Sample records for double exponential transform

  1. A note on large gauge transformations in double field theory

    DOE PAGES

    Naseer, Usman

    2015-06-03

    Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  2. The mechanism of double-exponential growth in hyper-inflation

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takayasu, M.; Takayasu, H.

    2002-05-01

    Analyzing historical data of price indices, we find an extraordinary growth phenomenon in several examples of hyper-inflation in which, price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers’ actions in open markets, we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.

  3. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  4. Double slip effects of Magnetohydrodynamic (MHD) boundary layer flow over an exponentially stretching sheet with radiation, heat source and chemical reaction

    NASA Astrophysics Data System (ADS)

    Shaharuz Zaman, Azmanira; Aziz, Ahmad Sukri Abd; Ali, Zaileha Md

    2017-09-01

    The double slips effect on the magnetohydrodynamic boundary layer flow over an exponentially stretching sheet with suction/blowing, radiation, chemical reaction and heat source is presented in this analysis. By using the similarity transformation, the governing partial differential equations of momentum, energy and concentration are transformed into the non-linear ordinary equations. These equations are solved using Runge-Kutta-Fehlberg method with shooting technique in MAPLE software environment. The effects of the various parameter on the velocity, temperature and concentration profiles are graphically presented and discussed.

  5. The Secular Evolution Of Disc Galaxies And The Origin Of Exponential And Double Exponential Surface Density Profiles

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-10-01

    Exponential radial profiles are ubiquitous in spiral and dwarf Irregular galaxies, but the origin of this structural form is not understood. This talk will review the observations of exponential and double exponential disks, considering both the light and the mass profiles, and the contributions from stars and gas. Several theories for this structure will also be reviewed, including primordial collapse, bar and spiral torques, clump torques, galaxy interactions, disk viscosity and other internal processes of angular momentum exchange, and stellar scattering off of clumpy structure. The only process currently known that can account for this structure in the most theoretically difficult case is stellar scattering off disks clumps. Stellar orbit models suggest that such scattering can produce exponentials even in isolated dwarf irregulars that have no bars or spirals, little shear or viscosity, and profiles that go out too far for the classical Mestel case of primordial collapse with specific angular momentum conservation.

  6. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  7. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  8. Rare transformation to double hit lymphoma in Waldenstrom's macroglobulinemia.

    PubMed

    Okolo, Onyemaechi N; Johnson, Ariel C; Yun, Seongseok; Arnold, Stacy J; Anwer, Faiz

    2017-08-01

    Waldenström macroglobulinemia (WM) is a lymphoproliferative lymphoma that is characterized by monoclonal immunoglobulin M (IgM) protein and bone marrow infiltration. Its incidence is rare and rarer still is its ability to transform to a B-cell lymphoma, particularly the aggressive diffuse large B-cell lymphoma, which bodes a poor prognosis. When transformation includes mutations of MYC, BCL-2 and/or BCL-6, it is known as a 'double hit' or 'triple hit' lymphoma respectively. This paper presents a rare case of WM with mutations positive for MYC and BCL2, making it a case of double hit B-cell lymphoplasmacytic lymphoma with plasmatic differentiation without morphological transformation to aggressive histology like DLBCL. The paper also broadens to include discussions on current topics in the classification, diagnosis, possible causes of transformation, and treatment of WM, including transformation to double hit lymphoma. The significance of this case lies in that the presence of double hit lymphoma-like genetic mutations in WM have not been previously described in the literature and potentially such changes are harbinger of extra-nodal presentation, aggressive growth, and possibly poor prognosis, if data from other double-hit lymphoma are extrapolated.

  9. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  10. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degroote, M.; Henderson, T. M.; Zhao, J.

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less

  11. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  12. Nuclear counting filter based on a centered Skellam test and a double exponential smoothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan

    2015-07-01

    Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activitymore » occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)« less

  13. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  14. Local perturbations perturb—exponentially-locally

    NASA Astrophysics Data System (ADS)

    De Roeck, W.; Schütz, M.

    2015-06-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  15. Proportional exponentiated link transformed hazards (ELTH) models for discrete time survival data with application

    PubMed Central

    Joeng, Hee-Koung; Chen, Ming-Hui; Kang, Sangwook

    2015-01-01

    Discrete survival data are routinely encountered in many fields of study including behavior science, economics, epidemiology, medicine, and social science. In this paper, we develop a class of proportional exponentiated link transformed hazards (ELTH) models. We carry out a detailed examination of the role of links in fitting discrete survival data and estimating regression coefficients. Several interesting results are established regarding the choice of links and baseline hazards. We also characterize the conditions for improper survival functions and the conditions for existence of the maximum likelihood estimates under the proposed ELTH models. An extensive simulation study is conducted to examine the empirical performance of the parameter estimates under the Cox proportional hazards model by treating discrete survival times as continuous survival times, and the model comparison criteria, AIC and BIC, in determining links and baseline hazards. A SEER breast cancer dataset is analyzed in details to further demonstrate the proposed methodology. PMID:25772374

  16. The exponential function transforms the Abbreviated Injury Scale, which both improves accuracy and simplifies scoring.

    PubMed

    Wang, M D; Fan, W H; Qiu, W S; Zhang, Z L; Mo, Y N; Qiu, F

    2014-06-01

    We present here the exponential function which transforms the Abbreviated Injury Scale (AIS). It is called the Exponential Injury Severity Score (EISS), and significantly outperforms the venerable but dated New Injury Severity Score (NISS) and Injury Severity Score (ISS) as a predictor of mortality. The EISS is defined as a change of AIS values by raising each AIS severity score (1-6) by 3 taking a power of AIS minus 2 and then summing the three most severe injuries (i.e., highest AIS), regardless of body regions. EISS values were calculated for every patient in two large independent data sets: 3,911 and 4,129 patients treated during a 6-year period at the Class A tertiary hospitals in China. The power of the EISS to predict mortality was then compared with previously calculated NISS values for the same patients in each of the two data sets. We found that the EISS is more predictive of survival [Zhejiang: area under the receiver operating characteristic curve (AUC): NISS = 0.932, EISS = 0.949, P = 0.0115; Liaoning: AUC: NISS = 0.924, EISS = 0.942, P = 0.0139]. Moreover, the EISS provides a better fit throughout its entire range of prediction (Hosmer-Lemeshow statistic for Zhejiang: NISS = 21.86, P = 0.0027, EISS = 13.52, P = 0.0604; Liaoning: NISS = 23.27, P = 0.0015, EISS = 15.55, P = 0.0164). The EISS may be used as the standard summary measure of human trauma.

  17. W-transform for exponential stability of second order delay differential equations without damping terms.

    PubMed

    Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid

    2017-01-01

    In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

  18. The Transformation of Enterovirus Replication Structures: a Three-Dimensional Study of Single- and Double-Membrane Compartments

    PubMed Central

    Limpens, Ronald W. A. L.; van der Schaar, Hilde M.; Kumar, Darshan; Koster, Abraham J.; Snijder, Eric J.; van Kuppeveld, Frank J. M.; Bárcena, Montserrat

    2011-01-01

    ABSTRACT All positive-strand RNA viruses induce membrane structures in their host cells which are thought to serve as suitable microenvironments for viral RNA synthesis. The structures induced by enteroviruses, which are members of the family Picornaviridae, have so far been described as either single- or double-membrane vesicles (DMVs). Aside from the number of delimiting membranes, their exact architecture has also remained elusive due to the limitations of conventional electron microscopy. In this study, we used electron tomography (ET) to solve the three-dimensional (3-D) ultrastructure of these compartments. At different time points postinfection, coxsackievirus B3-infected cells were high-pressure frozen and freeze-substituted for ET analysis. The tomograms showed that during the exponential phase of viral RNA synthesis, closed smooth single-membrane tubules constituted the predominant virus-induced membrane structure, with a minor proportion of DMVs that were either closed or connected to the cytosol in a vase-like configuration. As infection progressed, the DMV number steadily increased, while the tubular single-membrane structures gradually disappeared. Late in infection, complex multilamellar structures, previously unreported, became apparent in the cytoplasm. Serial tomography disclosed that their basic unit is a DMV, which is enwrapped by one or multiple cisternae. ET also revealed striking intermediate structures that strongly support the conversion of single-membrane tubules into double-membrane and multilamellar structures by a process of membrane apposition, enwrapping, and fusion. Collectively, our work unravels the sequential appearance of distinct enterovirus-induced replication structures, elucidates their detailed 3-D architecture, and provides the basis for a model for their transformation during the course of infection. PMID:21972238

  19. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  20. The many faces of the quantum Liouville exponentials

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup; Schnittger, Jens

    1994-01-01

    First, it is proven that the three main operator approaches to the quantum Liouville exponentials—that is the one of Gervais-Neveu (more recently developed further by Gervais), Braaten-Curtright-Ghandour-Thorn, and Otto-Weigt—are equivalent since they are related by simple basis transformations in the Fock space of the free field depending upon the zero-mode only. Second, the GN-G expressions for quantum Liouville exponentials, where the U q( sl(2)) quantum-group structure is manifest, are shown to be given by q-binomial sums over powers of the chiral fields in the J = {1}/{2} representation. Third, the Liouville exponentials are expressed as operator tau functions, whose chiral expansion exhibits a q Gauss decomposition, which is the direct quantum analogue of the classical solution of Leznov and Saveliev. It involves q exponentials of quantum-group generators with group "parameters" equal to chiral components of the quantum metric. Fourth, we point out that the OPE of the J = {1}/{2} Liouville exponential provides the quantum version of the Hirota bilinear equation.

  1. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    PubMed Central

    Tosun, İsmail

    2012-01-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177

  2. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    PubMed

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  3. Understanding Exponential Growth: As Simple as a Drop in a Bucket.

    ERIC Educational Resources Information Center

    Goldberg, Fred; Shuman, James

    1984-01-01

    Provides procedures for a simple laboratory activity on exponential growth and its characteristic doubling time. The equipment needed consists of a large plastic bucket, an eyedropper, a stopwatch, an assortment of containers and graduated cylinders, and a supply of water. (JN)

  4. 15-digit accuracy calculations of Chandrasekhar's H-function for isotropic scattering by means of the double exponential formula

    NASA Astrophysics Data System (ADS)

    Kawabata, Kiyoshi

    2016-12-01

    This work shows that it is possible to calculate numerical values of the Chandrasekhar H-function for isotropic scattering at least with 15-digit accuracy by making use of the double exponential formula (DE-formula) of Takahashi and Mori (Publ. RIMS, Kyoto Univ. 9:721, 1974) instead of the Gauss-Legendre quadrature employed in the numerical scheme of Kawabata and Limaye (Astrophys. Space Sci. 332:365, 2011) and simultaneously taking a precautionary measure to minimize the effects due to loss of significant digits particularly in the cases of near-conservative scattering and/or errors involved in returned values of library functions supplied by compilers in use. The results of our calculations are presented for 18 selected values of single scattering albedo π0 and 22 values of an angular variable μ, the cosine of zenith angle θ specifying the direction of radiation incident on or emergent from semi-infinite media.

  5. Comparing Exponential and Exponentiated Models of Drug Demand in Cocaine Users

    PubMed Central

    Strickland, Justin C.; Lile, Joshua A.; Rush, Craig R.; Stoops, William W.

    2016-01-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model, but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use), whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values impact demand parameters and their association with drug-use outcomes when using the exponential model, but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency, in addition to demonstrating construct validity and generalizability. PMID:27929347

  6. Comparing exponential and exponentiated models of drug demand in cocaine users.

    PubMed

    Strickland, Justin C; Lile, Joshua A; Rush, Craig R; Stoops, William W

    2016-12-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, or 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use) whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values affects demand parameters and their association with drug-use outcomes when using the exponential model but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency and demonstrating construct validity and generalizability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  8. DOUBLE-EXPONENTIAL FITTING FUNCTION FOR EVALUATION OF COSMIC-RAY-INDUCED NEUTRON FLUENCE RATE IN ARBITRARY LOCATIONS.

    PubMed

    Li, Huailiang; Yang, Yigang; Wang, Qibiao; Tuo, Xianguo; Julian Henderson, Mark; Courtois, Jérémie

    2017-12-01

    The fluence rate of cosmic-ray-induced neutrons (CRINs) varies with many environmental factors. While many current simulation and experimental studies have focused mainly on the altitude variation, the specific rule that the CRINs vary with geomagnetic cutoff rigidity (which is related to latitude and longitude) was not well considered. In this article, a double-exponential fitting function F=(A1e-A2CR+A3)eB1Al, is proposed to evaluate the CRINs' fluence rate varying with geomagnetic cutoff rigidity and altitude. The fitting R2 can have a value up to 0.9954, and, moreover, the CRINs' fluence rate in an arbitrary location (latitude, longitude and altitude) can be easily evaluated by the proposed function. The field measurements of the CRINs' fluence rate and H*(10) rate in Mt. Emei and Mt. Bowa were carried out using a FHT-762 and LB 6411 neutron prober, respectively, and the evaluation results show that the fitting function agrees well with the measurement results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.

    PubMed

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-08-01

    Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.

  10. Double image encryption in Fresnel domain using wavelet transform, gyrator transform and spiral phase masks

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta

    2017-06-01

    In this paper, we propose a new technique for double image encryption in the Fresnel domain using wavelet transform (WT), gyrator transform (GT) and spiral phase masks (SPMs). The two input mages are first phase encoded and each of them are then multiplied with SPMs and Fresnel propagated with distances d1 and d2, respectively. The single-level discrete WT is applied to Fresnel propagated complex images to decompose each into sub-band matrices i.e. LL, HL, LH and HH. Further, the sub-band matrices of two complex images are interchanged after modulation with random phase masks (RPMs) and subjected to inverse discrete WT. The resulting images are then both added and subtracted to get intermediate images which are further Fresnel propagated with distances d3 and d4, respectively. These outputs are finally gyrator transformed with the same angle α to get the encrypted images. The proposed technique provides enhanced security in terms of a large set of security keys. The sensitivity of security keys such as SPM parameters, GT angle α, Fresnel propagation distances are investigated. The robustness of the proposed techniques against noise and occlusion attacks are also analysed. The numerical simulation results are shown in support of the validity and effectiveness of the proposed technique.

  11. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  12. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  13. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  14. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  15. Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. II. Orbits of Double-lined Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.; McMillan, Robert S.; Murison, Marc; Meade, Jeff; Hindsley, Robert

    2011-07-01

    We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Boötis, V1143 Cygni, β Aurigae, and Mizar A) and two double-lined triple star systems (κ Pegasi and η Virginis). The orbital fits are based upon high-precision radial velocity (RV) observations made with a dispersed Fourier Transform Spectrograph, or dFTS, a new instrument that combines interferometric and dispersive elements. For some of the double-lined binaries with known inclination angles, the quality of our RV data permits us to determine the masses M 1 and M 2 of the stellar components with relative errors as small as 0.2%.

  16. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.

    PubMed

    Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin

    2018-07-01

    To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p < 0.001), D t (0.575 ± 0.05, p < 0.001) and f (0.669 ± 0.04, p = 0.035). The parameters from stretched exponential DWI and D p showed higher areas under the ROC curve (AUCs) for determining significant fibrosis (≥F2) and cirrhosis (F = 4) than other parameters. However, D p showed significantly higher measurement variability (CoV, 74.6%) than DDC # (16.1%, p < 0.001) and α # (15.1%, p < 0.001). Stretched exponential DWI is a promising method for HF staging with good diagnostic performance and fewer b-value acquisitions, allowing shorter acquisition time. • Stretched exponential DWI provides a precise and accurate model for HF staging. • Stretched exponential DWI parameters are more reliable than D p from bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.

  17. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  18. Historical remarks on exponential product and quantum analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Masuo

    2015-03-10

    The exponential product formula [1, 2] was substantially introduced in physics by the present author [2]. Its systematic applications to quantum Monte Carlo Methods [3] were preformed [4, 5] first in 1977. Many interesting applications [6] of the quantum-classical correspondence (namely S-T transformation) have been reported. Systematic higher-order decomposition formulae were also discovered by the present author [7-11], using the recursion scheme [7, 9]. Physically speaking, these exponential product formulae play a conceptual role of separation of procedures [3,14]. Mathematical aspects of these formulae have been integrated in quantum analysis [15], in which non-commutative differential calculus is formulated and amore » general quantum Taylor expansion formula is given. This yields many useful operator expansion formulae such as the Feynman expansion formula and the resolvent expansion. Irreversibility and entropy production are also studied using quantum analysis [15].« less

  19. Polar exponential sensor arrays unify iconic and Hough space representation

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  20. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1976-01-01

    A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.

  1. Exponential Decay of Dispersion-Managed Solitons for General Dispersion Profiles

    NASA Astrophysics Data System (ADS)

    Green, William R.; Hundertmark, Dirk

    2016-02-01

    We show that any weak solution of the dispersion management equation describing dispersion-managed solitons together with its Fourier transform decay exponentially. This strong regularity result extends a recent result of Erdoğan, Hundertmark, and Lee in two directions, to arbitrary non-negative average dispersion and, more importantly, to rather general dispersion profiles, which cover most, if not all, physically relevant cases.

  2. Exponential propagators for the Schrödinger equation with a time-dependent potential.

    PubMed

    Bader, Philipp; Blanes, Sergio; Kopylov, Nikita

    2018-06-28

    We consider the numerical integration of the Schrödinger equation with a time-dependent Hamiltonian given as the sum of the kinetic energy and a time-dependent potential. Commutator-free (CF) propagators are exponential propagators that have shown to be highly efficient for general time-dependent Hamiltonians. We propose new CF propagators that are tailored for Hamiltonians of the said structure, showing a considerably improved performance. We obtain new fourth- and sixth-order CF propagators as well as a novel sixth-order propagator that incorporates a double commutator that only depends on coordinates, so this term can be considered as cost-free. The algorithms require the computation of the action of exponentials on a vector similar to the well-known exponential midpoint propagator, and this is carried out using the Lanczos method. We illustrate the performance of the new methods on several numerical examples.

  3. Exponential convergence rate (the spectral convergence) of the fast Padé transform for exact quantification in magnetic resonance spectroscopy.

    PubMed

    Belkić, Dzevad

    2006-12-21

    This study deals with the most challenging numerical aspect for solving the quantification problem in magnetic resonance spectroscopy (MRS). The primary goal is to investigate whether it could be feasible to carry out a rigorous computation within finite arithmetics to reconstruct exactly all the machine accurate input spectral parameters of every resonance from a synthesized noiseless time signal. We also consider simulated time signals embedded in random Gaussian distributed noise of the level comparable to the weakest resonances in the corresponding spectrum. The present choice for this high-resolution task in MRS is the fast Padé transform (FPT). All the sought spectral parameters (complex frequencies and amplitudes) can unequivocally be reconstructed from a given input time signal by using the FPT. Moreover, the present computations demonstrate that the FPT can achieve the spectral convergence, which represents the exponential convergence rate as a function of the signal length for a fixed bandwidth. Such an extraordinary feature equips the FPT with the exemplary high-resolution capabilities that are, in fact, theoretically unlimited. This is illustrated in the present study by the exact reconstruction (within machine accuracy) of all the spectral parameters from an input time signal comprised of 25 harmonics, i.e. complex damped exponentials, including those for tightly overlapped and nearly degenerate resonances whose chemical shifts differ by an exceedingly small fraction of only 10(-11) ppm. Moreover, without exhausting even a quarter of the full signal length, the FPT is shown to retrieve exactly all the input spectral parameters defined with 12 digits of accuracy. Specifically, we demonstrate that when the FPT is close to the convergence region, an unprecedented phase transition occurs, since literally a few additional signal points are sufficient to reach the full 12 digit accuracy with the exponentially fast rate of convergence. This is the critical

  4. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and beta-1,3-glucanase genes in a double-gene construct.

    PubMed

    Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas

    2006-09-01

    A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro.

  5. Are infant mortality rate declines exponential? The general pattern of 20th century infant mortality rate decline

    PubMed Central

    Bishai, David; Opuni, Marjorie

    2009-01-01

    Background Time trends in infant mortality for the 20th century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20th century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP) per capita. We apply the Box Cox transform to infant mortality rate (IMR) time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model) and against the null that λ = 1 (linear model). We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR) on same year GDP per capita against Box Cox transformed models. Results Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log transform. PMID:19698144

  6. Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis

    NASA Astrophysics Data System (ADS)

    Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.

    2013-04-01

    We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.

  7. How exponential are FREDs?

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Dyson, Samuel E.

    1996-08-01

    A common Gamma-Ray Burst-light curve shape is the ``FRED'' or ``fast-rise exponential-decay.'' But how exponential is the tail? Are they merely decaying with some smoothly decreasing decline rate, or is the functional form an exponential to within the uncertainties? If the shape really is an exponential, then it would be reasonable to assign some physically significant time scale to the burst. That is, there would have to be some specific mechanism that produces the characteristic decay profile. So if an exponential is found, then we will know that the decay light curve profile is governed by one mechanism (at least for simple FREDs) instead of by complex/multiple mechanisms. As such, a specific number amenable to theory can be derived for each FRED. We report on the fitting of exponentials (and two other shapes) to the tails of ten bright BATSE bursts. The BATSE trigger numbers are 105, 257, 451, 907, 1406, 1578, 1883, 1885, 1989, and 2193. Our technique was to perform a least square fit to the tail from some time after peak until the light curve approaches background. We find that most FREDs are not exponentials, although a few come close. But since the other candidate shapes come close just as often, we conclude that the FREDs are misnamed.

  8. One-way transformation of information

    DOEpatents

    Cooper, James A.

    1989-01-01

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.

  9. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  10. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  11. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

  12. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    PubMed

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.

  13. Deficient Repair of Particulate Hexavalent chromium-Induced DNA Double Strand Breaks Leads To Neoplastic Transformation

    PubMed Central

    Xie, Hong; Wise, Sandra S.; Wise, John. P.

    2008-01-01

    Hexavalent chromium (Cr(VI)) is a potent respiratory toxicant and carcinogen. The most carcinogenic forms of Cr(VI) are the particulate salts such as lead chromate, which deposit and persist in the respiratory tract after inhalation. We demonstrate here that particulate chromate induces DNA double strand breaks in human lung cells with 0.1, 0.5, and 1 ug/cm2 lead chromate inducing 1.5, 2 and 5 relative increases in the percent of DNA in the comet tail, respectively. These lesions are repaired within 24 h and require Mre11 expression for their repair. Particulate chromate also caused Mre11 to co-localize with gamma-H2A.X and ATM. Failure to repair these breaks with Mre11 induced neoplastic transformation including loss of cell contact inhibition and anchorage independent growth. A 5-day exposure to lead chromate induced loss of cell contact inhibition in a concentration-dependent manner with 0, 0.1, 0.5 and 1 ug/cm2 lead chromate inducing 1, 78 and 103 foci in 20 dishes, respectively. These data indicate that Mre11 is critical to repairing particulate Cr(VI)-induced double strand breaks and preventing Cr(VI)-induced neoplastic transformation. PMID:18023605

  14. Numerically stable formulas for a particle-based explicit exponential integrator

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth

    2015-05-01

    Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.

  15. Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.

    PubMed

    Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K

    2012-06-01

    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.

  16. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  17. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  18. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  19. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  20. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  1. [Study on transformation of P-dissolving Penicillium oxalicum P8 with double-marker vector expressing green fluorescent protein and hygromycin B resistance].

    PubMed

    Zhang, Lei; Fan, Bing-Quan; Huang, Wei-Yi

    2005-12-01

    P-dissolving Penicillium oxalicum P8 was isolated previously in this lab which has a considerable ability to dissolve many kinds of inorganic phosphorus and improve crop growth. In order to study rhizosphere colonization of plants by Penicillium oxalicum P8, protoplasts were transformed with a double-marker expression vector of green fluorescent protein and hygromycin B resistance. Some transformants were selected which expressed both the GFP and hygromycin B phosphotransferase and did not show significant morphological or physiological differences as compared to wild-type strain. Southern blot analysis confirmed the heterogeneous genomic integration of the vector DNA into the transformants.

  2. Theory, computation, and application of exponential splines

    NASA Technical Reports Server (NTRS)

    Mccartin, B. J.

    1981-01-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  3. N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191

    2012-08-15

    Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less

  4. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  5. Literacy Is Transformative. The Thirty-Fifth Yearbook A Doubled Peer Reviewed Publication of the Association of Literacy Educators and Researchers

    ERIC Educational Resources Information Center

    Szabo, Susan, Ed.; Martin, Linda, Ed.; Haas, Leslie, Ed.; Garza-Garcia, Lizabeth, Ed.

    2013-01-01

    For their 56th annual meeting, the Association of Educators and Researchers (ALER) met in Grand Rapids, Michigan at the Amway Grand Hotel. This year's conference theme was Literacy Is Transformative, which was also used as the title for this year's Yearbook, Volume 35. Included are double-peer reviewed papers, the presidential address,…

  6. A General Exponential Framework for Dimensionality Reduction.

    PubMed

    Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan

    2014-02-01

    As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.

  7. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  8. Equivalences between nonuniform exponential dichotomy and admissibility

    NASA Astrophysics Data System (ADS)

    Zhou, Linfeng; Lu, Kening; Zhang, Weinian

    2017-01-01

    Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.

  9. BORAX V EXPONENTIAL EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirn, F.S.; Hagen, J.I.

    1963-04-01

    The cadmium ratio was measured in an exponential mockup of Borax V as a function of the void fraction. The extent of voids, simulated by lengths of closed polyethylene tubes, ranged from 0 to 40%. The corresponding cadmium ratios ranged from 6.1 to 4.6. The exponential was also used to determine the radial flux pattern across a Borax-type fuel assembly and the fine flux detail in and around fuel rods. For a normal loading the maximum-to-average power generation across an assembly was 1.24. (auth)

  10. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  11. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    PubMed

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  13. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  14. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution.

    PubMed

    Rigby, Robert A; Stasinopoulos, D Mikis

    2004-10-15

    The Box-Cox power exponential (BCPE) distribution, developed in this paper, provides a model for a dependent variable Y exhibiting both skewness and kurtosis (leptokurtosis or platykurtosis). The distribution is defined by a power transformation Y(nu) having a shifted and scaled (truncated) standard power exponential distribution with parameter tau. The distribution has four parameters and is denoted BCPE (mu,sigma,nu,tau). The parameters, mu, sigma, nu and tau, may be interpreted as relating to location (median), scale (approximate coefficient of variation), skewness (transformation to symmetry) and kurtosis (power exponential parameter), respectively. Smooth centile curves are obtained by modelling each of the four parameters of the distribution as a smooth non-parametric function of an explanatory variable. A Fisher scoring algorithm is used to fit the non-parametric model by maximizing a penalized likelihood. The first and expected second and cross derivatives of the likelihood, with respect to mu, sigma, nu and tau, required for the algorithm, are provided. The centiles of the BCPE distribution are easy to calculate, so it is highly suited to centile estimation. This application of the BCPE distribution to smooth centile estimation provides a generalization of the LMS method of the centile estimation to data exhibiting kurtosis (as well as skewness) different from that of a normal distribution and is named here the LMSP method of centile estimation. The LMSP method of centile estimation is applied to modelling the body mass index of Dutch males against age. 2004 John Wiley & Sons, Ltd.

  15. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    PubMed

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  16. Image multiplexing and authentication based on double phase retrieval in fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Chang, Hsuan-Ting; Lin, Che-Hsian; Chen, Chien-Yue

    2017-04-01

    An image multiplexing and authentication method based on the double-phase retrieval algorithm (DPRA) with the manipulations of wavelength and position in the Fresnel transform (FrT) domain is proposed in this study. The DPRA generates two matched phase-only functions (POFs) in the different planes so that the corresponding image can be reconstructed at the output plane. Given a number of target images, all the sets of matched POFs are used to generate the phase-locked system through the phase modulation and synthesis to achieve the multiplexing purpose. To reconstruct a target image, the corresponding phase key and all the correct parameters in the FrT are required. Therefore, the authentication system with high-level security can be achieved. The computer simulation verifies the validity of the proposed method and also shows good resistance to the crosstalk among the reconstructed images.

  17. Finite Nilpotent BRST Transformations in Hamiltonian Formulation

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    2013-10-01

    We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.

  18. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching.

    PubMed

    Malachowski, George C; Clegg, Robert M; Redford, Glen I

    2007-12-01

    A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.

  19. High Efficiency Transformation of Cultured Tobacco Cells 1

    PubMed Central

    An, Gynheung

    1985-01-01

    Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453

  20. Method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  1. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.

    PubMed

    Aggarwal, Ankush

    2017-08-01

    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.

  2. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  3. Doubling Time for Nonexponential Families of Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2010-01-01

    One special characteristic of any exponential growth or decay function f(t) = Ab[superscript t] is its unique doubling time or half-life, each of which depends only on the base "b". The half-life is used to characterize the rate of decay of any radioactive substance or the rate at which the level of a medication in the bloodstream decays as it is…

  4. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    NASA Astrophysics Data System (ADS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  5. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  6. Double field theory at order α'

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2014-11-01

    We investigate α' corrections of bosonic strings in the framework of double field theory. The previously introduced "doubled α'-geometry" gives α'-deformed gauge transformations arising in the Green-Schwarz anomaly cancellation mechanism but does not apply to bosonic strings. These require a different deformation of the duality-covariantized Courant bracket which governs the gauge structure. This is revealed by examining the α' corrections in the gauge algebra of closed string field theory. We construct a four-derivative cubic double field theory action invariant under the deformed gauge transformations, giving a first glimpse of the gauge principle underlying bosonic string α' corrections. The usual metric and b-field are related to the duality covariant fields by non-covariant field redefinitions.

  7. 15-digit accuracy calculations of Ambartsumian-Chandrasekhar's H-functions for four-term phase functions with the double-exponential formula

    NASA Astrophysics Data System (ADS)

    Kawabata, Kiyoshi

    2018-01-01

    We have established an iterative scheme to calculate with 15-digit accuracy the numerical values of Ambartsumian-Chandrasekhar's H-functions for anisotropic scattering characterized by the four-term phase function: the method incorporates some advantageous features of the iterative procedure of Kawabata (Astrophys. Space Sci. 358:32, 2015) and the double-exponential integration formula (DE-formula) of Takahashi and Mori (Publ. Res. Inst. Math. Sci. Kyoto Univ. 9:721, 1974), which proved highly effective in Kawabata (Astrophys. Space Sci. 361:373, 2016). Actual calculations of the H-functions have been carried out employing 27 selected cases of the phase function, 56 values of the single scattering albedo π0, and 36 values of an angular variable μ(= cosθ), with θ being the zenith angle specifying the direction of incidence and/or emergence of radiation. Partial results obtained for conservative isotropic scattering, Rayleigh scattering, and anisotropic scattering due to a full four-term phase function are presented. They indicate that it is important to simultaneously verify accuracy of the numerical values of the H-functions for μ<0.05, the domain often neglected in tabulation. As a sample application of the isotropic scattering H-function, an attempt is made in Appendix to simulate by iteratively solving the Ambartsumian equation the values of the plane and spherical albedos of a semi-infinite, homogeneous atmosphere calculated by Rogovtsov and Borovik (J. Quant. Spectrosc. Radiat. Transf. 183:128, 2016), who employed their analytical representations for these quantities and the single-term and two-term Henyey-Greenstein phase functions of appreciably high degrees of anisotropy. While our results are in satisfactory agreement with theirs, our procedure is in need of a faster algorithm to routinely deal with problems involving highly anisotropic phase functions giving rise to near-conservative scattering.

  8. Recognizing Physisorption and Chemisorption in Carbon Nanotubes Gas Sensors by Double Exponential Fitting of the Response.

    PubMed

    Calvi, Andrea; Ferrari, Alberto; Sbuelz, Luca; Goldoni, Andrea; Modesti, Silvio

    2016-05-19

    Multi-walled carbon nanotubes (CNTs) have been grown in situ on a SiO 2 substrate and used as gas sensors. For this purpose, the voltage response of the CNTs as a function of time has been used to detect H 2 and CO 2 at various concentrations by supplying a constant current to the system. The analysis of both adsorptions and desorptions curves has revealed two different exponential behaviours for each curve. The study of the characteristic times, obtained from the fitting of the data, has allowed us to identify separately chemisorption and physisorption processes on the CNTs.

  9. Exponential Sum-Fitting of Dwell-Time Distributions without Specifying Starting Parameters

    PubMed Central

    Landowne, David; Yuan, Bin; Magleby, Karl L.

    2013-01-01

    Fitting dwell-time distributions with sums of exponentials is widely used to characterize histograms of open- and closed-interval durations recorded from single ion channels, as well as for other physical phenomena. However, it can be difficult to identify the contributing exponential components. Here we extend previous methods of exponential sum-fitting to present a maximum-likelihood approach that consistently detects all significant exponentials without the need for user-specified starting parameters. Instead of searching for exponentials, the fitting starts with a very large number of initial exponentials with logarithmically spaced time constants, so that none are missed. Maximum-likelihood fitting then determines the areas of all the initial exponentials keeping the time constants fixed. In an iterative manner, with refitting after each step, the analysis then removes exponentials with negligible area and combines closely spaced adjacent exponentials, until only those exponentials that make significant contributions to the dwell-time distribution remain. There is no limit on the number of significant exponentials and no starting parameters need be specified. We demonstrate fully automated detection for both experimental and simulated data, as well as for classical exponential-sum-fitting problems. PMID:23746510

  10. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    PubMed

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  11. The exponential behavior and stabilizability of the stochastic magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Wang, Huaqiao

    2018-06-01

    This paper studies the two-dimensional stochastic magnetohydrodynamic equations which are used to describe the turbulent flows in magnetohydrodynamics. The exponential behavior and the exponential mean square stability of the weak solutions are proved by the application of energy method. Furthermore, we establish the pathwise exponential stability by using the exponential mean square stability. When the stochastic perturbations satisfy certain additional hypotheses, we can also obtain pathwise exponential stability results without using the mean square stability.

  12. On new non-modal hydrodynamic stability modes and resulting non-exponential growth rates - a Lie symmetry approach

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan

    2016-11-01

    Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.

  13. Thermal dynamics on the lattice with exponentially improved accuracy

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies ωn = 2 πnT. In particular it resolves their frequency dependence between ω = 0 and ω1 = 2 πT, where the thermal physics ω ∼ T of e.g. transport phenomena is dominantly encoded. Real-time spectral functions are related to these correlators via an integral transform with rational kernel, so that their unfolding from the novel simulation data is exponentially improved compared to standard Euclidean simulations. We demonstrate this improvement within a non-trivial 0 + 1-dimensional quantum mechanical toy-model and show that spectral features inaccessible in standard Euclidean simulations are quantitatively captured.

  14. Exponential instability in the fractional Calderón problem

    NASA Astrophysics Data System (ADS)

    Rüland, Angkana; Salo, Mikko

    2018-04-01

    In this paper we prove the exponential instability of the fractional Calderón problem and thus prove the optimality of the logarithmic stability estimate from Rüland and Salo (2017 arXiv:1708.06294). In order to infer this result, we follow the strategy introduced by Mandache in (2001 Inverse Problems 17 1435) for the standard Calderón problem. Here we exploit a close relation between the fractional Calderón problem and the classical Poisson operator. Moreover, using the construction of a suitable orthonormal basis, we also prove (almost) optimality of the Runge approximation result for the fractional Laplacian, which was derived in Rüland and Salo (2017 arXiv:1708.06294). Finally, in one dimension, we show a close relation between the fractional Calderón problem and the truncated Hilbert transform.

  15. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-06-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite-Fe3O4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction.

  16. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  17. First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet

    NASA Astrophysics Data System (ADS)

    Martinusi, Vladimir; Dell'Elce, Lamberto; Kerschen, Gaëtan

    2017-04-01

    The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.

  18. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    PubMed Central

    Seif, R; Martin, R G

    1979-01-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation. Images PMID:229274

  19. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    PubMed

    Seif, R; Martin, R G

    1979-12-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.

  20. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  1. Towards weakly constrained double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  2. The Movement to Transform High School. Forum Report

    ERIC Educational Resources Information Center

    Frey, Susan

    2005-01-01

    Although society has changed exponentially over the past 100 years, secondary schools have remained largely static, according to Gerald Hayward, who moderated EdSource's 28th Annual Forum, "Shaking up the Status Quo: The Movement to Transform High School," held in March 2005. Calling high schools difficult, complicated, and expensive,…

  3. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  4. Method for exponentiating in cryptographic systems

    DOEpatents

    Brickell, Ernest F.; Gordon, Daniel M.; McCurley, Kevin S.

    1994-01-01

    An improved cryptographic method utilizing exponentiation is provided which has the advantage of reducing the number of multiplications required to determine the legitimacy of a message or user. The basic method comprises the steps of selecting a key from a preapproved group of integer keys g; exponentiating the key by an integer value e, where e represents a digital signature, to generate a value g.sup.e ; transmitting the value g.sup.e to a remote facility by a communications network; receiving the value g.sup.e at the remote facility; and verifying the digital signature as originating from the legitimate user. The exponentiating step comprises the steps of initializing a plurality of memory locations with a plurality of values g.sup.xi ; computi The United States Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the Department of Energy and AT&T Company.

  5. Slip Effects On MHD Three Dimensional Flow Of Casson Fluid Over An Exponentially Stretching Surface

    NASA Astrophysics Data System (ADS)

    Madhusudhana Rao, B.; Krishna Murthy, M.; Sivakumar, N.; Rushi Kumar, B.; Raju, C. S. K.

    2018-04-01

    Heat and mass transfer effects on MHD three dimensional flow of Casson fluid over an exponentially stretching surface with slip conditions is examined. The similarity transformations are used to convert the governing equations into a set of nonlinear ordinary differential equations and are solved numerically using fourth order Runge-Kutta method along with shooting technique. The effects of Casson parameter, Hartmann number, heat source/sink,chemical reaction and slip factors on velocity, temperature and concentration are shown graphically. The skin friction coefficient and the Nusselt number are examined numerically.

  6. New methods for accelerating the convergence of molecular electronic integrals over exponential type orbitals

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan; Hoggan, Philip

    2003-01-01

    This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.

  7. Exponential asymptotics of homoclinic snaking

    NASA Astrophysics Data System (ADS)

    Dean, A. D.; Matthews, P. C.; Cox, S. M.; King, J. R.

    2011-12-01

    We study homoclinic snaking in the cubic-quintic Swift-Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319-54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement.

  8. Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.

    PubMed

    Popa, Călin-Adrian

    2018-06-08

    This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet

    NASA Astrophysics Data System (ADS)

    Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md.; Nazar, Roslinda; Bachok, Norfifah; Ali, Fadzilah Md

    2017-12-01

    A theoretical study that describes the magnetohydrodynamic mixed convection boundary layer flow with heat transfer over an exponentially stretching sheet with an exponential temperature distribution has been presented herein. This study is conducted in the presence of convective heat exchange at the surface and its surroundings. The system is controlled by viscous dissipation and internal heat generation effects. The governing nonlinear partial differential equations are converted into ordinary differential equations by a similarity transformation. The converted equations are then solved numerically using the shooting method. The results related to skin friction coefficient, local Nusselt number, velocity and temperature profiles are presented for several sets of values of the parameters. The effects of the governing parameters on the features of the flow and heat transfer are examined in detail in this study.

  10. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  11. Task-based detectability comparison of exponential transformation of free-response operating characteristic (EFROC) curve and channelized Hotelling observer (CHO)

    NASA Astrophysics Data System (ADS)

    Khobragade, P.; Fan, Jiahua; Rupcich, Franco; Crotty, Dominic J.; Gilat Schmidt, Taly

    2016-03-01

    This study quantitatively evaluated the performance of the exponential transformation of the free-response operating characteristic curve (EFROC) metric, with the Channelized Hotelling Observer (CHO) as a reference. The CHO has been used for image quality assessment of reconstruction algorithms and imaging systems and often it is applied to study the signal-location-known cases. The CHO also requires a large set of images to estimate the covariance matrix. In terms of clinical applications, this assumption and requirement may be unrealistic. The newly developed location-unknown EFROC detectability metric is estimated from the confidence scores reported by a model observer. Unlike the CHO, EFROC does not require a channelization step and is a non-parametric detectability metric. There are few quantitative studies available on application of the EFROC metric, most of which are based on simulation data. This study investigated the EFROC metric using experimental CT data. A phantom with four low contrast objects: 3mm (14 HU), 5mm (7HU), 7mm (5 HU) and 10 mm (3 HU) was scanned at dose levels ranging from 25 mAs to 270 mAs and reconstructed using filtered backprojection. The area under the curve values for CHO (AUC) and EFROC (AFE) were plotted with respect to different dose levels. The number of images required to estimate the non-parametric AFE metric was calculated for varying tasks and found to be less than the number of images required for parametric CHO estimation. The AFE metric was found to be more sensitive to changes in dose than the CHO metric. This increased sensitivity and the assumption of unknown signal location may be useful for investigating and optimizing CT imaging methods. Future work is required to validate the AFE metric against human observers.

  12. Seeing double, being double: longing, belonging, recognition, and evasion in psychodynamic work with immigrants.

    PubMed

    Boulanger, Ghislaine

    2015-09-01

    Psychically immigrants live double lives, simultaneously dwelling in the world they have left and the world in which they live, and into which most try to fit to avoid the alienating experience of being "other". Doubleness is not a conscious act, but it is a preconscious counterpoint to just about every social interaction. I argue that successful psychodynamic treatment allows immigrants to take the doubleness for granted, in effect seeing double and being double. In this way they come to effortlessly privilege one self-state over the other. The recognition and acceptance of competing self-states proves transformative in any treatment, but never more so than in working with immigrants who contend with several culturally competing selves in their daily lives and seek one relationship in which they can all be seen and heard. I describe treating an immigrant who, when I began to work with her, excelled at seeing double, but being double posed a terrifying dilemma. At least two self-states were engaged in a tug of war; she feared that the winner would take all.

  13. Exponential integrators in time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  14. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase.

    PubMed

    Sanchez-Niño, Maria Dolores; Sanz, Ana B; Ramos, Adrian M; Fernandez-Fernandez, Beatriz; Ortiz, Alberto

    2017-04-01

    Exponential technologies double in power or processing speed every year, whereas their cost halves. Deception and disruption are two key stages in the development of exponential technologies. Deception occurs when, after initial introduction, technologies are dismissed as irrelevant, while they continue to progress, perhaps not as fast or with so many immediate practical applications as initially thought. Twenty years after the first publications, clinical proteomics is still not available in most hospitals and some clinicians have felt deception at unfulfilled promises. However, there are indications that clinical proteomics may be entering the disruptive phase, where, once refined, technologies disrupt established industries or procedures. In this regard, recent manuscripts in CKJ illustrate how proteomics is entering the clinical realm, with applications ranging from the identification of amyloid proteins in the pathology lab, to a new generation of urinary biomarkers for chronic kidney disease (CKD) assessment and outcome prediction. Indeed, one such panel of urinary peptidomics biomarkers, CKD273, recently received a Food and Drug Administration letter of support, the first ever in the CKD field. In addition, a must-read resource providing information on kidney disease-related proteomics and systems biology databases and how to access and use them in clinical decision-making was also recently published in CKJ .

  15. Modeling of magnitude distributions by the generalized truncated exponential distribution

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-01-01

    The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation. Two alternatives are the truncated exponential distribution (TED) and the cutoff exponential distribution (CED). The TED is frequently used in seismic hazard analysis although it has a weak point: when two TEDs with equal parameters except the upper bound magnitude are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. We overcome it by the generalization of the abovementioned exponential distributions: the generalized truncated exponential distribution (GTED). Therein, identical exponential distributions are mixed by the probability distribution of the correct cutoff points. This distribution model is flexible in the vicinity of the upper bound magnitude and is equal to the exponential distribution for smaller magnitudes. Additionally, the exponential distributions TED and CED are special cases of the GTED. We discuss the possible ways of estimating its parameters and introduce the normalized spacing for this purpose. Furthermore, we present methods for geographic aggregation and differentiation of the GTED and demonstrate the potential and universality of our simple approach by applying it to empirical data. The considerable improvement by the GTED in contrast to the TED is indicated by a large difference between the corresponding values of the Akaike information criterion.

  16. Confronting quasi-exponential inflation with WMAP seven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Barun Kumar; Pal, Supratik; Basu, B., E-mail: barunp1985@rediffmail.com, E-mail: pal@th.physik.uni-bonn.de, E-mail: banasri@isical.ac.in

    2012-04-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK.

  17. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  18. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    NASA Astrophysics Data System (ADS)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  19. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  20. A Stochastic Super-Exponential Growth Model for Population Dynamics

    NASA Astrophysics Data System (ADS)

    Avila, P.; Rekker, A.

    2010-11-01

    A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.

  1. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.

  2. Exponential localization of Wannier functions in insulators.

    PubMed

    Brouder, Christian; Panati, Gianluca; Calandra, Matteo; Mourougane, Christophe; Marzari, Nicola

    2007-01-26

    The exponential localization of Wannier functions in two or three dimensions is proven for all insulators that display time-reversal symmetry, settling a long-standing conjecture. Our proof relies on the equivalence between the existence of analytic quasi-Bloch functions and the nullity of the Chern numbers (or of the Hall current) for the system under consideration. The same equivalence implies that Chern insulators cannot display exponentially localized Wannier functions. An explicit condition for the reality of the Wannier functions is identified.

  3. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  4. The Exponential Function--Part VIII

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1978-01-01

    Presents part eight of a continuing series on the exponential function in which, given the current population of the Earth and assuming a constant growth rate of 1.9 percent backward looks at world population are made. (SL)

  5. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  6. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1985-01-01

    Failure times of a software reliabilty growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  7. Multiserver Queueing Model subject to Single Exponential Vacation

    NASA Astrophysics Data System (ADS)

    Vijayashree, K. V.; Janani, B.

    2018-04-01

    A multi-server queueing model subject to single exponential vacation is considered. The arrivals are allowed to join the queue according to a Poisson distribution and services takes place according to an exponential distribution. Whenever the system becomes empty, all the servers goes for a vacation and returns back after a fixed interval of time. The servers then starts providing service if there are waiting customers otherwise they will wait to complete the busy period. The vacation times are also assumed to be exponentially distributed. In this paper, the stationary and transient probabilities for the number of customers during ideal and functional state of the server are obtained explicitly. Also, numerical illustrations are added to visualize the effect of various parameters.

  8. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance.

    PubMed

    Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei

    2017-07-01

    Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  10. Exponential gain of randomness certified by quantum contextuality

    NASA Astrophysics Data System (ADS)

    Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan

    2017-04-01

    We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.

  11. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  12. Exponentially decaying interaction potential of cavity solitons

    NASA Astrophysics Data System (ADS)

    Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco

    2018-03-01

    We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.

  13. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks

    PubMed Central

    Cuaron, John J.; Chang, Chang; Lovelock, Michael; Higginson, Daniel S.; Mah, Dennis; Cahlon, Oren; Powell, Simon

    2016-01-01

    Purpose To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). Methods and Materials U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. Results At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. Conclusions We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates. PMID:27084629

  14. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks.

    PubMed

    Cuaron, John J; Chang, Chang; Lovelock, Michael; Higginson, Daniel S; Mah, Dennis; Cahlon, Oren; Powell, Simon

    2016-05-01

    To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    PubMed

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Exponential smoothing weighted correlations

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  17. An exact formulation of the time-ordered exponential using path-sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giscard, P.-L., E-mail: p.giscard1@physics.ox.ac.uk; Lui, K.; Thwaite, S. J.

    2015-05-15

    We present the path-sum formulation for the time-ordered exponential of a time-dependent matrix. The path-sum formulation gives the time-ordered exponential as a branched continued fraction of finite depth and breadth. The terms of the path-sum have an elementary interpretation as self-avoiding walks and self-avoiding polygons on a graph. Our result is based on a representation of the time-ordered exponential as the inverse of an operator, the mapping of this inverse to sums of walks on a graphs, and the algebraic structure of sets of walks. We give examples demonstrating our approach. We establish a super-exponential decay bound for the magnitudemore » of the entries of the time-ordered exponential of sparse matrices. We give explicit results for matrices with commonly encountered sparse structures.« less

  18. Similarity-transformed equation-of-motion vibrational coupled-cluster theory.

    PubMed

    Faucheaux, Jacob A; Nooijen, Marcel; Hirata, So

    2018-02-07

    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  19. Similarity-transformed equation-of-motion vibrational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So

    2018-02-01

    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  20. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    PubMed

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  1. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  2. DNA packing in chromatine, a manifestation of the Bonnet transformation.

    PubMed

    Blum, Z; Lidin, S

    1988-08-01

    The packing of DNA is described using the formalism of differential geometry. Winding of the DNA double helix around the histone 2-5 octamer forming a nucleosome and the condensation of the so-formed bead-on-a-string chromatine aided by histone 1 is interpreted as two consecutive isometric, i.e. Bonnet, transformations. The DNA double helix can be approximated to a helicoid which can be transformed isometrically to a catenoid, an approximation of the nucleosome. Owing to the organization of the histone octamer the extended chromatine takes a helicoidal shape allowing a second Bonnet transformation to consummate the condensation into a chromatine fibre.

  3. Biorthogonal projected energies of a Gutzwiller similarity transformed Hamiltonian.

    PubMed

    Wahlen-Strothman, J M; Scuseria, G E

    2016-12-07

    We present a method incorporating biorthogonal orbital-optimization, symmetry projection, and double-occupancy screening with a non-unitary similarity transformation generated by the Gutzwiller factor [Formula: see text], and apply it to the Hubbard model. Energies are calculated with mean-field computational scaling with high-quality results comparable to coupled cluster singles and doubles. This builds on previous work performing similarity transformations with more general, two-body Jastrow-style correlators. The theory is tested on 2D lattices ranging from small systems into the thermodynamic limit and is compared to available reference data.

  4. Effects of resonant magnetic perturbation on the triggering and the evolution of double-tearing mode

    NASA Astrophysics Data System (ADS)

    Wang, L.; Lin, W. B.; Wang, X. Q.

    2018-02-01

    The effects of resonant magnetic perturbation on the triggering and the evolution of the double-tearing mode are investigated by using nonlinear magnetohydrodynamics simulations in a slab geometry. It is found that the double-tearing mode can be destabilized by boundary magnetic perturbation. Moreover, the mode has three typical development stages before it reaches saturation: the linear stable stage, the linear-growth stage, and the exponential-growth stage. The onset and growth of the double-tearing mode significantly depend on the boundary magnetic perturbations, particularly in the early development stage of the mode. The influences of the magnetic perturbation amplitude on the mode for different separations of the two rational surfaces are also discussed.

  5. Exponential Correlation of IQ and the Wealth of Nations

    ERIC Educational Resources Information Center

    Dickerson, Richard E.

    2006-01-01

    Plots of mean IQ and per capita real Gross Domestic Product for groups of 81 and 185 nations, as collected by Lynn and Vanhanen, are best fitted by an exponential function of the form: GDP = "a" * 10["b"*(IQ)], where "a" and "b" are empirical constants. Exponential fitting yields markedly higher correlation coefficients than either linear or…

  6. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  7. Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Zhu, Hong-rui; Ma, Chen-yan; Zheng, Lei; Zhao, Yi-dong; Qiu, Guan-zhou

    2014-10-01

    The utilization of amorphous μ-S and orthorhombic α-S8 by thermoacidophile Sulfobacillus thermosulfidooxidans was firstly investigated in terms of cell growth and sulfur oxidation behavior. The morphology and surface sulfur speciation transformation were evaluated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy and sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. The results showed that the strain grown on μ-S entered slower (about 1 day later) into the exponential phase, while grew faster in exponential phase and attained higher maximal cell density and lower pH than on α-S8. After bio-corrosion, both sulfur samples were evidently eroded, but only μ-S surface presented much porosity, while α-S8 maintained glabrous. μ-S began to be gradually converted into α-S8 from day 2 when the bacterial cells entered the exponential phase, with a final composition of 62.3% μ-S and 37.7% α-S8 on day 4 at the stationary phase. α-S8 was not found to transform into other species in the experiments with or without bacteria. These data indicated S. thermosulfidooxidans oxidized amorphous μ-S faster than orthorhombic α-S8, but the chain-like μ-S was transformed into cyclic α-S8 by S. thermosulfidooxidans. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Linear or Exponential Number Lines

    ERIC Educational Resources Information Center

    Stafford, Pat

    2011-01-01

    Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather…

  9. Quark mixing and exponential form of the Cabibbo-Kobayashi-Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukovsky, K. V., E-mail: zhukovsk@phys.msu.ru; Dattoli, D., E-mail: dattoli@frascati.enea.i

    2008-10-15

    Various forms of representation of the mixing matrix are discussed. An exponential parametrization e{sup A} of the Cabibbo-Kobayashi-Maskawa matrix is considered in the context of the unitarity requirement, this parametrization being the most general form of the mixing matrix. An explicit representation for the exponential mixing matrix in terms of the first and second degrees of the matrix A exclusively is obtained. This representation makes it possible to calculate this exponential mixing matrix readily in any order of the expansion in the small parameter {lambda}. The generation of new unitary parametric representations of the mixing matrix with the aid ofmore » the exponential matrix is demonstrated.« less

  10. Topological Defects in Double Exchange Materials and Anomalous Hall Resistance.

    NASA Astrophysics Data System (ADS)

    Calderón, M. J.; Brey, L.

    2000-03-01

    Recently it has been proposed that the anomalous Hall effect observed in Double Exchange materials is due to Berry phase effects caused by carrier hopping in a nontrivial spins background (J.Ye et al.) Phys.Rev.Lett. 83, 3737 1999.In order to study this possibility we have performed Monte Carlo simulations of the Double Exchange model and we have computed, as a function of the temperature, the number of topological defects in the system and the internal gauge magnetic field associated with these defects. In the simplest Double Exchange model the gauge magnetic field is random, and its average value is zero. The inclusion in the problem of spin-orbit coupling privileges the opposite direction of the magnetization and an anomalous Hall resistance (AHR) effect arises. We have computed the AHR, and we have obtained its temperature dependence. In agreement with previous experiments we obtain that AHR increases exponentially at low temperature and presents a maximum at a temperature slightly higher than the critical temperature.

  11. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model.

  12. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  13. Exponential Sensitivity and its Cost in Quantum Physics

    PubMed Central

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-01-01

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076

  14. Exponential Sensitivity and its Cost in Quantum Physics.

    PubMed

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-02-10

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.

  15. NIR‐Triggered Crystal Phase Transformation of NiTi‐Layered Double Hydroxides Films for Localized Chemothermal Tumor Therapy

    PubMed Central

    Wang, Donghui; Ge, Naijian; Yang, Tingting; Peng, Feng; Qiao, Yuqin; Li, Qianwen

    2018-01-01

    Abstract Construction of localized drug‐eluting systems with synergistic chemothermal tumor‐killing abilities is promising for biomedical implants directly contacting with tumor tissues. In this study, an intelligent and biocompatible drug‐loading platform, based on a gold nanorods‐modified butyrate‐inserted NiTi‐layered double hydroxides film (Au@LDH/B), is prepared on the surface of nitinol alloy. The prepared films function as drug‐loading “sponges,” which pump butyrate out under near‐infrared (NIR) irradiation and resorb drugs in water when the NIR laser is shut off. The stimuli‐responsive release of butyrate is verified to be related with the NIR‐triggered crystal phase transformation of Au@LDH/B. In vitro and in vivo studies reveal that the prepared films possess excellent biosafety and high efficiency in synergistic thermochemo tumor therapy, showing a promising application in the construction of localized stimuli‐responsive drug‐delivery systems. PMID:29721424

  16. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    NASA Astrophysics Data System (ADS)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  17. Possible stretched exponential parametrization for humidity absorption in polymers.

    PubMed

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  18. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    DOE PAGES

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; ...

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, themore » behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.« less

  19. Design for Double Rainbow

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the…

  20. Optical Double Image Hiding in the Fractional Hartley Transform Using Structured Phase Filter and Arnold Transform

    NASA Astrophysics Data System (ADS)

    Yadav, Poonam Lata; Singh, Hukum

    2018-06-01

    To maintain the security of the image encryption and to protect the image from intruders, a new asymmetric cryptosystem based on fractional Hartley Transform (FrHT) and the Arnold transform (AT) is proposed. AT is a method of image cropping and edging in which pixels of the image are reorganized. In this cryptosystem we have used AT so as to extent the information content of the two original images onto the encrypted images so as to increase the safety of the encoded images. We have even used Structured Phase Mask (SPM) and Hybrid Mask (HM) as the encryption keys. The original image is first multiplied with the SPM and HM and then transformed with direct and inverse fractional Hartley transform so as to obtain the encrypted image. The fractional orders of the FrHT and the parameters of the AT correspond to the keys of encryption and decryption methods. If both the keys are correctly used only then the original image would be retrieved. Recommended method helps in strengthening the safety of DRPE by growing the key space and the number of parameters and the method is robust against various attacks. By using MATLAB 8.3.0.52 (R2014a) we calculate the strength of the recommended cryptosystem. A set of simulated results shows the power of the proposed asymmetric cryptosystem.

  1. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our

  2. Review of "Going Exponential: Growing the Charter School Sector's Best"

    ERIC Educational Resources Information Center

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  3. [Application of exponential smoothing method in prediction and warning of epidemic mumps].

    PubMed

    Shi, Yun-ping; Ma, Jia-qi

    2010-06-01

    To analyze the daily data of epidemic Mumps in a province from 2004 to 2008 and set up exponential smoothing model for the prediction. To predict and warn the epidemic mumps in 2008 through calculating 7-day moving summation and removing the effect of weekends to the data of daily reported mumps cases during 2005-2008 and exponential summation to the data from 2005 to 2007. The performance of Holt-Winters exponential smoothing is good. The result of warning sensitivity was 76.92%, specificity was 83.33%, and timely rate was 80%. It is practicable to use exponential smoothing method to warn against epidemic Mumps.

  4. Functional Dependence for Calculation of Additional Real-Power Losses in a Double-Wound Supply Transformer Caused by Unbalanced Active Inductive Load in a Star Connection with an Insulated Neutral

    ERIC Educational Resources Information Center

    Kostinskiy, Sergey S.; Troitskiy, Anatoly I.

    2016-01-01

    This article deals with the problem of calculating the additional real-power losses in double-wound supply transformers with voltage class 6 (10)/0,4 kV, caused by unbalanced active inductive load connected in a star connection with an insulated neutral. When solving the problem, authors used the theory of electric circuits, method of balanced…

  5. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  6. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  7. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuaron, John J., E-mail: cuaronj@mskcc.org; Chang, Chang; Lovelock, Michael

    2016-05-01

    Purpose: To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). Methods and Materials: U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantifiedmore » via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. Results: At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. Conclusions: We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates.« less

  8. On the performance of exponential integrators for problems in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Tokman, Mayya; Loffeld, John

    2017-02-01

    Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.

  9. Exponential Potential versus Dark Matter

    DTIC Science & Technology

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  10. Inverse Transformation: Unleashing Spatially Heterogeneous Dynamics with an Alternative Approach to XPCS Data Analysis.

    PubMed

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.

  11. Lie algebraic similarity transformed Hamiltonians for lattice model systems

    NASA Astrophysics Data System (ADS)

    Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-01

    We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.

  12. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  13. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    ERIC Educational Resources Information Center

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  14. Wide variation of prostate-specific antigen doubling time of untreated, clinically localized, low-to-intermediate grade, prostate carcinoma.

    PubMed

    Choo, Richard; Klotz, Laurence; Deboer, Gerrit; Danjoux, Cyril; Morton, Gerard C

    2004-08-01

    To assess the prostate specific antigen (PSA) doubling time of untreated, clinically localized, low-to-intermediate grade prostate carcinoma. A prospective single-arm cohort study has been in progress since November 1995 to assess the feasibility of a watchful-observation protocol with selective delayed intervention for clinically localized, low-to-intermediate grade prostate adenocarcinoma. The PSA doubling time was estimated from a linear regression of ln(PSA) against time, assuming a simple exponential growth model. As of March 2003, 231 patients had at least 6 months of follow-up (median 45) and at least three PSA measurements (median 8, range 3-21). The distribution of the doubling time was: < 2 years, 26 patients; 2-5 years, 65; 5-10 years, 42; 10-20 years, 26; 20-50 years, 16; >50 years, 56. The median doubling time was 7.0 years; 42% of men had a doubling time of >10 years. The doubling time of untreated clinically localized, low-to-intermediate grade prostate cancer varies widely.

  15. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

    PubMed Central

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-01-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344

  16. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.

    PubMed

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-02-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.

  17. The exponentiated Hencky energy: anisotropic extension and case studies

    NASA Astrophysics Data System (ADS)

    Schröder, Jörg; von Hoegen, Markus; Neff, Patrizio

    2017-10-01

    In this paper we propose an anisotropic extension of the isotropic exponentiated Hencky energy, based on logarithmic strain invariants. Unlike other elastic formulations, the isotropic exponentiated Hencky elastic energy has been derived solely on differential geometric grounds, involving the geodesic distance of the deformation gradient \\varvec{F} to the group of rotations. We formally extend this approach towards anisotropy by defining additional anisotropic logarithmic strain invariants with the help of suitable structural tensors and consider our findings for selected case studies.

  18. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  19. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    PubMed

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Real-Time Exponential Curve Fits Using Discrete Calculus

    NASA Technical Reports Server (NTRS)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  1. A Decreasing Failure Rate, Mixed Exponential Model Applied to Reliability.

    DTIC Science & Technology

    1981-06-01

    Trident missile systems have been observed. The mixed exponential distribu- tion has been shown to fit the life data for the electronic equipment on...these systems . This paper discusses some of the estimation problems which occur with the decreasing failure rate mixed exponential distribution when...assumption of constant or increasing failure rate seemed to be incorrect. 2. However, the design of this electronic equipment indicated that

  2. Exponentially Stabilizing Robot Control Laws

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  3. Comparison of Transformer Winding Methods for Contactless Power Transfer Systems of Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasuyoshi; Ehara, Natsuki; Iwata, Takuya; Abe, Shigeru; Yasuda, Tomio; Ida, Kazuhiko

    This paper describes the comparison of the characteristics of double- and single-sided windings of contactless power transfer systems used in electric vehicles. The self-inductance changes with the electric current when the gap length is fixed in single-sided windings. The issue is resolved by maintaining the secondary voltage constant. In the case of double-sided windings, the transformer can be miniaturized in comparison with the single-sided winding transformer. However, the coupling factor is small, and appropriate countermeasures must be adopted to reduce the back leakage flux. The leakage flux is reduced by placing an aluminum board behind the transformer. Thus, the coupling factor increases.

  4. Joint seismic data denoising and interpolation with double-sparsity dictionary learning

    NASA Astrophysics Data System (ADS)

    Zhu, Lingchen; Liu, Entao; McClellan, James H.

    2017-08-01

    Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.

  5. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.

    PubMed

    Ye, Jun

    2016-01-01

    An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.

  6. Exploring Exponential Decay Using Limited Resources

    ERIC Educational Resources Information Center

    DePierro, Ed; Garafalo, Fred; Gordon, Patrick

    2018-01-01

    Science students need exposure to activities that will help them to become familiar with phenomena exhibiting exponential decay. This paper describes an experiment that allows students to determine the rate of thermal energy loss by a hot object to its surroundings. It requires limited equipment, is safe, and gives reasonable results. Students…

  7. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  8. Power law versus exponential state transition dynamics: application to sleep-wake architecture.

    PubMed

    Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T

    2010-12-02

    Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.

  9. Exponential inflation with F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2018-03-01

    In this paper, we shall consider an exponential inflationary model in the context of vacuum F (R ) gravity. By using well-known reconstruction techniques, we shall investigate which F (R ) gravity can realize the exponential inflation scenario at leading order in terms of the scalar curvature, and we shall calculate the slow-roll indices and the corresponding observational indices, in the context of slow-roll inflation. We also provide some general formulas of the slow-roll and the corresponding observational indices in terms of the e -foldings number. In addition, for the calculation of the slow-roll and of the observational indices, we shall consider quite general formulas, for which it is not necessary for the assumption that all the slow-roll indices are much smaller than unity to hold true. Finally, we investigate the phenomenological viability of the model by comparing it with the latest Planck and BICEP2/Keck-Array observational data. As we demonstrate, the model is compatible with the current observational data for a wide range of the free parameters of the model.

  10. Application of methylation in improving plasmid transformation into Helicobacter pylori.

    PubMed

    Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei

    2018-05-23

    Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.

  11. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  12. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  13. Neoplastic transformation of hamster embryo cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Z.; Suzuki, H.; Suzuki, F.; Suzuki, M.; Furusawa, Y.; Kato, T.; Ikenaga, M.

    1998-11-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  14. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  15. The Exponential Expansion of Simulation in Research

    DTIC Science & Technology

    2012-12-01

    exponential growth of computing power. Although other analytic approaches also benefit from this trend, keyword searches of several scholarly search ... engines reveal that the reliance on simulation is increasing more rapidly. A descriptive analysis paints a compelling picture: simulation is frequently

  16. Using Differentials to Differentiate Trigonometric and Exponential Functions

    ERIC Educational Resources Information Center

    Dray, Tevian

    2013-01-01

    Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.

  17. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Sparks, Donald L.

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates usingmore » WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.« less

  18. Toward artifact-free data in Hadamard transform-based double multiplexing of ion mobility-Orbitrap mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummalacherla, Meghasyam; Garimella, Sandilya V. B.; Prost, Spencer A.

    The integration of ion mobility spectrometry (IMS) with trap-based mass spectrometer (MS) such as Orbitrap using the dual gate approach suffers from low duty cycle. Efforts to improve the duty cycle involve the utilization of Hadamard transform based double multiplexing which significantly improve the signal to noise ratio and duty cycle of the ion mobility – Orbitrap mass spectrometry (IM – Orbitrap MS) platform. However, significant fluctuations in ion intensity and the temporal shifts in the encoded data give rise to artifacts and noise in the demultiplexed data which significantly reduce the data quality and negate the benefits of multiplexing.more » We propose a new approach that identifies the true IM peaks and helps in eliminating the artifacts in the demultiplexed data leading to a decrease in false positives in subsequent data processing. The algorithm takes an analytical approach to first identify the position of the IM peak in the temporal domain, and then demultiplex and identify the true data making it easier for subsequent data processing. After the application of the algorithm, the quality of the IM-Orbitrap MS measurements was greatly improved because of the reduction in artifacts.« less

  19. CMB constraints on β-exponential inflationary models

    NASA Astrophysics Data System (ADS)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  20. Inverse transformation: unleashing spatially heterogeneous dynamics with an alternative approach to XPCS data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less

  1. Inverse transformation: unleashing spatially heterogeneous dynamics with an alternative approach to XPCS data analysis

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less

  2. Inverse Transformation: Unleashing Spatially Heterogeneous Dynamics with an Alternative Approach to XPCS Data Analysis

    PubMed Central

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-01-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS. PMID:29875506

  3. Reductive transformation of V(iii) precursors into vanadium(ii) oxide nanowires.

    PubMed

    Ojelere, Olusola; Graf, David; Ludwig, Tim; Vogt, Nicholas; Klein, Axel; Mathur, Sanjay

    2018-05-15

    Vanadium(ii) oxide nanostructures are promising materials for supercapacitors and electrocatalysis because of their excellent electrochemical properties and high surface area. In this study, new homoleptic vanadium(iii) complexes with bi-dentate O,N-chelating heteroarylalkenol ligands (DmoxCH[double bond, length as m-dash]COCF3, PyCH[double bond, length as m-dash]COCF3 and PyN[double bond, length as m-dash]COCF3) were synthesized and successfully transformed by reductive conversion into VO nanowires. The chemical identity of V(iii) complexes and their redox behaviour were unambiguously established by single crystal X-ray diffraction studies, cyclic voltammetry, spectrometric studies and DFT calculations. Transformation into the metastable VO phase was verified by powder X-ray diffraction and thermo-gravimetry. Transmission electron microscopy and X-ray photoelectron spectroscopy data confirmed the morphology and chemical composition of VO nanostructures, respectively.

  4. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  5. Application of Krylov exponential propagation to fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef; Semeraro, David

    1991-01-01

    An application of matrix exponentiation via Krylov subspace projection to the solution of fluid dynamics problems is presented. The main idea is to approximate the operation exp(A)v by means of a projection-like process onto a krylov subspace. This results in a computation of an exponential matrix vector product similar to the one above but of a much smaller size. Time integration schemes can then be devised to exploit this basic computational kernel. The motivation of this approach is to provide time-integration schemes that are essentially of an explicit nature but which have good stability properties.

  6. Changing Mindsets to Transform Security: Leader Development for an Unpredictable and Complex World

    DTIC Science & Technology

    2013-01-01

    fields of phys- ical science, the amount of information is doubling every one to two years, meaning that more than half of what a college student has...beyond a review of current events or it being at a “ informational ” level. Naval War College Professor Mackubin Owens stated in 2006, that, The new... information technology in education and training underpinned by a sta- ble and experienced academic community that can support the exponential growth

  7. Exponential stability of stochastic complex networks with multi-weights based on graph theory

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Chen, Tianrui

    2018-04-01

    In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.

  8. Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment

    NASA Astrophysics Data System (ADS)

    Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok

    2018-05-01

    We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.

  9. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conditional optimal spacing in exponential distribution.

    PubMed

    Park, Sangun

    2006-12-01

    In this paper, we propose the conditional optimal spacing defined as the optimal spacing after specifying a predetermined order statistic. If we specify a censoring time, then the optimal inspection times for grouped inspection can be determined from this conditional optimal spacing. We take an example of exponential distribution, and provide a simple method of finding the conditional optimal spacing.

  11. The generalized truncated exponential distribution as a model for earthquake magnitudes

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-04-01

    The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.

  12. Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects

    NASA Astrophysics Data System (ADS)

    Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash

    2017-05-01

    This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.

  13. Large-scale chromosome folding versus genomic DNA sequences: A discrete double Fourier transform technique.

    PubMed

    Chechetkin, V R; Lobzin, V V

    2017-08-07

    Using state-of-the-art techniques combining imaging methods and high-throughput genomic mapping tools leaded to the significant progress in detailing chromosome architecture of various organisms. However, a gap still remains between the rapidly growing structural data on the chromosome folding and the large-scale genome organization. Could a part of information on the chromosome folding be obtained directly from underlying genomic DNA sequences abundantly stored in the databanks? To answer this question, we developed an original discrete double Fourier transform (DDFT). DDFT serves for the detection of large-scale genome regularities associated with domains/units at the different levels of hierarchical chromosome folding. The method is versatile and can be applied to both genomic DNA sequences and corresponding physico-chemical parameters such as base-pairing free energy. The latter characteristic is closely related to the replication and transcription and can also be used for the assessment of temperature or supercoiling effects on the chromosome folding. We tested the method on the genome of E. coli K-12 and found good correspondence with the annotated domains/units established experimentally. As a brief illustration of further abilities of DDFT, the study of large-scale genome organization for bacteriophage PHIX174 and bacterium Caulobacter crescentus was also added. The combined experimental, modeling, and bioinformatic DDFT analysis should yield more complete knowledge on the chromosome architecture and genome organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  15. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  16. How I treat double-hit lymphoma.

    PubMed

    Friedberg, Jonathan W

    2017-08-03

    The 2016 revision of the World Health Organization (WHO) classification for lymphoma has included a new category of lymphoma, separate from diffuse large B-cell lymphoma, termed high-grade B-cell lymphoma with translocations involving myc and bcl-2 or bcl-6 . These lymphomas, which occur in <10% of cases of diffuse large B-cell lymphoma, have been referred to as double-hit lymphomas (or triple-hit lymphomas if all 3 rearrangements are present). It is important to differentiate these lymphomas from the larger group of double-expressor lymphomas, which have increased expression of MYC and BCL-2 and/or BCL-6 by immunohistochemistry, by using variable cutoff percentages to define positivity. Patients with double-hit lymphomas have a poor prognosis when treated with standard chemoimmunotherapy and have increased risk of central nervous system involvement and progression. Double-hit lymphomas may arise as a consequence of the transformation of the underlying indolent lymphoma. There are no published prospective trials in double-hit lymphoma, however retrospective studies strongly suggest that aggressive induction regimens may confer a superior outcome. In this article, I review my approach to the evaluation and treatment of double-hit lymphoma, with an eye toward future clinical trials incorporating rational targeted agents into the therapeutic armamentarium. © 2017 by The American Society of Hematology.

  17. Exponential growth and selection in self-replicating materials from DNA origami rafts

    NASA Astrophysics Data System (ADS)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  18. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  19. Laplace transforms of the Hulthén Green's function and their application to potential scattering

    NASA Astrophysics Data System (ADS)

    Laha, U.; Ray, S.; Panda, S.; Bhoi, J.

    2017-10-01

    We derive closed-form representations for the single and double Laplace transforms of the Hulthén Green's function of the outgoing wave multiplied by the Yamaguchi potential and write them in the maximally reduced form. We use the expression for the double transform to compute the low-energy phase shifts for the elastic scattering in the systems α-nucleon, α-He3, and α-H3. The calculation results agree well with the experimental data.

  20. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  1. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  2. Exponential integration algorithms applied to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.

  3. Exponentially convergent state estimation for delayed switched recurrent neural networks.

    PubMed

    Ahn, Choon Ki

    2011-11-01

    This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.

  4. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  5. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  6. Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2017-04-01

    The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.

  7. Test Exponential Pile

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  8. Children's multiplicative transformations of discrete and continuous quantities.

    PubMed

    Barth, Hilary; Baron, Andrew; Spelke, Elizabeth; Carey, Susan

    2009-08-01

    Recent studies have documented an evolutionarily primitive, early emerging cognitive system for the mental representation of numerical quantity (the analog magnitude system). Studies with nonhuman primates, human infants, and preschoolers have shown this system to support computations of numerical ordering, addition, and subtraction involving whole number concepts prior to arithmetic training. Here we report evidence that this system supports children's predictions about the outcomes of halving and perhaps also doubling transformations. A total of 138 kindergartners and first graders were asked to reason about the quantity resulting from the doubling or halving of an initial numerosity (of a set of dots) or an initial length (of a bar). Controls for dot size, total dot area, and dot density ensured that children were responding to the number of dots in the arrays. Prior to formal instruction in symbolic multiplication, division, or rational number, halving (and perhaps doubling) computations appear to be deployed over discrete and possibly continuous quantities. The ability to apply simple multiplicative transformations to analog magnitude representations of quantity may form a part of the toolkit that children use to construct later concepts of rational number.

  9. Progress, Exponential Growth and Post-Growth Education

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Teleological progress is the underlying motif of modern culture, and informs education, innovation, and economic development. Progress includes a gradual increase in consumerism. Since the 1940s, the Keynesian Settlement and its embedded belief in progress is legislated in exponential 2-3% economic growth. Unfortunately, climate change is a direct…

  10. Baecklund transformation, Lax pair, and solutions for the Caudrey-Dodd-Gibbon equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Qixing; Sun Kun; Jiang Yan

    2011-01-15

    By using Bell polynomials and symbolic computation, we investigate the Caudrey-Dodd-Gibbon equation analytically. Through a generalization of Bells polynomials, its bilinear form is derived, based on which, the periodic wave solution and soliton solutions are presented. And the soliton solutions with graphic analysis are also given. Furthermore, Baecklund transformation and Lax pair are derived via the Bells exponential polynomials. Finally, the Ablowitz-Kaup-Newell-Segur system is constructed.

  11. Exponential model for option prices: Application to the Brazilian market

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Carvalho, J. A.; Vasconcelos, G. L.

    2016-03-01

    In this paper we report an empirical analysis of the Ibovespa index of the São Paulo Stock Exchange and its respective option contracts. We compare the empirical data on the Ibovespa options with two option pricing models, namely the standard Black-Scholes model and an empirical model that assumes that the returns are exponentially distributed. It is found that at times near the option expiration date the exponential model performs better than the Black-Scholes model, in the sense that it fits the empirical data better than does the latter model.

  12. On exponential stability of linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Tien Dung, Nguyen

    2015-02-01

    The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].

  13. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    PubMed Central

    Sang, Jun; Ling, Shenggui; Alam, Mohammad S.

    2012-01-01

    In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level. PMID:23202003

  14. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement

    PubMed Central

    Gustman, Alan L.; Steinmeier, Thomas L.

    2012-01-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest. Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used. PMID:22711946

  15. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    PubMed

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  16. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  17. Frequency analysis of DC tolerant current transformers

    NASA Astrophysics Data System (ADS)

    Mlejnek, P.; Kaspar, P.

    2013-09-01

    This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types.

  18. Automatic selection of arterial input function using tri-exponential models

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Chen, Jeremy; Castro, Marcelo; Thomasson, David

    2009-02-01

    Dynamic Contrast Enhanced MRI (DCE-MRI) is one method for drug and tumor assessment. Selecting a consistent arterial input function (AIF) is necessary to calculate tissue and tumor pharmacokinetic parameters in DCE-MRI. This paper presents an automatic and robust method to select the AIF. The first stage is artery detection and segmentation, where knowledge about artery structure and dynamic signal intensity temporal properties of DCE-MRI is employed. The second stage is AIF model fitting and selection. A tri-exponential model is fitted for every candidate AIF using the Levenberg-Marquardt method, and the best fitted AIF is selected. Our method has been applied in DCE-MRIs of four different body parts: breast, brain, liver and prostate. The success rates in artery segmentation for 19 cases are 89.6%+/-15.9%. The pharmacokinetic parameters computed from the automatically selected AIFs are highly correlated with those from manually determined AIFs (R2=0.946, P(T<=t)=0.09). Our imaging-based tri-exponential AIF model demonstrated significant improvement over a previously proposed bi-exponential model.

  19. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  20. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  1. Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

    PubMed Central

    Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373

  2. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci.

    PubMed

    Hisano, Hiroshi; Meints, Brigid; Moscou, Matthew J; Cistue, Luis; Echávarri, Begoña; Sato, Kazuhiro; Hayes, Patrick M

    2017-04-01

    The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F 2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross 'Golden Promise' × 'Full Pint.' Based on SNP genotype, we selected lines having 'Golden Promise' alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to 'Golden Promise.' The results validate that the genetic substitution of TFA alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.

  3. The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Atkinson, D.; Rice, A.

    2015-04-01

    Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.

  4. Exponential evolution: implications for intelligent extraterrestrial life.

    PubMed

    Russell, D A

    1983-01-01

    Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.

  5. Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Sagheer, M.; Bilal, M.; Hussain, S.; Ahmed, R. N.

    2018-03-01

    This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation, Joule heating and viscous dissipation. Silver (Ag), copper (Cu), copper oxide (CuO), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) have been taken under consideration as the nanoparticles and water (H 2 O) as the base fluid. Using suitable similarity transformations, the governing partial differential equations (PDEs) of the modeled problem are transformed to the ordinary differential equations (ODEs). These ODEs are then solved numerically by applying the shooting method. For the particular situation, the results are compared with the available literature. The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically. It is witnessed that the skin friction coefficient is maximum for silver based nanofluid. Also, the velocity profile is found to diminish for the increasing values of the magnetic parameter.

  6. Using the fast fourier transform in binding free energy calculations.

    PubMed

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  8. Teaching Exponential Growth and Decay: Examples from Medicine

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    A treatment of exponential growth and decay is sketched which does not require knowledge of calculus, and hence, it can be applied to many cases in the biological and medical sciences. Some examples are bacterial growth, sterilization, clearance, and drug absorption. (DF)

  9. Non-exponential kinetics of unfolding under a constant force.

    PubMed

    Bell, Samuel; Terentjev, Eugene M

    2016-11-14

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  10. Non-exponential kinetics of unfolding under a constant force

    NASA Astrophysics Data System (ADS)

    Bell, Samuel; Terentjev, Eugene M.

    2016-11-01

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  11. A modified exponential behavioral economic demand model to better describe consumption data.

    PubMed

    Koffarnus, Mikhail N; Franck, Christopher T; Stein, Jeffrey S; Bickel, Warren K

    2015-12-01

    Behavioral economic demand analyses that quantify the relationship between the consumption of a commodity and its price have proven useful in studying the reinforcing efficacy of many commodities, including drugs of abuse. An exponential equation proposed by Hursh and Silberberg (2008) has proven useful in quantifying the dissociable components of demand intensity and demand elasticity, but is limited as an analysis technique by the inability to correctly analyze consumption values of zero. We examined an exponentiated version of this equation that retains all the beneficial features of the original Hursh and Silberberg equation, but can accommodate consumption values of zero and improves its fit to the data. In Experiment 1, we compared the modified equation with the unmodified equation under different treatments of zero values in cigarette consumption data collected online from 272 participants. We found that the unmodified equation produces different results depending on how zeros are treated, while the exponentiated version incorporates zeros into the analysis, accounts for more variance, and is better able to estimate actual unconstrained consumption as reported by participants. In Experiment 2, we simulated 1,000 datasets with demand parameters known a priori and compared the equation fits. Results indicated that the exponentiated equation was better able to replicate the true values from which the test data were simulated. We conclude that an exponentiated version of the Hursh and Silberberg equation provides better fits to the data, is able to fit all consumption values including zero, and more accurately produces true parameter values. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  13. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.

    PubMed

    Wang, Lianwen; Li, Jiangong; Fecht, Hans-Jörg

    2011-04-20

    Following the report of a single-exponential activation behavior behind the super-Arrhenius structural relaxation of glass-forming liquids in our preceding paper, we find that the non-exponentiality in the structural relaxation of glass-forming liquids is straightforwardly determined by the relaxation time, and could be calculated from the measured relaxation data. Comparisons between the calculated and measured non-exponentialities for typical glass-forming liquids, from fragile to intermediate, convincingly support the present analysis. Hence the origin of the non-exponentiality and its correlation with liquid fragility become clearer.

  14. Teaching the Verhulst Model: A Teaching Experiment in Covariational Reasoning and Exponential Growth

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos

    2010-01-01

    Both Thompson and the duo of Confrey and Smith describe how students might be taught to build "ways of thinking" about exponential behavior by coordinating the covariation of two changing quantities, however, these authors build exponential behavior from different meanings of covariation. Confrey and Smith advocate beginning with discrete additive…

  15. Mesoscale martensitic transformation in single crystals of topological defects

    PubMed Central

    Martínez-González, José A.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-01-01

    Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter. PMID:28874557

  16. Innovation in Pediatric Cardiac Intensive Care: An Exponential Convergence Toward Transformation of Care.

    PubMed

    Maher, Kevin O; Chang, Anthony C; Shin, Andrew; Hunt, Juliette; Wong, Hector R

    2015-10-01

    The word innovation is derived from the Latin noun innovatus, meaning renewal or change. Although companies such as Google and Apple are nearly synonymous with innovation, virtually all sectors in our current lives are imbued with yearn for innovation. This has led to organizational focus on innovative strategies as well as recruitment of chief innovation officers and teams in a myriad of organizations. At times, however, the word innovation seems like an overused cliché, as there are now more than 5,000 books in print with the word "innovation" in the title. More recently, innovation has garnered significant attention in health care. The future of health care is expected to innovate on a large scale in order to deliver sustained value for an overall transformative care. To date, there are no published reports on the state of the art in innovation in pediatric health care and in particular, pediatric cardiac intensive care. This report will address the issue of innovation in pediatric medicine with relevance to cardiac intensive care and delineate possible future directions and strategies in pediatric cardiac intensive care. © The Author(s) 2015.

  17. Statistical transformation and the interpretation of inpatient glucose control data.

    PubMed

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B

    2014-03-01

    To introduce a statistical method of assessing hospital-based non-intensive care unit (non-ICU) inpatient glucose control. Point-of-care blood glucose (POC-BG) data from hospital non-ICUs were extracted for January 1 through December 31, 2011. Glucose data distribution was examined before and after Box-Cox transformations and compared to normality. Different subsets of data were used to establish upper and lower control limits, and exponentially weighted moving average (EWMA) control charts were constructed from June, July, and October data as examples to determine if out-of-control events were identified differently in nontransformed versus transformed data. A total of 36,381 POC-BG values were analyzed. In all 3 monthly test samples, glucose distributions in nontransformed data were skewed but approached a normal distribution once transformed. Interpretation of out-of-control events from EWMA control chart analyses also revealed differences. In the June test data, an out-of-control process was identified at sample 53 with nontransformed data, whereas the transformed data remained in control for the duration of the observed period. Analysis of July data demonstrated an out-of-control process sooner in the transformed (sample 55) than nontransformed (sample 111) data, whereas for October, transformed data remained in control longer than nontransformed data. Statistical transformations increase the normal behavior of inpatient non-ICU glycemic data sets. The decision to transform glucose data could influence the interpretation and conclusions about the status of inpatient glycemic control. Further study is required to determine whether transformed versus nontransformed data influence clinical decisions or evaluation of interventions.

  18. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  19. The true quantum face of the "exponential" decay: Unstable systems in rest and in motion

    NASA Astrophysics Data System (ADS)

    Urbanowski, K.

    2017-12-01

    Results of theoretical studies and numerical calculations presented in the literature suggest that the survival probability P0(t) has the exponential form starting from times much smaller than the lifetime τ up to times t ⪢τ and that P0(t) exhibits inverse power-law behavior at the late time region for times longer than the so-called crossover time T ⪢ τ (The crossover time T is the time when the late time deviations of P0(t) from the exponential form begin to dominate). More detailed analysis of the problem shows that in fact the survival probability P0(t) can not take the pure exponential form at any time interval including times smaller than the lifetime τ or of the order of τ and it has has an oscillating form. We also study the survival probability of moving relativistic unstable particles with definite momentum . These studies show that late time deviations of the survival probability of these particles from the exponential-like form of the decay law, that is the transition times region between exponential-like and non-exponential form of the survival probability, should occur much earlier than it follows from the classical standard considerations.

  20. Diagrammatic exponentiation for products of Wilson lines

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2010-11-01

    We provide a recursive diagrammatic prescription for the exponentiation of gauge theory amplitudes involving products of Wilson lines and loops. This construction generalizes the concept of webs, originally developed for eikonal form factors and cross sections with two eikonal lines, to general soft functions in QCD and related gauge theories. Our coordinate space arguments apply to arbitrary paths for the lines.

  1. Approximation of the exponential integral (well function) using sampling methods

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2015-04-01

    Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.

  2. The petroleum exponential (again)

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The U.S. production and reserves of liquid and gaseous petroleum have declined since 1960, at least in the lower 48 states. This decline stems from decreased discovery rates, as predicted by M. King Hubbert in the mid-1950's. Hubbert's once unpopular views were based on statistical analysis of the production history of the petroleum industry, and now, even with inclusion of the statistical perturbation caused by the Prudhoe Bay-North Alaskan Slope discovery (the largest oil field ever found in the United States), it seems clear again that production is following the exponential curve to depletion of the resource—to the end of the ultimate yield of petroleum from wells in the United States.In a recent report, C. Hall and C. Cleveland of Cornell University show that large atypical discoveries, such as the Prudhoe Bay find, are but minor influences on what now appears to be the crucial intersection of two exponentials [Science, 211, 576-579, 1981]: the production-per-drilled-foot curve of Hubbert, which crosses zero production no later than the year 2005; the other, a curve that plots the energy cost of drilling and extraction with time; that is, the cost-time rate of how much oil is used to drill and extract oil from the ground. The intersection, if no other discoveries the size of the Prudhoe Bay field are made, could be as early as 1990, the end of the present decade. The inclusion of each Prudhoe-Bay-size find extends the year of intersection by only about 6 years. Beyond that point, more than one barrel of petroleum would be expended for each barrel extracted from the ground. The oil exploration-extraction and refining industry is currently the second most energy-intensive industry in the U.S., and the message seems clear. Either more efficient drilling and production techniques are discovered, or domestic production will cease well before the end of this century if the Hubbert analysis modified by Hall and Cleveland is correct.

  3. Properties of branching exponential flights in bounded domains

    NASA Astrophysics Data System (ADS)

    Zoia, A.; Dumonteil, E.; Mazzolo, A.

    2012-11-01

    In a series of recent works, important results have been reported concerning the statistical properties of exponential flights evolving in bounded domains, a widely adopted model for finite-speed transport phenomena (Blanco S. and Fournier R., Europhys. Lett., 61 (2003) 168; Mazzolo A., Europhys. Lett., 68 (2004) 350; Bénichou O. et al., Europhys. Lett., 70 (2005) 42). Motivated by physical and biological systems where random spatial displacements are coupled with Galton-Watson birth-death mechanisms, such as neutron multiplication, diffusion of reproducing bacteria or spread of epidemics, in this letter we extend those results in two directions, via a Feynman-Kac formalism. First, we characterize the occupation statistics of exponential flights in the presence of absorption and branching, and give explicit moment formulas for the total length travelled by the walker and the number of performed collisions in a given domain. Then, we show that the survival and escape probability can be derived as well by resorting to a similar approach.

  4. A novel attack method about double-random-phase-encoding-based image hiding method

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  5. Holographic insulator/superconductor transition with exponential nonlinear electrodynamics probed by entanglement entropy

    NASA Astrophysics Data System (ADS)

    Yao, Weiping; Yang, Chaohui; Jing, Jiliang

    2018-05-01

    From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy in superconducting phase versus the chemical potential is general in this model. Furthermore, the behavior of the entanglement entropy for the strip geometry shows that the confinement/deconfinement phase transition appears in both insulator and superconductor phases. And the critical width of the confinement/deconfinement phase transition depends on the chemical potential and the exponential coupling term. More interestingly, the behaviors of the entanglement entropy in their corresponding insulator phases are independent of the exponential coupling factor but depends on the width of the subsystem A.

  6. Determining Parameters of Fractional-Exponential Heredity Kernels of Nonlinear Viscoelastic Materials

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2017-07-01

    The problem of determining the parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials is solved. The methods for determining the parameters that are used in the cubic theory of viscoelasticity and the nonlinear theories based on the conditions of similarity of primary creep curves and isochronous creep diagrams are analyzed. The parameters of fractional-exponential heredity kernels are determined and experimentally validated for the oriented polypropylene, FM3001 and FM10001 nylon fibers, microplastics, TC 8/3-250 glass-reinforced plastic, SWAM glass-reinforced plastic, and contact molding glass-reinforced plastic.

  7. High-Resolution Free-Energy Landscape Analysis of α-Helical Protein Folding: HP35 and Its Double Mutant

    PubMed Central

    2013-01-01

    The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A.2012, 109, 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k0–1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation. PMID:24348206

  8. High-Resolution Free-Energy Landscape Analysis of α-Helical Protein Folding: HP35 and Its Double Mutant.

    PubMed

    Banushkina, Polina V; Krivov, Sergei V

    2013-12-10

    The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A. 2012 , 109 , 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k 0 -1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation.

  9. Concept of the Exponential Law Prior to 1900

    ERIC Educational Resources Information Center

    Curtis, Lorenzo J.

    1978-01-01

    Presents the historical development of perceptions and applications of the exponential law, tracing it from its ancient origins until the year 1900. Shows that many concepts such as mean life and half life and their relationships to differential equations were known long before their application to nuclear radioactivity. (GA)

  10. Exponential Formulae and Effective Operations

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Fernandez, David J. C.

    1996-01-01

    One of standard methods to predict the phenomena of squeezing consists in splitting the unitary evolution operator into the product of simpler operations. The technique, while mathematically general, is not so simple in applications and leaves some pragmatic problems open. We report an extended class of exponential formulae, which yield a quicker insight into the laboratory details for a class of squeezing operations, and moreover, can be alternatively used to programme different type of operations, as: (1) the free evolution inversion; and (2) the soft simulations of the sharp kicks (so that all abstract results involving the kicks of the oscillator potential, become realistic laboratory prescriptions).

  11. Diffusion-weighted MR imaging of pancreatic cancer: A comparison of mono-exponential, bi-exponential and non-Gaussian kurtosis models.

    PubMed

    Kartalis, Nikolaos; Manikis, Georgios C; Loizou, Louiza; Albiin, Nils; Zöllner, Frank G; Del Chiaro, Marco; Marias, Kostas; Papanikolaou, Nikolaos

    2016-01-01

    To compare two Gaussian diffusion-weighted MRI (DWI) models including mono-exponential and bi-exponential, with the non-Gaussian kurtosis model in patients with pancreatic ductal adenocarcinoma. After written informed consent, 15 consecutive patients with pancreatic ductal adenocarcinoma underwent free-breathing DWI (1.5T, b-values: 0, 50, 150, 200, 300, 600 and 1000 s/mm 2 ). Mean values of DWI-derived metrics ADC, D, D*, f, K and D K were calculated from multiple regions of interest in all tumours and non-tumorous parenchyma and compared. Area under the curve was determined for all metrics. Mean ADC and D K showed significant differences between tumours and non-tumorous parenchyma (both P  < 0.001). Area under the curve for ADC, D, D*, f, K, and D K were 0.77, 0.52, 0.53, 0.62, 0.42, and 0.84, respectively. ADC and D K could differentiate tumours from non-tumorous parenchyma with the latter showing a higher diagnostic accuracy. Correction for kurtosis effects has the potential to increase the diagnostic accuracy of DWI in patients with pancreatic ductal adenocarcinoma.

  12. A New Insight into the Earthquake Recurrence Studies from the Three-parameter Generalized Exponential Distributions

    NASA Astrophysics Data System (ADS)

    Pasari, S.; Kundu, D.; Dikshit, O.

    2012-12-01

    Earthquake recurrence interval is one of the important ingredients towards probabilistic seismic hazard assessment (PSHA) for any location. Exponential, gamma, Weibull and lognormal distributions are quite established probability models in this recurrence interval estimation. However, they have certain shortcomings too. Thus, it is imperative to search for some alternative sophisticated distributions. In this paper, we introduce a three-parameter (location, scale and shape) exponentiated exponential distribution and investigate the scope of this distribution as an alternative of the afore-mentioned distributions in earthquake recurrence studies. This distribution is a particular member of the exponentiated Weibull distribution. Despite of its complicated form, it is widely accepted in medical and biological applications. Furthermore, it shares many physical properties with gamma and Weibull family. Unlike gamma distribution, the hazard function of generalized exponential distribution can be easily computed even if the shape parameter is not an integer. To contemplate the plausibility of this model, a complete and homogeneous earthquake catalogue of 20 events (M ≥ 7.0) spanning for the period 1846 to 1995 from North-East Himalayan region (20-32 deg N and 87-100 deg E) has been used. The model parameters are estimated using maximum likelihood estimator (MLE) and method of moment estimator (MOME). No geological or geophysical evidences have been considered in this calculation. The estimated conditional probability reaches quite high after about a decade for an elapsed time of 17 years (i.e. 2012). Moreover, this study shows that the generalized exponential distribution fits the above data events more closely compared to the conventional models and hence it is tentatively concluded that generalized exponential distribution can be effectively considered in earthquake recurrence studies.

  13. Use of Continuous Exponential Families to Link Forms via Anchor Tests. Research Report. ETS RR-11-11

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Yan, Duanli

    2011-01-01

    Continuous exponential families are applied to linking test forms via an internal anchor. This application combines work on continuous exponential families for single-group designs and work on continuous exponential families for equivalent-group designs. Results are compared to those for kernel and equipercentile equating in the case of chained…

  14. Extended q -Gaussian and q -exponential distributions from gamma random variables

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.

    2015-05-01

    The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.

  15. The Use of Modeling Approach for Teaching Exponential Functions

    NASA Astrophysics Data System (ADS)

    Nunes, L. F.; Prates, D. B.; da Silva, J. M.

    2017-12-01

    This work presents a discussion related to the teaching and learning of mathematical contents related to the study of exponential functions in a freshman students group enrolled in the first semester of the Science and Technology Bachelor’s (STB of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). As a contextualization tool strongly mentioned in the literature, the modelling approach was used as an educational teaching tool to produce contextualization in the teaching-learning process of exponential functions to these students. In this sense, were used some simple models elaborated with the GeoGebra software and, to have a qualitative evaluation of the investigation and the results, was used Didactic Engineering as a methodology research. As a consequence of this detailed research, some interesting details about the teaching and learning process were observed, discussed and described.

  16. Diffusion orientation transform revisited.

    PubMed

    Canales-Rodríguez, Erick Jorge; Lin, Ching-Po; Iturria-Medina, Yasser; Yeh, Chun-Hung; Cho, Kuan-Hung; Melie-García, Lester

    2010-01-15

    Diffusion orientation transform (DOT) is a powerful imaging technique that allows the reconstruction of the microgeometry of fibrous tissues based on diffusion MRI data. The three main error sources involving this methodology are the finite sampling of the q-space, the practical truncation of the series of spherical harmonics and the use of a mono-exponential model for the attenuation of the measured signal. In this work, a detailed mathematical description that provides an extension to the DOT methodology is presented. In particular, the limitations implied by the use of measurements with a finite support in q-space are investigated and clarified as well as the impact of the harmonic series truncation. Near- and far-field analytical patterns for the diffusion propagator are examined. The near-field pattern makes available the direct computation of the probability of return to the origin. The far-field pattern allows probing the limitations of the mono-exponential model, which suggests the existence of a limit of validity for DOT. In the regimen from moderate to large displacement lengths the isosurfaces of the diffusion propagator reveal aberrations in form of artifactual peaks. Finally, the major contribution of this work is the derivation of analytical equations that facilitate the accurate reconstruction of some orientational distribution functions (ODFs) and skewness ODFs that are relatively immune to these artifacts. The new formalism was tested using synthetic and real data from a phantom of intersecting capillaries. The results support the hypothesis that the revisited DOT methodology could enhance the estimation of the microgeometry of fiber tissues.

  17. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  18. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss.

    PubMed

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J

    2008-01-08

    Recent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking. Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere. Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.

  19. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 1; Analysis

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    Extensive slow-crack-growth (SCG) analysis was made using a primary exponential crack-velocity formulation under three widely used load configurations: constant stress rate, constant stress, and cyclic stress. Although the use of the exponential formulation in determining SCG parameters of a material requires somewhat inconvenient numerical procedures, the resulting solutions presented gave almost the same degree of simplicity in both data analysis and experiments as did the power-law formulation. However, the fact that the inert strength of a material should be known in advance to determine the corresponding SCG parameters was a major drawback of the exponential formulation as compared with the power-law formulation.

  20. Adapting rice anther culture to gene transformation and RNA interference.

    PubMed

    Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang

    2006-10-01

    Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.

  1. Determining the Parameters of Fractional Exponential Hereditary Kernels for Nonlinear Viscoelastic Materials

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2013-03-01

    The parameters of fractional-exponential hereditary kernels for nonlinear viscoelastic materials are determined. Methods for determining the parameters used in the third-order theory of viscoelasticity and in nonlinear theories based on the similarity of primary creep curves and the similarity of isochronous creep curves are analyzed. The parameters of fractional-exponential hereditary kernels are determined and tested against experimental data for microplastic, TC-8/3-250 glass-reinforced plastics, SVAM glass-reinforced plastics. The results (tables and plots) are analyzed

  2. Looking for Connections between Linear and Exponential Functions

    ERIC Educational Resources Information Center

    Lo, Jane-Jane; Kratky, James L.

    2012-01-01

    Students frequently have difficulty determining whether a given real-life situation is best modeled as a linear relationship or as an exponential relationship. One root of such difficulty is the lack of deep understanding of the very concept of "rate of change." The authors will provide a lesson that allows students to reveal their misconceptions…

  3. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    PubMed

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  4. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS

    PubMed Central

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2015-01-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910

  5. Deformed exponentials and portfolio selection

    NASA Astrophysics Data System (ADS)

    Rodrigues, Ana Flávia P.; Guerreiro, Igor M.; Cavalcante, Charles Casimiro

    In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.

  6. Synthesis, maturation and extracellular release of procathepsin D as influenced by cell proliferation or transformation.

    PubMed

    Isidoro, C; Demoz, M; De Stefanis, D; Baccino, F M; Bonelli, G

    1995-12-11

    The relationship between cell growth and intra- and extracellular accumulation of cathepsin D (CD), a lysosomal endopeptidase involved in cell protein breakdown, was examined in cultures of normal and transformed BALB/c mouse 3T3 fibroblasts grown at various cell densities. In crowded cultures of normal 3T3 cells (doubling time, Td, 53 hr) intracellular CD activity was 2-fold higher than in sparse, rapidly-growing (Td, 27 hr) cultures. In uncrowded (Td, 18 hr) and crowded (Td, 32 hr) cultures of benzo[a]pyrene-transformed cells intracellular CD levels were one third and two thirds, respectively, of those measured in hyperconfluent 3T3 cultures. Regardless of cell density, SV-40-virus-transformed cells (Td, 12 hr) contained one third of CD levels found in hyperconfluent 3T3 cells. Both transformed cell lines released into the medium a higher proportion of CD, compared with their untransformed counterpart, yet the amount secreted was not sufficient to account for the reduced intracellular level of the enzyme. Serum withdrawal induced a marked increase of both intra- and extracellular levels of CD activity. In both normal and virally or chemically transformed 3T3 cells CD comprised a precursor (52 kDa) and processed mature polypeptides; the latter were mostly represented by a 48-kDa peptide, but a minor part was in a double-chain form (31 and 16 kDa respectively). The proportion of mature enzyme vs. precursor was much higher in confluent, slowly-growing cells than in fast-growing cells, whether normal or transformed. In the latter, conversion of mature 48-kDa peptide into the double-chain form occurred more efficiently.

  7. Evidence of the Exponential Decay Emission in the Swift Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Sato, G.; Hill, J.E.; Krimm, H.A.; Yamazaki, R.; Takami, K.; Swindell, S.; Osborne, J.P.

    2007-01-01

    We present a systematic study of the steep decay emission of gamma-ray bursts (GRBs) observed by the Swift X-Ray Telescope (XRT). In contrast to the analysis in recent literature, instead of extrapolating the data of Burst Alert Telescope (BAT) down into the XRT energy range, we extrapolated the XRT data up to the BAT energy range, 15-25 keV, to produce the BAT and XRT composite light curve. Based on our composite light curve fitting, we have confirmed the existence of an exponential decay component which smoothly connects the BAT prompt data to the XRT steep decay for several GRBs. We also find that the XRT steep decay for some of the bursts can be well fitted by a combination of a power-law with an exponential decay model. We discuss that this exponential component may be the emission from an external shock and a sign of the deceleration of the outflow during the prompt phase.

  8. On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols

    NASA Astrophysics Data System (ADS)

    Arrese-Igor, S.; Alegría, A.; Colmenero, J.

    2017-03-01

    We have investigated the Debye-like relaxation in a series of monoalcohols (MAs) by broadband dielectric spectroscopy and thermally stimulated depolarization current techniques in order to get further insight on the time dispersion of this intriguing relaxation. Results indicate that the Debye-like relaxation of MAs is not always of exponential type and conforms well to a dispersion of Cole-Davidson type. Apart from the already reported non-exponentiality of the Debye-like relaxation in 2-hexyl-1-decanol and 2-butyl-1-octanol, a detailed analysis of the dielectric permittivity of 5-methyl-3-heptanol shows that this MA also presents some extent of dispersion on its Debye-like relaxation which strongly depends on the temperature. Results suggest that the non-exponential character of the Debye-like relaxation might be a general characteristic in the case of not so intense Debye-like relaxations relative to the α relaxation. Finally, we briefly discuss on the T-dependence and possible origin for the observed dispersion.

  9. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows

  10. Surface properties and exponential stress relaxations of mammalian meibum films.

    PubMed

    Eftimov, Petar; Yokoi, Norihiko; Tonchev, Vesselin; Nencheva, Yana; Georgiev, Georgi As

    2017-03-01

    The surface properties of meibomian secretion (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The interfacial properties of canine, cMGS, and feline, fMGS, meibum films were studied using a Langmuir surface balance. These species were selected because they have blinking frequency and TF stability similar to those of humans. The sample's performance during dynamic area changes was evaluated by surface pressure (π)-area (A) isocycles and the layer structure was monitored with Brewster angle microscopy. The films' dilatational rheology was probed via the stress-relaxation technique. The animal MGS showed similar behavior both between each other and with human MGS (studied previously). They form reversible, non-collapsible, multilayer thick films. The relaxations of canine, feline, and human MGS films were well described by double exponential decay reflecting the presence of two processes: (1) fast elastic process, with characteristic time τ < 10 s and (2) slow viscous process, with τ > 100 s-emphasizing the meibum layers viscoelasticity. The temperature decrease from 35 to 25 °C resulted in decreased thickness and lateral expansion of all MGS layers accompanied with increase of the π/A hysteresis and of the elastic process contribution to π relaxation transients. Thus, MGS films of mammals with similar blinking frequency and TF stability have similar surface properties and stress relaxations unaltered by the interspecies MGS compositional variations. Such knowledge may impact the selection of animal mimics of human MGS and on a better understanding of lipid classes' impact on meibum functionality.

  11. Filtering of Discrete-Time Switched Neural Networks Ensuring Exponential Dissipative and $l_{2}$ - $l_{\\infty }$ Performances.

    PubMed

    Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg

    2017-10-01

    This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.

  12. Line transect estimation of population size: the exponential case with grouped data

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1979-01-01

    Gates, Marshall, and Olson (1968) investigated the line transect method of estimating grouse population densities in the case where sighting probabilities are exponential. This work is followed by a simulation study in Gates (1969). A general overview of line transect analysis is presented by Burnham and Anderson (1976). These articles all deal with the ungrouped data case. In the present article, an analysis of line transect data is formulated under the Gates framework of exponential sighting probabilities and in the context of grouped data.

  13. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  14. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  15. Optimal mode transformations for linear-optical cluster-state generation

    DOE PAGES

    Uskov, Dmitry B.; Lougovski, Pavel; Alsing, Paul M.; ...

    2015-06-15

    In this paper, we analyze the generation of linear-optical cluster states (LOCSs) via sequential addition of one and two qubits. Existing approaches employ the stochastic linear-optical two-qubit controlled-Z (CZ) gate with success rate of 1/9 per operation. The question of optimality of the CZ gate with respect to LOCS generation has remained open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is indeed globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. Finally,more » we show that the maximal success rate of postselected entangling n photonic qubits or m Bell pairs into a cluster is (1/2) n-1 and (1/4) m-1, respectively, with no ancilla photons, and we give an explicit optical description of the optimal mode transformations.« less

  16. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less

  17. Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion

    DOE PAGES

    Cao, Boqiang; Zhang, Qimin; Ye, Ming

    2016-11-29

    We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.

  18. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.

    PubMed

    Cai, Zuowei; Huang, Lihong; Zhang, Lingling

    2015-05-01

    This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Exponential Speedup of Quantum Annealing by Inhomogeneous Driving of the Transverse Field

    NASA Astrophysics Data System (ADS)

    Susa, Yuki; Yamashiro, Yu; Yamamoto, Masayuki; Nishimori, Hidetoshi

    2018-02-01

    We show, for quantum annealing, that a certain type of inhomogeneous driving of the transverse field erases first-order quantum phase transitions in the p-body interacting mean-field-type model with and without longitudinal random field. Since a first-order phase transition poses a serious difficulty for quantum annealing (adiabatic quantum computing) due to the exponentially small energy gap, the removal of first-order transitions means an exponential speedup of the annealing process. The present method may serve as a simple protocol for the performance enhancement of quantum annealing, complementary to non-stoquastic Hamiltonians.

  20. State of charge modeling of lithium-ion batteries using dual exponential functions

    NASA Astrophysics Data System (ADS)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  1. Double plasma resonance instability as a source of solar zebra emission

    NASA Astrophysics Data System (ADS)

    Benáček, J.; Karlický, M.

    2018-03-01

    Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma, consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras. Aims: In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpretation. Methods: We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions: (a) a spatially extended "multi-mode" model and (b) a spatially limited "specific-mode" model. While the multi-mode model is used for detailed computations and verifications of the results obtained by the "specific-mode" model, the specific-mode model is used for computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational results, we developed software tools in Python. Results: First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore, for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth

  2. Exact simulation of integrate-and-fire models with exponential currents.

    PubMed

    Brette, Romain

    2007-10-01

    Neural networks can be simulated exactly using event-driven strategies, in which the algorithm advances directly from one spike to the next spike. It applies to neuron models for which we have (1) an explicit expression for the evolution of the state variables between spikes and (2) an explicit test on the state variables that predicts whether and when a spike will be emitted. In a previous work, we proposed a method that allows exact simulation of an integrate-and-fire model with exponential conductances, with the constraint of a single synaptic time constant. In this note, we propose a method, based on polynomial root finding, that applies to integrate-and-fire models with exponential currents, with possibly many different synaptic time constants. Models can include biexponential synaptic currents and spike-triggered adaptation currents.

  3. Bayesian exponential random graph modelling of interhospital patient referral networks.

    PubMed

    Caimo, Alberto; Pallotti, Francesca; Lomi, Alessandro

    2017-08-15

    Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Transformation by Complementation of an Adenine Auxotroph of the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium

    PubMed Central

    Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.

    1989-01-01

    Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848

  5. Multi-exponential analysis of magnitude MR images using a quantitative multispectral edge-preserving filter.

    PubMed

    Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre

    2003-03-01

    A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.

  6. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  7. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation.

  8. Superionic state in double-layer capacitors with nanoporous electrodes.

    PubMed

    Kondrat, S; Kornyshev, A

    2011-01-19

    In recent experiments (Chmiola et al 2006 Science 313 1760; Largeot et al 2008 J. Am. Chem. Soc. 130 2730) an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state 'superionic' and suggest a simple model to describe it. The model reveals the possibility of a voltage-induced first order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage.

  9. Preparation of an exponentially rising optical pulse for efficient excitation of single atoms in free space.

    PubMed

    Dao, Hoang Lan; Aljunid, Syed Abdullah; Maslennikov, Gleb; Kurtsiefer, Christian

    2012-08-01

    We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator. The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single (87)Rb atom.

  10. Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal

    DOE PAGES

    Ilyn, Max; Magana, Ana; Walter, Andrew Leigh; ...

    2017-01-25

    Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less

  11. Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyn, Max; Magana, Ana; Walter, Andrew Leigh

    Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less

  12. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  13. Min and Max Exponential Extreme Interval Values and Statistics

    ERIC Educational Resources Information Center

    Jance, Marsha; Thomopoulos, Nick

    2009-01-01

    The extreme interval values and statistics (expected value, median, mode, standard deviation, and coefficient of variation) for the smallest (min) and largest (max) values of exponentially distributed variables with parameter ? = 1 are examined for different observation (sample) sizes. An extreme interval value g[subscript a] is defined as a…

  14. Fast and accurate fitting and filtering of noisy exponentials in Legendre space.

    PubMed

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.

  15. Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space

    PubMed Central

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904

  16. New exponential stability criteria for stochastic BAM neural networks with impulses

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Samidurai, R.; Anthoni, S. M.

    2010-10-01

    In this paper, we study the global exponential stability of time-delayed stochastic bidirectional associative memory neural networks with impulses and Markovian jumping parameters. A generalized activation function is considered, and traditional assumptions on the boundedness, monotony and differentiability of activation functions are removed. We obtain a new set of sufficient conditions in terms of linear matrix inequalities, which ensures the global exponential stability of the unique equilibrium point for stochastic BAM neural networks with impulses. The Lyapunov function method with the Itô differential rule is employed for achieving the required result. Moreover, a numerical example is provided to show that the proposed result improves the allowable upper bound of delays over some existing results in the literature.

  17. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  18. Finite element simulation of piezoelectric transformers.

    PubMed

    Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H

    2001-07-01

    Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.

  19. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  20. Extracting the exponential behaviors in the market data

    NASA Astrophysics Data System (ADS)

    Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako

    2007-08-01

    We introduce a mathematical criterion defining the bubbles or the crashes in financial market price fluctuations by considering exponential fitting of the given data. By applying this criterion we can automatically extract the periods in which bubbles and crashes are identified. From stock market data of so-called the Internet bubbles it is found that the characteristic length of bubble period is about 100 days.

  1. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  2. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  3. Universal state-selective corrections to multireference coupled-cluster theories with single and double excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri

    2012-03-28

    The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less

  4. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Study of velocity and temperature distributions in boundary layer flow of fourth grade fluid over an exponential stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Saeed, Umair Bin; Sultan, Faqiha; Ullah, Saif; Rehman, Abdul

    2018-02-01

    This study deals with the investigation of boundary layer flow of a fourth grade fluid and heat transfer over an exponential stretching sheet. For analyzing two heating processes, namely, (i) prescribed surface temperature (PST), and (ii) prescribed heat flux (PHF), the temperature distribution in a fluid has been considered. The suitable transformations associated with the velocity components and temperature, have been employed for reducing the nonlinear model equation to a system of ordinary differential equations. The flow and temperature fields are revealed by solving these reduced nonlinear equations through an effective analytical method. The important findings in this analysis are to observe the effects of viscoelastic, cross-viscous, third grade fluid, and fourth grade fluid parameters on the constructed analytical expression for velocity profile. Likewise, the heat transfer properties are studied for Prandtl and Eckert numbers.

  6. Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela

    Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.

  7. Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium.

    PubMed

    Galland, Paul

    2002-09-01

    The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work.

  8. Measurement of cellular copper levels in Bacillus megaterium during exponential growth and sporulation.

    PubMed

    Krueger, W B; Kolodziej, B J

    1976-01-01

    Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).

  9. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alic, M.; Kornegay, J.R.; Pribnow, D.

    1989-02-01

    Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less

  10. Improved decryption quality and security of a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2013-02-01

    Some image encryption systems based on modified double random phase encoding and joint transform correlator architecture produce low quality decrypted images and are vulnerable to a variety of attacks. In this work, we analyse the algorithm of some reported methods that optically implement the double random phase encryption in a joint transform correlator. We show that it is possible to significantly improve the quality of the decrypted image by introducing a simple nonlinear operation in the encrypted function that contains the joint power spectrum. This nonlinearity also makes the system more resistant to chosen-plaintext attacks. We additionally explore the system resistance against this type of attack when a variety of probability density functions are used to generate the two random phase masks of the encryption-decryption process. Numerical results are presented and discussed.

  11. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons.

    PubMed

    Kouass Sahbani, Saloua; Sanche, Leon; Cloutier, Pierre; Bass, Andrew D; Hunting, Darel J

    2014-11-20

    Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.

  12. Fourier transform of the multicenter product of 1s hydrogenic orbitals and Coulomb or Yukawa potentials and the analytically reduced form for subsequent integrals that include plane waves

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The Fourier transform of the multicenter product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials is given as an (M+N-1)-dimensional Feynman integral with external momenta and shifted coordinates. This is accomplished through the introduction of an integral transformation, in addition to the standard Feynman transformation for the denominators of the momentum representation of the terms in the product, which moves the resulting denominator into an exponential. This allows the angular dependence of the denominator to be combined with the angular dependence in the plane waves.

  13. Two Point Exponential Approximation Method for structural optimization of problems with frequency constraints

    NASA Technical Reports Server (NTRS)

    Fadel, G. M.

    1991-01-01

    The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.

  14. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    NASA Astrophysics Data System (ADS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  15. Absence of a dose-fractionation effect on neoplastic transformation induced by fission-spectrum neutrons in C3H 10T1/2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saran, A.; Pazzaglia, S.; Coppola, M.

    1991-06-01

    We have investigated the effect of fission-spectrum neutron dose fractionation on neoplastic transformation of exponentially growing C3H 10T1/2 cells. Total doses of 10.8, 27, 54, and 108 cGy were given in single doses or in five equal fractions delivered at 24-h intervals in the biological channel of the RSV-TAPIRO reactor at CRE-Casaccia. Both cell inactivation and neoplastic transformation were more effectively induced by fission neutrons than by 250-kVp X rays. No significant effect on cell survival or neoplastic transformation was observed with split doses compared to single doses of fission-spectrum neutrons. Neutron RBE values relative to X rays determined frommore » data for survival and neoplastic transformation were comparable.« less

  16. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  17. A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT

    NASA Astrophysics Data System (ADS)

    Yuxia, Zhao; Jingbo, Fan

    A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.

  18. Detecting double compression of audio signal

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Shi, Yun Q.; Huang, Jiwu

    2010-01-01

    MP3 is the most popular audio format nowadays in our daily life, for example music downloaded from the Internet and file saved in the digital recorder are often in MP3 format. However, low bitrate MP3s are often transcoded to high bitrate since high bitrate ones are of high commercial value. Also audio recording in digital recorder can be doctored easily by pervasive audio editing software. This paper presents two methods for the detection of double MP3 compression. The methods are essential for finding out fake-quality MP3 and audio forensics. The proposed methods use support vector machine classifiers with feature vectors formed by the distributions of the first digits of the quantized MDCT (modified discrete cosine transform) coefficients. Extensive experiments demonstrate the effectiveness of the proposed methods. To the best of our knowledge, this piece of work is the first one to detect double compression of audio signal.

  19. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)

  20. A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia

    PubMed Central

    2018-01-01

    ABSTRACT Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Tet and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10−4 while peaking after 8 h at a rF of 1.1 × 10−3. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Tet/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10−6). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. PMID:29764945

  1. Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways.

    PubMed

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2016-04-01

    Cefazolin was demonstrated to exert high reactivity toward permanganate (Mn(VII)), a common oxidant in water pre-oxidation treatment. In this study, five transformation products were found to be classified into three categories according to the contained characteristic functional groups: three (di-)sulfoxide products, one sulfone product and one di-ketone product. Products analyses showed that two kinds of reactions including oxidation of thioether and the cleavage of unsaturated CC double bond occurred during transformation of cefazolin by Mn(VII). Subsequently, the plausible transformation pathways under different pH conditions were proposed based on the identified products and chemical reaction principles. More importantly, the simulation with real surface water matrix indicated that the proposed transformation pathways of cefazolin could be replayed in real water treatment practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stretched exponential distributions in nature and economy: ``fat tails'' with characteristic scales

    NASA Astrophysics Data System (ADS)

    Laherrère, J.; Sornette, D.

    1998-04-01

    To account quantitatively for many reported "natural" fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributions of radio and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of World, US and French agglomeration sizes, of country population sizes, of daily Forex US-Mark and Franc-Mark price variations, of Vostok (near the south pole) temperature variations over the last 400 000 years, of the Raup-Sepkoski's kill curve and of citations of the most cited physicists in the world. We also discuss its potential for the distribution of earthquake sizes and fault displacements. We suggest physical interpretations of the parameters and provide a short toolkit of the statistical properties of the stretched exponentials. We also provide a comparison with other distributions, such as the shifted linear fractal, the log-normal and the recently introduced parabolic fractal distributions.

  3. Firing patterns in the adaptive exponential integrate-and-fire model.

    PubMed

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  4. Arima model and exponential smoothing method: A comparison

    NASA Astrophysics Data System (ADS)

    Wan Ahmad, Wan Kamarul Ariffin; Ahmad, Sabri

    2013-04-01

    This study shows the comparison between Autoregressive Moving Average (ARIMA) model and Exponential Smoothing Method in making a prediction. The comparison is focused on the ability of both methods in making the forecasts with the different number of data sources and the different length of forecasting period. For this purpose, the data from The Price of Crude Palm Oil (RM/tonne), Exchange Rates of Ringgit Malaysia (RM) in comparison to Great Britain Pound (GBP) and also The Price of SMR 20 Rubber Type (cents/kg) with three different time series are used in the comparison process. Then, forecasting accuracy of each model is measured by examinethe prediction error that producedby using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute deviation (MAD). The study shows that the ARIMA model can produce a better prediction for the long-term forecasting with limited data sources, butcannot produce a better prediction for time series with a narrow range of one point to another as in the time series for Exchange Rates. On the contrary, Exponential Smoothing Method can produce a better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while itcannot produce a better prediction for a longer forecasting period.

  5. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  6. Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model

    NASA Astrophysics Data System (ADS)

    Al Sobhi, Mashail M.

    2015-02-01

    Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.

  7. Verification of the exponential model of body temperature decrease after death in pigs.

    PubMed

    Kaliszan, Michal; Hauser, Roman; Kaliszan, Roman; Wiczling, Paweł; Buczyñski, Janusz; Penkowski, Michal

    2005-09-01

    The authors have conducted a systematic study in pigs to verify the models of post-mortem body temperature decrease currently employed in forensic medicine. Twenty-four hour automatic temperature recordings were performed in four body sites starting 1.25 h after pig killing in an industrial slaughterhouse under typical environmental conditions (19.5-22.5 degrees C). The animals had been randomly selected under a regular manufacturing process. The temperature decrease time plots drawn starting 75 min after death for the eyeball, the orbit soft tissues, the rectum and muscle tissue were found to fit the single-exponential thermodynamic model originally proposed by H. Rainy in 1868. In view of the actual intersubject variability, the addition of a second exponential term to the model was demonstrated to be statistically insignificant. Therefore, the two-exponential model for death time estimation frequently recommended in the forensic medicine literature, even if theoretically substantiated for individual test cases, provides no advantage as regards the reliability of estimation in an actual case. The improvement of the precision of time of death estimation by the reconstruction of an individual curve on the basis of two dead body temperature measurements taken 1 h apart or taken continuously for a longer time (about 4 h), has also been proved incorrect. It was demonstrated that the reported increase of precision of time of death estimation due to use of a multiexponential model, with individual exponential terms to account for the cooling rate of the specific body sites separately, is artifactual. The results of this study support the use of the eyeball and/or the orbit soft tissues as temperature measuring sites at times shortly after death. A single-exponential model applied to the eyeball cooling has been shown to provide a very precise estimation of the time of death up to approximately 13 h after death. For the period thereafter, a better estimation of the time

  8. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  9. M. Riesz-Schur-type inequalities for entire functions of exponential type

    NASA Astrophysics Data System (ADS)

    Ganzburg, M. I.; Nevai, P.; Erdélyi, T.

    2015-01-01

    We prove a general M. Riesz-Schur-type inequality for entire functions of exponential type. If f and Q are two functions of exponential types σ > 0 and τ ≥ 0, respectively, and if Q is real-valued and the real zeros of Q, not counting multiplicities, are bounded away from each other, then \\displaystyle \\vert f(x)\\vert≤ (σ+τ) (Aσ+τ(Q))-1/2\\Vert Q f\\Vert C( R),\\qquad x\\in R, where \\displaystyle A_s(Q) \\stackrel{{def}}{=}\\infx\\in R \\bigl( \\lbrack Q'(x) \\rbrack ^2+s2 [Q(x)]^2\\bigr). We apply this inequality to the weights Q(x)\\stackrel{{def}}{=} \\sin (τ x) and Q(x) \\stackrel{{def}}{=} x and describe the extremal functions in the corresponding inequalities. Bibliography: 7 titles.

  10. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  11. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  12. A stochastic evolutionary model generating a mixture of exponential distributions

    NASA Astrophysics Data System (ADS)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2016-02-01

    Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.

  13. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures

    NASA Astrophysics Data System (ADS)

    Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.

    2018-02-01

    Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.

  14. Persistence of exponential bed thickness distributions in the stratigraphic record: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Straub, K. M.; Ganti, V. K.; Paola, C.; Foufoula-Georgiou, E.

    2010-12-01

    Stratigraphy preserved in alluvial basins houses the most complete record of information necessary to reconstruct past environmental conditions. Indeed, the character of the sedimentary record is inextricably related to the surface processes that formed it. In this presentation we explore how the signals of surface processes are recorded in stratigraphy through the use of physical and numerical experiments. We focus on linking surface processes to stratigraphy in 1D by quantifying the probability distributions of processes that govern the evolution of depositional systems to the probability distribution of preserved bed thicknesses. In this study we define a bed as a package of sediment bounded above and below by erosional surfaces. In a companion presentation we document heavy-tailed statistics of erosion and deposition from high-resolution temporal elevation data recorded during a controlled physical experiment. However, the heavy tails in the magnitudes of erosional and depositional events are not preserved in the experimental stratigraphy. Similar to many bed thickness distributions reported in field studies we find that an exponential distribution adequately describes the thicknesses of beds preserved in our experiment. We explore the generation of exponential bed thickness distributions from heavy-tailed surface statistics using 1D numerical models. These models indicate that when the full distribution of elevation fluctuations (both erosional and depositional events) is symmetrical, the resulting distribution of bed thicknesses is exponential in form. Finally, we illustrate that a predictable relationship exists between the coefficient of variation of surface elevation fluctuations and the scale-parameter of the resulting exponential distribution of bed thicknesses.

  15. A Test of the Exponential Distribution for Stand Structure Definition in Uneven-aged Loblolly-Shortleaf Pine Stands

    Treesearch

    Paul A. Murphy; Robert M. Farrar

    1981-01-01

    In this study, 588 before-cut and 381 after-cut diameter distributions of uneven-aged loblolly-shortleaf pinestands were fitted to two different forms of the exponential probability density function. The left truncated and doubly truncated forms of the exponential were used.

  16. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  17. Global exponential stability for switched memristive neural networks with time-varying delays.

    PubMed

    Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia

    2016-08-01

    This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Chromosome abnormalities associated with Phl and acturial survivorship curve in chronic myeloid leukemia. Probabilistic interpretation of blastic transformation of CML].

    PubMed

    Coutris, G

    1981-12-01

    Sixty-six patients with chronic myelogenous leukemia, all with Philadelphia chromosome, have been studied for chromosomic abnormalities associated (CAA) to Ph', as well as for actuarial curve of survivorship. Patients dying from another disease were excluded from this study. Frequency of cells with CAA was measured and appeared strongly higher after blastic transformation than during myelocytic state; probability to be a blastic transformation is closely correlated with this frequency. On the other hand, actuarial curve of survivorship is very well represented by an exponential curve. This suggests a constant rate of death during disease evolution, for these patients without intercurrent disease. As a mean survivance after blastic transformation is very shorter than myelocytic duration, a constant rate of blastic transformation could be advanced: it explains possible occurrence of transformation as soon as preclinic state of a chronic myelogenous leukemia. Even if CAA frequency increases after blastic transformation, CAA can occur a long time before it and do not explain it: submicroscopic origin should be searched for the constant rate of blastic transformation would express the risk of a genic transformation at a constant rate during myelocytic state.

  19. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  20. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  1. Cascade DNA nanomachine and exponential amplification biosensing.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Assaying effector function in planta using double-barreled particle bombardment.

    PubMed

    Kale, Shiv D; Tyler, Brett M

    2011-01-01

    The biolistic transient gene expression assay is a beneficial tool for studying gene function in vivo. However, biolistic transient assay systems have inherent pitfalls that often cause experimental inaccuracies such as poor transformation efficiency, which can be confused with biological phenomena. The double-barreled gene gun device is an inexpensive and highly effective attachment that enables statistically significant data to be obtained with one-tenth the number of experimental replicates compared to conventional biolistic assays. The principle behind the attachment is to perform two simultaneous bombardments with control and test DNA preparations onto the same leaf. The control bombardment measures the efficiency of the transformation while the ratio of the test bombardment to the control bombardment measures the activity of the gene of interest. With care, the ratio between the pair of bombardments can be highly reproducible from bombardment to bombardment. The double-barreled attachment has been used to study plant resistance (R) gene-mediated responses to effectors, induction and suppression of cell death by a wide variety of pathogen and host molecules, and the role of oömycete effector RXLR motifs in cell reentry.

  3. Exponential approximation for daily average solar heating or photolysis. [of stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.; Borucki, W. J.

    1976-01-01

    When incorporating formulations of instantaneous solar heating or photolytic rates as functions of altitude and sun angle into long range forecasting models, it may be desirable to replace the time integrals by daily average rates that are simple functions of latitude and season. This replacement is accomplished by approximating the integral over the solar day by a pure exponential. This gives a daily average rate as a multiplication factor times the instantaneous rate evaluated at an appropriate sun angle. The accuracy of the exponential approximation is investigated by a sample calculation using an instantaneous ozone heating formulation available in the literature.

  4. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  5. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  6. New results on global exponential dissipativity analysis of memristive inertial neural networks with distributed time-varying delays.

    PubMed

    Zhang, Guodong; Zeng, Zhigang; Hu, Junhao

    2018-01-01

    This paper is concerned with the global exponential dissipativity of memristive inertial neural networks with discrete and distributed time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals, some new sufficient conditions ensuring global exponential dissipativity of memristive inertial neural networks are derived. Moreover, the globally exponential attractive sets and positive invariant sets are also presented here. In addition, the new proposed results here complement and extend the earlier publications on conventional or memristive neural network dynamical systems. Finally, numerical simulations are given to illustrate the effectiveness of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exponential expansion: galactic destiny or technological hubris?

    NASA Astrophysics Data System (ADS)

    Finney, B. R.

    Is it our destiny to expand exponentially to populate the galaxy, or is such a vision but an extreme example of technological hubris? The overall record of human evolution and dispersion over the Earth can be cited to support the view that we are a uniquely expansionary and technological animal bound for the stars, yet an examination of the fate of individual migrations and exploratory initiatives raises doubts. Although it may be in keeping with our hubristic nature to predict ultimate galactic expansion, there is no way to specify how far expansionary urges may drive our spacefaring descendants.

  8. Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods

    NASA Astrophysics Data System (ADS)

    Monovasilis, Theodore; Kalogiratou, Zacharoula; Simos, T. E.

    2014-10-01

    In this work we derive exponentially fitted symplectic Runge-Kutta-Nyström (RKN) methods from symplectic exponentially fitted partitioned Runge-Kutta (PRK) methods methods (for the approximate solution of general problems of this category see [18] - [40] and references therein). We construct RKN methods from PRK methods with up to five stages and fourth algebraic order.

  9. Hydrogen storage in double clathrates with tert-butylamine.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sum, Amadeu K; Sloan, E Dendy; Koh, Carolyn A

    2009-06-18

    The first proof-of-concept of the formation of a double tert-butylamine (t-BuNH(2)) + hydrogen (H(2)) clathrate hydrate has been demonstrated. Binary clathrate hydrates with different molar concentrations of the large guest t-BuNH(2) (0.98-9.31 mol %) were synthesized at 13.8 MPa and 250 K, and characterized by powder X-ray diffraction and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed under hydrogen pressures. Raman spectroscopic data suggested that the hydrogen molecules occupied the small cages and had similar occupancy to hydrogen in the double tetrahydrofuran (THF) + H(2) clathrate hydrate. The hydrogen storage capacity in this system was approximately 0.7 H(2) wt % at the molar concentration of t-BuNH(2) close to the sII stoichiometry.

  10. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  11. Investigating Marine Dissolved Organic Matter Fluorescence Transformations with Organic Geochemical Proxies in a Growth and Degradation Experiment using Amino Acids, Amino Sugars, and Phenols

    NASA Astrophysics Data System (ADS)

    Shields, M. R.; Bianchi, T. S.; Osburn, C. L.; Kinsey, J. D.; Ziervogel, K.; Schnetzer, A.

    2017-12-01

    The origin and mechanisms driving the formation of fluorescent dissolved organic matter (FDOM) in the open ocean remain unclear. Although recent studies have attempted to deconvolve the chemical composition and source of marine FDOM, these studies have been qualitative in nature. Here, we investigate these transformations using a more quantitative biomarker approach in a controlled growth and degradation experiment. In this experiment, a natural assemblage of phytoplankton was collected off the coast of North Carolina and incubated within roller bottles containing 0.2 µm-filtered North Atlantic surface water amended with f/2 nutrients. Samples were collected at the beginning (day 0), during exponential growth (day 13), stationary (day 20), and degradation (day 62) phases of the phytoplankton incubation. Amino acids, amino sugars, and phenolic compounds of the dissolved (DOM) were measured in conjunction with enzyme assays and bacterial counts to track shifts in OM quality as FDOM formed and was then transformed throughout the experiment. The results from the chemical analyses showed that the OM composition changed significantly from the initial and exponential phases to the stationary and degradation phases of the experiment. The percentage of aromatic amino acids to the total amino acid pool increased significantly during the exponential phase of phytoplankton growth, but then decreased significantly during the stationary and degradation phases. This increase was positively correlated to the fractional contribution of the protein-like peak in fluorescence to the total FDOM fluorescence. An increase in the concentration of amino acid degradation products during the stationary and degradation phases suggests that compositional changes in OM were driven by microbial transformation. This was further supported by a concurrent increase in total enzyme activity and increase in "humic-like" components of the FDOM. These findings link the properties and formation of FDOM

  12. Poissonian renormalizations, exponentials, and power laws.

    PubMed

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  13. Higher order Riesz transforms associated with Bessel operators

    NASA Astrophysics Data System (ADS)

    Betancor, Jorge J.; Fariña, Juan C.; Martinez, Teresa; Rodríguez-Mesa, Lourdes

    2008-10-01

    In this paper we investigate Riesz transforms R μ ( k) of order k≥1 related to the Bessel operator Δμ f( x)=- f”( x)-((2μ+1)/ x) f’( x) and extend the results of Muckenhoupt and Stein for the conjugate Hankel transform (a Riesz transform of order one). We obtain that for every k≥1, R μ ( k) is a principal value operator of strong type ( p, p), p∈(1,∞), and weak type (1,1) with respect to the measure dλ( x)= x 2μ+1 dx in (0,∞). We also characterize the class of weights ω on (0,∞) for which R μ ( k) maps L p (ω) into itself and L 1(ω) into L 1,∞(ω) boundedly. This class of weights is wider than the Muckenhoupt class mathcal{A}p^μ of weights for the doubling measure dλ. These weighted results extend the ones obtained by Andersen and Kerman.

  14. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Eric L.; Orsat, Valerie; Shah, Manesh B

    2012-01-01

    System biology and bioprocess technology can be better understood using shotgun proteomics as a monitoring system during the fermentation. We demonstrated a shotgun proteomic method to monitor the temporal yeast proteome in early, middle and late exponential phases. Our study identified a total of 1389 proteins combining all 2D-LC-MS/MS runs. The temporal Saccharomyces cerevisiae proteome was enriched with proteolysis, radical detoxification, translation, one-carbon metabolism, glycolysis and TCA cycle. Heat shock proteins and proteins associated with oxidative stress response were found throughout the exponential phase. The most abundant proteins observed were translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes. Themore » high abundance of the H-protein of the glycine decarboxylase complex (Gcv3p) indicated the availability of glycine in the environment. We observed differentially expressed proteins and the induced proteins at mid-exponential phase were involved in ribosome biogenesis, mitochondria DNA binding/replication and transcriptional activator. Induction of tryptophan synthase (Trp5p) indicated the abundance of tryptophan during the fermentation. As fermentation progressed toward late exponential phase, a decrease in cell proliferation was implied from the repression of ribosomal proteins, transcription coactivators, methionine aminopeptidase and translation-associated proteins.« less

  15. A Spectral Lyapunov Function for Exponentially Stable LTV Systems

    NASA Technical Reports Server (NTRS)

    Zhu, J. Jim; Liu, Yong; Hang, Rui

    2010-01-01

    This paper presents the formulation of a Lyapunov function for an exponentially stable linear timevarying (LTV) system using a well-defined PD-spectrum and the associated PD-eigenvectors. It provides a bridge between the first and second methods of Lyapunov for stability assessment, and will find significant applications in the analysis and control law design for LTV systems and linearizable nonlinear time-varying systems.

  16. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  17. Exponential Acceleration of VT Seismicity in the Years Prior to Major Eruptions of Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Lengline, O.; Marsan, D.; Got, J.; Pinel, V.

    2007-12-01

    The evolution of the seismicity at three basaltic volcanoes (Kilauea, Mauna-Loa and Piton de la Fournaise) is analysed during phases of magma accumulation. We show that the VT seismicity during these time-periods is characterized by an exponential increase at long-time scale (years). Such an exponential acceleration can be explained by a model of seismicity forced by the replenishment of a magmatic reservoir. The increase in stress in the edifice caused by this replenishment is modeled. This stress history leads to a cumulative number of damage, ie VT earthquakes, following the same exponential increase as found for seismicity. A long-term seismicity precursor is thus detected at basaltic volcanoes. Although this precursory signal is not able to predict the onset times of futures eruptions (as no diverging point is present in the model), it may help mitigating volcanic hazards.

  18. Stretched exponentials and power laws in granular avalanching

    NASA Astrophysics Data System (ADS)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  19. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics

    PubMed Central

    Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-01-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507

  20. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    PubMed

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  1. Activities and Achievements of the Double Star Committee of the Socié té Astronomique de France

    NASA Astrophysics Data System (ADS)

    Agati, Jean-Louis; Caille, Sébastien; Debackère, André; Durand, Pierre; Losse, Florent; Manté, René; Mauroy, Florence; Mauroy, Pascal; Morlet, Guy; Pinlou, Claude; Salaman, Maurice; Soulié, Edgar; Thorel, Yvonne; Thorel, Jean-Claude

    2007-08-01

    In a synthesis article (see ref. below), the double star expert Paul COUTEAU put the work of French pioneers of double stars observation in the perspective of the double star work carried in the world. After Antoine Yvon VILLARCEAU and Camille FLAMMARION, one prominent pioneer of double stars was Robert JONCKHEERE (1888toiles Doubles, Maurice DURUY (1894le with a 40-cm and later a 60-cm telescope at Le Rouret (Alpes1995) had started the measurement of double stars as an amateur. He was granted permission to measure them with the 38-cm of the Paris Observatory and made an impressive number of measures during his long 2006) made double star observations for the book which was then in preparation under the title La revue des constellations. Their measures remained unpublished; but publication of the measures made by Robert SAGOT is in preparation. At about the same time, the neurology professor Jacques LE BEAU (1908toiles doubles visuelles. That book triggered the interest of more amateur astronomers for double stars and indirectly influenced the creation of a group of double star observers which was transformed into the Commission des É toiles Doubles

  2. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  3. Kinetics of the coesite to quartz transformation

    USGS Publications Warehouse

    Mosenfelder, J.L.; Bohlen, S.R.

    1997-01-01

    The survival of coesite in ultrahigh-pressure (UHP) rocks has important implications for the exhumation of subducted crustal rocks. We have conducted experiments to study the mechanism and rate of the coesite ??? quartz transformation using polycrystalline coesite aggregates, fabricated by devitrifying silica glass cylinders containing 2850H/106 Si at 1000??C and 3.6 GPa for 24h. Conditions were adjusted following synthesis to transform the samples at 700-1000??C at pressures 190-410 MPa below the quartz-coesite equilibrium boundary. Reaction proceeds via grain-boundary nucleation and interface-controlled growth, with characteristic reaction textures remarkably similar to those seen in natural UHP rocks. We infer that the experimental reaction mechanism is identical to that in nature, a prerequisite for reliable extrapolation of the rate data. Growth rates obtained by direct measurement differ by up to two orders of magnitude from those estimated by fitting a rate equation to the transformation-time data. Fitting the rates to Turnbull's equation for growth therefore yields two distinct sets of parameters with similar activation energies (242 or 269 kJ/mol) but significantly different pre-exponential constants. Extrapolation based on either set of growth rates suggests that coesite should not be preserved on geologic time scales if it reaches the quartz stability field at temperatures above 375-400??C. The survival of coesite has previously been linked to its inclusion in strong phases, such as garnet, that can sustain a high internal pressure during decompression. Other factors that may play a crucial role in preservation are low fluid availability - possibly even less than that of our nominally "dry" experiments - and the development of transformation stress, which inhibits nucleation and growth. These issues are discussed in the context of our experiments as well as recent observations from natural rocks. ?? 1997 Elsevier Science B.V.

  4. Integral definition of the logarithmic function and the derivative of the exponential function in calculus

    NASA Astrophysics Data System (ADS)

    Vaninsky, Alexander

    2015-04-01

    Defining the logarithmic function as a definite integral with a variable upper limit, an approach used by some popular calculus textbooks, is problematic. We discuss the disadvantages of such a definition and provide a way to fix the problem. We also consider a definition-based, rigorous derivation of the derivative of the exponential function that is easier, more intuitive, and complies with the standard definitions of the number e, the logarithmic, and the exponential functions.

  5. Rethinking Economics and Education: Exponential Growth and Post-Growth Strategies

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Education is increasingly vocational and structured to serve the ongoing exponential increase in economic growth. Climate change is an outcome of these same economic values and praxes. Attempts to shift these values and our approach to technology are continually absorbed and overcome by the pressing motif of economic growth. In this article, Ruth…

  6. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.

    PubMed

    Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C

    2017-06-01

    The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.

  7. Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.

    2018-06-01

    Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.

  8. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.

    PubMed

    Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S

    2003-10-01

    Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.

  9. Count distribution for mixture of two exponentials as renewal process duration with applications

    NASA Astrophysics Data System (ADS)

    Low, Yeh Ching; Ong, Seng Huat

    2016-06-01

    A count distribution is presented by considering a renewal process where the distribution of the duration is a finite mixture of exponential distributions. This distribution is able to model over dispersion, a feature often found in observed count data. The computation of the probabilities and renewal function (expected number of renewals) are examined. Parameter estimation by the method of maximum likelihood is considered with applications of the count distribution to real frequency count data exhibiting over dispersion. It is shown that the mixture of exponentials count distribution fits over dispersed data better than the Poisson process and serves as an alternative to the gamma count distribution.

  10. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  11. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  12. Studies on the coupling transformer to improve the performance of microwave ion source.

    PubMed

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  13. Testing predictions of the quantum landscape multiverse 2: the exponential inflationary potential

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Mersini-Houghton, Laura

    2017-03-01

    The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search for a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.

  14. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  15. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels.

    PubMed

    Piao, Yongzhe; Chen, Biqiong

    2017-08-01

    Gelatin is an interesting biological macromolecule for biomedical applications. Here, double cross-linked gelatin nanocomposite hydrogels with incorporation of graphene oxide (GO) were synthesized in one pot using glutaraldehyde (GTA) and GTA-grafted GO as double chemical cross-linkers. The nanocomposite hydrogels, in contrast to the neat gelatin hydrogel, exhibited significant increases in mechanical properties by up to 288% in compressive strength, 195% in compressive modulus, 267% in compressive fracture energy and 160% shear storage modulus with the optimal GO concentration. Fourier transform infrared spectroscopy, scanning electron microscopy and swelling tests were implemented to characterize the nanocomposite hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  17. Poissonian renormalizations, exponentials, and power laws

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  18. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  19. C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase.

    PubMed

    Shields, Beverley M; McDonald, Timothy J; Oram, Richard; Hill, Anita; Hudson, Michelle; Leete, Pia; Pearson, Ewan R; Richardson, Sarah J; Morgan, Noel G; Hattersley, Andrew T

    2018-06-07

    The decline in C-peptide in the 5 years after diagnosis of type 1 diabetes has been well studied, but little is known about the longer-term trajectory. We aimed to examine the association between log-transformed C-peptide levels and the duration of diabetes up to 40 years after diagnosis. We assessed the pattern of association between urinary C-peptide/creatinine ratio (UCPCR) and duration of diabetes in cross-sectional data from 1,549 individuals with type 1 diabetes using nonlinear regression approaches. Findings were replicated in longitudinal follow-up data for both UCPCR ( n = 161 individuals, 326 observations) and plasma C-peptide ( n = 93 individuals, 473 observations). We identified two clear phases of C-peptide decline: an initial exponential fall over 7 years (47% decrease/year [95% CI -51%, -43%]) followed by a stable period thereafter (+0.07%/year [-1.3, +1.5]). The two phases had similar durations and slopes in patients above and below the median age at diagnosis (10.8 years), although levels were lower in the younger patients irrespective of duration. Patterns were consistent in both longitudinal UCPCR ( n = 162; ≤7 years duration: -48%/year [-55%, -38%]; >7 years duration -0.1% [-4.1%, +3.9%]) and plasma C-peptide ( n = 93; >7 years duration only: -2.6% [-6.7%, +1.5%]). These data support two clear phases of C-peptide decline: an initial exponential fall over a 7-year period, followed by a prolonged stabilization where C-peptide levels no longer decline. Understanding the pathophysiological and immunological differences between these two phases will give crucial insights into understanding β-cell survival. © 2018 by the American Diabetes Association.

  20. Composition driven monolayer to bilayer transformation in a surfactant intercalated Mg-Al layered double hydroxide.

    PubMed

    Naik, Vikrant V; Chalasani, Rajesh; Vasudevan, S

    2011-03-15

    The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)2, with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x ≥ 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of ∼27 Å. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of ∼8 Å. For the in between compositions, 0.2 ≤ x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.

  1. Double Your Major, Double Your Return?

    ERIC Educational Resources Information Center

    Del Rossi, Alison F.; Hersch, Joni

    2008-01-01

    We use the 2003 National Survey of College Graduates to provide the first estimates of the effect on earnings of having a double major. Overall, double majoring increases earnings by 2.3% relative to having a single major among college graduates without graduate degrees. Most of the gains from having a double major come from choosing fields across…

  2. The digital transformation of health care.

    PubMed

    Coile, R C

    2000-01-01

    The arrival of the Internet offers the opportunity to fundamentally reinvent medicine and health care delivery. The "e-health" era is nothing less than the digital transformation of the practice of medicine, as well as the business side of the health industry. Health care is only now arriving in the "Information Economy." The Internet is the next frontier of health care. Health care consumers are flooding into cyberspace, and an Internet-based industry of health information providers is springing up to serve them. Internet technology may rank with antibiotics, genetics, and computers as among the most important changes for medical care delivery. Utilizing e-health strategies will expand exponentially in the next five years, as America's health care executives shift to applying IS/IT (information systems/information technology) to the fundamental business and clinical processes of the health care enterprise. Internet-savvy physician executives will provide a bridge between medicine and management in the adoption of e-health technology.

  3. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  4. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  5. DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu

    2016-04-10

    A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochasticmore » approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.« less

  6. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    PubMed

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  7. Exponential bound in the quest for absolute zero

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  8. Exponential bound in the quest for absolute zero.

    PubMed

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  9. The double identity of linguistic doubling.

    PubMed

    Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered

    2016-11-29

    Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf < slafmak), but once doubling in form is systematically linked to meaning (e.g., slaf = ball, slaflaf = balls), the doubling aversion shifts into a reliable (morphological) preference. We next show that sign-naive speakers spontaneously project these principles to novel signs in American Sign Language, and their capacity to do so depends on the structure of their spoken language (English vs. Hebrew). These results demonstrate that linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.

  10. On exponentially suppressed corrections to BMPV black hole entropy

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Narayan, Prithvi

    2018-05-01

    The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

  11. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    PubMed

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    PubMed

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  13. Divalent cation mobility throughout exponential growth and sporulation of Bacillus megaterium.

    PubMed

    Krueger, W B; Kolodziej, B J

    1978-01-01

    Each of the five elements considered was taken up by Bacillus megaterium during exponential growth. Initial Mg and Mn uptake was rapid and ended by mid-log. For Ca, Fe, and Zn, uptake continued throughout exponential growth. Elements were released from the cells immediately following initial uptake. For Mn, egression continued to t2, with release of 36% of total accumulated. Secondary uptake followed immediately and continued through stage V. Magnesium egression continued to t1 with release of 33% accumulated. Secondary uptake began by t5 (stage IV) and continued slowly through sporulation. Calcium egression ceased by t4 with release of 25% total accumulated. Secondary uptake began by t6 (stage V) and continued until depleted. Zinc egression stopped by t5 with release of 34% accumulated with some secondary uptake by stage V. Iron egression terminated at t4 with release of 59% of total accumulated. This was followed by secondary uptake after t12 (stage VI).

  14. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  15. Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.

    1995-01-01

    The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.

  16. Optimization of factors influencing microinjection method for Agrobacterium tumefaciens-mediated transformation of tomato.

    PubMed

    Vinoth, S; Gurusaravanan, P; Jayabalan, N

    2013-02-01

    A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD(600) = 0.2-1.0). The germinated seeds were cocultivated in the MS medium fortified with (0-200 mM) acetosyringone and minimal concentrations of (0-20 mg L(-1)) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD(600) = 0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg L(-1) thidiazuron, 1.5 mg L(-1) indole-3-butyric acid, 30 mg L(-1) kanamycin, and 0-1.5 mg L(-1) adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques.

  17. Role of exponential apparent diffusion coefficient in characterizing breast lesions by 3.0 Tesla diffusion-weighted magnetic resonance imaging

    PubMed Central

    Kothari, Shweta; Singh, Archana; Das, Utpalendu; Sarkar, Diptendra K; Datta, Chhanda; Hazra, Avijit

    2017-01-01

    Objective: To evaluate the role of exponential apparent diffusion coefficient (ADC) as a tool for differentiating benign and malignant breast lesions. Patients and Methods: This prospective observational study included 88 breast lesions in 77 patients (between 18 and 85 years of age) who underwent 3T breast magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) using b-values of 0 and 800 s/mm2 before biopsy. Mean exponential ADC and ADC of benign and malignant lesions obtained from DWI were compared. Receiver operating characteristics (ROC) curve analysis was undertaken to identify any cut-off for exponential ADC and ADC to predict malignancy. P value of <0.05 was considered statistically significant. Histopathology was taken as the gold standard. Results: According to histopathology, 65 lesions were malignant and 23 were benign. The mean ADC and exponential ADC values of malignant lesions were 0.9526 ± 0.203 × 10−3 mm2/s and 0.4774 ± 0.071, respectively, and for benign lesions were 1.48 ± 0.4903 × 10−3 mm2/s and 0.317 ± 0.1152, respectively. For both the parameters, differences were highly significant (P < 0.001). Cut-off value of ≤0.0011 mm2/s (P < 0.0001) for ADC provided 92.3% sensitivity and 73.9% specificity, whereas with an exponential ADC cut-off value of >0.4 (P < 0.0001) for malignant lesions, 93.9% sensitivity and 82.6% specificity was obtained. The performance of ADC and exponential ADC in distinguishing benign and malignant breast lesions based on respective cut-offs was comparable (P = 0.109). Conclusion: Exponential ADC can be used as a quantitative adjunct tool for characterizing breast lesions with comparable sensitivity and specificity as that of ADC. PMID:28744085

  18. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  19. On the origin of non-exponential fluorescence decays in enzyme-ligand complex

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Jakub; Kierdaszuk, Borys

    2004-05-01

    Complex fluorescence decays have usually been analyzed with the aid of a multi-exponential model, but interpretation of the individual exponential terms has not been adequately characterized. In such cases the intensity decays were also analyzed in terms of the continuous lifetime distribution as a consequence of an interaction of fluorophore with environment, conformational heterogeneity or their dynamical nature. We show that non-exponential fluorescence decay of the enzyme-ligand complexes may results from time dependent energy transport. The latter, to our opinion, may be accounted for by electron transport from the protein tyrosines to their neighbor residues. We introduce the time-dependent hopping rate in the form v(t)~(a+bt)-1. This in turn leads to the luminescence decay function in the form I(t)=Ioexp(-t/τ1)(1+lt/γτ2)-γ. Such a decay function provides good fits to highly complex fluorescence decays. The power-like tail implies the time hierarchy in migration energy process due to the hierarchical energy-level structure. Moreover, such a power-like term is a manifestation of so called Tsallis nonextensive statistic and is suitable for description of the systems with long-range interactions, memory effect as well as with fluctuations of characteristic lifetime of fluorescence. The proposed decay function was applied in analysis of fluorescence decays of tyrosine protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate).

  20. Statistical transformation and the interpretation of inpatient glucose control data from the intensive care unit.

    PubMed

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B

    2014-05-01

    Glucose control can be problematic in critically ill patients. We evaluated the impact of statistical transformation on interpretation of intensive care unit inpatient glucose control data. Point-of-care blood glucose (POC-BG) data derived from patients in the intensive care unit for 2011 was obtained. Box-Cox transformation of POC-BG measurements was performed, and distribution of data was determined before and after transformation. Different data subsets were used to establish statistical upper and lower control limits. Exponentially weighted moving average (EWMA) control charts constructed from April, October, and November data determined whether out-of-control events could be identified differently in transformed versus nontransformed data. A total of 8679 POC-BG values were analyzed. POC-BG distributions in nontransformed data were skewed but approached normality after transformation. EWMA control charts revealed differences in projected detection of out-of-control events. In April, an out-of-control process resulting in the lower control limit being exceeded was identified at sample 116 in nontransformed data but not in transformed data. October transformed data detected an out-of-control process exceeding the upper control limit at sample 27 that was not detected in nontransformed data. Nontransformed November results remained in control, but transformation identified an out-of-control event less than 10 samples into the observation period. Using statistical methods to assess population-based glucose control in the intensive care unit could alter conclusions about the effectiveness of care processes for managing hyperglycemia. Further study is required to determine whether transformed versus nontransformed data change clinical decisions about the interpretation of care or intervention results. © 2014 Diabetes Technology Society.

  1. Statistical Transformation and the Interpretation of Inpatient Glucose Control Data From the Intensive Care Unit

    PubMed Central

    Saulnier, George E.; Castro, Janna C.

    2014-01-01

    Glucose control can be problematic in critically ill patients. We evaluated the impact of statistical transformation on interpretation of intensive care unit inpatient glucose control data. Point-of-care blood glucose (POC-BG) data derived from patients in the intensive care unit for 2011 was obtained. Box–Cox transformation of POC-BG measurements was performed, and distribution of data was determined before and after transformation. Different data subsets were used to establish statistical upper and lower control limits. Exponentially weighted moving average (EWMA) control charts constructed from April, October, and November data determined whether out-of-control events could be identified differently in transformed versus nontransformed data. A total of 8679 POC-BG values were analyzed. POC-BG distributions in nontransformed data were skewed but approached normality after transformation. EWMA control charts revealed differences in projected detection of out-of-control events. In April, an out-of-control process resulting in the lower control limit being exceeded was identified at sample 116 in nontransformed data but not in transformed data. October transformed data detected an out-of-control process exceeding the upper control limit at sample 27 that was not detected in nontransformed data. Nontransformed November results remained in control, but transformation identified an out-of-control event less than 10 samples into the observation period. Using statistical methods to assess population-based glucose control in the intensive care unit could alter conclusions about the effectiveness of care processes for managing hyperglycemia. Further study is required to determine whether transformed versus nontransformed data change clinical decisions about the interpretation of care or intervention results. PMID:24876620

  2. AN EMPIRICAL FORMULA FOR THE DISTRIBUTION FUNCTION OF A THIN EXPONENTIAL DISC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sanjib; Bland-Hawthorn, Joss

    2013-08-20

    An empirical formula for a Shu distribution function that reproduces a thin disc with exponential surface density to good accuracy is presented. The formula has two free parameters that specify the functional form of the velocity dispersion. Conventionally, this requires the use of an iterative algorithm to produce the correct solution, which is computationally taxing for applications like Markov Chain Monte Carlo model fitting. The formula has been shown to work for flat, rising, and falling rotation curves. Application of this methodology to one of the Dehnen distribution functions is also shown. Finally, an extension of this formula to reproducemore » velocity dispersion profiles that are an exponential function of radius is also presented. Our empirical formula should greatly aid the efficient comparison of disc models with large stellar surveys or N-body simulations.« less

  3. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  4. Efficient option valuation of single and double barrier options

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin

    2017-12-01

    In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.

  5. Studies in Dialogue and Discourse: An Exponential Law of Successive Questioning

    ERIC Educational Resources Information Center

    Mishler, Elliot G.

    1975-01-01

    The structure of natural conversations in first-grade classrooms is the focus of this inquiry. Analyses of a particular type of discourse, namely, connected conversations initiated and sustained by questioning, suggest that the probability that a conversation will be continued may be expressed as a simple exponential function. (Author/RM)

  6. Recurrence formulas for fully exponentially correlated four-body wave functions

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.

    2009-03-01

    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.

  7. Exponential Family Functional data analysis via a low-rank model.

    PubMed

    Li, Gen; Huang, Jianhua Z; Shen, Haipeng

    2018-05-08

    In many applications, non-Gaussian data such as binary or count are observed over a continuous domain and there exists a smooth underlying structure for describing such data. We develop a new functional data method to deal with this kind of data when the data are regularly spaced on the continuous domain. Our method, referred to as Exponential Family Functional Principal Component Analysis (EFPCA), assumes the data are generated from an exponential family distribution, and the matrix of the canonical parameters has a low-rank structure. The proposed method flexibly accommodates not only the standard one-way functional data, but also two-way (or bivariate) functional data. In addition, we introduce a new cross validation method for estimating the latent rank of a generalized data matrix. We demonstrate the efficacy of the proposed methods using a comprehensive simulation study. The proposed method is also applied to a real application of the UK mortality study, where data are binomially distributed and two-way functional across age groups and calendar years. The results offer novel insights into the underlying mortality pattern. © 2018, The International Biometric Society.

  8. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen

    2017-05-01

    Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.

  9. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Ekadashi; Brown, Alex, E-mail: alex.brown@ualberta.ca

    2016-05-07

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm{sup −1}) up to 10 000 cm{sup −1} above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxationmore » with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm{sup −1} above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.« less

  10. Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth

    NASA Technical Reports Server (NTRS)

    Revenaugh, Justin; Parsons, Barry

    1987-01-01

    Adopting the formalism of Parsons and Daly (1983), analytical integral equations (Green's function integrals) are derived which relate gravity anomalies and dynamic boundary topography with temperature as a function of wavenumber for a fluid layer whose viscosity varies exponentially with depth. In the earth, such a viscosity profile may be found in the asthenosphere, where the large thermal gradient leads to exponential decrease of viscosity with depth, the effects of a pressure increase being small in comparison. It is shown that, when viscosity varies rapidly, topography kernels for both the surface and bottom boundaries (and hence the gravity kernel) are strongly affected at all wavelengths.

  11. Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chander, Ravi, E-mail: rcohri@yahoo.com

    2015-05-15

    Thin films of Sn-Sb-Se-Te (8 ≤ x ≤ 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements ofmore » annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.« less

  12. Computation of a spectrum from a single-beam fourier-transform infrared interferogram.

    PubMed

    Ben-David, Avishai; Ifarraguerri, Agustin

    2002-02-20

    A new high-accuracy method has been developed to transform asymmetric single-sided interferograms into spectra. We used a fraction (short, double-sided) of the recorded interferogram and applied an iterative correction to the complete recorded interferogram for the linear part of the phase induced by the various optical elements. Iterative phase correction enhanced the symmetry in the recorded interferogram. We constructed a symmetric double-sided interferogram and followed the Mertz procedure [Infrared Phys. 7,17 (1967)] but with symmetric apodization windows and with a nonlinear phase correction deduced from this double-sided interferogram. In comparing the solution spectrum with the source spectrum we applied the Rayleigh resolution criterion with a Gaussian instrument line shape. The accuracy of the solution is excellent, ranging from better than 0.1% for a blackbody spectrum to a few percent for a complicated atmospheric radiance spectrum.

  13. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    NASA Astrophysics Data System (ADS)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  14. Studies on the coupling transformer to improve the performance of microwave ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Anuraag, E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on themore » transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.« less

  15. Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.

    ERIC Educational Resources Information Center

    Mandell, Marvin B.; Bretschneider, Stuart I.

    1984-01-01

    The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)

  16. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  17. Research on the exponential growth effect on network topology: Theoretical and empirical analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; You, Zongjun

    Integrated circuit (IC) industry network has been built in Yangtze River Delta with the constant expansion of IC industry. The IC industry network grows exponentially with the establishment of new companies and the establishment of contacts with old firms. Based on preferential attachment and exponential growth, the paper presents the analytical results in which the vertices degree of scale-free network follows power-law distribution p(k)˜k‑γ (γ=2β+1) and parameter β satisfies 0.5≤β≤1. At the same time, we find that the preferential attachment takes place in a dynamic local world and the size of the dynamic local world is in direct proportion to the size of whole networks. The paper also gives the analytical results of no-preferential attachment and exponential growth on random networks. The computer simulated results of the model illustrate these analytical results. Through some investigations on the enterprises, this paper at first presents the distribution of IC industry, composition of industrial chain and service chain firstly. Then, the correlative network and its analysis of industrial chain and service chain are presented. The correlative analysis of the whole IC industry is also presented at the same time. Based on the theory of complex network, the analysis and comparison of industrial chain network and service chain network in Yangtze River Delta are provided in the paper.

  18. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  19. Exponential stability preservation in semi-discretisations of BAM networks with nonlinear impulses

    NASA Astrophysics Data System (ADS)

    Mohamad, Sannay; Gopalsamy, K.

    2009-01-01

    This paper demonstrates the reliability of a discrete-time analogue in preserving the exponential convergence of a bidirectional associative memory (BAM) network that is subject to nonlinear impulses. The analogue derived from a semi-discretisation technique with the value of the time-step fixed is treated as a discrete-time dynamical system while its exponential convergence towards an equilibrium state is studied. Thereby, a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency is obtained for the convergence. As special cases, one can obtain from our results, those corresponding to the non-impulsive discrete-time BAM networks and also those corresponding to continuous-time (impulsive and non-impulsive) systems. A relation between the Lyapunov exponent of the non-impulsive system and that of the impulsive system involving the size of the impulses and the inter-impulse intervals is obtained.

  20. Double Magnetic Reconnection Driven by Kelvin-Helmholtz Vortices

    NASA Astrophysics Data System (ADS)

    Horton, W., Jr.; Faganello, M.; Califano, F.; Pegoraro, F.

    2017-12-01

    Simulations and theory for the solar wind driven magnetic reconnection in the flanks of the magnetopause is shown to be intrinsically 3D with the secular growth of couple pairs of reconnection regions off the equatorial plane. We call the process double mid-latitude reconnection and show supporting 3D simulations and theory descripting the secular growth of the magnetic reconnection with the resulting mixing of the solar wind plasma with the magnetosphere plasma. The initial phase develops Kelvin-Helmholtz vortices at low-latitude and, through the propagation of Alfven waves far from the region where the stresses are generated, creates a standard quasi-2D low latitude boundary layer magnetic reconnection but off the equatorial plane and with a weak guide field component. The reconnection exponential growth is followed by a secularly growing nonlinear phase that gradually closes the solar wind field lines on the Earth. The nonlinear field line structure provides a channel for penetration of the SW plasma into the MS as observed by spacecraft [THEMIS and Cluster]. The simulations show the amount of solar wind plasma brought into the magnetosphere by tracing the time evolution of the areas corresponding to double reconnected field lines with Poincare maps. The results for the solar wind plasma brought into the magnetosphere seems consistent with the observed plasma transport. Finally, we have shown how the intrinsic 3D nature of the doubly reconnected magnetic field lines leads to the generation of twisted magnetic spatial structures that differ from the quasi-2D magnetic islands structures.

  1. An exponentiation method for XML element retrieval.

    PubMed

    Wichaiwong, Tanakorn

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.

  2. The mechanism of transforming diamond nanowires to carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Sorkin, Anastassia; Su, Haibin

    2014-01-01

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of <100> and <111> oriented cross-section with projected average line density between 7 and 20 atoms Å-1 transform into carbon nanotubes (CNTs) under gradual heating up to 3500-4000 K. DNWs with projected average line density larger than 25 atoms Å-1 transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with \\langle \\bar {2}1 1\\rangle oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with ‘nano-bookshelf’ shape emerges: a number of graphene ‘shelves’ located inside the CNT, bonding to the CNT walls with sp3 hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways.

  3. The mechanism of transforming diamond nanowires to carbon nanostructures.

    PubMed

    Sorkin, Anastassia; Su, Haibin

    2014-01-24

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of {100} and {111} oriented cross-section with projected average line density between 7 and 20 atoms Å(-1) transform into carbon nanotubes (CNTs) under gradual heating up to 3500-4000 K. DNWs with projected average line density larger than 25 atoms Å(-1) transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with [Formula: see text] oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with 'nano-bookshelf' shape emerges: a number of graphene 'shelves' located inside the CNT, bonding to the CNT walls with sp(3) hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3,000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways.

  4. A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia.

    PubMed

    Lattar, Santiago M; Wu, Xueqing; Brophy, Jennifer; Sakai, Fuminori; Klugman, Keith P; Vidal, Jorge E

    2018-05-15

    Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2 Tet and S4 Str in a bioreactor simulating the human nasopharynx led to the generation of Spn Tet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10 -4 while peaking after 8 h at a rF of 1.1 × 10 -3 Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2 Tet/Str ) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4 Str and S19F Tmp ) were incubated together, leading to S19F Str/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10 -6 ). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. IMPORTANCE Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants

  5. Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization.

    PubMed

    Yuan, Peipei; Cao, Weijia; Wang, Zhen; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2015-07-01

    Nitrogen source optimization combined with phased exponential L-tyrosine feeding was employed to enhance L-phenylalanine production by a tyrosine-auxotroph strain, Escherichia coli YP1617. The absence of (NH4)2SO4, the use of corn steep powder and yeast extract as composite organic nitrogen source were more suitable for cell growth and L-phenylalanine production. Moreover, the optimal initial L-tyrosine level was 0.3 g L(-1) and exponential L-tyrosine feeding slightly improved L-phenylalanine production. Nerveless, L-phenylalanine production was greatly enhanced by a strategy of phased exponential L-tyrosine feeding, where exponential feeding was started at the set specific growth rate of 0.08, 0.05, and 0.02 h(-1) after 12, 32, and 52 h, respectively. Compared with exponential L-tyrosine feeding at the set specific growth rate of 0.08 h(-1), the developed strategy obtained a 15.33% increase in L-phenylalanine production (L-phenylalanine of 56.20 g L(-1)) and a 45.28% decrease in L-tyrosine supplementation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  7. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    NASA Astrophysics Data System (ADS)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  8. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells.

    PubMed

    Buschmann, H; Green, P; Sambade, A; Doonan, J H; Lloyd, C W

    2011-04-01

    Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  9. Determination of the direction to a source of antineutrinos via inverse beta decay in Double Chooz

    NASA Astrophysics Data System (ADS)

    Nikitenko, Ya.

    2016-11-01

    To determine the direction to a source of neutrinos (and antineutrinos) is an important problem for the physics of supernovae and of the Earth. The direction to a source of antineutrinos can be estimated through the reaction of inverse beta decay. We show that the reactor neutrino experiment Double Chooz has unique capabilities to study antineutrino signal from point-like sources. Contemporary experimental data on antineutrino directionality is given. A rigorous mathematical approach for neutrino direction studies has been developed. Exact expressions for the precision of the simple mean estimator of neutrinos' direction for normal and exponential distributions for a finite sample and for the limiting case of many events have been obtained.

  10. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.

    PubMed

    Déjardin, P

    2013-08-30

    The flow conditions in normal mode asymmetric flow field-flow fractionation are determined to approach the high retention limit with the requirement d≪l≪w, where d is the particle diameter, l the characteristic length of the sample exponential distribution and w the channel height. The optimal entrance velocity is determined from the solute characteristics, the channel geometry (exponential to rectangular) and the membrane properties, according to a model providing the velocity fields all over the cell length. In addition, a method is proposed for in situ determination of the channel height. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    PubMed

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  12. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  13. Double Charge Exchange Reactions and Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  14. The Negative Sign and Exponential Expressions: Unveiling Students' Persistent Errors and Misconceptions

    ERIC Educational Resources Information Center

    Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly

    2013-01-01

    The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…

  15. Growth of Juniperus and Potentilla using Liquid Exponential and Controlled-release Fertilizers

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. 'Gold Drop (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as...

  16. A Fourier method for the analysis of exponential decay curves.

    PubMed

    Provencher, S W

    1976-01-01

    A method based on the Fourier convolution theorem is developed for the analysis of data composed of random noise, plus an unknown constant "base line," plus a sum of (or an integral over a continuous spectrum of) exponential decay functions. The Fourier method's usual serious practical limitation of needing high accuracy data over a very wide range is eliminated by the introduction of convergence parameters and a Gaussian taper window. A computer program is described for the analysis of discrete spectra, where the data involves only a sum of exponentials. The program is completely automatic in that the only necessary inputs are the raw data (not necessarily in equal intervals of time); no potentially biased initial guesses concerning either the number or the values of the components are needed. The outputs include the number of components, the amplitudes and time constants together with their estimated errors, and a spectral plot of the solution. The limiting resolving power of the method is studied by analyzing a wide range of simulated two-, three-, and four-component data. The results seem to indicate that the method is applicable over a considerably wider range of conditions than nonlinear least squares or the method of moments.

  17. Infinite-disorder critical points of models with stretched exponential interactions

    NASA Astrophysics Data System (ADS)

    Juhász, Róbert

    2014-09-01

    We show that an interaction decaying as a stretched exponential function of distance, J(l)˜ e-cl^a , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.

  18. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  19. Theoretical analysis of exponential transversal method of lines for the diffusion equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, A.; Raydan, M.; Campo, A.

    1996-12-31

    Recently a new approximate technique to solve the diffusion equation was proposed by Campo and Salazar. This new method is inspired on the Method of Lines (MOL) with some insight coming from the method of separation of variables. The proposed method, the Exponential Transversal Method of Lines (ETMOL), utilizes an exponential variation to improve accuracy in the evaluation of the time derivative. Campo and Salazar have implemented this method in a wide range of heat/mass transfer applications and have obtained surprisingly good numerical results. In this paper, the authors study the theoretical properties of ETMOL in depth. In particular, consistency,more » stability and convergence are established in the framework of the heat/mass diffusion equation. In most practical applications the method presents a very reduced truncation error in time and its different versions are proven to be unconditionally stable in the Fourier sense. Convergence of the solutions is then established. The theory is corroborated by several analytical/numerical experiments.« less

  20. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  1. Karyotyping of Transformed Human Epithelial Cells from Exposures of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit

    2013-01-01

    It is most likely that the untreated transformed single clone (clone #2) cell undergoes unequal segregation of chromosome in two daughter cell that result in 94 chromosome during mitosis, particularly in anaphase stage. Chromosome aberration observed. I. Breakage of part of chromosome 7. II. One additional number of chromosome 8 instead of the total chromosome can only be explained by early abnormal cell division. III. Complete lost of chromosome and translocation and fusion of chromosome 3 and X-chromosome. IV. Our result for translocation and fusion of chromosome 3 and X- Chromosome is conformed by mBAND pattern. There is no different between the transformed parental cell and the single cloned transformed cell. Both harbor the chromosome 5 and 16 translocation and both harbor has the trisomy chromosome 20. Transformed cells may have the number of chromosomes greater or less than 46. Doubling of chromosome numbers is a signature of tumor. Chromosomal aberration was observed on HBEC-3kt non-irradiated-soft agar (Clone #2) sample, and indication of chromosome instability in the tumor development process.

  2. Exponential Modelling for Mutual-Cohering of Subband Radar Data

    NASA Astrophysics Data System (ADS)

    Siart, U.; Tejero, S.; Detlefsen, J.

    2005-05-01

    Increasing resolution and accuracy is an important issue in almost any type of radar sensor application. However, both resolution and accuracy are strongly related to the available signal bandwidth and energy that can be used. Nowadays, often several sensors operating in different frequency bands become available on a sensor platform. It is an attractive goal to use the potential of advanced signal modelling and optimization procedures by making proper use of information stemming from different frequency bands at the RF signal level. An important prerequisite for optimal use of signal energy is coherence between all contributing sensors. Coherent multi-sensor platforms are greatly expensive and are thus not available in general. This paper presents an approach for accurately estimating object radar responses using subband measurements at different RF frequencies. An exponential model approach allows to compensate for the lack of mutual coherence between independently operating sensors. Mutual coherence is recovered from the a-priori information that both sensors have common scattering centers in view. Minimizing the total squared deviation between measured data and a full-range exponential signal model leads to more accurate pole angles and pole magnitudes compared to single-band optimization. The model parameters (range and magnitude of point scatterers) after this full-range optimization process are also more accurate than the parameters obtained from a commonly used super-resolution procedure (root-MUSIC) applied to the non-coherent subband data.

  3. The Pre-exponential Factor in Electrochemistry.

    PubMed

    He, Zheng-Da; Chen, Yan-Xia; Santos, Elizabeth; Schmickler, Wolfgang

    2018-07-02

    Like many branches of science, not to mention culture in general, electrochemistry has a number of recurring topics: Areas of research that are popular for a certain time, then fade away as their possibilities seem to have been exhausted, only to return decades later as progress in experimental or theoretical techniques offer new possibilities for their investigation. A prime example are fuel cells, which have undergone five such cycles, but here we discuss a general concept of kinetics-the pre-exponential factor of a rate constant-which has undergone two such cycles. The first cycle was in the 1950-1980s, when the methods of electrochemical kinetics were developed, and the interpretation was based on transition-state theory. The second was triggered by the re-discovery of Kramers theory for reactions in condensed phases. This Minireview will show that the time has come for a third cycle based on recent progress in electrocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and adsorption properties of flower-like layered double hydroxide by a facile one-pot reaction with an eggshell membrane as assistant

    NASA Astrophysics Data System (ADS)

    Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying

    In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.

  5. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However,more » cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.« less

  6. Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.; Kwon, K. H.

    2001-07-01

    Given a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (-1,1).

  7. Exponentially accurate approximations to piece-wise smooth periodic functions

    NASA Technical Reports Server (NTRS)

    Greer, James; Banerjee, Saheb

    1995-01-01

    A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.

  8. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  9. GF-3 SAR Image Despeckling Based on the Improved Non-Local Means Using Non-Subsampled Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Shi, R.; Sun, Z.

    2018-04-01

    GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.

  10. An Exponentiation Method for XML Element Retrieval

    PubMed Central

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP. PMID:24696643

  11. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  12. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  13. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  14. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl 6

    DOE PAGES

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl 6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl 3 and RbZnCl 3) forming the double perovskite exhibit a stark contrast. While CsCaCl 3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl 3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We showmore » that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl 6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  15. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  16. A fractal process of hydrogen diffusion in a-Si:H with exponential energy distribution

    NASA Astrophysics Data System (ADS)

    Hikita, Harumi; Ishikawa, Hirohisa; Morigaki, Kazuo

    2017-04-01

    Hydrogen diffusion in a-Si:H with exponential distribution of the states in energy exhibits the fractal structure. It is shown that a probability P(t) of the pausing time t has a form of tα (α: fractal dimension). It is shown that the fractal dimension α = Tr/T0 (Tr: hydrogen temperature, T0: a temperature corresponding to the width of exponential distribution of the states in energy) is in agreement with the Hausdorff dimension. A fractal graph for the case of α ≤ 1 is like the Cantor set. A fractal graph for the case of α > 1 is like the Koch curves. At α = ∞, hydrogen migration exhibits Brownian motion. Hydrogen diffusion in a-Si:H should be the fractal process.

  17. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-01

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  18. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-14

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  19. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  20. Numerical analysis of spectral properties of coupled oscillator Schroedinger operators. I - Single and double well anharmonic oscillators

    NASA Technical Reports Server (NTRS)

    Isaacson, D.; Isaacson, E. L.; Paes-Leme, P. J.; Marchesin, D.

    1981-01-01

    Several methods for computing many eigenvalues and eigenfunctions of a single anharmonic oscillator Schroedinger operator whose potential may have one or two minima are described. One of the methods requires the solution of an ill-conditioned generalized eigenvalue problem. This method has the virtue of using a bounded amount of work to achieve a given accuracy in both the single and double well regions. Rigorous bounds are given, and it is proved that the approximations converge faster than any inverse power of the size of the matrices needed to compute them. The results of computations for the g:phi(4):1 theory are presented. These results indicate that the methods actually converge exponentially fast.

  1. The Exponential Expansion of Simulation: How Simulation has Grown as a Research Tool

    DTIC Science & Technology

    2012-09-01

    exponential growth of computing power. Although other analytic approaches also benefit from this trend, keyword searches of several scholarly search ... engines reveal that the reliance on simulation is increasing more rapidly. A descriptive analysis paints a compelling picture: simulation is frequently

  2. Double aortic arch

    MedlinePlus

    Aortic arch anomaly; Double arch; Congenital heart defect - double aortic arch; Birth defect heart - double aortic arch ... aorta is a single arch that leaves the heart and moves leftward. In double aortic arch, some ...

  3. s-Ordered Exponential of Quadratic Forms Gained via IWSOP Technique

    NASA Astrophysics Data System (ADS)

    Bazrafkan, M. R.; Shähandeh, F.; Nahvifard, E.

    2012-11-01

    Using the generalized bar{s}-ordered Wigner operator, in which bar{s} is a vector over the field of complex numbers, the technique of integration within an s-ordered product of operators (IWSOP) has been extended to multimode case. We derive the bar{s}-ordered form of the widely applicable multimode exponential of quadratic form exp\\{sum_{i,j = 1}n ai^{dag}\\varLambda_{ij}{aj}\\} , each mode being in some particular order s i , applying this method.

  4. Exponential protection of zero modes in Majorana islands.

    PubMed

    Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M

    2016-03-10

    Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.

  5. The Transformations of Transformations.

    ERIC Educational Resources Information Center

    Lin, Francis Y.

    2000-01-01

    Harris's original idea of transformations has been changed several times in Chomsky's work. This article explicates these transformations, arguing that though their motivations are highly understandable, these transformations are not necessary for understanding the workings of natural languages. (Author/VWL)

  6. Transformational Learners: Transformational Teachers

    ERIC Educational Resources Information Center

    Jones, Marguerite

    2009-01-01

    Transformational learning, according to Mezirow (1981), involves transforming taken-for-granted frames of reference into more discriminating, flexible "habits of mind". In teacher education, transformative learning impacts on the development of students' action theories, self-efficacy and professional attributes. Although considered…

  7. A demographic study of the exponential distribution applied to uneven-aged forests

    Treesearch

    Jeffrey H. Gove

    2016-01-01

    A demographic approach based on a size-structured version of the McKendrick-Von Foerster equation is used to demonstrate a theoretical link between the population size distribution and the underlying vital rates (recruitment, mortality and diameter growth) for the population of individuals whose diameter distribution is negative exponential. This model supports the...

  8. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  9. Mean Excess Function as a method of identifying sub-exponential tails: Application to extreme daily rainfall

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Papalexiou, Simon Michael

    2017-04-01

    Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.

  10. Practical pulse engineering: Gradient ascent without matrix exponentiation

    NASA Astrophysics Data System (ADS)

    Bhole, Gaurav; Jones, Jonathan A.

    2018-06-01

    Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

  11. Development of Toroidal Core Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Leon, Francisco

    25 kVA transformer passed the impulse test in KEMA high-voltage laboratories. Additional products include: nine papers published in the IEEE Transactions on Power Delivery, one patent has been filed, three PhD students were supported from beginning to graduation, five postdoctoral fellows, and three MSc students were partially supported. The electrical characteristics of our dry-type toroidal transformers are similar to those of the oil-immersed pole mounted transformers currently in use by many utilities, but toroids have higher efficiency. The no-load losses of the 50 kVA prototype are only 45 W. A standard transformer has no-load losses between 90 and 240 W. Thus, even the finest transformer built today with standard technology has double the amount of no-load losses than the prototype toroidal transformer. When the manufacturing process is prepared for mass production, the cost of a dry-type toroidal transformer would be similar to the price of an oil-filed standard design. However, because of the greatly reduced losses, the total ownership cost of a toroidal transformer could be about half of a traditional design. We got a grant from Power Bridge NY in the amount of $149,985 from June 2014 to May 2015 to continue developing the transformer with commercialization objectives. We are considering the possibility to incorporate a company to manufacture the transformers and have contacted investors. The current status of the real life testing is as follows: after several months of silence, Con Edison has re-started conversations and has shown willingness to test the transformer. Other companies, PSE&G and National Grid have recently also shown interest and we will present our product to them soon.« less

  12. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    PubMed Central

    Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha

    2018-01-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375

  13. A gamma variate model that includes stretched exponential is a better fit for gastric emptying data from mice

    PubMed Central

    Bajzer, Željko; Gibbons, Simon J.; Coleman, Heidi D.; Linden, David R.

    2015-01-01

    Noninvasive breath tests for gastric emptying are important techniques for understanding the changes in gastric motility that occur in disease or in response to drugs. Mice are often used as an animal model; however, the gamma variate model currently used for data analysis does not always fit the data appropriately. The aim of this study was to determine appropriate mathematical models to better fit mouse gastric emptying data including when two peaks are present in the gastric emptying curve. We fitted 175 gastric emptying data sets with two standard models (gamma variate and power exponential), with a gamma variate model that includes stretched exponential and with a proposed two-component model. The appropriateness of the fit was assessed by the Akaike Information Criterion. We found that extension of the gamma variate model to include a stretched exponential improves the fit, which allows for a better estimation of T1/2 and Tlag. When two distinct peaks in gastric emptying are present, a two-component model is required for the most appropriate fit. We conclude that use of a stretched exponential gamma variate model and when appropriate a two-component model will result in a better estimate of physiologically relevant parameters when analyzing mouse gastric emptying data. PMID:26045615

  14. Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wen-Rong; Tian, Bo, E-mail: tian_bupt@163.com; Jiang, Yan

    2014-04-15

    Plasmas are the main constituent of the Universe and the cause of a vast variety of astrophysical, space and terrestrial phenomena. The inhomogeneous nonlinear Schrödinger equation is hereby investigated, which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping. By virtue of the double Wronskian identities, the equation is proved to possess the double-Wronskian soliton solutions. Analytic one- and two-soliton solutions are discussed. Amplitude and velocity of the soliton are related to the damping coefficient. Asymptotic analysis is applied for us tomore » investigate the interaction between the two solitons. Overtaking interaction, head-on interaction and bound state of the two solitons are given. From the non-zero potential Lax pair, the first- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation, and influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed. -- Highlights: •Double-Wronskian soliton solutions are obtained and proof is finished by virtue of some double Wronskian identities. •Asymptotic analysis is applied for us to investigate the interaction between the two solitons. •First- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation. •Influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed.« less

  15. Critical Mutation Rate Has an Exponential Dependence on Population Size in Haploid and Diploid Populations

    PubMed Central

    Aston, Elizabeth; Channon, Alastair; Day, Charles; Knight, Christopher G.

    2013-01-01

    Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has

  16. Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy

    PubMed Central

    Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.

    2015-01-01

    This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857

  17. Infrared/Terahertz Double Resonance for Chemical Remote Sensing: Signatures and Performance Predictions

    DTIC Science & Technology

    2011-01-01

    remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2

  18. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.

    PubMed

    Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran

    2017-06-01

    Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fast self contained exponential random deviate algorithm

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.

    1997-03-01

    An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.

  20. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.