho-meta' or meta-meta' dimetalation is observed, in the latter case breaking the dogma of ortho metalation. This concept is elaborated through the characterization of both organometallic intermediates and electrophilically quenched products. Copyright © 2014, American Association for the Advancement of Science.
Li, Zhengping; Han, Fangchun; Li, Cheng; Jiao, Xiuling; Chen, Dairong
2018-05-04
Electrochemically active hollow nanostructured materials hold great promise in diverse energy conversion and storage applications, however, intricate synthesis steps and poor control over compositions and morphologies have limited the realization of delicate hollow structures with advanced functional properties. In this study, we demonstrate a one-step wet-chemical strategy for co-engineering the hollow nanostructure and anion intercalation of nickel cobalt layered double hydroxide (NiCo-LDH) to attain highly electrochemical active energy conversion and storage functionalities. Self-templated pseudomorphic transformation of cobalt acetate hydroxide solid nanoprisms using nickel nitrate leads to the construction of well-defined NiCo-LDH hollow nanoprisms (HNPs) with multi-anion intercalation. The unique hierarchical nanosheet-assembled hollow structure and efficiently expanded interlayer spacing offer an increased surface area and exposure of active sites, reduced mass and charge transfer resistance, and enhanced stability of the materials. This leads to a significant improvement in the pseudocapacitive and electrocatalytic properties of NiCo-LDH HNP with respect to specific capacitance, rate and cycling performance, and OER overpotential, outperforming most of the recently reported NiCo-based materials. This work establishes the potential of manipulating sacrificial template transformation for the design and fabrication of novel classes of functional materials with well-defined nanostructures for electrochemical applications and beyond. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang
2014-03-03
A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In-situ preparation of functionalized molecular sieve material and a methodology to remove template
NASA Astrophysics Data System (ADS)
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-01
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
In-situ preparation of functionalized molecular sieve material and a methodology to remove template.
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-10
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
Organic or organometallic template mediated clay synthesis
Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.
1994-01-01
A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.
Organic or organometallic template mediated clay synthesis
Gregar, K.C.; Winans, R.E.; Botto, R.E.
1994-05-03
A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.
NASA Technical Reports Server (NTRS)
Perrone, J. A.; Stone, L. S.
1998-01-01
We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.
NASA Astrophysics Data System (ADS)
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-02-01
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.
Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li
2008-05-01
CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-01-01
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759
Vertical III-V nanowire device integration on Si(100).
Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike
2014-01-01
We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-02-02
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.
Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.
Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich
2010-02-05
Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Conformation-induced remote meta-C-H activation of amines
NASA Astrophysics Data System (ADS)
Tang, Ri-Yuan; Li, Gang; Yu, Jin-Quan
2014-03-01
Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a long-standing challenge in organic chemistry. The small differences in intrinsic reactivity of C-H bonds in any given organic molecule can lead to the activation of undesired C-H bonds by a non-selective catalyst. One solution to this problem is to distinguish C-H bonds on the basis of their location in the molecule relative to a specific functional group. In this context, the activation of C-H bonds five or six bonds away from a functional group by cyclometallation has been extensively studied. However, the directed activation of C-H bonds that are distal to (more than six bonds away) functional groups has remained challenging, especially when the target C-H bond is geometrically inaccessible to directed metallation owing to the ring strain encountered in cyclometallation. Here we report a recyclable template that directs the olefination and acetoxylation of distal meta-C-H bonds--as far as 11 bonds away--of anilines and benzylic amines. This template is able to direct the meta-selective C-H functionalization of bicyclic heterocycles via a highly strained, tricyclic-cyclophane-like palladated intermediate. X-ray and nuclear magnetic resonance studies reveal that the conformational biases induced by a single fluorine substitution in the template can be enhanced by using a ligand to switch from ortho- to meta-selectivity.
Conformation-induced remote meta-C-H activation of amines.
Tang, Ri-Yuan; Li, Gang; Yu, Jin-Quan
2014-03-13
Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a long-standing challenge in organic chemistry. The small differences in intrinsic reactivity of C-H bonds in any given organic molecule can lead to the activation of undesired C-H bonds by a non-selective catalyst. One solution to this problem is to distinguish C-H bonds on the basis of their location in the molecule relative to a specific functional group. In this context, the activation of C-H bonds five or six bonds away from a functional group by cyclometallation has been extensively studied. However, the directed activation of C-H bonds that are distal to (more than six bonds away) functional groups has remained challenging, especially when the target C-H bond is geometrically inaccessible to directed metallation owing to the ring strain encountered in cyclometallation. Here we report a recyclable template that directs the olefination and acetoxylation of distal meta-C-H bonds--as far as 11 bonds away--of anilines and benzylic amines. This template is able to direct the meta-selective C-H functionalization of bicyclic heterocycles via a highly strained, tricyclic-cyclophane-like palladated intermediate. X-ray and nuclear magnetic resonance studies reveal that the conformational biases induced by a single fluorine substitution in the template can be enhanced by using a ligand to switch from ortho- to meta-selectivity.
Gaj, Thomas; Staahl, Brett T; Rodrigues, Gonçalo M C; Limsirichai, Prajit; Ekman, Freja K; Doudna, Jennifer A; Schaffer, David V
2017-06-20
Realizing the full potential of genome editing requires the development of efficient and broadly applicable methods for delivering programmable nucleases and donor templates for homology-directed repair (HDR). The RNA-guided Cas9 endonuclease can be introduced into cells as a purified protein in complex with a single guide RNA (sgRNA). Such ribonucleoproteins (RNPs) can facilitate the high-fidelity introduction of single-base substitutions via HDR following co-delivery with a single-stranded DNA oligonucleotide. However, combining RNPs with transgene-containing donor templates for targeted gene addition has proven challenging, which in turn has limited the capabilities of the RNP-mediated genome editing toolbox. Here, we demonstrate that combining RNP delivery with naturally recombinogenic adeno-associated virus (AAV) donor vectors enables site-specific gene insertion by homology-directed genome editing. Compared to conventional plasmid-based expression vectors and donor templates, we show that combining RNP and AAV donor delivery increases the efficiency of gene addition by up to 12-fold, enabling the creation of lineage reporters that can be used to track the conversion of striatal neurons from human fibroblasts in real time. These results thus illustrate the potential for unifying nuclease protein delivery with AAV donor vectors for homology-directed genome editing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Motion direction estimation based on active RFID with changing environment
NASA Astrophysics Data System (ADS)
Jie, Wu; Minghua, Zhu; Wei, He
2018-05-01
The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.
Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho
2013-11-20
Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semantic Web Research Trends and Directions
2006-01-01
workflow templates. Workflow templates are used for various different tasks such as en- coding business rules in a B2B application, specifying domain...recently suggest that rules are desirable in this space, both in terms of their expressivity, and in some cases, due to their attractive computational...of OWL documents. However, in most cases, a more attractive solution is to simply write a rule that captures the inference needed, as it is reusable
The fabrication and property of hydrophilic and hydrophobic double functional bionic chitosan film.
Wang, Xiaohong; Xi, Zhen; Liu, Zhongxin; Yang, Liang; Cao, Yang
2011-11-01
A new kind of hydrophobic bionic chitosan film was fabricated by simulating the surface structure of lotus leaf. The titanium oxide nanotube array was used as templates. Scanning electron microscopy (SEM) images show that one side of this films have nano-scale rough surface with spherical protrusions alike the surface of lotus leaf. The diameter of the protrusions is about 100 nm, which is equal to diameter of the titanium oxide nanotube. The water contact angle of chitosan films is up to 120 degrees and it is hydrophobic. The other side of the film is flat and the contact angle is 70 degrees. That indicated that the hydrophilism of natural materials is connected with the surface structures. The double functional chitosan films, one side is hydrophilic, the other is hydrophobic, can be made by an easy method. This method is non-toxic and clean. The double functional chitosan film will improve the application of chitosan films in medicine.
Archetype-based conversion of EHR content models: pilot experience with a regional EHR system.
Chen, Rong; Klein, Gunnar O; Sundvall, Erik; Karlsson, Daniel; Ahlfeldt, Hans
2009-07-01
Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards.
Li, Ji; Hu, Xiaoling; Guan, Ping; Song, Dongmen; Qian, Liwei; Du, Chunbao; Song, Renyuan; Wang, Chaoli
2015-07-07
In this study, dummy imprinting technology was employed for the preparation of l-phenylalanine-imprinted microspheres. Ionic liquids were utilized as both a "dummy" template and functional monomer, and 4-vinylpyridine and ethylene glycol dimethacrylate were used as the assistant monomer and cross-linker, respectively, for preparing a surface-imprinted polymer on poly(divinylbenzene) microspheres. By the results obtained by theoretical investigation, the interaction between the template and monomer complex was improved as compared with that between the template and the traditional l-phenylalanine-imprinted polymer. The batch experiments indicated that the imprinting factor reached 2.5. Scatchard analysis demonstrated that the obtained "dummy" molecularly imprinted microspheres exhibited an affinity of 77.4 M·10 -4 , significantly higher that of a traditional polymer directly prepared by l-phenylalanine, which is in agreement with theoretical results. Competitive adsorption experiments also showed that the molecularly imprinted polymer with the dummy template effectively isolated l-phenylalanine from l-histidine and l-tryptophan with separation factors of 5.68 and 2.68, respectively. All these results demonstrated that the polymerizable ionic liquid as the dummy template could enhance the affinity and selectivity of molecularly imprinted polymer, thereby promoting the development of imprinting technology for biomolecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
fd3: Spectral disentangling of double-lined spectroscopic binary stars
NASA Astrophysics Data System (ADS)
Ilijić, Saša
2017-05-01
The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.
Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A
2014-07-01
The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.
Template-directed synthesis and selective adsorption of oligoadenylates in hydroxyapatite
NASA Technical Reports Server (NTRS)
Gibbs, D.; Lohrmann, R.; Orgel, L. E.
1980-01-01
Polyuridylic acid is adsorbed completely from aqueous solution by hydroxyapatite under conditions that permit template-directed synthesis of oligoadenylates in free solution. The yield of oligoadenylates is enhanced to almost the same extent by poly(U) in the presence or the absence of hydroxyapatite. Under very similar conditions small quantities of hydroxyapatite adsorb higher-molecular-weight oligoadenylates selectively from a mixture of oligomers. On the basis of these results a mechanism for prebiotic oligonucleotide formation is proposed in which selective adsorption on hydroxyapatite or some other immobilized anion-exchanging material plays a major role. Monomers are released from the surface for reactivation, while oligomers are retained in a protected environment by adsorption to the apatite surface.
Bioimprinted QCM sensors for virus detection-screening of plant sap.
Dickert, Franz L; Hayden, Oliver; Bindeus, Roland; Mann, Karl-J; Blaas, Dieter; Waigmann, Elisabeth
2004-04-01
Surface imprinting techniques on polymer-coated quartz-crystal microbalances (QCM) have been used to detect tobacco mosaic viruses (TMV) in aqueous media. Molecularly imprinted polymers (MIP), tailor-made by self organisation of monomers around a template (TMV), were generated directly on the gold electrodes. Imprinted trenches on the polymer surface mimicking the shape and surface functionality of the virus serve as recognition sites for re-adsorption after washing out of the template. The sensors are applicable to TMV detection ranging from 100 ng mL(-1) to 1 mg mL(-1) within minutes. Furthermore, direct measurements without time-consuming sample preparation are possible in complex matrices such as tobacco plant sap.
Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia
1999-01-01
This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.
Nucleation and growth mechanism of Co-Pt alloy nanowires electrodeposited within alumina template
NASA Astrophysics Data System (ADS)
Srivastav, Ajeet K.; Shekhar, Rajiv
2015-01-01
Co-Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co-Pt alloy nanowires was investigated. The less negative deposition potential (-0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co-Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.
Modeling complexes of modeled proteins.
Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A
2017-03-01
Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lazinski, David W.; Camilli, Andrew
2013-01-01
The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318
Nakamura, Shigetaka; Kawabata, Hayato; Fujimoto, Kenzo
2016-08-17
An oligodeoxynucleotide (ODN) containing the ultrafast reversible 3-cyanovinylcarbazole ((CNV) K) photo-crosslinker was photo-crosslinked to a complementary strand upon exposure to 366 nm irradiation and photosplit by use of 312 nm irradiation. In this paper we report that the photoreaction of (CNV) K on irradiation at 366 nm involves a photostationary state and that its reaction can be controlled by temperature. Guided by this new insight, we proposed and have now demonstrated previously unknown photosplitting of (CNV) K aided by DNA strand displacement as an alternative to heating. The photo-crosslinked double-stranded DNA (dsDNA) underwent >80 % photosplitting aided by DNA strand displacement on irradiation at 366 nm without heating. In this photosplitting based on DNA strand displacement, the relative thermal stability of the invader strand with respect to the template strands plays an important role, and an invader strand/template strand system that is more stable than the passenger strand/template strand system induces photosplitting without heating. This new strand-displacement-aided photosplitting occurred in a sequence-specific manner through irradiation at 366 nm in the presence of an invader strand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A facile and low-cost micro fabrication material: flash foam
He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong
2015-01-01
Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost. PMID:26314247
Enzymatically triggered rupture of polymersomes.
Jang, Woo-Sik; Park, Seung Chul; Reed, Ellen H; Dooley, Kevin P; Wheeler, Samuel F; Lee, Daeyeon; Hammer, Daniel A
2016-01-28
Polymersomes are robust vesicles made from amphiphilic block co-polymers. Large populations of uniform giant polymersomes with defined, entrapped species can be made by templating of double-emulsions using microfluidics. In the present study, a series of two enzymatic reactions, one inside and the other outside of the polymersome, were designed to induce rupture of polymersomes. We measured how the kinetics of rupture were affected by altering enzyme concentration. These results suggest that protocells with entrapped enzymes can be engineered to secrete contents on cue.
NASA Astrophysics Data System (ADS)
Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo
2016-11-01
Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.
Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang
2014-06-15
Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhu, Hui; Bhattarai, Hitesh; Yan, Han-Guang; Shuman, Stewart; Glickman, Michael S.
2013-01-01
Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3’-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotide and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologs of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both, in an M. smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5’-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ. PMID:23198659
The Improvement of Automated Spectral Identification Tool ASERA
NASA Astrophysics Data System (ADS)
Yuan, Hailong; zhang, Yanxia
2015-08-01
The regular survey of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) has acquired over four millions spectra of celestial objects by the summer of 2014, covering about a third of the whole sky area. More spectra will be obtained as the survey projects (eg. LAMOST, SDSS) keeps going on. To effectively make use of the massive spectral data, various advanced data analysis methods and technologies are in great requirement. ASERA, A Spectrum Eye Recognition Assistant, provides a simple convenient solution for the user to access spectra from LAMOST and SDSS, identify their types (QSO, galaxy, and various types of stars) and estimate their redshifts in an interactive graphic interface. The toolkit is at first especially designed for quasar identification. By shifting the quasar template overlaping the target spectrum interactively, one can easily find out the best broad emission line position and the redshift value. Now, besides the quasar template, various templates for different types of galaxies (early type, later type, starburst, bulge, elliptical and luminous red galaxies) and stars (O, B, A, F, G, K, M, WD, CV, Double Stars and Emission-Line-Objects) are added. We also have developed many new useful functionalities for inspecting and analyzing spectra, such as zooming, line fitting, smoothing and automatic result saving. The target information from input catalogues and data processing result from the pipeline as well as fitting parameters for various types of templates, can be presented at the same time. Several volume processing components are developed to support the cooperation with MySQL database, internet resources and SSAP services. ASERA will be a strong helper for astronomers to recognize spectra.
Sol-Gel processing of silica nanoparticles and their applications.
Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh
2014-11-06
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. Copyright © 2014 Elsevier B.V. All rights reserved.
Alternative end-joining pathway(s): bricolage at DNA breaks.
Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick
2014-05-01
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Gokhale, Rohan; Unni, Sreekuttan M; Puthusseri, Dhanya; Kurungot, Sreekumar; Ogale, Satishchandra
2014-03-07
Development of a highly durable, fuel-tolerant, metal-free electro-catalyst for oxygen reduction reaction (ORR) is essential for robust and cost-effective Anion Exchange Membrane Fuel Cells (AEMFCs). Herein, we report the development of a nitrogen-doped (N-doped) hierarchically porous carbon-based efficient ORR electrocatalyst from protein-rich pulses. The process involves 3D silica nanoparticle templating of the pulse flour(s) followed by their double pyrolysis. The detailed experiments are performed on gram flour (derived from chickpeas) without any in situ/ex situ addition of dopants. The N-doped porous carbon thus generated shows remarkable electrocatalytic activity towards ORR in the alkaline medium. The oxygen reduction on this material follows the desired 4-electron transfer mechanism involving the direct reduction pathway. Additionally, the synthesized carbon catalyst also exhibits good electrochemical stability and fuel tolerance. The results are also obtained and compared with the case of soybean flour having higher nitrogen content to highlight the significance of different parameters in the ORR catalyst performance.
Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon
2018-07-07
Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.
Nuclease-mediated genome editing: At the front-line of functional genomics technology.
Sakuma, Tetsushi; Woltjen, Knut
2014-01-01
Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
Pellagatti, Andrea; Dolatshad, Hamid; Valletta, Simona; Boultwood, Jacqueline
2015-07-01
CRISPR/Cas is a microbial adaptive immune system that uses RNA-guided nucleases to cleave foreign genetic elements. The CRISPR/Cas9 method has been engineered from the type II prokaryotic CRISPR system and uses a single-guide RNA to target the Cas9 nuclease to a specific genomic sequence. Cas9 induces double-stranded DNA breaks which are repaired either by imperfect non-homologous end joining to generate insertions or deletions (indels) or, if a repair template is provided, by homology-directed repair. Due to its specificity, simplicity and versatility, the CRISPR/Cas9 system has recently emerged as a powerful tool for genome engineering in various species. This technology can be used to investigate the function of a gene of interest or to correct gene mutations in cells via genome editing, paving the way for future gene therapy approaches. Improvements to the efficiency of CRISPR repair, in particular to increase the rate of gene correction and to reduce undesired off-target effects, and the development of more effective delivery methods will be required for its broad therapeutic application.
Did template-directed nucleation precede molecular replication?
NASA Technical Reports Server (NTRS)
Orgel, Leslie E.
1986-01-01
It is proposed that mononucleotides incorporated into the surfaces of microcrystals of inorganic phosphates such as hydroxyapatite can act as templates to assemble complementary mononucleotides from solution, and that the phosphate groups of the assembled nucleotides can facilitate nucleation of a second hydroxyapatite crystal. This would provide a mechanism of replication that is subject to natural selection. The possible role of a replicating system of this kind in the origins of life on the earth is discussed.
Lowekamp, Bradley C.; Chen, David T.; Ibáñez, Luis; Blezek, Daniel
2013-01-01
SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK) designed to facilitate rapid prototyping, education and scientific activities via high level programming languages. ITK is a templated C++ library of image processing algorithms and frameworks for biomedical and other applications, and it was designed to be generic, flexible and extensible. Initially, ITK provided a direct wrapping interface to languages such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed ITK's complex templated interface, SimpleITK was designed to provide an easy to use and simplified interface to ITK's algorithms. It includes procedural methods, hides ITK's demand driven pipeline, and provides a template-less layer. Also SimpleITK provides practical conveniences such as binary distribution packages and overloaded operators. Our user-friendly design goals dictated a departure from the direct interface wrapping approach of WrapITK, toward a new facade class structure that only exposes the required functionality, hiding ITK's extensive template use. Internally SimpleITK utilizes a manual description of each filter with code-generation and advanced C++ meta-programming to provide the higher-level interface, bringing the capabilities of ITK to a wider audience. SimpleITK is licensed as open source software library under the Apache License Version 2.0 and more information about downloading it can be found at http://www.simpleitk.org. PMID:24416015
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries
NASA Astrophysics Data System (ADS)
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-05-01
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp2-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-06-07
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
Kang, Hye-Won; Lee, Du-Hyeong
2015-09-01
The existing techniques for drilling a screw access hole in cement-retained restorations are limited by inaccurate drill guidance and ineffective cooling of the drilling area. An approach for fabricating a guide template to provide screw retrievability using computer-aided design and computer-aided manufacturing (CAD/CAM) is described. A handpiece sleeve was made by 3-dimensional printing and incorporating it into a vacuum-formed template. The handpiece sleeve not only guides the head of the handpiece accurately but also enables the cooling water to reach the area of drilling directly. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Voet, Vincent S D; Kumar, Kamlesh; ten Brinke, Gerrit; Loos, Katja
2015-10-01
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directed self-assembly of virus particles at nanoscale chemical templates
NASA Astrophysics Data System (ADS)
Chung, Sung-Wook; Cheung, Chin Li; Chatterji, Anju; Lin, Tianwei; Johnson, Jack; de Yoreo, Jim
2006-03-01
Because viruses can be site-specifically engineered to present catalytic, electronic, and optical moieties, they are attractive as building blocks for hierarchical nanostructures. We report results using scanned probe nanolithography to direct virus organization into 1D and 2D patterns and in situ AFM investigations of organization dynamics as pattern geometry, inter-viral potential, virus flux, and virus-pattern interaction are varied. Cowpea Mosaic Virus was modified to present surface sites with histidine (His) or cysteine (Cys) groups. Flat gold substrates were patterned with 10-100nm features of alkyl thiols terminated by Ni-NTA or meleimide groups to reversibly and irreversibly bind to the Hys and Cys groups, respectively. We show how assembly kinetics, degree of ordering and cluster-size distribution at these templates depend on the control parameters and present a physical picture of virus assembly at templates that incorporates growth dynamics of small-molecule epitaxial systems and condensation dynamics of colloidal systems. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.
2013-03-01
(1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.
Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.
Pham, Phuong; Seitz, Erica M; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M; Goodman, Myron F
2002-08-20
SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD'(2)C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are "nonfilamentous". That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3' primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3' filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis.
Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis
Pham, Phuong; Seitz, Erica M.; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M.; Goodman, Myron F.
2002-01-01
SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD′2C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are “nonfilamentous”. That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3′ primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3′ filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis. PMID:12177433
Wenchuan Event Detection And Localization Using Waveform Correlation Coupled With Double Difference
NASA Astrophysics Data System (ADS)
Slinkard, M.; Heck, S.; Schaff, D. P.; Young, C. J.; Richards, P. G.
2014-12-01
The well-studied Wenchuan aftershock sequence triggered by the May 12, 2008, Ms 8.0, mainshock offers an ideal test case for evaluating the effectiveness of using waveform correlation coupled with double difference relocation to detect and locate events in a large aftershock sequence. We use Sandia's SeisCorr detector to process 3 months of data recorded by permanent IRIS and temporary ASCENT stations using templates from events listed in a global catalog to find similar events in the raw data stream. Then we take the detections and relocate them using the double difference method. We explore both the performance that can be expected with using just a small number of stations, and, the benefits of reprocessing a well-studied sequence such as this one using waveform correlation to find even more events. We benchmark our results against previously published results describing relocations of regional catalog data. Before starting this project, we had examples where with just a few stations at far-regional distances, waveform correlation combined with double difference did and impressive job of detection and location events with precision at the few hundred and even tens of meters level.
Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E
2017-09-01
The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to mimic collagen fiber orientation as found in nature - in collagen type I sponges. We show that the mechanical behavior of CHCs is very similar to native tissue and strengths structurally weak tubular constructs. The production procedure is relatively easy, reproducible and mechanical features can be controlled to meet different mechanical demands. This is promising in template manufacture, hence offering new opportunities in tissue engineering of tubular organs and preventing graft failure. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
78 FR 23289 - Public Review of Draft National Shoreline Data Content Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
...The Federal Geographic Data Committee (FGDC) is conducting a public review of the draft National Shoreline Data Content Standard. The FGDC has developed a draft National Shoreline Data Content Standard that provides a framework for shoreline data development, sharing of data, and shoreline data transformation and fusion. The FGDC Coastal and Marine Spatial Data Subcommittee, chaired by the National Oceanic and Atmospheric Administration (NOAA), sponsored development of the draft standard. The FGDC Coordination Group, comprised of representatives of Federal agencies, has approved releasing this draft standard for public review and comment. The draft National Shoreline Data Content Standard defines attributes or elements that are common for shoreline data development and provides suggested domains for the elements. The functional scope includes definition of data models, schemas, entities, relationships, definitions, and crosswalks to related standards. The draft National Shoreline Data Content Standard is intended to enhance the shoreline framework by providing technical guidance on shoreline semantics, data structures and their relationships to builders and users of shoreline data. The geographical scope of the draft standard comprises all shorelines of navigable waters within the United States and its territories. The primary intended users of the National Shoreline Data Content Standard are the mapping, shoreline engineering, coastal zone management, flood insurance, and natural resource management communities. The FGDC invites all stakeholders to comment on this draft standard to ensure that it meets their needs. The draft National Shoreline Data Content Standard may be downloaded from https://www.fgdc.gov/standards/projects/FGDC-standards- projects/shoreline-data-content/ revisedDraftNationalShorelineDataContentStandard. Comments shall be submitted using the content template at http://www.fgdc.gov/standards/ process/standards-directives/template.doc. Instructions for completing the comment template are found in FGDC Standards Directive 2d, Standards Working Group Review Guidelines: Review Comment Template, http://www.fgdc.gov/standards/process/standards-directives/directive- 2d-standards-working-group-review-guidelines-review-comment-template. Comments that concern specific issues/changes/additions may result in revisions to the National Shoreline Data Content Standard. Reviewers may obtain information about how comments were addressed upon request. After formal endorsement of the standard by the FGDC, the National Shoreline Data Content Standard and a summary analysis of the changes will be made available to the public on the FGDC Web site, www.fgdc.gov.
Novel organic-inorganic hybrid mesoporous materials and nanocomposites
NASA Astrophysics Data System (ADS)
Feng, Qiuwei
Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A coupling agent was used to covalently bond the organic and inorganic species. The morphology and conductivity of the products have been investigated.
Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug
NASA Astrophysics Data System (ADS)
Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu
2010-09-01
The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.
Inverse opal photonic crystals with photonic band gaps in the visible and near-infrared
NASA Astrophysics Data System (ADS)
Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Parikh, Kunjal; Glosser, R.; Landon, Preston B.
2005-08-01
Colloidal silica spheres with 200nm, 250nm, and 290nm diameters were self-assembled with single crystal crystallites 4-5mm wide and 10-15mm long. Larger spheres with diameters between 1000-2300nm were self-assembled with single crystal crystallites up to 1.5mm wide and 2mm long. The silica opals self-assembled vertically along the [100] direction of the face centered cubic lattice resulting in self-templated opals. Inverse opal photonic crystals with a partial band gap possessing a maximum in the near infrared at 3.8μm were constructed from opal templates composed of 2300nm diameter spheres with chalcogenide Ge33As12Se55 (AMTIR-1), a transparent glass in the near infrared with high refractive index. Inverse gold and gold/ polypropylene composite photonic crystals were fabricated from synthetic opal templates composed of 200-290nm silica spheres. The reflectance spectra and electrical conductance of the resulting structures is presented. Gold was infiltrated into opal templates as gold chloride and heat converted to metallic gold. Opals partially infiltrated with gold were co-infiltrated with polypropylene plastic for mechanical support prior to removal of the silica template with hydrofluoric acid.
Romi, Erez; Baran, Nava; Gantman, Marina; Shmoish, Michael; Min, Bosun; Collins, Kathleen; Manor, Haim
2007-05-22
Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K(m) for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the template-adjacent single-stranded DNA binding site within a cycle of repeat synthesis.
Gül, O. Tolga; Pugliese, Kaitlin M.; Choi, Yongki; Sims, Patrick C.; Pan, Deng; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.
2016-01-01
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures. PMID:27348011
Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G
2016-06-24
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Stochastic model of template-directed elongation processes in biology.
Schilstra, Maria J; Nehaniv, Chrystopher L
2010-10-01
We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Sacrificial template method of fabricating a nanotube
Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA
2007-05-01
Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.
NASA Astrophysics Data System (ADS)
Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe
2018-03-01
Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.
Graded porous inorganic materials derived from self-assembled block copolymer templates.
Gu, Yibei; Werner, Jörg G; Dorin, Rachel M; Robbins, Spencer W; Wiesner, Ulrich
2015-03-19
Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.
Feasibility study of patient-specific surgical templates for the fixation of pedicle screws.
Salako, F; Aubin, C-E; Fortin, C; Labelle, H
2002-01-01
Surgery for scoliosis, as well as other posterior spinal surgeries, frequently uses pedicle screws to fix an instrumentation on the spine. Misplacement of a screw can lead to intra- and post-operative complications. The objective of this study is to design patient-specific surgical templates to guide the drilling operation. From the CT-scan of a vertebra, the optimal drilling direction and limit angles are computed from an inverse projection of the pedicle limits. The first template design uses a surface-to-surface registration method and was constructed in a CAD system by subtracting the vertebra from a rectangular prism and a cylinder with the optimal orientation. This template and the vertebra were built using rapid prototyping. The second design uses a point-to-surface registration method and has 6 adjustable screws to adjust the orientation and length of the drilling support device. A mechanism was designed to hold it in place on the spinal process. A virtual prototype was build with CATIA software. During the operation, the surgeon places either template on patient's vertebra until a perfect match is obtained before drilling. The second design seems better than the first one because it can be reused on different vertebra and is less sensible to registration errors. The next step is to build the second design and make experimental and simulations tests to evaluate the benefits of this template during a scoliosis operation.
Dutta, Saikat; Bhaumik, Asim
2013-11-01
Enjoying the single lifestyle: With an overwhelming efficiency compared to thermally sintered preformed nanocrystals, mesoporous single crystals (MSCs) of TiO2 constitute a new class of semiconductor materials for low-cost solar power, solar fuel, photocatalysis, and energy storage applications. This Highlight explores the benefits of template-directed seed-mediated growth in the confined space of a preseeded mesoporous template, and possible research avenues for further improvements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis
Arbel-Eden, Ayelet; Joseph-Strauss, Daphna; Masika, Hagit; Printzental, Oxana; Rachi, Eléanor; Simchen, Giora
2013-01-01
Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30. We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed. PMID:23550131
NASA Astrophysics Data System (ADS)
Lee, Yongjae; Mitzi, David; Barnes, Paris; Vogt, Thomas
2003-07-01
Pressure-induced structural changes of conducting halide perovskites (CH3NH3)SnI3, (CH3NH3)0.5(NH2CH=NH2)0.5SnI3, and (NH2CH=NH2)SnI3, have been investigated using synchrotron x-ray powder diffraction. In contrast to low-temperature structural changes, no evidence of an increased ordering of the organic cations was observed under pressure. Instead, increase in pressure results first in a ReO3-type doubling of the primitive cubic unit cell, followed by a symmetry distortion, and a subsequent amorphization above 4 GPa. This process is reversible and points towards a pressure-induced templating role of the organic cation. Bulk compressions are continuous across the phase boundaries. The compressibilities identify these hybrids as the most compressible perovskite system ever reported. However, the Sn-I bond compressibility in (CH3NH3)SnI3 shows a discontinuity within the supercell phase. This is possibly due to an electronic localization.
Template switching between PNA and RNA oligonucleotides
NASA Technical Reports Server (NTRS)
Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)
1995-01-01
The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.
Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C
2014-05-01
Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.
Pausing kinetics dominates strand-displacement polymerization by reverse transcriptase
Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei; Marx, Ailie
2017-01-01
Abstract Reverse transcriptase (RT) catalyzes the conversion of the viral RNA into an integration-competent double-stranded DNA, with a variety of enzymatic activities that include the ability to displace a non-template strand concomitantly with polymerization. Here, using high-resolution optical tweezers to follow the activity of the murine leukemia Virus RT, we show that strand-displacement polymerization is frequently interrupted. Abundant pauses are modulated by the strength of the DNA duplex ∼8 bp ahead, indicating the existence of uncharacterized RT/DNA interactions, and correspond to backtracking of the enzyme, whose recovery is also modulated by the duplex strength. Dissociation and reinitiation events, which induce long periods of inactivity and are likely the rate-limiting step in the synthesis of the genome in vivo, are modulated by the template structure and the viral nucleocapsid protein. Our results emphasize the potential regulatory role of conserved structural motifs, and may provide useful information for the development of potent and specific inhibitors. PMID:28973474
Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes.
Oh, Dahyun; Ozgit-Akgun, Cagla; Akca, Esin; Thompson, Leslie E; Tadesse, Loza F; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D; Maune, Hareem
2017-04-04
Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/g e (1.7 mA/cm 2 ).
NASA Astrophysics Data System (ADS)
Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana
2013-06-01
A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.
Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes
Oh, Dahyun; Ozgit-Akgun, Çagla; Akca, Esin; Thompson, Leslie E.; Tadesse, Loza F.; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D.; Maune, Hareem
2017-01-01
Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/ge (1.7 mA/cm2). PMID:28374862
Oxidative peptide /and amide/ formation from Schiff base complexes
NASA Technical Reports Server (NTRS)
Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.
1982-01-01
One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.
Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.
Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan
2013-02-26
Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.
Huang, Jinfeng; Liang, Ju; Zhou, Yifeng; Liu, Zili
2017-06-01
We investigated the controversy regarding double training in motion discrimination learning. We collected data from 43 participants in a motion direction discrimination learning task with either double training (i.e., training plus exposure) or single training (i.e., no exposure). By pooling these data with those in the literature, we had data in double training from 28 participants and in single training from 36 participants. We found that, in double training, the transfer along the exposed direction was less than that along the trained direction, indicating incomplete transfer. Importantly, the transfer in double training was not reliably greater than that in single training.
Catalytic diversity in self-propagating peptide assemblies
NASA Astrophysics Data System (ADS)
Omosun, Tolulope O.; Hsieh, Ming-Chien; Childers, W. Seth; Das, Dibyendu; Mehta, Anil K.; Anthony, Neil R.; Pan, Ting; Grover, Martha A.; Berland, Keith M.; Lynn, David G.
2017-08-01
The protein-only infectious agents known as prions exist within cellular matrices as populations of assembled polypeptide phases ranging from particles to amyloid fibres. These phases appear to undergo Darwinian-like selection and propagation, yet remarkably little is known about their accessible chemical and biological functions. Here we construct simple peptides that assemble into well-defined amyloid phases and define paracrystalline surfaces able to catalyse specific enantioselective chemical reactions. Structural adjustments of individual amino acid residues predictably control both the assembled crystalline order and their accessible catalytic repertoire. Notably, the density and proximity of the extended arrays of enantioselective catalytic sites achieve template-directed polymerization of new polymers. These diverse amyloid templates can now be extended as dynamic self-propagating templates for the construction of even more complex functional materials.
The Limits of Template-Directed Synthesis with Nucleoside-5'-Phosphoro(2-Methyl) Imidazolides
NASA Technical Reports Server (NTRS)
Hill, Aubrey R., Jr.; Orgel, Leslie E.; Wu, Taifeng
1993-01-01
In earlier work we have shown that C-rich templates containing isolated A, T or G residues and short oligo(G) sequences can be copied effectively using nucleoside-5'-phosphoro(2-methyl)imidazolides as substrates. We now show that isolated A or T residues within an oligo(G) sequence are a complete block to copying and that an isolated C residue is copied inefficiently. Replication is possible only if there are two complementary oligonucleotides each of which acts as a template to facilitate the synthesis of the other. We emphasize the severity of the problems that need to be overcome to make possible non-enzymatic replication in homogeneous aqueous solution. We conclude that an efficient catalyst was involved in the origin of polynucleotide replication.
In-Situ Assays Using a New Advanced Mathematical Algorithm - 12400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oginni, B.M.; Bronson, F.L.; Field, M.B.
2012-07-01
Current mathematical efficiency modeling software for in-situ counting, such as the commercially available In-Situ Object Calibration Software (ISOCS), typically allows the description of measurement geometries via a list of well-defined templates which describe regular objects, such as boxes, cylinder, or spheres. While for many situations, these regular objects are sufficient to describe the measurement conditions, there are occasions in which a more detailed model is desired. We have developed a new all-purpose geometry template that can extend the flexibility of current ISOCS templates. This new template still utilizes the same advanced mathematical algorithms as current templates, but allows the extensionmore » to a multitude of shapes and objects that can be placed at any location and even combined. In addition, detectors can be placed anywhere and aimed at any location within the measurement scene. Several applications of this algorithm to in-situ waste assay measurements, as well as, validations of this template using Monte Carlo calculations and experimental measurements are studied. Presented in this paper is a new template of the mathematical algorithms for evaluating efficiencies. This new template combines all the advantages of the ISOCS and it allows the use of very complex geometries, it also allows stacking of geometries on one another in the same measurement scene and it allows the detector to be placed anywhere in the measurement scene and pointing in any direction. We have shown that the template compares well with the previous ISOCS software within the limit of convergence of the code, and also compare well with the MCNPX and measured data within the joint uncertainties for the code and the data. The new template agrees with ISOCS to within 1.5% at all energies. It agrees with the MCNPX to within 10% at all energies and it agrees with most geometries within 5%. It finally agrees with measured data to within 10%. This mathematical algorithm can now be used for quickly and accurately evaluating efficiencies for wider range of gamma-ray spectroscopy applications. (authors)« less
Archetype-based conversion of EHR content models: pilot experience with a regional EHR system
2009-01-01
Background Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards. PMID:19570196
Todorovic, Aleksandar; Lensing, Cody J; Holder, Jerry Ryan; Scott, Joseph W; Sorensen, Nicholas B; Haskell-Luevano, Carrie
2018-05-21
The melanocortin system regulates an array of diverse physiological functions including pigmentation, feeding behavior, energy homeostasis, cardiovascular regulation, sexual function, and steroidogenesis. Endogenous melanocortin agonist ligands all possess the minimal messaging tetrapeptide sequence His-Phe-Arg-Trp. Based on this endogenous sequence, the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide has previously been shown to be a useful scaffold when utilizing traditional positional scanning approaches to modify activity at the various melanocortin receptors (MC1-5R). The study reported herein was undertaken to evaluate a double simultaneous substitution strategy as an approach to further diversify the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide with concurrent introduction of natural and unnatural amino acids at positions 1, 2, or 4 as well as an octanoyl residue at the N-terminus. The designed library includes the following combinations: (A) double simultaneous substitution at capping group position (Ac) together with position 1, 2, or 4, (B) double simultaneous substitution at position 1 and 2, (C) double simultaneous substitution at position 1 and 4, and (D) double simultaneous substitution at position 2 and 4. Several lead ligands with unique pharmacologies were discovered in the current study including antagonists targeting the neuronal mMC3R with minimal agonist activity and ligands with selective profiles for the various melanocortin subtypes. The results suggest that the double simultaneous substitution strategy is a suitable approach in altering melanocortin receptor potency, selectivity, or converting agonists into antagonists and vice versa.
Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun; Ferrazzoli, Alexander E; Kuo, James; Anand, Ranjith P; Waterman, David P; Haber, James E
2018-02-27
Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.
NASA Astrophysics Data System (ADS)
Chang, Wengui; Shen, Yuhua; Xie, Anjian; Liu, Xue
2010-04-01
Gemini surfactants, double sodium α-sulfonic polyethylene glycol laurate (abbreviated C 12-PEG-C 12), were prepared and applied as soft templates in the controlled synthesis of BaCrO 4 and PbCrO 4 micro/nanocrystals. The template effects were investigated by adjusting the length of the spacer, using PEG400 and PEG4000, of the Gemini surfactant. The results indicated that the size and morphology of BaCrO 4 and PbCrO 4 micro/nanocrystals varied with the change in spacer length of C 12-PEG-C 12, suggesting that the different lengths of the polyethylene glycol group spacers in the Gemini surfactants played a key role in determining the size and shape of the MCrO 4 micro/nanoparticles. The dynamic process of the formation of the novel morphology BaCrO 4 crystals showed that the morphology grew from a round-bar polyhedron, to regular polyhedron, to approximate octahedron to a uniform pistachio nut shape. The growth mechanism of the BaCrO 4 micro/nanocrystals was explained that C 12-PEG-C 12 had a greater interfacial adsorption and would effectively control the shape evolution during the crystal growth, while PbCrO 4 could be explained that the Gemini surfactants can undergo liquid-crystalline phase transitions with long channels providing a soft template effect and derived the nanorods formation. Room temperature fluorescence spectra were studied and these showed that the pistachio-shaped BaCrO 4 microcrystals and PbCrO 4 nanorods possess photoactive luminescence properties with emission peaks at 470 and 549 nm, respectively.
El Mendili, Mohamed-Mounir; Chen, Raphaël; Tiret, Brice; Villard, Noémie; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib
2015-01-01
To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.
Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.
Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P
2008-09-01
One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.
Emaus, Miranda N; Clark, Kevin D; Hinners, Paige; Anderson, Jared L
2018-04-28
Nucleic acid extraction and purification represents a major bottleneck in DNA analysis. Traditional methods for DNA purification often require reagents that may inhibit quantitative polymerase chain reaction (qPCR) if not sufficiently removed from the sample. Approaches that employ magnetic beads may exhibit lower extraction efficiencies due to sedimentation and aggregation. In this study, four hydrophobic magnetic ionic liquids (MILs) were investigated as DNA extraction solvents with the goal of improving DNA enrichment factors and compatibility with downstream bioanalytical techniques. By designing custom qPCR buffers, we directly incorporated DNA-enriched MILs including trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P 6,6,6,14 + ][Ni(hfacac) 3 - ]), [P 6,6,6,14 + ] tris(hexafluoroacetylaceto)colbaltate(II) ([Co(hfacac) 3 - ]), [P 6,6,6,14 + ] tris(hexafluoroacetylaceto)manganate(II) ([Mn(hfacac) 3 - ]), or [P 6,6,6,14 + ] tetrakis(hexafluoroacetylaceto)dysprosate(III) ([Dy(hfacac) 4 - ]) into reaction systems, thereby circumventing the need for time-consuming DNA recovery steps. Incorporating MILs into the reaction buffer did not significantly impact the amplification efficiency of the reaction (91.1%). High enrichment factors were achieved using the [P 6,6,6,14 + ][Ni(hfacac) 3 - ] MIL for the extraction of single-stranded and double-stranded DNA with extraction times as short as 2 min. When compared to a commercial magnetic bead-based platform, the [P 6,6,6,14 + ][Ni(hfacac) 3 - ] MIL was capable of producing higher enrichment factors for single-stranded DNA and similar enrichment factors for double-stranded DNA. The MIL-based method was applied for the extraction and direct qPCR amplification of mutation prone-KRAS oncogene fragment in plasma samples. Graphical abstract Magnetic ionic liquid solvents are shown to preconcentrate sufficient KRAS DNA template from an aqueous solution in as short as 2 min without using chaotropic salts or toxic organic solvents. By using custom-designed qPCR buffers, DNA can be directly amplified and quantified from four MILs examined in this study.
Wan, Haisu; Li, Yongwen; Fan, Yu; Meng, Fanrong; Chen, Chen; Zhou, Qinghua
2012-01-15
Site-directed mutagenesis has become routine in molecular biology. However, many mutants can still be very difficult to create. Complicated chimerical mutations, tandem repeats, inverted sequences, GC-rich regions, and/or heavy secondary structures can cause inefficient or incorrect binding of the mutagenic primer to the target sequence and affect the subsequent amplification. In theory, these problems can be avoided by introducing the mutations into the target sequence using mutagenic fragments and so removing the need for primer-template annealing. The cassette mutagenesis uses the mutagenic fragment in its protocol; however, in most cases it needs to perform two rounds of mutagenic primer-based mutagenesis to introduce suitable restriction enzyme sites into templates and is not suitable for routine mutagenesis. Here we describe a highly efficient method in which the template except the region to be mutated is amplified by polymerase chain reaction (PCR) and the type IIs restriction enzyme-digested PCR product is directly ligated with the mutagenic fragment. Our method requires no assistance of mutagenic primers. We have used this method to create various types of difficult-to-make mutants with mutagenic frequencies of nearly 100%. Our protocol has many advantages over the prevalent QuikChange method and is a valuable tool for studies on gene structure and function. Copyright © 2011 Elsevier Inc. All rights reserved.
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus
NASA Astrophysics Data System (ADS)
Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.
2015-11-01
Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.
In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies.
Yanik, Mert; Müller, Brigitte; Song, Fei; Gall, Jacqueline; Wagner, Franziska; Wende, Wolfgang; Lorenz, Birgit; Stieger, Knut
2017-01-01
In vivo genome editing represents an emerging field in the treatment of monogenic disorders, as it may constitute a solution to the current hurdles in classic gene addition therapy, which are the low levels and limited duration of transgene expression. Following the introduction of a double strand break (DSB) at the mutational site by highly specific endonucleases, such as TALENs (transcription activator like effector nucleases) or RNA based nucleases (clustered regulatory interspaced short palindromic repeats - CRISPR-Cas), the cell's own DNA repair machinery restores integrity to the DNA strand and corrects the mutant sequence, thus allowing the cell to produce protein levels as needed. The DNA repair happens either through the error prone non-homologous end-joining (NHEJ) pathway or with high fidelity through homology directed repair (HDR) in the presence of a DNA donor template. A third pathway called microhomology mediated endjoining (MMEJ) has been recently discovered. In this review, the authors focus on the different DNA repair mechanisms, the current state of the art tools for genome editing and the particularities of the retina and photoreceptors with regard to in vivo therapeutic approaches. Finally, current attempts in the field of retinal in vivo genome editing are discussed and future directions of research identified. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon
2015-05-01
Three-dimensional hierarchical micro and mesoporous silicon carbide spheres (MMPSiC) are prepared by the template method and carbonization reaction via the aerosol spray drying method. The mesopores are generated by the self-assembly of the structure-directing agents, whereas the micropores are derived from the partial evaporation of Si atoms during carbonization. To investigate the effect of mesopore size on electrochemical performance, three types of MMPSiC with different mesopore size were fabricated by using three different structure directing agents (cetyltriethylammonium bromide (CTAB), Polyethylene glycol hexadecyl ether (Brij56), and Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123)). The MMPSiC electrode prepared with Brij56 exhibits the highest charge storage capacity with a specific capacitance of 253.7 F g-1 at a scan rate of 5 mV s-1 and 87.9% rate performance from 5 to 500 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The outstanding electrochemical performance might be because of the ideal mesopore size, which effectively reduces the resistant pathways for ion diffusion in the pores and provides a large accessible surface area for ion transport/charge storage. These encouraging results demonstrate that the MMPSiC prepared with Brij56 is a promising candidate for high performance electrode materials for supercapacitors.
Zhang, Shan-Shan; Su, Hai-Feng; Wang, Zhi; Wang, Xing-Po; Chen, Wen-Xian; Zhao, Quan-Qin; Tung, Chen-Ho; Sun, Di; Zheng, Lan-Sun
2018-02-06
The largest known polyoxometalate (POM)-templated silver-alkynyl cluster, [(EuW 10 O 36 ) 2 @Ag 72 (tBuC≡C) 48 Cl 2 ⋅4 BF 4 ] (SD/Ag20), was isolated under solvothermal conditions and structurally characterized. It was confirmed by single-crystal X-ray diffraction (SCXRD) as a {EuW 10 } 2 -in-{Ag 72 } clusters-in-cluster rod-like compound. The high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) shows that such a double anion-templated cluster is assembled from a crucial single anion-templated Ag 42 intermediate in the solution. The crystallization of Ag 42 species (SD/Ag21), followed by SCXRD, gave an important clue about the assembly route of SD/Ag20 in solution: the Ag 42 cluster eliminates six silver atoms laterally, then fuses together at the vacant face to form the final Ag 72 cluster (elimination-fusion mechanism). The characteristic emission of [EuW 10 O 36 ] 9- is well maintained in SD/Ag20. This work not only provides a new method for the synthesis of larger silver clusters as well as the functional integration of the silver cluster and POMs, but also gives deep insights about the high-nuclear silver cluster assembly mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.
Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu
2008-05-30
Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.
Chow, C W; Clark, M P; Rinaldo, J E; Chalkley, R
1996-03-01
In the present study, we have explored an unexpected observation in transcription initiation that is mediated by single-stranded oligonucleotides. Initially, our goal was to understand the function of different upstream regulatory elements/initiation sites in the rat xanthine dehydrogenase/oxidase (XDH/XO) promoter. We performed in vitro transcription with HeLa nuclear extracts in the presence of different double-stranded oligonucleotides against upstream elements as competitors. A new and unusual transcription initiation site was detected by primer extension. This new initiation site maps to the downstream region of the corresponding competitor. Subsequent analyses have indicated that the induction of a new transcription initiation site is anomalous which is due to the presence of a small amount of single-stranded oligonucleotide in the competitor. We found that this anomalous initiation site is insensitive to the orientation of the promoter and requires only a small amount of single-stranded oligonucleotide (< 2-fold molar excess relative to template). We surmise that a complementary interaction between the single-stranded oligonucleotide and transiently denatured promoter template may be responsible for this sequence-specific transcription initiation artifact. To study the regulation of transcription initiation by in vitro transcription approaches, we propose that one should probe the effect of removing transacting factors by adding an excess of a cognate oligonucleotide which does not bear exact sequence identity to the template.
Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai
2010-01-01
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705
2013-01-01
SUBJECT TERMS DNA nanotechnology, purification, origami , 2d arrays Philip S. Lukeman St. John’s University, New York 8000 Utopia Parkway Queens, NY... origami ; DNA double-crossover (“DX”) tile based arrays5 have been constructed using PNA6 and LNA7 oligonucleotides. RNA/ DNA duplexes have been used8 for...the assembly of multiply armed tiles9 and as a template10 to fold DNA origami ;11 all-RNA systems known as ‘tecto-RNA’ have been used to generate a wide
ten Cate, A Tessa; Dankers, Patricia Y W; Sijbesma, Rint P; Meijer, E W
2005-07-22
Stereoselective cyclization of cystine-based bifunctional 2-ureido-4[1H]-pyrimidinone derivatives in CDCl(3) solutions was demonstrated by (1)H NMR spectroscopy. Thiolate-catalyzed disulfide exchange in solution led to the equilibration of different diastereomers of 1. At low concentrations, where formation of cyclic assemblies is the dominant mode of association, the molecules act as their own template. At these concentrations the meso diastereomer is formed preferentially, indicating a higher stability of its cyclic assemblies under the applied conditions, in comparison to the other diastereomers.
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
NASA Technical Reports Server (NTRS)
Kanavarioti, Anastassia; Bernasconi, Claude F.; Doodokyan, Donald L.; Alberas, Diann J.
1989-01-01
Results are presented from a detailed study of the P-N bond hydrolysis in guanosine 5-prime-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-prime-imidazolide (ImpG) in the presence of 0-0.50 M Mg(2+). Pseudo-first-order rate constants of these compounds were obtained as a function of Mg(2+) concentration, for pH values between 6 and 10 and 37 C. It was found that Mg(2+) catalysis was most effective at pH 10, where a 15-fold increase in hydrolysis was achieved in 0.02 M Mg; at 0.2 M, a 115-fold increase was observed. Implication of these results for the mechanism of template-directed oligomerization is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, J.; Gong, Y.; Xing, K.
2013-03-11
(1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilationmore » and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.« less
Graphene templated Directional Growth of an Inorganic Nanowire
2015-03-23
ammonium persulphate, (NH4)2S2O8, at room tempera- ture for 17 h (Fig. 1a). Various types of gold precursor, such as gold nanoparticles or gold...directions and grain boundaries in polycrystalline graphene using TEM or even scanning electron microscopy (SEM), as shown in Fig. 1g, h . Because the...directionGraphene Nanowire Grain boundary Nanowire axis directions g h e f i Figure 1 | Directional growth of inorganic nanowires on graphene. a
Ferritin-Templated Quantum-Dots for Quantum Logic Gates
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.
2005-01-01
Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Stampless fabrication of sheet bars using disposable templates
NASA Astrophysics Data System (ADS)
Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.
2016-04-01
The article is devoted to the new method of small-scale fabrication of sheet bars. The procedure is performed by using disposable overlay templates, or those associated with a sheet, which parameters are obtained directly from the drawing. The proposed method used as a substitution of die cutting enables to intensify the preparatory technological process, which is particularly effective when launching the market-oriented items into production. It significantly increases the competitiveness of mechanical engineering and creates the conditions for technical support of present-day flexible production systems.
Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe
2018-03-15
Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yuxing; Liu, Ruili; Wu, Jiayang; Jiang, Xinhong; Cao, Pan; Hu, Xiaofeng; Pan, Ting; Qiu, Ciyuan; Yang, Junyi; Song, Yinglin; Wu, Dongqing; Su, Yikai
2015-01-01
In this work, a novel soft-hard template method towards the direct fabrication of graphene films on silicon/silica substrate is developed via a tri-constituent self-assembly route. Using cetyl trimethyl ammonium bromide (CTAB) as a soft template, silica (SiO2) from tetramethoxysilane as a hard template, and pyrene as a carbon source, the self-assembly process allows the formation of a sandwich-like SiO2/CTAB/pyrene composite, which can be further converted to high quantity graphene films with a thickness of ~1 nm and a size of over 5 μm by thermal treatment. The morphology and thickness of the graphene films can be effectively controlled through the adjustment of the ratio of pyrene to CTAB. Furthermore, a high nonlinear refractive index n2 of ~10−12 m2 W−1 is measured from graphene/silica hybrid film, which is six orders of magnitude larger than that of silicon and comparable to the graphene from chemical vapor deposition process. PMID:26311022
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.
2010-01-01
The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316
Tallarico, Marco; Meloni, Silvio Mario
To report survival rate, early surgical template-related complications, and prevalence of peri-implantitis of dental implants placed in private practices using computer-guided, template-assisted surgery and followed between 1 and 10 years. The present retrospective multicenter study evaluated data collected from fully or partially edentulous patients, with anodized-surface implants placed using computer-guided, template-assisted surgery between January 2006 and December 2015. The outcome measures were implant cumulative survival rate (CSR), early surgical complications involving the surgical template, and prevalence of peri-implantitis. A total of 694 implants were placed in 141 patients. Ten patients (7.1%) with 48 implants (6.9%) dropped out during the study period. One hundred seventeen patients, who received 121 surgical and prosthetic procedures, were treated according to a double-scan protocol, while the remaining 24 patients were treated by using the integrated treatment workflow. Most of the implants were immediately loaded (528 implants, 76.1%; 112 patients, 79.4%). Overall, 107 complete full-arch restorations (supported by four to eight implants each) were delivered in 103 patients (73%) with 595 implants (85.7%), while 13 single and 30 partial restorations (two to five implants each) were delivered in 38 patients (27%) with 99 implants (14.3%). Patients were followed for up to 10 years (mean: 58.2 months, range: 12 to 120 months). Implant- and patient-level CSR (Kaplan-Meier estimation) at the 10-year follow-up was 97.4% (95% CI: 1.0309 to 0.9161) and 92.1% (95% CI: 1.1575 to 0.6836), respectively. All failed implants were lost before definitive prosthesis delivery (early failure). Ten (7.1%) minor template-related complications were experienced and resolved chairside. Over the entire follow-up period, four patients (2.8%) with 12 implants (1.7%) showed signs of peri-implantitis at the 1- (four implants), 2- (four implants), and 4-year (four implants) visits. High long-term survival rates and low complications and prevalence of peri-implantitis were observed for a large cohort of anodized-surface implants placed in private practices. Further studies are needed to confirm these preliminary results.
Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes
Tang, Sha; Hyman, Bradley C.
2005-01-01
To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866
Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R
2018-04-11
Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.
NASA Astrophysics Data System (ADS)
Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan
2014-05-01
Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.
How Langmuir-Blodgett trilayers act as templates for directed self-assembly of nanoparticles
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay; Biswas, Nupur; Giglia, Angelo; Nannarone, Stefano
2014-04-01
Atomic force microscopy (AFM) shows that Langmuir-Blodgett (LB) deposition of dissimilar metal stearates (MSt, M = Co, Zn, Cd) on templates of Co-stearate (Co-T) and Cd-stearate (Cd-T) results in self-assembly of MSts into nanocrystalline grains having clear and consistent morphological habits. The grains are better formed and well separated on Cd-T than on Co-T. Fourier transform infrared spectroscopy (FTIR) results show that the headgroup coordination of the overlayer is tuned by the coordination of the Cd-T template and remains unaffected by that of the Co-T template. They also indicate co-existence of a different kind of headgroup structure that is close to the undissociated fatty acid headgroup but differing more in the two types of carbon-oxygen bonds, suggesting an inter-headgroup bonding such as hydrogen bond that may exist on a nanocrystal surface. Results of synchrotron x-ray diffraction at C K-edge, of ZnSt on Cd-T (ZnSt/Cd-T) and Co-T (ZnSt/Co-T), point to a non-closed packed structure for ZnSt/Cd-T and a closed-packed structure for ZnSt/Co-T, with significant superlattice order in the former. The presence of crystalline phases of ZnSt in the nanometer scale, on LB templates, in contrast to the the presence of lamellar phase in bulk ZnSt, is attributed to the the presence of unidentate metal-carboxylate coordination in the former and absence of it in the latter, creating different gradients of dipolar forces at template overlayer interface. Relative strength of this long-range force over short-range intermolecular forces in the templates qualitatively explains better crystallinity and higher ordering in ZnSt/Cd-T compared to ZnSt/Co-T. We propose that the role of dipole moment gradient between template and overlayer in tuning of these metal-organic nanoparticles may be somewhat similar to structural and optical tunability of semiconductor nanocrystals by thermal and self-equilibrium strain.
Homing endonucleases: from basics to therapeutic applications.
Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo
2010-03-01
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Ho, Kwun Yin; Murray, Victoria L.; Liu, Allen P.
2015-01-01
Generation of artificial cells provides the bridge needed to cover the gap between studying the complexity of biological processes in whole cells and studying these same processes in an in vitro reconstituted system. Artificial cells are defined as the encapsulation of biologically active material in a biological or synthetic membrane. Here, we describe a robust and general method to produce artificial cells for the purpose of mimicking one or more behaviors of a cell. A microfluidic double emulsion system is used to encapsulate a mammalian cell free expression system that is able to express membrane proteins into the bilayer or soluble proteins inside the vesicles. The development of a robust platform that allows the assembly of artificial cells is valuable in understanding subcellular functions and emergent behaviors in a more cell-like environment as well as for creating novel signaling pathways to achieve specific cellular behaviors. PMID:25997354
Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.
Ririe, K M; Rasmussen, R P; Wittwer, C T
1997-02-15
A microvolume fluorometer integrated with a thermal cycler was used to acquire DNA melting curves during polymerase chain reaction by fluorescence monitoring of the double-stranded DNA specific dye SYBR Green I. Plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product gives a DNA melting curve. The shape and position of this DNA melting curve are functions of the GC/AT ratio, length, and sequence and can be used to differentiate amplification products separated by less than 2 degrees C in melting temperature. Desired products can be distinguished from undesirable products, in many cases eliminating the need for gel electrophoresis. Analysis of melting curves can extend the dynamic range of initial template quantification when amplification is monitored with double-stranded DNA specific dyes. Complete amplification and analysis of products can be performed in less than 15 min.
2015-08-19
Morphologies Emulsion Directed Cellulose Morphology (NOT nanocellulose) T. Suzuki et al. / Journal of Colloid and Interface Science 418 (2014) 126–131...Ternary phase diagram constructed with BmimCl/Span80/Tween20/Sunflower Oil. Warm emulsion technique adapted at 50 °C, for reduced viscosity. Cellulose
Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank
2016-02-25
Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.
NASA Astrophysics Data System (ADS)
Yoo, S. H.
2017-12-01
Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.
Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi
2016-06-01
The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vercruyssen, M; Coucke, W; Naert, I; Jacobs, R; Teughels, W; Quirynen, M
2015-11-01
To assess the accuracy of guided surgery compared with mental navigation or the use of a pilot-drill template in fully edentulous patients. Sixty consecutive patients (72 jaws), requiring four to six implants (maxilla or mandible), were randomly assigned to one of the following treatment modalities: Materialise Universal(®) mucosa, Materialise Universal(®) bone, Facilitate(™) mucosa, Facilitate(™) bone, mental navigation, or a pilot-drill template. Accuracy was assessed by matching the planning CT with a postoperative CBCT. Deviations were registered in a vertical (depth) and horizontal (lateral) plane. The latter further subdivided into BL (bucco-lingual) and MD (mesio-distal) deviations. The overall mean vertical deviation for the guided surgery groups was 0.9 mm ± 0.8 (range: 0.0-3.7) and 0.9 mm ± 0.6 (range: 0.0-2.9) in a horizontal direction. For the non-guided groups, this was 1.7 mm ± 1.3 (range: 0.0-6.4) and 2.1 mm ± 1.4 (range 0.0-8.5), respectively (P < 0.05). The overall mean deviation for the guided surgery groups in MD direction was 0.6 mm ± 0.5 (range: 0.0-2.5) and 0.5 mm ± 0.5 (range: 0.0-2.9) in BL direction. For the non-guided groups, this was 1.8 mm ± 1.4 (range: 0.0-8.3) and 0.7 mm ± 0.6 (range 0.0-2.9), respectively. The deviation in MD direction was significantly higher in the non-guided groups (P = 0.0002). The most important inaccuracy with guided surgery is in vertical direction (depth). The inaccuracy in MD or BL direction is clearly less. For non-guided surgery, the inaccuracy is significantly higher. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Robotic Needle Guide for Prostate Brachytherapy: Clinical Testing of Feasibility and Performance
Song, Danny Y; Burdette, Everette C; Fiene, Jonathan; Armour, Elwood; Kronreif, Gernot; Deguet, Anton; Zhang, Zhe; Iordachita, Iulian; Fichtinger, Gabor; Kazanzides, Peter
2010-01-01
Purpose Optimization of prostate brachytherapy is constrained by tissue deflection of needles and fixed spacing of template holes. We developed and clinically tested a robotic guide towards the goal of allowing greater freedom of needle placement. Methods and Materials The robot consists of a small tubular needle guide attached to a robotically controlled arm. The apparatus is mounted and calibrated to operate in the same coordinate frame as a standard template. Translation in x and y directions over the perineum ±40mm are possible. Needle insertion is performed manually. Results Five patients were treated in an IRB-approved study. Confirmatory measurements of robotic movements for initial 3 patients using infrared tracking showed mean error of 0.489 mm (SD 0.328 mm). Fine adjustments in needle positioning were possible when tissue deflection was encountered; adjustments were performed in 54/179 (30.2%) needles placed, with 36/179 (20.1%) adjustments of > 2mm. Twenty-seven insertions were intentionally altered to positions between the standard template grid to improve the dosimetric plan or avoid structures such as pubic bone and blood vessels. Conclusions Robotic needle positioning provided a means of compensating for needle deflections as well as the ability to intentionally place needles into areas between the standard template holes. To our knowledge, these results represent the first clinical testing of such a system. Future work will be incorporation of direct control of the robot by the physician, adding software algorithms to help avoid robot collisions with the ultrasound, and testing the angulation capability in the clinical setting. PMID:20729152
Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F
2016-08-23
Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask.
Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J
2018-04-05
The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.
Template-Directed Ligation of Peptides to Oligonucleotides
NASA Technical Reports Server (NTRS)
Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.
1996-01-01
Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Gangopadhyay, S.
1999-01-01
Aqueous solutions of deoxyguanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpdG, yield primarily deoxyguanosine 5'-monophosphate, 5'dGMP, and pyrophosphate-linked dideoxyguanylate, dG5'ppdG, abbreviated G2p (see Chart 1). The initial rate of G2p formation, d[G2p]/dt in M h-1, determined at 23 degrees C, pH 7.8, 1.0 M NaCl and 0.2 M Mg2+ by timed high-performance liquid chromatography (HPLC) analysis, exhibits a second-order dependence on 2-MeImpdG concentration, [G]o, indicating a bimolecular mechanism of dimerization in the range 0.02 M < or = [G]o < or = 0.09 M. In the presence of polycytidylate, poly(C), G2p synthesis is accelerated and oligodeoxyguanylate products are formed by incorporation of 2-MeImpdG molecules. The kinetics of G2p formation as a function of both monomer and polymer concentration, expressed in C equivalents, were also determined under the above conditions and exhibited a complex behavior. Specifically, at a constant [poly(C)], values of d[G2p]/dt typically increased with [G]o with a parabolic upward curvature. At a constant [G]o, values of d[G2p]/dt increase with [poly(C)], but level off at the higher poly(C) concentrations. As [G]o increases this saturation occurs at a higher poly(C) concentration, a result opposite to expectation for a simple complexation of two reacting monomers with the catalyst prior to reaction. Nevertheless, these results are shown to be quantitatively consistent with a template-directed (TD) mechanism of dimerization where poly(C) acts as the template to bind 2-MeImpdG in a cooperative manner and lead, for the first time, to the formulation of principles that govern template-directed chemistry. Analysis of the kinetic data via a proposed TD cooperative model provides association constants for the affinity between polymer and monomer and the intrinsic reactivity of 2-MeImpdG toward pyrophosphate synthesis. To the best of our knowledge, poly(C)/2-MeImpdG is the first system that could serve as a textbook example of a TD reaction under conditions such that the template is fully saturated by monomers and under conditions that it is not.
Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster
Lin, Chun-Chieh; Potter, Christopher J.
2016-01-01
Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272
Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.
Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong
2006-05-04
In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.
ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage
McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg
2005-01-01
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions. PMID:15933716
ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage.
McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg
2005-07-06
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.
Template based protein structure modeling by global optimization in CASP11.
Joo, Keehyoung; Joung, InSuk; Lee, Sun Young; Kim, Jong Yun; Cheng, Qianyi; Manavalan, Balachandran; Joung, Jong Young; Heo, Seungryong; Lee, Juyong; Nam, Mikyung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2016-09-01
For the template-based modeling (TBM) of CASP11 targets, we have developed three new protein modeling protocols (nns for server prediction and LEE and LEER for human prediction) by improving upon our previous CASP protocols (CASP7 through CASP10). We applied the powerful global optimization method of conformational space annealing to three stages of optimization, including multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain remodeling. For more successful fold recognition, a new alignment method called CRFalign was developed. It can incorporate sensitive positional and environmental dependence in alignment scores as well as strong nonlinear correlations among various features. Modifications and adjustments were made to the form of the energy function and weight parameters pertaining to the chain building procedure. For the side-chain remodeling step, residue-type dependence was introduced to the cutoff value that determines the entry of a rotamer to the side-chain modeling library. The improved performance of the nns server method is attributed to successful fold recognition achieved by combining several methods including CRFalign and to the current modeling formulation that can incorporate native-like structural aspects present in multiple templates. The LEE protocol is identical to the nns one except that CASP11-released server models are used as templates. The success of LEE in utilizing CASP11 server models indicates that proper template screening and template clustering assisted by appropriate cluster ranking promises a new direction to enhance protein 3D modeling. Proteins 2016; 84(Suppl 1):221-232. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The polarization compass dominates over idiothetic cues in path integration of desert ants.
Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard
2012-02-01
Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.
Template-Framework Interactions in Tetraethylammonium-Directed Zeolite Synthesis
Schmidt, Joel E.; Fu, Donglong; Deem, Michael W.; ...
2016-11-22
Zeolites, having widespread applications in chemical industries, are often synthesized using organic templates. These can be cost-prohibitive, motivating investigations into their role in promoting crystallization. Herein, the relationship between framework structure, chemical composition, synthesis conditions and the conformation of the occluded, economical template tetraethylammonium (TEA +) has been systematically examined by experimental and computational means. The results show two distinct regimes of occluded conformer tendencies: 1) In frameworks with a large stabilization energy difference, only a single conformer was found (BEA, LTA and MFI). 2) In the frameworks with small stabilization energy differences (AEI, AFI, CHA and MOR), less thanmore » the interconversion of TEA + in solution, a heteroatom-dependent (Al, B, Co, Mn, Ti, Zn) distribution of conformers was observed. Our findings demonstrate that host–guest chemistry principles, including electrostatic interactions and coordination chemistry, are as important as ideal pore-filling.« less
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
Advances in nanosized zeolites
NASA Astrophysics Data System (ADS)
Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin
2013-07-01
This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.
Template-directed fabrication of porous gas diffusion layer for magnesium air batteries
NASA Astrophysics Data System (ADS)
Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping
2015-11-01
The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.
Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.
Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin; Chang, Wakam; Chait, Brian T; Gundersen, Gregg G; Gottesman, Max E; Gautier, Jean
2018-06-20
DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.
Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi
2018-03-15
Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.
Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching.
Wang, Zhiyu; Luan, Deyan; Li, Chang Ming; Su, Fabing; Madhavi, Srinivasan; Boey, Freddy Yin Chiang; Lou, Xiong Wen
2010-11-17
Despite the significant advancement in making hollow structures, one unsolved challenge in the field is how to engineer hollow structures with specific shapes, tunable compositions, and desirable interior structures. In particular, top-down engineering the interiors inside preformed hollow structures is still a daunting task. In this work, we demonstrate a facile approach for the preparation of a variety of uniform hollow structures, including Cu(2)O@Fe(OH)(x) nanorattles and Fe(OH)(x) cages with various shapes and dimensions by template-engaged redox etching of shape-controlled Cu(2)O crystals. The composition can be readily modulated at different structural levels to generate other interesting structures such as Cu(2)O@Fe(2)O(3) and Cu@Fe(3)O(4) rattles, as well as Fe(2)O(3) and Fe(3)O(4) cages. More remarkably, this strategy enables top-down engineering the interiors of hollow structures as demonstrated by the fabrication of double-walled nanorattles and nanoboxes, and even box-in-box structures. In addition, this approach is also applied to form Au and MnO(x) based hollow structures.
Makeyev, E V; Bamford, D H
2000-11-15
Bacteriophage φ6 has a three-segmented double-stranded (ds) RNA genome, which resides inside a polymerase complex particle throughout the entire life cycle of the virus. The polymerase subunit P2, a minor constituent of the polymerase complex, has previously been reported to replicate both φ6-specific and heterologous single-stranded (ss) RNAs, giving rise to dsRNA products. In this study, we show that the enzyme is also able to use dsRNA templates to perform semi-conservative RNA transcription in vitro without the assistance of other proteins. The polymerase synthesizes predominantly plus-sense copies of φ6 dsRNA, medium and small segments being more efficient templates than the large one. This distribution of the test-tube reaction products faithfully mimics viral transcription in vivo. Experiments with chimeric ssRNAs and dsRNAs show that short terminal nucleotide sequences can account for the difference in efficiency of RNA synthesis. Taken together, these results suggest a model explaining important aspects of viral RNA metabolism regulation in terms of enzymatic properties of the polymerase subunit.
Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.
2017-03-21
A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
DNA Repair: The Search for Homology.
Haber, James E
2018-05-01
The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8. © 2018 WILEY Periodicals, Inc.
Formation of Uniform Hollow Silica microcapsules
NASA Astrophysics Data System (ADS)
Yan, Huan; Kim, Chanjoong
2012-02-01
Microcapsules are small containers with diameters in the range of 0.1 -- 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.
Formation of Uniform Hollow Silica microcapsules
NASA Astrophysics Data System (ADS)
Yan, Huan; Kim, Chanjoong
2013-03-01
Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.
Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor
NASA Astrophysics Data System (ADS)
Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason
2014-10-01
Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).
Template-directed synthesis of oligoguanylic acids - Metal ion catalysis
NASA Technical Reports Server (NTRS)
Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.
1981-01-01
The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.
RNA synthetic mechanisms employed by diverse families of RNA viruses.
McDonald, Sarah M
2013-01-01
RNA viruses are ubiquitous in nature, infecting every known organism on the planet. These viruses can also be notorious human pathogens with significant medical and economic burdens. Central to the lifecycle of an RNA virus is the synthesis of new RNA molecules, a process that is mediated by specialized virally encoded enzymes called RNA-dependent RNA polymerases (RdRps). RdRps directly catalyze phosphodiester bond formation between nucleoside triphosphates in an RNA-templated manner. These enzymes are strikingly conserved in their structural and functional features, even among diverse RNA viruses belonging to different families. During host cell infection, the activities of viral RdRps are often regulated by viral cofactor proteins. Cofactors can modulate the type and timing of RNA synthesis by directly engaging the RdRp and/or by indirectly affecting its capacity to recognize template RNA. High-resolution structures of RdRps as apoenzymes, bound to RNA templates, in the midst of catalysis, and/or interacting with regulatory cofactor proteins, have dramatically increased our understanding of viral RNA synthetic mechanisms. Combined with elegant biochemical studies, such structures are providing a scientific platform for the rational design of antiviral agents aimed at preventing and treating RNA virus-induced diseases. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
Stereoselective aminoacylation of RNA
NASA Technical Reports Server (NTRS)
Usher, D. A.; Needels, M. C.; Brenner, T.
1986-01-01
Prebiotic chemistry is faced with a major problem: how could a controlled and selective reaction occur, when there is present in the same solution a large number of alternative possible coreactants? This problem is solved in the modern cell by the presence of enzymes, which are not only highly efficient and controllable catalysts, but which also can impose on their substrates a precise structural requirement. However, enzymes are the result of billions of years of evolution, and we cannot invoke them as prebiotic catalysts. One approach to solving this problem in the prebiotic context is to make use of template-directed reactions. These reactions increase the number of structural requirements that must be simultaneously present in a molecule for it to be able to react, and thereby increase the selectivity of the reaction. They also can give a large increase in the rate of a reaction, if the template constrains two potential coreactants to lie close together. A third benefit is that information that is present in the template molecule can be passed on to the product molecules. If the earliest organisms were based on proteins and nucleic acids, then the investigation of peptide synthesis on an oligonucleotide template is highly relevant to the study of the origin of life.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Sandra, Fabien; Depardieu, Martin; Mouline, Zineb; Vignoles, Gérard L; Iwamoto, Yuji; Miele, Philippe; Backov, Rénal; Bernard, Samuel
2016-06-06
A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2) g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poliovirus RNA recombination: mechanistic studies in the absence of selection.
Jarvis, T C; Kirkegaard, K
1992-01-01
Direct and quantitative detection of recombinant RNA molecules by polymerase chain reaction (PCR) provides a novel method for studying recombination in RNA viruses without selection for viable progeny. The parental poliovirus strains used in this study contained polymorphic marker loci approximately 600 bases apart; both exhibited wild-type growth characteristics. We established conditions under which the amount of PCR product was linearly proportional to the amount of input template, and the reproducibility was high. Recombinant progeny were predominantly homologous and arose at frequencies up to 2 x 10(-3). Recombination events increased in frequency throughout replication, indicating that there is no viral RNA sequestration or inhibition of recombination late in infection as proposed in earlier genetic studies. Previous studies have demonstrated that poliovirus recombination occurs by a copy-choice mechanism in which the viral polymerase switches templates during negative-strand synthesis. Varying the relative amount of input parental virus markedly altered reciprocal recombination frequencies. This, in conjunction with the kinetics data, indicated that acceptor template concentration is a determinant of template switching frequency. Since positive strands greatly outnumber negative strands throughout poliovirus infection, this would explain the bias toward recombination during negative-strand synthesis. Images PMID:1379178
NASA Astrophysics Data System (ADS)
Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi
Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.
Self-assembly of knots and links
NASA Astrophysics Data System (ADS)
Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian
2017-03-01
Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.
Template matching for auditing hospital cost and quality.
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Mukherjee, Nabanita; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-10-01
Develop an improved method for auditing hospital cost and quality. Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, Texas, and New York between 2004 and 2006. A template of 300 representative patients was constructed and then used to match 300 patients at hospitals that had a minimum of 500 patients over a 3-year study period. From each of 217 hospitals we chose 300 patients most resembling the template using multivariate matching. The matching algorithm found close matches on procedures and patient characteristics, far more balanced than measured covariates would be in a randomized clinical trial. These matched samples displayed little to no differences across hospitals in common patient characteristics yet found large and statistically significant hospital variation in mortality, complications, failure-to-rescue, readmissions, length of stay, ICU days, cost, and surgical procedure length. Similar patients at different hospitals had substantially different outcomes. The template-matched sample can produce fair, directly standardized audits that evaluate hospitals on patients with similar characteristics, thereby making benchmarking more believable. Through examining matched samples of individual patients, administrators can better detect poor performance at their hospitals and better understand why these problems are occurring. © Health Research and Educational Trust.
Niu, Mengna; Ma, Hongyan; Hu, Fei; Wang, Shige; Liu, Lu; Chang, Haizhou; Huang, Mingxian
2017-06-08
Large-pore silica microspheres were synthesized by utilizing weak cation exchange polymer beads as templates, N -trimethoxysilylpropyl- N,N,N -trimethylammonium chloride (TMSPTMA) as a structure-directing agent, tetraethoxysilane (TEOS) as a silica precursor, and triethanolamine as a weak base catalyst. The hydrolysis and condensation of the silica precursors occurred inside the templating polymer beads yielded polymer/silica composite microspheres. After the organic polymer templates were removed in the calcination step, large-pore silica microspheres were produced. The effects of different reaction conditions on the morphology, structure and dispersibility of the formed silica microspheres were investigated. It has been shown that when the volume ratio of TMSPTMA, TEOS and triethanolamine was 1:2:2, silica microspheres with pore size range of 50-150 nm and particle size around 2 μm were obtained. The as-prepared silica microspheres were then bonded with chlorodimethyloctadecylsilane (C18), packed into a 50 mm×4.6 mm column, and evaluated for the separations of some common standard proteins and soybean isolation proteins. The results showed that the large-pore silica spheres from this work have potentials for protein separation in HPLC.
Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.
Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi
2007-03-01
A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.
Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†
Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai
2010-01-01
Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555
Topological defects in liquid crystals and molecular self-assembly (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbott, Nicholas L.
2017-02-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic "o-rings" synthesized from "Saturn-ring" disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates (e.g., polymer—surfactant complexes). Opportunities for the design of exquisitely responsive soft materials will be discussed using bacterial endotoxin as an example.
Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators.
Makeyev, E V; Bamford, D H
2001-05-01
Here we propose a new general method for directly determining RNA sequence based on the use of the RNA-dependent RNA polymerase from bacteriophage phi6 and the chain terminators (RdRP sequencing). The following properties of the polymerase render it appropriate for this application: (1) the phi6 polymerase can replicate a number of single-stranded RNA templates in vitro. (2) In contrast to the primer-dependent DNA polymerases utilized in the sequencing procedure by Sanger et al. (Proc Natl Acad Sci USA, 1977, 74:5463-5467), it initiates nascent strand synthesis without a primer, starting the polymerization on the very 3'-terminus of the template. (3) The polymerase can incorporate chain-terminating nucleotide analogs into the nascent RNA chain to produce a set of base-specific termination products. Consequently, 3' proximal or even complete sequence of many target RNA molecules can be rapidly deduced without prior sequence information. The new technique proved useful for sequencing several synthetic ssRNA templates. Furthermore, using genomic segments of the bluetongue virus we show that RdRP sequencing can also be applied to naturally occurring dsRNA templates. This suggests possible uses of the method in the RNA virus research and diagnostics.
From template to image: reconstructing fingerprints from minutiae points.
Ross, Arun; Shah, Jidnya; Jain, Anil K
2007-04-01
Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line Integral Convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint.
Icosahedrons: A Multifaceted Project.
ERIC Educational Resources Information Center
Strazdin, Ray
2000-01-01
Discusses a project focusing on icosahedrons that combines geometry, structure, graphic design, animation, motion, and mechanical and freehand drawing with ancient Greek catapult mechanics. Includes directions on how to both construct a template and develop the pattern for the icosahedrons. (CMK)
Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry
Zhan, Wangcheng; Yang, Shize; Zhang, Pengfei; ...
2017-08-15
Ceria-based materials possessing mesoporous structures afford higher activity than the corresponding bulk materials in CO oxidation and other catalytic applications, because of the wide pore channel and high surface area. The development of a direct, template-free, and scalable technology for directing porosity inside ceriabased materials is highly welcome. Here in this paper, a family of mesoporous transition-metaldoped ceria catalysts with specific surface areas up to 122 m 2 g -1 is constructed by mechanochemical grinding. No templates, additives, or solvents are needed in this process, while the mechanochemistry-mediated restructuring and the decomposing of the organic group led to plentiful mesopores.more » Interestingly, the copper species are evenly dispersed in the ceria matrix at the atomic scale, as observed in high resolution scanning transmission electron microscopy in high angle annular dark field. The copper-doped ceria materials show good activity in the CO oxidation.« less
NASA Technical Reports Server (NTRS)
McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.
2002-01-01
Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.
Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase.
Yu, Hua; Jo, Kyubong; Kounovsky, Kristy L; de Pablo, Juan J; Schwartz, David C
2009-04-29
Living cells sense extracellular signals and direct their movements in response to stimuli in environment. Such autonomous movement allows these machines to sample chemical change over a distance, leading to chemotaxis. Synthetic catalytic rods have been reported to chemotax toward hydrogen peroxide fuel. Nevertheless individualized autonomous control of movement of a population of biomolecules under physiological conditions has not been demonstrated. Here we show the first experimental evidence that a molecular complex consisting of a DNA template and associating RNA polymerases (RNAPs) displays chemokinetic motion driven by transcription substrates nucleoside triphosphates (NTPs). Furthermore this molecular complex exhibits a biased migration into a concentration gradient of NTPs, resembling chemotaxis. We describe this behavior as "Molecular Propulsion", in which RNAP transcriptional actions deform DNA template conformation engendering measurable enhancement of motility. Our results provide new opportunities for designing and directing nanomachines by imposing external triggers within an experimental system.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Cai, Hui; Huang, Jingyun
2013-11-01
Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm-2 mM-1 and a wide linear range of 0.2-5.6 mM along with a low detection limit of 10 μM.
Direct Detection and Sequencing of Damaged DNA Bases
2011-01-01
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597
Direct detection and sequencing of damaged DNA bases.
Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas
2011-12-20
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.
Selective directed self-assembly of coexisting morphologies using block copolymer blends
NASA Astrophysics Data System (ADS)
Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.
2016-08-01
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.
Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning
2017-01-15
The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10 2 to 10 7 CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Ban, Vin Shen; Madden, Christopher J; Browning, Travis; O'Connell, Ellen; Marple, Bradley F; Moran, Brett
2017-04-01
Monitoring the supervision of residents can be a challenging task. We describe our experience with the implementation of a templated note system for documenting procedures with the aim of enabling automated, discrete, and standardized capture of documentation of supervision of residents performing floor-based procedures, with minimal extra effort from the residents. Procedural note templates were designed using the standard existing template within a commercial electronic health record software. Templates for common procedures were created such that residents could document every procedure performed outside of the formal procedural areas. Automated reports were generated and letters were sent to noncompliers. A total of 27 045 inpatient non-formal procedural area procedures were recorded from August 2012 to June 2014. Compliance with NoteWriter template usage averaged 86% in the first year and increased to 94.6% in the second year ( P = .0055). Initially, only 12.5% of residents documented supervision of any form. By the end of the first year, this was above 80%, with the gains maintained into the second year and beyond. Direct supervision was documented to have occurred where required in 62.8% in the first year and increased to 99.8% in the second year ( P = .0001) after the addition of hard stops. Notification of attendings prior to procedures was documented 100% of the time by September 2013. Letters sent to errant residents decreased from 3.6 to 0.83 per 100 residents per week. The templated procedure note system with hard stops and integrated reporting can successfully be used to improve monitoring of resident supervision. This has potential impact on resident education and patient safety. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Computer templates in chronic disease management: ethnographic case study in general practice.
Swinglehurst, Deborah; Greenhalgh, Trisha; Roberts, Celia
2012-01-01
To investigate how electronic templates shape, enable and constrain consultations about chronic diseases. Ethnographic case study, combining field notes, video-recording, screen capture with a microanalysis of talk, body language and data entry-an approach called linguistic ethnography. Two general practices in England. Ethnographic observation of administrative areas and 36 nurse-led consultations was done. Twenty-four consultations were directly observed and 12 consultations were video-recorded alongside computer screen capture. Consultations were transcribed using conversation analysis conventions, with notes on body language and the electronic record. The analysis involved repeated rounds of viewing video, annotating field notes, transcription and microanalysis to identify themes. The data was interpreted using discourse analysis, with attention to the sociotechnical theory. Consultations centred explicitly or implicitly on evidence-based protocols inscribed in templates. Templates did not simply identify tasks for completion, but contributed to defining what chronic diseases were, how care was being delivered and what it meant to be a patient or professional in this context. Patients' stories morphed into data bytes; the particular became generalised; the complex was made discrete, simple and manageable; and uncertainty became categorised and contained. Many consultations resembled bureaucratic encounters, primarily oriented to completing data fields. We identified a tension, sharpened by the template, between different framings of the patient-as 'individual' or as 'one of a population'. Some clinicians overcame this tension, responding creatively to prompts within a dialogue constructed around the patient's narrative. Despite their widespread implementation, little previous research has examined how templates are actually used in practice. Templates do not simply document the tasks of chronic disease management but profoundly change the nature of this work. Designed to assure standards of 'quality' care they contribute to bureaucratisation of care and may marginalise aspects of quality care which lie beyond their focus. Creative work is required to avoid privileging 'institution-centred' care over patient-centred care.
Computer templates in chronic disease management: ethnographic case study in general practice
Swinglehurst, Deborah; Greenhalgh, Trisha; Roberts, Celia
2012-01-01
Objective To investigate how electronic templates shape, enable and constrain consultations about chronic diseases. Design Ethnographic case study, combining field notes, video-recording, screen capture with a microanalysis of talk, body language and data entry—an approach called linguistic ethnography. Setting Two general practices in England. Participants and methods Ethnographic observation of administrative areas and 36 nurse-led consultations was done. Twenty-four consultations were directly observed and 12 consultations were video-recorded alongside computer screen capture. Consultations were transcribed using conversation analysis conventions, with notes on body language and the electronic record. The analysis involved repeated rounds of viewing video, annotating field notes, transcription and microanalysis to identify themes. The data was interpreted using discourse analysis, with attention to the sociotechnical theory. Results Consultations centred explicitly or implicitly on evidence-based protocols inscribed in templates. Templates did not simply identify tasks for completion, but contributed to defining what chronic diseases were, how care was being delivered and what it meant to be a patient or professional in this context. Patients’ stories morphed into data bytes; the particular became generalised; the complex was made discrete, simple and manageable; and uncertainty became categorised and contained. Many consultations resembled bureaucratic encounters, primarily oriented to completing data fields. We identified a tension, sharpened by the template, between different framings of the patient—as ‘individual’ or as ‘one of a population’. Some clinicians overcame this tension, responding creatively to prompts within a dialogue constructed around the patient's narrative. Conclusions Despite their widespread implementation, little previous research has examined how templates are actually used in practice. Templates do not simply document the tasks of chronic disease management but profoundly change the nature of this work. Designed to assure standards of ‘quality’ care they contribute to bureaucratisation of care and may marginalise aspects of quality care which lie beyond their focus. Creative work is required to avoid privileging ‘institution-centred’ care over patient-centred care. PMID:23192245
Jamjoom, Faris Z; Kim, Do-Gyoon; Lee, Damian J; McGlumphy, Edwin A; Yilmaz, Burak
2018-02-05
Effects of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography (CBCT) scans has not been investigated. To evaluate the effect of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into CBCT scans using different methods. Direct digital scans of a completely dentate master model with removable radiopaque teeth were made using an intraoral scanner, and digital scans of stone duplicates of the master model were made using a laboratory scanner. Specific teeth were removed to simulate different clinical situations and their CBCT scans were made. Surface scans were registered onto the CBCT scans. Radiographic templates for each clinical situation were also fabricated and used during CBCT scans of the master models. Using metrology software, three-dimensional (3D) deviation was measured on standard tesselation language (STL) files created from the CBCT scans against an STL file of the master model created from a CBCT scan. Statistical analysis was done using the MIXED procedure in a statistical software and Tukey HSD test (α =.05). The interaction between location and method was significant (P = .009). Location had no significant effect on registration methods (P > .05), but on the radiographic templates (P = .011). Length of the edentulous area did not have any significant effect (P > .05). Accuracy of digital image registration methods was similar and higher than that of radiographic templates in all clinical situations. Tooth-bound radiographic templates were significantly more accurate than the free-end templates. The results of this study suggest using image registration instead of radiographic templates when planning dental implants, particularly in free-end situations. © 2018 Wiley Periodicals, Inc.
Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.
2011-01-01
Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746
Mismodeling in gravitational-wave astronomy: The trouble with templates
NASA Astrophysics Data System (ADS)
Sampson, Laura; Cornish, Neil; Yunes, Nicolás
2014-03-01
Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templates map the waveform shapes to physical parameters, thus allowing us to produce posterior probability distributions for these parameters. However, there are attendant dangers in using highly restrictive signal priors. If strong field gravity is not accurately described by general relativity (GR), then using GR templates may result in fundamental bias in the recovered parameters, or even worse, a complete failure to detect signals. Here we study such dangers, concentrating on three distinct possibilities. First, we show that there exist modified theories compatible with all existing observations that would fail to be detected by the LIGO/Virgo network using searches based on GR templates, but which would be detected using a one parameter post-Einsteinian extension. Second, we study modified theories that produce departures from GR that turn on suddenly at a critical frequency, producing waveforms that do not directly fit into the simplest parametrized post-Einsteinian (ppE) scheme. We show that even the simplest ppE templates are still capable of picking up these strange signals and diagnosing a departure from GR. Third, we study whether using inspiral-only ppE waveforms for signals that include merger and ringdown can lead to problems in misidentifying a GR departure. We present a simple technique that allows us to self-consistently identify the inspiral portion of the signal, and thus remove these potential biases, allowing GR tests to be performed on higher mass signals that merge within the detector band. We close by studying a parametrized waveform model that may allow us to test GR using the full inspiral-merger-ringdown signal.
Typing DNA profiles from previously enhanced fingerprints using direct PCR.
Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian
2017-07-01
Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold ® DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo
2011-02-01
We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc
2016-05-05
The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.
Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier
2016-05-01
Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib
2015-01-01
Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.
Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less
Mladenov, Emil; Iliakis, George
2011-06-03
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis. 2011 Elsevier B.V. All rights reserved.
Katz, Samantha S.; Gimble, Frederick S.; Storici, Francesca
2014-01-01
Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR) machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB) at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB), or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI) to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293) cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy. PMID:24558436
Ferrer-Orta, Cristina; de la Higuera, Ignacio; Caridi, Flavia; Sánchez-Aparicio, María Teresa; Moreno, Elena; Perales, Celia; Singh, Kamalendra; Sarafianos, Stefan G; Sobrino, Francisco; Domingo, Esteban; Verdaguer, Nuria
2015-07-01
The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ferrer-Orta, Cristina; de la Higuera, Ignacio; Caridi, Flavia; Sánchez-Aparicio, María Teresa; Moreno, Elena; Perales, Celia; Singh, Kamalendra; Sarafianos, Stefan G.; Sobrino, Francisco; Domingo, Esteban
2015-01-01
ABSTRACT The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms. PMID:25903341
Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material
NASA Astrophysics Data System (ADS)
Kong, Lirong; Chen, Wei
2015-12-01
Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials.
Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders
NASA Astrophysics Data System (ADS)
Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.
2015-04-01
In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.
Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Choi, Jaewon; Huang, Caili; Jeong, Gajin; Coughlin, E Bryan; Hsu, Yautzong; Yang, XiaoMin; Lee, Kim Y; Kuo, David S; Xiao, Shuaigang; Russell, Thomas P
2015-08-05
Low molecular weight P2VP-b-PS-b-P2VP triblock copolymer (poly(2-vinlypyridine)-block-polystyrene-block-poly(2-vinylpyridine)] is doped with copper chloride and microphase separated into lamellar line patterns with ultrahigh area density. Salt-doped P2VP-b-PS-b-P2VP triblock copolymer is self-assembled on the top of the nanoimprinted photoresist template, and metallic nanowires with long-range ordering are prepared with platinum-salt infiltration and plasma etching. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fuse, Shinichiro; Ohuchi, Toshiaki; Asawa, Yasunobu; Sato, Shinichi; Nakamura, Hiroyuki
2016-12-15
1,3-Disubstituted-imidazopyridines were designed for developing inhibitors against HIF-1 transcriptional activity. Designed compounds were rapidly synthesized from a key aromatic scaffold via microwave-assisted Suzuki-Miyaura coupling/CH direct arylation sequence. Evaluation of ability to inhibit the hypoxia induced transcriptional activity of HIF-1 revealed that the compound 2i and 3a retained the same level of the inhibitory activity comparing with that of known inhibitor, YC-1 (1). Identified, readily accessible 1-aryl-3-furanyl/thienyl-imidazopyridine templates should be useful for future drug development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...
2015-02-01
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
The origin of polynucleotide-directed protein synthesis
NASA Technical Reports Server (NTRS)
Orgel, Leslie E.
1989-01-01
If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.
Bothmer, Anne; Phadke, Tanushree; Barrera, Luis A.; Margulies, Carrie M; Lee, Christina S.; Buquicchio, Frank; Moss, Sean; Abdulkerim, Hayat S.; Selleck, William; Jayaram, Hariharan; Myer, Vic E.; Cotta-Ramusino, Cecilia
2017-01-01
The CRISPR–Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR–Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies. PMID:28067217
NASA Astrophysics Data System (ADS)
Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo
2015-12-01
The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.
Zou, Liping; Li, Xiaoguang; Zhang, Qinghua; Shen, Jun
2014-09-02
A double-layer broadband antireflective (AR) coating was prepared on glass substrate via sol-gel process using two kinds of acid-catalyzed TEOS-derived silica sols. The relative dense layer with a porosity of ∼10% was obtained from an as-prepared sol, while the porous layer with a porosity of ∼55% was from a modified one with block copolymer (BCP) Pluronic F127 as template which results in abundant ordered mesopores. The two layers give rise to a reasonable refractive index gradient from air to the substrate and thus high transmittance in a wide wavelength range, and both of them have the same tough skeleton despite different porosity, for which each single-layer and the double-layer coatings all behaved well in the mechanical property tests. The high transmittance and the strong ability of resisting abrasion make this coating promising for applications in some harsh conditions. In addition, the preparation is simple, low-cost, time-saving, and flexible for realizing the optical property.
Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin
2012-06-28
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-06-01
We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.
Theoretical analysis of optical poling and frequency doubling effect based on classical model
NASA Astrophysics Data System (ADS)
Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo
2018-03-01
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
A structure-based kinetic model of transcription.
Zuo, Yuhong; Steitz, Thomas A
2017-01-01
During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.
Novel techniques for the synthesis of three-way catalytic converter support materials
NASA Astrophysics Data System (ADS)
Anyaba, Prince Nwabueze
Current automobiles use catalytic converters, consisting of noble metals on an oxide support, to convert noxious engine exhaust pollutants into less harmful species. The development of mesoporous oxide supports with optimal pore geometries could enable these devises to decrease in size and weight and significantly reduce the metal loadings required to achieve optimal performance. Thus, in this work, I investigated a wide range of techniques for the synthesis of mesoporous oxides to determine if they could be adapted to ceria-zirconia-yttria mixed oxide (CZY) systems, which are the industry standard for the optimal oxide support for catalytic converter applications. Additionally, I compared and critically evaluated the catalytic performance of the CZY mixed oxides, which were synthesized from the various templating techniques. The catalytic performance test was broken up into two: catalyst activity test which was determined based on the light-off temperatures at which 50% conversion of the reacting species have been converted; and resistance to surface area loss under accelerated aging at heating rate of 20°C/min form 700 to 1000°C, with the final temperature being held fixed for 4 h. To date, the most cost effective methods for preparing mesoporous materials are via techniques that employ templates or structure directing agents. These templates can be divided into two groups: endo-templates (i.e., soft templates, such as surfactants, dendrimers, and block copolymers) and exo-templates (i.e., hard templates, such as porous carbons and resins). The soft templating techniques generally involve both sol-gel and templating methods, while the hard templates required no sol-gel chemistry to achieve the desired templating effect. The precursors for ceria, zirconia, and yttria used were cerium (III) nitrate hexahydrate, zirconyl nitrate, and yttrium nitrate hexahydrate, respectively. The mesoporous CZY materials that were synthesized had surface area values that were between 40 and 120 m2/g and pore diameters that range from 2.2 to 9.0 nm after calcination in air from ambient temperature to 600°C at heating rates varied from 1 to 20°C/min, with the final temperature being maintained for 4 h. The novel CZY oxides that were prepared from the different templating techniques were characterized using nitrogen physisorption to determine the Brunauer--Emmett--Teller (BET) surface area and the Barrett--Joyner--Halenda (BJH) pore size distribution. Samples that showed some promise were further examined by transmission electron microscopy (TEM) to study the morphology of the structure; scanning electron microscopy (SEM) to study the bulk surface structure; thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to determine physical and chemical changes occurring during calcination; elemental analysis to determine composition; powder X-ray diffraction (PXD) to determine the existence of crystalline structure; and small angle X-ray diffraction (SAXD) to determine the occurrence of mesoscale ordering of repeating units. Finally, selected samples underwent catalytic testing under simulated exhaust conditions. The results of the tests showed that CZY materials synthesized using sol-gel methods with the Pluronic P123 soft template were the most active (i.e., had the lowest light off temperature), while CZY material with least loss of surface area after accelerated aging from 700 to 1000°C was the polymeric resin templated CZY materials.
Design of direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging.
Wang, Lei; Shao, Zhengzheng; Tang, Wusheng; Liu, Jiying; Nie, Qianwen; Jia, Hui; Dai, Suian; Zhu, Jubo; Li, Xiujian
2017-10-20
A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.