Science.gov

Sample records for double hydroxide ldh

  1. Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution.

    PubMed

    Fang-qun, Gan; Jian-min, Zhou; Huo-yan, Wang; Hong-ting, Zhao

    2011-01-01

    In this study, a composite adsorbent, layered double hydroxide (LDH)-coated attapulgite (LDH-AP), was synthesized and characterized. Its potential application for LDH stabilizer and phosphate (P) removal from aqueous solution was evaluated using the batch mode and continuous mode in a packed bed column. The batch experiments revealed that the data of P adsorption onto LDH-AP could be well described by the Freundlich equation, and the maximum adsorption capacity was estimated to be 6.9 mg/g. The column experiments were conducted in the tap water and the results indicated that the competing anions could slightly decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L of NaOH and the regenerated column was examined for its reuse in phosphate removal. The results of this study suggested that attapulgite could be used as an applicable stabilizer of LDH and LDH-AP could be potentially used as a promising filtration medium for phosphate removal. PMID:22156122

  2. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    SciTech Connect

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.; Rives, V.

    2011-11-15

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.

  3. Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Part 1. Optimization and controlled synthesis of chloride-intercalated LDH.

    PubMed

    Sun, Xiaodi; Neuperger, Erica; Dey, Sandwip K

    2015-12-01

    Layered double hydroxide (LDH) nanoparticles have excellent anion-intercalating property, and their potential as theranostic nanovectors is high. However, understanding of the control of the mean particle size (MPS) and achievement of monodispersed particle size distribution (PSD) remains elusive. Herein, with the aid of statistical design of experiments on a model system of Cl(-)-intercalated (Zn, Al)-LDH, controlled synthesis of single crystalline nanoparticles using the coprecipitation method followed by hydrothermal treatment (HT) was achieved in three steps. First, a 2(4-1) design enabled the identification of influential parameters for MPS (i.e., salt concentration, molar ratio of carbonate to aluminum, solution addition rate, and interaction between salt concentration and stirring rate) and PSD (i.e., salt concentration and stirring rate), as well as the optimum coprecipitation conditions that result in a monodispersed PSD (i.e., low salt concentration and high stirring rate). Second, a preliminary explanation of the HT was suggested and the optimum HT conditions for obtaining ideal Gaussian PSD with chi-squared (χ(2))<3 were found to be 85°C for 5 h. Third, using a central composite design, a quantitative MPS model, expressed in terms of the significant factors, was developed and experimentally verified to synthesize nearly monodispersed LDH nanoparticles with MPS ∼200-500 nm. PMID:26301838

  4. Composition and structure of an iron-bearing, layered double hydroxide (LDH) - Green rust sodium sulphate

    NASA Astrophysics Data System (ADS)

    Christiansen, B. C.; Balic-Zunic, T.; Petit, P.-O.; Frandsen, C.; Mørup, S.; Geckeis, H.; Katerinopoulou, A.; Stipp, S. L. Svane

    2009-06-01

    Mixed-valent Fe(II),Fe(III)-layered hydroxide, known as green rust, was synthesized from slightly basic, sodium sulphate solutions in an oxygen-free glove box. Solution conditions were monitored with pH and Eh electrodes and optimized to ensure a pure sulphate green-rust phase. The solid was characterised using Mössbauer spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. The composition of the solution from which the green rust precipitated was established by mass and absorption spectroscopy. The sulphate form of green rust is composed of brucite-like layers with Fe(II) and Fe(III) in an ordered distribution. The interlayers contain sulphate, water and sodium in an arrangement characteristic for the nikischerite group. The crystal structure is highly disordered by stacking faults. The composition, formula and crystallographic parameters are: NaFe(II) 6Fe(III) 3(SO 4) 2(OH) 18·12H 2O, space group P-3, a = 9.528(6) Å, c = 10.968(8) Å and Z = 1. Green rust sodium sulphate, GR, crystallizes in thin, hexagonal plates. Particles range from less than 50 nm to 2 μm in diameter and are 40 nm thick or less. The material is redox active and reaction rates are fast. Extremely small particle size and high surface area contribute to rapid oxidation, transforming green rust to an Fe(III)-phase within minutes.

  5. Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO₂) and its application in drug delivery.

    PubMed

    Bao, Haifeng; Yang, Jianping; Huang, Yan; Xu, Zhi Ping; Hao, Na; Wu, Zhangxiong; Lu, Gao Qing Max; Zhao, Dongyuan

    2011-10-01

    We demonstrate an efficient synthesis of novel layered double hydroxide mesoporous silica core-shell nanostructures (LDH@mSiO(2)) that have a hexagonal MgAl-LDH nanoplate core and an ordered mesoporous silica shell with perpendicularly oriented channels via a surfactant-templating method. Transmission electron microscopy, X-ray diffraction and N(2) sorption analyses confirmed that the obtained nanostructures have uniform accessible mesopores (∼2.2 nm), high surface area (∼430 m(2) g(-1)), and large pore volume (∼0.22 cm(3) g(-1)). Investigations of drug release and bio-imaging showed that this material has a slow release effect of ibuprofen and good biocompatibility. This work provides an economical approach to fabricate LDH@mSiO(2) core-shell nanostructures, which may have great potential in broad drug delivery and hyperthermia therapy applications.

  6. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: preparation and characterization of dye structure-intercalated LDH and its effect on the flammability of polypropylene-grafted maleic anhydride/d-LDH composites.

    PubMed

    Kang, Nian-Jun; Wang, De-Yi; Kutlu, Burak; Zhao, Peng-Cheng; Leuteritz, Andreas; Wagenknecht, Udo; Heinrich, Gert

    2013-09-25

    Dye structure-intercalated layered double hydroxide (d-LDH) was synthesized using a one-step method, and its intercalated behaviors have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray scattering (WAXS), scanning electron microscopy, thermogravimetric analysis (TGA), etc. As a novel functional potential fire-retarding nanofiller, it was used to prepare a polypropylene-grafted maleic anhydride (PP-g-MA)/d-LDH composite by refluxing the mixture of d-LDH and PP-g-MA in xylene, aiming to investigate its effect on the flammability of the PP-g-MA composite. The morphological properties, thermal stability, and flame retardant properties of the PP-g-MA/d-LDH composite were determined by FTIR, WAXS, transmission electron microscopy, TGA, and microscale combustion calorimetry. Compared with NO3-LDH (unmodified LDH) and LDH intercalated by sodium dodecylbenzenesulfonate (conventional organo-modified LDH), d-LDH can significantly decrease the heat release rate and the total heat release of the PP-g-MA composite, offering a new approach to imparting low flammability to LDH-based polymer composites.

  7. Highly biocompatible behaviour and slow degradation of a LDH (layered double hydroxide)-coating on implants in the middle ear of rabbits.

    PubMed

    Duda, Franziska; Kieke, Marc; Waltz, Florian; Schweinefuß, Maria E; Badar, Muhammad; Müller, Peter Paul; Esser, Karl-Heinz; Lenarz, Thomas; Behrens, Peter; Prenzler, Nils Kristian

    2015-01-01

    Chronic inflammation can irreversibly damage components of the ossicular chain which may lead to sound conduction deafness. The replacement of impaired ossicles with prostheses does not reduce the risk of bacterial infections which may lead to loss of function of the implant and consequently to additional damage of the connected structures such as inner ear, meninges and brain. Therefore, implants that could do both, reconstruct the sound conduction and in addition provide antibacterial protection are of high interest for ear surgery. Layered double hydroxides (LDHs) are promising novel biomaterials that have previously been used as an antibiotic-releasing implant coating to curb bacterial infections in the middle ear. However, animal studies of LDHs are scarce and there exist only few additional data on the biocompatibility and hardly any on the biodegradation of these compounds. In this study, middle ear prostheses were coated with an LDH compound, using suspensions of nanoparticles of an LDH containing Mg and Al as well as carbonate ions. These coatings were characterized and implanted into the middle ear of healthy rabbits for 10 days. Analysis of the explanted prostheses showed only little signs of degradation. A stable health constitution was observed throughout the whole experiment in every animal. The results show that LDH-based implant coatings are biocompatible and dissolve only slowly in the middle ear. They, therefore, appear as promising materials for the construction of controlled drug delivery vehicles.

  8. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  9. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  10. Photoactive oriented films of layered double hydroxides.

    PubMed

    Lang, Kamil; Kubát, Pavel; Mosinger, Jirí; Bujdák, Juraj; Hof, Martin; Janda, Pavel; Sýkora, Jan; Iyi, Nobuo

    2008-08-14

    The treatment of nano-ordered oriented films of layered double hydroxide (LDH) with dodecyl sulfate increased the interlayer distance from 0.4 to 1.96 nm, which allowed the intercalation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS). The re-stacking of separated layers and the rebuilding of crystals oriented parallel to the surface of quartz slides was confirmed by X-ray diffraction and atomic force microscopy. The hybrid films contained homogeneously distributed porphyrin molecules with preserved photophysical properties such as fluorescence, triplet state formation, and energy transfer, thus forming singlet oxygen.

  11. Part I. Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Dimotakis, Emmanuel Dimitrios

    A new general method for the preparation of well -ordered layered double hydroxides (LDHs), (Mg_ {rm 1-x}Al_{ rm x} (OH)_2) (X^{rm n-}) _{rm n/x}{cdot}yH _2O, interlayered by organic anions has been developed. It is based on the reaction of meixnerite, (Mg_3Al(OH)_8) (OH) cdot2H_2O, with the free acid form of the desired anion--using glycerol as a swelling agent--to yield single crystalline products that are not readily available by conventional synthetic methods. The (Mg_3Al(OH) _8) -adipate and -p-toluenesulfonate derivatives undergo facile ion exchange reactions with Keggin-type (XM_{12}O_ {40}) ^{rm n -} or lacunary (XM_{11 }O_{39}) ^{rm m-} polyoxometalates (POMs) to form well-ordered, microporous pillared derivatives with the highest N_2 BET surface areas reported to date, namely 107 and 155 m^2 /g, respectively. Meixnerite, (Mg_3Al(OH) _8) (OH) cdot2H _2O, has unexpectedly been found to undergo similar ion exchange reactions, in a topotactic way, with retention of the structure of the intercalated POMs. The meixnerite was conveniently prepared for the first time from calcination of (Mg_3Al(OH) _8) (CO_3) _{0.5}{cdot}2H _2O and aqueous hydrolysis of the resulting NaCl-type solid solution. Metal carbonyl clusters have also been examined for ion-exchange (i.e., { (Pt _3(CO)_6) _{rm n}}^ {2-}) in these LDH-precursors. This chemistry is compared with the surface chemistry of (Mg_3 Al(OH)_8) (X^ {rm n-}) _{ rm 1/n}{cdot}2H _2O (X = CO_3^{2 -} or OH^{-}). It has been shown that the surface hydrolysis reaction: CO _3^{2-} + H _2O longrightarrow HCO_3^{-} + OH ^-, causes reductive condensation reactions of neutral carbonyl clusters with the LDH. The reactions were as efficient as with Na metal in solution. In part II of this work, Li-fluorohectorite, has been pillared with titanium polyoxocations derived from the acidic hydrolysis of TiCl_4 or Ti(i-OC_3H_7) _4. Raman spectroscopy of the product indicates that the pillars have a structure analogous to TiO_2(B) phase

  12. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    SciTech Connect

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming; Hou, Wanguo

    2014-02-15

    The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the best of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.

  13. Heterogeneous Catalysis by Polyoxometalate-Intercalated Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Rives, Vicente; Carriazo, Daniel; Martín, Cristina

    The preparation, characterisation and catalytic performance of layered double hydroxides (LDH) with the hydrotalcite-type structure containing different polyoxometalates (POM) in the interlayer are studied. Special attention is paid to the preparation procedures, as they control the properties of the solids formed and thus their catalytic behaviour. The study is extended to solids prepared upon thermal decomposition of these POM-LDH systems. It is concluded that the LDH does not act as a simple support, but that its specific properties, such as nature of the cations in the brucite-like layers, specific surface area and the method followed for its preparation, have an outstanding effect on the final catalytic properties of the POM-LDH systems.

  14. Highly oriented nanoplates of layered double hydroxides as an ultra slow release system.

    PubMed

    Lee, Jong Hyeon; Jung, Duk-Young

    2012-06-01

    A novel controlled molecular release based on highly oriented nanoplates of layered double hydroxide was fabricated on indium tin oxide substrates by electrophoretic deposition of exfoliated LDH nanosheets. The LDH particle coating exhibited a superior release performance of the order of hours. PMID:22531710

  15. Tunable Electronic Transport Properties of 2D Layered Double Hydroxide Crystalline Microsheets with Varied Chemical Compositions.

    PubMed

    Zhao, Yibing; Hu, Hai; Yang, Xiaoxia; Yan, Dongpeng; Dai, Qing

    2016-09-01

    Transistors based on layered double hydroxides (LDH) single microcrystal are fabricated, whose conductivity of LDH can be tuned by varying metal cations or interlayer anions, but weakly affected by external electric field. The carrier mobility can reach about 1 × 10(-5) cm(2) V(-1) s(-1) , a value comparable to that of organic C60-based transistors. This work paves a way for future electrical applications of LDH. PMID:27416544

  16. Sugar-anionic clay composite materials: intercalation of pentoses in layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Aisawa, Sumio; Hirahara, Hidetoshi; Ishiyama, Kayoko; Ogasawara, Wataru; Umetsu, Yoshio; Narita, Eiichi

    2003-09-01

    The intercalation of non-ionized guest pentoses (ribose and 2-deoxyribose) into the Mg-Al and Zn-Al layered double hydroxides (LDHs) was carried out at 298 K by the calcination-rehydration reaction using the Mg-Al and Zn-Al oxide precursors calcined at 773 K. The resulting solid products reconstructed the LDH structure with incorporating pentoses, and the maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 20 times that by the Zn-Al oxide precursor. The ribose/Mg-Al LDH was observed to have the expanded LDH structure with a broad (003) spacing of 0.85 nm. As the thickness of the LDH hydroxide basal layer is 0.48 nm, the interlayer distance of the ribose/Mg-Al LDH is 0.37 nm. This value corresponds to molecular size of ribose in thickness (0.36 nm), supporting that ribose is horizontally oriented in the interlayer space of LDH. The maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 5 times that of 2-deoxyribose. Ribose is substituted only by the hydroxyl group at C-2 position for 2-deoxyribose. Therefore, the number of hydroxyl group of sugar is essentially important for the intercalation of sugar molecule into the LDH, suggesting that the intercalation behavior of sugar for the LDH was greatly influenced by hydrogen bond between hydroxyl group of the intercalated pentose and the LDH hydroxide basal layers.

  17. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    PubMed Central

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-01-01

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement. PMID:25490138

  18. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries.

    PubMed

    Zhang, Jintao; Hu, Han; Li, Zhen; Lou, Xiong Wen David

    2016-03-14

    Lithium-sulfur (Li-S) batteries have been considered as a promising candidate for next-generation electrochemical energy-storage technologies because of their overwhelming advantages in energy density. Suppression of the polysulfide dissolution while maintaining a high sulfur utilization is the main challenge for Li-S batteries. Here, we have designed and synthesized double-shelled nanocages with two shells of cobalt hydroxide and layered double hydroxides (CH@LDH) as a conceptually new sulfur host for Li-S batteries. Specifically, the hollow CH@LDH polyhedra with complex shell structures not only maximize the advantages of hollow nanostructures for encapsulating a high content of sulfur (75 wt %), but also provide sufficient self-functionalized surfaces for chemically bonding with polysulfides to suppress their outward dissolution. When evaluated as cathode material for Li-S batteries, the CH@LDH/S composite shows a significantly improved electrochemical performance.

  19. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  20. Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets.

    PubMed

    Wang, Qiang; O'Hare, Dermot

    2013-07-18

    A facile method for the synthesis of Zn2Al-borate and Mg3Al-borate layered double hydroxides (LDHs) with extremely high specific surface areas of 458.6 and 263 m(2) g(-1) and containing delaminated nanosheets is reported. To the best of our knowledge, this is the first report of LDH powders that still remain exfoliated on drying.

  1. Enhancing atrazine biodegradation by Pseudomonas sp. strain ADP adsorption to Layered Double Hydroxide bionanocomposites.

    PubMed

    Alekseeva, Tatiana; Prevot, Vanessa; Sancelme, Martine; Forano, Claude; Besse-Hoggan, Pascale

    2011-07-15

    To mimic the role of hydroxide minerals and their humic complex derivatives on the biodegradability of pesticides in soils, synthetic Mg(R)Al Layered Double Hydroxides (LDH) and Mg(R)Al modified by Humic substances (LDH-HA) were prepared for various R values (2, 3 and 4) and fully characterized. Adsorption properties of LDH and LDH-HA toward Pseudomonas sp. strain ADP were evaluated. The adsorption kinetics were very fast (<5 min to reach equilibrium). The adsorption capacities were greater than previously reported (13.5×10(11), 41×10(11) and 45.5×10(11) cells/gLDH for Mg(2)Al, Mg(3)Al and Mg(4)Al, respectively) and varied with both surface charge and textural properties. Surface modification by HA reduced the adsorption capacities of cells by 2-6-fold. Biodegradation kinetics of atrazine by Pseudomonas sp. adsorbed on both LDHs and LDH-HA complexes were measured for various solid/liquid ratios and adsorbed cell amounts. Biodegradation activity of bacterial cells was strongly boosted after adsorption on LDHs, the effect depending on the quantity and properties of the LDH matrix. The maximum biodegradation rate was obtained in the case of a 100 mg/mL Mg(2)Al LDH suspension (26 times higher than that obtained with cells alone). PMID:21596476

  2. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  3. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated.

  4. APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER

    SciTech Connect

    Song Jin; Paul Fallgren

    2006-03-01

    Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

  5. Removal of guar and humus from water by layered double hydroxides.

    PubMed

    Jin, Song; Cui, Kangping; Fallgren, Paul H; Urynowicz, Michael A; Jian, Jiazhong

    2009-01-01

    Natural organic matter such as guar and humus are recalcitrant to conventional pretreatment technologies and can potentially foul processes such as membranes during water treatment. An innovative method of using synthetic layered double hydroxides (LDH) was investigated for removing common natural organic matter in the form of guar gum (GG) and humic acid (HA) from water. Adsorption isotherms were evaluated with Langmuir and Freundlich models. Results show the affinity of GG and HA to LDH to be 11.31 and 9.33 mg g(-1) LDH, respectively. Kinetic isotherms indicate that the sorbing rates of LDH to GG and HA increase with initial GG and HA concentrations, fitting a pseudo-second order model. This study demonstrate that LDH may be an effective material in removing GG and HA from waters and offer an alternative to conventional pretreatment technologies for the mitigation fouling of membrane and other systems in water treatment. PMID:19403978

  6. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides.

    PubMed

    Yadollahi, Mehdi; Namazi, Hassan; Aghazadeh, Mohammad

    2015-08-01

    This paper deals with the preparation of antibacterial nanocomposite hydrogels through the combination of carboxy methyl cellulose (CMC), layered double hydroxides (LDH), and silver nanoparticles (AgNPs). CMC-LDH hydrogels were prepared by intercalating CMC into different LDHs. Then, Ag/CMC-LDH nanocomposite hydrogels were prepared through in situ formation of AgNPs within the CMC-LDHs. XRD analysis confirmed the intercalating CMC into the LDH sheets and formation of intercalated structures, as well as formation of AgNPs within the CMC-LDHs. SEM and TEM micrographs indicated well distribution of AgNPs within the Ag/CMC-LDHs. The prepared hydrogels showed a pH sensitive swelling behavior. The Ag/CMC-LDH nanocomposite hydrogels have rather higher swelling in different aqueous solutions in comparison with CMC-LDHs. The antibacterial activity of CMC-LDHs increased considerably after formation of AgNPs and was stable for more than one month.

  7. Removal of guar and humus from water by layered double hydroxides.

    PubMed

    Jin, Song; Cui, Kangping; Fallgren, Paul H; Urynowicz, Michael A; Jian, Jiazhong

    2009-01-01

    Natural organic matter such as guar and humus are recalcitrant to conventional pretreatment technologies and can potentially foul processes such as membranes during water treatment. An innovative method of using synthetic layered double hydroxides (LDH) was investigated for removing common natural organic matter in the form of guar gum (GG) and humic acid (HA) from water. Adsorption isotherms were evaluated with Langmuir and Freundlich models. Results show the affinity of GG and HA to LDH to be 11.31 and 9.33 mg g(-1) LDH, respectively. Kinetic isotherms indicate that the sorbing rates of LDH to GG and HA increase with initial GG and HA concentrations, fitting a pseudo-second order model. This study demonstrate that LDH may be an effective material in removing GG and HA from waters and offer an alternative to conventional pretreatment technologies for the mitigation fouling of membrane and other systems in water treatment.

  8. Efficient uranium capture by polysulfide/layered double hydroxide composites.

    PubMed

    Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G

    2015-03-18

    There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

  9. Bionanocomposites based on layered double hydroxides as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Aranda, Pilar; Alcântara, Ana C. S.; Ribeiro, Ligia N. M.; Darder, Margarita; Ruiz-Hitzky, Eduardo

    2012-10-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biopolymers to produce bionanocomposites, able to act as effective drug delivery systems (DDS). Ibuprofen (IBU) and 5-aminosalicylic acid (5-ASA) have been chosen as model drugs, being intercalated in a Mg-Al LDH matrix. On the one side, the LDHIBU intercalation compound prepared by ion-exchange reaction was blended with the biopolymers zein, a highly hydrophobic protein, and alginate, a polysaccharide widely applied for encapsulating drugs. On the other side, the LDH- 5-ASA intercalation compound prepared by co-precipitation was assembled to the polysaccharides chitosan and pectin, which show mucoadhesive properties and resistance to acid pH values, respectively. Characterization of the intercalation compounds and the resulting bionanocomposites was carried out by means of different experimental techniques: X-ray diffraction, infrared spectroscopy, chemical and thermal analysis, as well as optical and scanning electron microscopies. Data on the swelling behavior and drug release under different pH conditions are also reported.

  10. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    PubMed

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase.

  11. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. PMID:27028104

  12. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    PubMed Central

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-01-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery. PMID:26585551

  13. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-11-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  14. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  15. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  16. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  17. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities. PMID:26682698

  18. Scalable preparation of alginate templated-layered double hydroxide mesoporous composites with enhanced surface areas and surface acidities.

    PubMed

    Zhao, Lina; Xu, Ting; Lei, Xiaodong; Xu, Sailong; Zhang, Fazhi

    2011-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like layered clays, have previously been investigated as a potential solid alkaline catalyst. A necessary calcinations/rehydration procedure, however, is utilized to enhance surface area and catalytic activity of LDHs involved. Here we report on a scalable preparation of sodium alginate-templated MgAI-LDH (LDH/SA) mesoporous composites with high surface area and surface acidity. The powdery LDH/SA mesoporous composites are prepared using alginate as template by a scalable method of separate nucleation and aging steps (SNAS). Comparison with the pristine MgAl-LDH shows that the obtained LDH/SA composites exhibit the greatly enhanced surface area and surface activity of surface acid sites at the elevated high temperatures which have scarcely been reported previously. Our results may allow designing a variety of mesoporous LDH-containing composites with potential applications in specific catalysis and purification processes.

  19. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides

    SciTech Connect

    Wang Qian; Feng Yongjun; Feng Junting; Li Dianqing

    2011-06-15

    2,5-dichloro-4-(5-hydroxy-3-methyl-4-(sulphophenylazo) pyrazol-1-yl) benzenesulphonate (DHSB) anions, namely acid yellow 17 anions, have been successfully intercalated into Zn-Al layered double hydroxides (LDH) to produce a novel organic-inorganic pigment by a simple method involving separate nucleation and aging steps (SNAS), and the dye-intercalated LDH was analyzed by various techniques, e.g., XRD, SEM, FT-IR, TG-DTA and ICP. The d-spacing of the prepared LDH is 2.09 nm. Furthermore, the incorporation of the DHSB aims to enhance the thermal- and photo-stability of the guest dye molecule, for example, the less color change after accelerated thermal- and photo-aging test. - Graphical abstract: Acid yellow anions were successfully assembled into ZnAl layered double hydroxides (LDH) to produce a novel organic-inorganic composite pigment by a simple method involving separate nucleation and aging steps (SNAS). Highlights: > Acid yellow 17 was directly intercalated into ZnAl-LDH to form a novel pigment. > The pigment was prepared by a method involving separate nucleation and aging steps. > The intercalation of dye anions enhances its thermal- and photo-stability.

  20. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    SciTech Connect

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-05-15

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9 mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.

  1. Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides.

    PubMed

    Chen, Chunping; Wangriya, Aunchana; Buffet, Jean-Charles; O'Hare, Dermot

    2015-10-01

    We report the synthesis of tuneable ultra high specific surface area Aqueous Miscible Organic solvent-Layered Double Hydroxides (AMO-LDHs). We have investigated the effects of different solvent dispersion volumes, dispersion times and the number of re-dispersion cycles specific surface area of AMO-LDHs. In particular, the effects of acetone dispersion on two different morphology AMO-LDHs (Mg3Al-CO3 AMO-LDH flowers and Mg3Al-CO3 AMO-LDH plates) was investigated. It was found that the amount of acetone used in the dispersion step process can significantly affect the specific surface area of Mg3Al-CO3 AMO-LDH flowers while the dispersion time in acetone is critical factor to obtain high specific surface area Mg3Al-CO3 AMO-LDH plates. Optimisation of the acetone washing steps enables Mg3Al-CO3 AMO-LDH to have high specific surface area up to 365 m(2) g(-1) for LDH flowers and 263 m(2) g(-1) for LDH plates. In addition, spray drying was found to be an effective and practical drying method to increase the specific surface area by a factor of 1.75. Our findings now form the basis of an effective general strategy to obtain ultrahigh specific surface area LDHs.

  2. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  3. Zn-Al-NO(3)-layered double hydroxides with intercalated diclofenac for ocular delivery.

    PubMed

    Cao, Feng; Wang, Yanjun; Ping, Qineng; Liao, Zhenggen

    2011-02-14

    This study was aimed to evaluate the potential use of a drug delivery system, drug-layered double hydroxide (LDH) nanocomposites for ocular delivery. Diclofenac was successfully intercalated into Zn-Al-NO(3)-LDH by coprecipitation method. The nanocomposites were characterized by particle size, elemental chemical analysis, thermogravimetric analysis, etc. A tilt bilayer of diclofenac molecules formed in the interlayer with the gallery height of 1.868 nm. In vivo precorneal retention studies were conducted with diclofenac sodium (DS) saline, diclofenac-LDH nanocomposite dispersion, 2% polyvinylpyrrolidone (PVP) K30-diclofenac-LDH nanohybrid dispersion and 10% PVP K30-diclofenac-LDH nanohybrid dispersion, separately. Compared with DS saline, all the dispersions have extended the detectable time of DS from 3h to 6h; C(max) and AUC(0-t) of diclofenac-LDH nanocomposite dispersion showed 3.1-fold and 4.0-fold increase, respectively; C(max) and AUC(0-t) of 2% PVP K30-LDH nanohybrid dispersion were about 5.3-fold and 6.0-fold enhancement, respectively. Results of the Draize test showed that no eye irritation was demonstrated in rabbits after single and repeated administration. These results suggest that this novel ocular drug delivery system appears to offer promise as a means to improving the bioavailability of drugs after ophthalmic applications.

  4. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-05-01

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9 mg • g-1. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.

  5. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  6. Synthesis of ACECLOFENAC/HYDROXYPROPYL-β-CYCLODEXTRIN Intercalated Layered Double Hydroxides and Controlled Release Properties

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Shen, Yanming; Liu, Dongbin; Fan, Lihui; Wu, Keke; Xiao, Min

    2013-06-01

    Aceclofenac (AC)/hydroxypropyl-β-cyclodextrin (HP-β-CD) complex intercalated layered double hydroxides (LDHs) have been synthesized by reconstruction method. X-ray diffraction, Fourier transform infrared and thermal gravimetric analyses indicated a successful intercalation of AC/HP-β-CD complex into the LDHs gallery. The AC release properties were also studied in different pH values buffer solution. The results indicate that the AC/HP-β-CD intercalated LDH has a potential application in drug delivery agent.

  7. Highly stable layered double hydroxide colloids: a direct aqueous synthesis route from hybrid polyion complex micelles.

    PubMed

    Layrac, Géraldine; Destarac, Mathias; Gérardin, Corine; Tichit, Didier

    2014-08-19

    Aqueous suspensions of highly stable Mg/Al layered double hydroxide (LDH) nanoparticles were obtained via a direct and fully colloidal route using asymmetric poly(acrylic acid)-b-poly(acrylamide) (PAA-b-PAM) double hydrophilic block copolymers (DHBCs) as growth and stabilizing agents. We showed that hybrid polyion complex (HPIC) micelles constituted of almost only Al(3+) were first formed when mixing solutions of Mg(2+) and Al(3+) cations and PAA3000-b-PAM10000 due to the preferential complexation of the trivalent cations. Then mineralization performed by progressive hydroxylation with NaOH transformed the simple DHBC/Al(3+) HPIC micelles into DHBC/aluminum hydroxide colloids, in which Mg(2+) ions were progressively introduced upon further hydroxylation leading to the Mg-Al LDH phase. The whole process of LDH formation occurred then within the confined environment of the aqueous complex colloids. The hydrodynamic diameter of the DHBC/LDH colloids could be controlled: it decreased from 530 nm down to 60 nm when the metal complexing ratio R (R = AA/(Mg + Al)) increased from 0.27 to 1. This was accompanied by a decrease of the average size of individual LDH particles as R increased (for example from 35 nm at R = 0.27 down to 17 nm at R = 0.33), together with a progressive favored intercalation of polyacrylate rather than chloride ions in the interlayer space of the LDH phase. The DHBC/LDH colloids have interesting properties for biomedical applications, that is, high colloidal stability as a function of time, stability in phosphate buffered saline solution, as well as the required size distribution for sterilization by filtration. Therefore, they could be used as colloidal drug delivery systems, especially for hydrosoluble negatively charged drugs.

  8. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Qiu; Li, Tian; Lu, Zhiyi; Sun, Xiaoming; Liu, Junfeng

    2014-09-01

    Efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential components of renewable energy technologies, such as solar fuel synthesis and water splitting processes for powering fuel cells. Here, ultrathin NiCoFe layered double hydroxide (LDH) nanoplates, which directly grow on a cobalt-based nanowire array, forming a hierarchical nanoarray structure, are constructed as efficient oxygen evolution electrodes. In alkaline media, the ordered ultrathin hierarchical LDH nanoarray electrode shows dramatically increased catalytic activity compared to that of LDH nanoparticles and pure nanowire arrays due to the small size, large surface area, and high porosity of the NiCoFe LDH nanoarray. Only a small water oxidation overpotential (η) of 257 mV is needed for a current density of 80 mA cm-2 with a Tafel slope of 53 mV per decade. The hierarchical LDH nanoarray also shows excellent structural stability in alkaline media. After continuous testing under a high OER current density (~300 mA cm-2) for 10 h, the sample maintains the ordered hierarchical structure with no significant deactivation of the catalytic properties.Efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential components of renewable energy technologies, such as solar fuel synthesis and water splitting processes for powering fuel cells. Here, ultrathin NiCoFe layered double hydroxide (LDH) nanoplates, which directly grow on a cobalt-based nanowire array, forming a hierarchical nanoarray structure, are constructed as efficient oxygen evolution electrodes. In alkaline media, the ordered ultrathin hierarchical LDH nanoarray electrode shows dramatically increased catalytic activity compared to that of LDH nanoparticles and pure nanowire arrays due to the small size, large surface area, and high porosity of the NiCoFe LDH nanoarray. Only a small water oxidation overpotential (η) of 257 mV is needed for a current density of 80 mA cm-2 with a

  9. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    PubMed

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH. PMID:27381282

  10. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  11. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Zhu, Wei; Lei, Xiaodong; Williams, Gareth R.; O'Hare, Dermot; Chang, Zheng; Sun, Xiaoming; Duan, Xue

    2012-05-01

    A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles).A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles). Electronic supplementary information (ESI) available: Detailed experimental procedure, specific capacitance calculation, EDS and FTIR results, electrochemical results of CoAl-LDH and SEM image. See DOI: 10.1039/c2nr30617d

  12. Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach.

    PubMed

    Halma, Matilte; Khenifi, Aicha; Sancelme, Martine; Besse-Hoggan, Pascale; Bussière, Pierre-Olivier; Prévot, Vanessa; Mousty, Christine

    2016-07-15

    This paper reports the design of thin bacteria/Layered Double Hydroxides (LDH) films in which bacterial cells of Pseudomonas sp. strain ADP were assembled alternatively with Mg2Al-NO3 LDH nanosheets by a layer-by-layer deposition method. The UV-Vis spectroscopy was used to monitor the assembly process, showing a progressive increase in immobilized bacteria amount upon deposited cycles. The {ADP/LDH}n film was characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and atomic force microscopy. The metabolic activity of immobilized bacteria was determined using chronoamperometry by measuring the biochemical oxygen demand in presence of glucose using an artificial electron acceptor (Fe(CN)6(3-)) at 0.5V/Ag-AgCl. A steady current of 0.250μAcm(-2) was reached in about 30s after the addition of 5mM glucose. PMID:27124809

  13. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells.

    PubMed

    Arratia-Quijada, Jenny; Rivas-Fuentes, Selma; Saavedra, Karina J Parra; Lamas, Adriana M Macías; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range. PMID:27438820

  14. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-01

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg-Al and Mg-Fe layered double hydroxides (LDHs) have been synthesized by the calcination-rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV-vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO32- solutions imply that Mg3Al-VC LDH is a better controlled release system than Mg3Fe-VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO32- solution.

  15. Synthesis and photoluminescence of red emitting phosphors of europium complex intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Gao, Zhen; Yin, Xiaoru; Xie, Juan

    2015-12-01

    An inorganic-organic red emitting phosphor, europium ethylenediaminetetraacetate complex ([Eu(EDTA)]-) anions intercalated Mg/Al and Zn/Al layered double hydroxides (LDHs) were synthesized through an ion exchange method. X-ray powder diffraction (XRD) results exhibit that a nearly vertical arrangement of [Eu(EDTA)]- anions with the maximal dimension in the gallery is adopted. Measurement of the excitation and emission spectra show that the two materials display high red luminescence from Eu3+ ions. Furthermore, Mg/Al LDH containing europium complex has higher luminescence intensity than Zn/Al LDH, which probably was related with more inversion asymmetry sites of Eu3+ occurring in the Mg/Al LDH.

  16. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor

    PubMed Central

    Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng

    2016-01-01

    We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g−1 at 0.5 A g−1 and 1181 F g−1 even at current density as high as 10 A g−1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg−1 (at power density of 551 W kg−1) with a 1.5 V operating voltage. PMID:26754281

  17. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  18. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  19. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  20. Synthesis and adsorption properties of p-sulfonated calix[4 and 6]arene-intercalated layered double hydroxides

    SciTech Connect

    Sasaki, Satoru; Aisawa, Sumio; Hirahara, Hidetoshi; Sasaki, Akira; Nakayama, Hirokazu; Narita, Eiichi . E-mail: enarita@iwate-u.ac.jp

    2006-04-15

    The intercalation of water-soluble p-sulfonated calix[4 and 6]arene (CS4 and CS6) in the interlayer of the Mg-Al and Zn-Al layered double hydroxide (LDH) by the coprecipitation method has been investigated, as well as the adsorption properties of the resulting CS/LDHs for benzyl alcohol (BA) and p-nitrophenol (NP) to prepare new microporous organic-inorganic hybrid adsorbents. The amount and arrangement of CS intercalated was different by the kind of the host metal ions. CS4 cavity axis was perpendicular for the Mg-Al LDH basal layer and parallel for the Zn-Al LDH basal layer, while CS6 cavity axis was perpendicular for both the LDH basal layers. In the BET surface area measurement, the surface area of the Zn-Al/CS4/LDH was four times than that of the Mg-Al/CS4/LDH, expecting that the former has higher adsorption capacity than the latter. In fact, the adsorption ability of the CS/LDHs for BA and NP in aqueous solution was found to be larger in the Zn-Al/CS4/LDH than in the Mg-Al/CS4/LDH. In addition, the adsorption ability of both the LDHs was larger in the CS6/LDHs than in the CS4/LDHs. These results were explained by the difference in the amount and arrangement of CS intercalated in the LDH interlayer space.

  1. Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Ai, Yuejie; Liu, Yunhai; Li, Jiaxing; Ji, Yongfei; Wang, Xiangke

    2016-04-01

    Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment. PMID:26978487

  2. Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Ai, Yuejie; Liu, Yunhai; Li, Jiaxing; Ji, Yongfei; Wang, Xiangke

    2016-04-01

    Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment.

  3. Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study

    PubMed Central

    Shafiei, Seyedeh Sara; Solati-Hashjin, Mehran; Samadikuchaksaraei, Ali; Kalantarinejad, Reza; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2015-01-01

    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. PMID:26317853

  4. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  5. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  6. MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.

    PubMed

    Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan

    2016-11-01

    Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the

  7. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids.

    PubMed

    Bruna, Felipe; Pereira, Marita G; Polizeli, Maria de Lourdes T M; Valim, João B

    2015-08-26

    The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst.

  8. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations.

    PubMed

    Forticaux, Audrey; Dang, Lianna; Liang, Hanfeng; Jin, Song

    2015-05-13

    Layered double hydroxides (LDHs) are a family of two-dimensional (2D) materials with layered crystal structures that have found many applications. Common strategies to synthesize LDHs lead to a wide variety of morphologies, from discrete 2D nanosheets to nanoflowers. Here, we report a study of carefully controlled LDH nanoplate syntheses using zinc aluminum (ZnAl) and cobalt aluminum (CoAl) LDHs as examples and reveal their crystal growth to be driven by screw dislocations. By controlling and maintaining a low precursor supersaturation using a continuous flow reactor, individual LDH nanoplates with well-defined morphologies were synthesized on alumina-coated substrates, instead of the nanoflowers that result from uncontrolled overgrowth. The dislocation-driven growth was further established for LDH nanoplates directly synthesized using the respective metal salt precursors. Atomic force microscopy revealed screw dislocation growth spirals, and under transmission electron microscopy, thin CoAl LDH nanoplates displayed complex contrast contours indicative of strong lattice strain caused by dislocations. These results suggest the dislocation-driven mechanism is generally responsible for the growth of 2D LDH nanostructures, and likely other materials with layered crystal structures, which could help the rational synthesis of well-defined 2D nanomaterials with improved properties.

  9. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  10. Layered-double-hydroxide-modified electrodes: electroanalytical applications.

    PubMed

    Tonelli, Domenica; Scavetta, Erika; Giorgetti, Marco

    2013-01-01

    Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.

  11. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    PubMed Central

    Lee, Gyeong Jin; Kang, Joo-Hee

    2014-01-01

    Objective. Layered double hydroxide (LDH) nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML), 5-FU/LDH (FL), and (MTX + 5-FU)/LDH (MFL) nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy. PMID:24860812

  12. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  13. Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method.

    PubMed

    Nakayama, Hirokazu; Wada, Natsuko; Tsuhako, Mitsutomo

    2004-01-28

    The intercalation of amino acids and some peptides into Mg-Al layered double hydroxide known as hydrotalcite was examined. Although the intercalation by ion-exchange method was unsuccessful, all the amino acids except for Lys and Arg, and peptides examined could be intercalated into the layered double hydroxide by reconstruction method using Mg-Al oxide precursor. The uptake amounts of amino acids and peptides were 0.9-2.7 mmol per 1 g of LDH. Intercalation compounds were examined by using XRD and solid-state NMR. For Gly, Ala, Ser, Thr, Pro, Asn, Gln, Asp, Glu, and aspartame the intercalation accompanied the expansion of interlayer distance of the solid products, whereas the other amino acids and oligoglycine showed no expansion. The intercalation mechanism and release profile in K(2)CO(3) aqueous solution were also investigated. And the cointercalation of amino acids and peptides into Mg-Al LDH and easy release of amino acids from the LDH layer were found.

  14. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxi; Zhou, Awu; Dou, Yibo; Pan, Ting; Shao, Mingfei; Han, Jingbin; Wei, Min

    2015-10-01

    Electrochromic materials are the most important and essential components in an electrochromic device. Herein, we fabricated high-performance electrochromic films based on exfoliated layered double hydroxide (LDH) nanosheets and Prussian blue (PB) nanoparticles via the layer-by-layer assembly technique. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of (LDH/PB)n ultrathin films (UTFs). The resulting (LDH/PB)n UTF electrodes exhibit electrochromic behavior arising from the reversible K+ ion migration into/out of the PB lattice, which induces a change in the optical properties of the UTFs. Furthermore, an electrochromic device (ECD) based on the (LDH/PB)n-ITO/0.1 M KCl electrolyte/ITO sandwich structure displays superior response properties (0.91/1.21 s for coloration/bleaching), a comparable coloration efficiency (68 cm2 C-1) and satisfactory optical contrast (45% at 700 nm), in comparison with other inorganic material-based ECDs reported previously. Therefore, this work presents a facile and cost-effective strategy to immobilize electrochemically active nanoparticles in a 2D inorganic matrix for potential application in displays, smart windows and optoelectronic devices.Electrochromic materials are the most important and essential components in an electrochromic device. Herein, we fabricated high-performance electrochromic films based on exfoliated layered double hydroxide (LDH) nanosheets and Prussian blue (PB) nanoparticles via the layer-by-layer assembly technique. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of (LDH/PB)n ultrathin films (UTFs). The resulting (LDH/PB)n UTF electrodes exhibit electrochromic behavior arising from the reversible K+ ion migration into/out of the PB lattice, which induces a change in the optical properties of the UTFs. Furthermore, an electrochromic device (ECD) based on the (LDH

  15. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    NASA Astrophysics Data System (ADS)

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-12-01

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  16. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    PubMed Central

    2011-01-01

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules. PMID:21711652

  17. Energetics of order-disorder in layered magnesium aluminum double hydroxides with interlayer carbonate.

    PubMed

    Shivaramaiah, Radha; Navrotsky, Alexandra

    2015-04-01

    Laboratory synthesis of layered double hydroxides (LDH) often results in materials replete with stacking faults. Faults are known to affect several properties including sorption, electrochemical, and catalytic activity of this important class of materials. Understanding the occurrence of faults thus calls for a comprehensive analysis of formation and stability of ordered and faulted LDHs. High-temperature oxide melt solution calorimetric measurements made on an ordered and a faulted Mg-Al LDH with carbonate interlayer anion shows that ordered LDH is energetically more stable than the faulted one by ∼6 kJ/mol. The stacking faults are an intergrowth of 3R1 and 2H1 polytypes, and faults could thus mediate transformation of 3R1 to 2H1 polytypes. Several factors including pH and temperature of precipitation also affect layer stacking. The formation of stacking faults could therefore have its origin in kinetics. Water content in the interlayer also affects layer stacking, and hence it may affect properties of LDH. Improved understanding of the distribution of water molecules in LDH is also crucial in an environmental context, as LDH occur as minerals and are important for contaminant amelioration in the environment. Water adsorption calorimetry on dehydrated LDH shows a continuous decrease in the magnitude of adsorption enthalpy with increasing coverage, indicating the presence of energetically heterogeneous sites where the water molecules reside. The results also indicate that the energy of several sites where the water molecules may reside (whether in the interlayer or on the surface) overlaps, and hence it is hard to differentiate among them. PMID:25750986

  18. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    PubMed

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  19. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    PubMed Central

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-01-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively). PMID:27752096

  20. Green Emission of Tb-doped Mg-Al Layered Double Hydroxide Response to L-lysine.

    PubMed

    Chen, Yufeng; Bao, Yao; Wang, Xiaoqing

    2016-05-01

    The paper describes a study on the green emission of a Tb-doped Mg-Al layered double hydroxide (Tb-LDH) response to L-lysine (Lys). Fluorescent study was found that the Tb-LDH exhibited strong green emission due to (5)D4-(7)FJ (J = 5, 6) transition of Tb(3+), and the green emission almost quenched while the Tb-LDH was exposed to 0.01, 0.05, 0.1, 0.25, and 0.5 mol·L(-1) Lys solution, respectively. Meanwhile the emission attributed to Lys markedly increased as the Tb-LDH was exposed to 0.01 and 0.05 mol·L(-1) Lys solution, then decreased as the concentration of Lys solution further increased to 0.5 from 0.05 mol·L(-1). The green emission of Tb-LDH optimal response to Lys happened at 0.05 mol·L(-1) of Lys solution. XRD results revealed that no reflections ascribed to Lys appeared in the composites of Tb-LDH and Lys. IR spectra suggested that the IR spectra of Tb-LDH obviously changed after it was exposed to Lys solution. These results indicated that the green emission of Tb-LDH response to Lys was possibly owing to interaction between the Tb-LDH and Lys. Moreover, this interaction between the Tb-LDH and Lys may be resulted from absorption. The green emission of Tb-LDH response to Lys would be potential application in detecting L-lysine.

  1. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  2. Pulsed laser deposition of Mg-Al layered double hydroxide with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Luculescu, C.; Epurescu, G.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2013-03-01

    Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg-Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO3, having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films.

  3. Large-scale simulations of layered double hydroxide nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  4. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  5. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    SciTech Connect

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  6. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    SciTech Connect

    Wang Lijing; Xu Xiangyu; Evans, David G.; Duan Xue; Li Dianqing

    2010-05-15

    An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filled with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.

  7. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.

    PubMed

    Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2016-10-15

    Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. PMID:27405071

  8. A photochromic thin film based on salicylideneaniline derivatives intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Xin Rui; Lu, Jun; Yan, Dongpeng; Wei, Min; Evans, David G.; Duan, Xue

    2010-06-01

    Optically transparent thin films with photochromic properties have been fabricated by means of co-intercalation of azomethine-H anions (AMH) and 1-pentanesulfonate (PS) with different molar ratios into the galleries of a ZnAl layered double hydroxide (LDH). The photochromism of AMH occurred in a 2D confined inorganic matrix has been studied by steady state and transient UV-vis spectroscopy. The AMH anion undergoes an excited-state intramolecular proton transfer from the enol tautomer to trans-keto tautomer after UV excitation, and the relaxed back-isomerization to the ground state of enol tautomer was investigated by transient UV-vis spectroscopy.

  9. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure.

    PubMed

    Fu, Liling; Qi, Genggeng; Shekhah, Osama; Belmabkhout, Youssef; Estevez, Luis; Eddaoudi, Mohamed; Giannelis, Emmanuel P

    2014-04-01

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2 ) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2 /N2 and CO2 /CH4 selectivities.

  10. Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Xu, Dongyu; Rui, Yichuan; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2015-12-01

    Zinc-cobalt layered double hydroxide (LDH) was electrodeposited on Ti-doped hematite photoanodes for the first time, and a significant enhanced performance for photoelectrochemical water splitting was demonstrated over the composite photoanodes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) were characterized with the resulted photoanodes. With the electrodepositing treatment, the photocurrent density increased from 1.27 mA/cm2 for pristine hematite to 1.73 mA/cm2 for modified materials at 1.23 V vs. RHE (i.e. 36% improvement). The photocurrent improvement is mainly attributed to a suppression of electron-hole recombination and reduced overpotential for water oxidation at the hematite-electrolyte interface due to the formation of Zn-Co LDH layer on hematite.

  11. Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra

    2008-12-01

    A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.

  12. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  13. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications.

    PubMed

    Shao, Mingfei; Zhang, Ruikang; Li, Zhenhua; Wei, Min; Evans, David G; Duan, Xue

    2015-11-14

    Two-dimensional (2D) materials have attracted increasing interest in electrochemical energy storage and conversion. As typical 2D materials, layered double hydroxides (LDHs) display large potential in this area due to the facile tunability of their composition, structure and morphology. Various preparation strategies, including in situ growth, electrodeposition and layer-by-layer (LBL) assembly, have been developed to directly modify electrodes by using LDH materials. Moreover, several composite materials based on LDHs and conductive matrices have also been rationally designed and employed in supercapacitors, batteries and electrocatalysis with largely enhanced performances. This feature article summarizes the latest developments in the design, preparation and evaluation of LDH materials toward electrochemical energy storage and conversion.

  14. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents.

    PubMed

    Li, Changming; Wei, Min; Evans, David G; Duan, Xue

    2014-11-01

    Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, which have attracted increasing interest in the fields of catalysis/adsorption. By virtue of the versatility in composition, morphology, and architecture of LDH materials, as well as their unique structural properties (intercalation, topological transformation, and self-assembly with other functional materials), LDHs display great potential in the design and fabrication of nanomaterials applied in photocatalysis, heterogeneous catalysis, and adsorption/separation processes. Taking advantage of the structural merits and various control synthesis strategies of LDHs, the active center structure (e.g., crystal facets, defects, geometric and electronic states, etc.) and macro-nano morphology can be facilely manipulated for specific catalytic/adsorbent processes with largely enhanced performances. In this review, the latest advancements in the design and preparation of LDH-based functional nanomaterials for sustainable development in catalysis and adsorption are summarized.

  15. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-01

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed.

  16. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    NASA Astrophysics Data System (ADS)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles

  17. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives

    PubMed Central

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-01-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application. PMID:26951794

  18. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives

    NASA Astrophysics Data System (ADS)

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-03-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application.

  19. Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles.

    PubMed

    Goh, Kok-Hui; Lim, Teik-Thye; Banas, Agnieszka; Dong, Zhiling

    2010-07-15

    The sorption ability of fast-coprecipitated and hydrothermally-treated Mg/Al layered double hydroxide nanoparticles (FCHT-LDH) for various oxyhalides and oxyanions was evaluated. Interactions of oxyhalide such as monovalent bromate or oxyanions such as divalent chromate and divalent vanadate with FCHT-LDH were investigated using a combination of macroscopic (batch sorption/desorption studies and electrophoretic mobility (EM) measurements) and microscopic techniques (CHNS/O, XRD, FTIR, XPS, and EXAFS analyses). The sorption studies on various oxyanions and oxyhalides suggested that their sorption characteristics on FCHT-LDH were largely governed by their ionic potentials and molecular structures. Oxyanions which have ionic potentials higher than 7 nm(-1) were found to be more readily sorbed by FCHT-LDH than oxyhalides with ionic potentials lower than 5 nm(-1). The results obtained also demonstrated that trigonal pyramid oxyhalides showed a lower degree of specificity for FCHT-LDH than the tetrahedral coordinated oxyanions. From the macroscopic and microscopic studies, monovalent oxyhalide sorption on FCHT-LDH was postulated to occur mainly via anion exchange mechanism with subsequent formation of outer-sphere surface complexes. For polyvalent oxyanion sorption on FCHT-LDH, the mechanisms were possibly associated with both anion exchange and ligand exchange reactions, resulting in the coexistence of outer-sphere and inner-sphere surface complexes. PMID:20399010

  20. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives.

    PubMed

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-01-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application. PMID:26951794

  1. Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt

    SciTech Connect

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-02-15

    A UV absorber, p-methycinnamic acid (PMCA), was intercalated into Zn-Al layered double hydroxide (LDH) by calcination recovery. Fourier transform infrared spectroscopy showed that the PMCA anions completely replaced the CO{sub 3}{sup 2−} anions in the interlayer galleries of Zn-Al-LDH containing PMCA anions (Zn-Al-PMCA-LDH). X-ray diffraction and transmission electron microscopy showed that the interlayer distance increased from 0.78 nm to 1.82 nm after the substitution of PMCA anions for CO{sub 3}{sup 2−} anions. The similar diffraction angles of the CO{sub 3}{sup 2−} anion-containing Zn-Al-LDH (Zn-Al-CO{sub 3}{sup 2−}-LDH) and the Zn-Al-CO{sub 3}{sup 2−}-LDH/styrene–butadiene–styrene (SBS) modified asphalt implied that the asphalt molecules do not enter into the LDH interlayer galleries to form separated-phase structures. The different diffraction angles of Zn-Al-PMCA-LDH and Zn-Al-PMCA-LDH/SBS modified asphalt indicated that the asphalt molecules penetrated into the LDH interlayer galleries to form an expanded-phase structure. UV-Vis absorbance analyses showed that Zn-Al-PMCA-LDH was better able to block UV light due to the synergistic effects of PMCA and Zn-Al-LDH. Conventional physical tests and atomic force microscopy images of the SBS modified asphalt, Zn-Al-CO{sub 3}{sup 2−}-LDH/SBS modified asphalt and Zn-Al-PMCA-LDH/SBS modified asphalt before and after UV aging indicated that Zn-Al-PMCA-LDH improved the UV aging resistance of SBS modified asphalts.

  2. In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides.

    PubMed

    Silion, Mihaela; Hritcu, Doina; Jaba, Irina M; Tamba, Bogdan; Ionescu, Dunarea; Mungiu, Ostin C; Popa, Ionel Marcel

    2010-11-01

    Ketoprofen (Ket) was intercalated into layered double hydroxides (ZnAlLDH and MgAlLDH) using the ionic exchange method. The drug intercalation was confirmed by X-ray diffraction (XRD) and FTIR spectroscopy. Ket release from the inorganic matrix was studied at pH 7.4 in continuous regime with a flow rate of 0.5 and respectively 1.0 ml/min. The kinetical data were interpreted using the Ritger and Peppas model. The data prove that the release kinetics and mechanism depend on the eluent flow rate. Quantification of gastric tolerance shows that the ulcerogenic effect of the intercalated drug is lower than the one of the raw Ket. The antinociceptive effect of both formulations was studied by the hot-plate method performed on mice. The MgAlLDH_Ket formulation shows a tendency towards a stronger antinociceptive effect than its ZnAlLDH_Ket counterpart during the 210 min recorded period.

  3. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells

    PubMed Central

    Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang

    2016-01-01

    Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055

  4. Fire and thermal properties of layered double hydroxides and polyurea nanocomposites

    NASA Astrophysics Data System (ADS)

    Nyambo, Calistor

    Layered double hydroxide (LDH) intercalated with linear alkyl carboxylates (CH3(CH2)n COO-, n = 8, 10, 12, 14, 16, 20), borate and benzyl anions were prepared. The effect on fire and thermal properties of the mode of preparation for LDHs (i.e. ion exchange, coprecipitation and rehydration of the calcined LDH methods) has been studied. After characterization, the LDHs were used to prepare nanocomposites with a range of polar and non-polar polymers. Characterization of the LDHs and the nanocomposites was performed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry analysis (TGA), transmission electron microscopy (TEM) and cone calorimetry. FTIR and XRD analyses confirmed the presence of the charge balancing anions in the galleries of the LDHs. Improvements in fire and thermal properties of the nanocomposites were observed. The cone calorimeter revealed that the addition of LDHs reduces the peak heat release rate significantly. LDHs were combined with commercial fire retardants. Synergistic effects were observed in both TGA and cone calorimetry for formulations containing both LDH and ammonium polyphosphate (APP). Physical and chemical interactions between LDH and APP are responsible for the observed synergy in thermal stability and fire performance.

  5. Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry

    NASA Astrophysics Data System (ADS)

    Mavis, Bora; Akinc, Mufit

    Three-component layer double hydroxides (LDHs) with varying compositions were produced by urea precipitation, and tested for their stability and electrochemical performance. Optimum initial metal ion concentrations in the starting solutions were established. Initial Al 3+ concentration in the solution needs to be at least 0.015 M for the LDH formation. From the solutions with initial Al 3+ concentration of 0.025 M, higher fractions of Ni 2+ and Co 2+ could be recovered. Co 2+ could be incorporated at various levels without disturbing the LDH structure. LDH structure proved stable once it formed. Cyanate in the LDHs was dominantly N-bonded which contributed to the stability of the structure. Highest specific discharge capacity delivered by a LDH was 336 mAh/g, which was about 30% higher than that by β-Ni(OH) 2. LDHs reached their stable capacities at a lower rate than either β-Ni(OH) 2 or the interstratified-Ni(OH) 2 (α+β). The interstratified sample delivered the highest capacity compared to any of the tested compositions.

  6. Layered Double Hydroxide Minerals as Possible Prebiotic Information Storage and Transfer Compounds

    NASA Astrophysics Data System (ADS)

    Greenwell, H. Chris; Coveney, Peter V.

    2006-02-01

    One of the fundamental difficulties when considering the origin of life on Earth is the identification of an emergent system that not only replicated, but also had the capacity to undergo discrete mutation in such a way that following generations might inherit and pass on the mutation. We speculate that the layered double hydroxide (LDH) minerals are plausible candidates for a proto-RNA molecule. We describe a hypothetical LDH-like system which, when intercalated with certain anions, forms crystals with a high degree of internal order giving rise to novel information storage structures in which replication fidelity is maintained, a concept we use to propose an explanation for interstratification in terephthalate LDHs. The external surfaces of these hypothetical crystals provide active sites whose structure and chemistry is dictated by the internal information content of the LDH. Depending on the LDH polytype, the opposing external surfaces of a crystal may give rise to reactive sites that are either complementary or mirror images of each other, and so may be chiral. We also examine similarities between these proposed “proto-RNA” structures and the DNA that encodes the hereditary information in life today, concluding with a hypothetical scenario wherein these proto-RNA molecules predated the putative RNA-world.

  7. Novel route for layered double hydroxides preparation by enzymatic decomposition of urea

    NASA Astrophysics Data System (ADS)

    Vial, S.; Prevot, V.; Forano, C.

    2006-05-01

    This study presents a new route for the preparation of a series of layered double hydroxide materials with controlled textural properties. It concerns the biogenesis of hydrotalcite like phases by Jack bean urease through the enzymatic decomposition process of urea. Different conditions of LDH biogenesis are investigated (urease activity, urea concentration). A comparative study with the precipitation method based on the thermal decomposition of urea (90 °C) is conducted in order to asses the effect of the various urea hydrolysis conditions (kinetic, temperature) and the presence of enzyme in the reaction medium on the structural and textural properties of the as prepared LDH materials. Mechanisms of formation of the LDH phases for both synthesis processes are discussed on basis of their pH control. The PXRD and SEM analysis of samples prepared by the thermal process evidence higher crystallinity and greater particle sizes than LDH obtained in mild biogenic conditions. In the latter case, presence of urease or effect of some M(II) metals may inhibit the crystallization.

  8. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  9. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  10. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films.

    PubMed

    Liu, Xiaoxi; Zhou, Awu; Dou, Yibo; Pan, Ting; Shao, Mingfei; Han, Jingbin; Wei, Min

    2015-10-28

    Electrochromic materials are the most important and essential components in an electrochromic device. Herein, we fabricated high-performance electrochromic films based on exfoliated layered double hydroxide (LDH) nanosheets and Prussian blue (PB) nanoparticles via the layer-by-layer assembly technique. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of (LDH/PB)n ultrathin films (UTFs). The resulting (LDH/PB)n UTF electrodes exhibit electrochromic behavior arising from the reversible K(+) ion migration into/out of the PB lattice, which induces a change in the optical properties of the UTFs. Furthermore, an electrochromic device (ECD) based on the (LDH/PB)n-ITO/0.1 M KCl electrolyte/ITO sandwich structure displays superior response properties (0.91/1.21 s for coloration/bleaching), a comparable coloration efficiency (68 cm(2) C(-1)) and satisfactory optical contrast (45% at 700 nm), in comparison with other inorganic material-based ECDs reported previously. Therefore, this work presents a facile and cost-effective strategy to immobilize electrochemically active nanoparticles in a 2D inorganic matrix for potential application in displays, smart windows and optoelectronic devices. PMID:26420230

  11. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyun; Oh, Jae-Min

    2016-01-01

    Dual nutraceutical nanohybrids consisting of organic nutrient, folic acid (FA), and mineral nutrient, calcium, were prepared based on layered double hydroxide (LDH) structure. Among various hybridization methods such as coprecipitation, ion exchange, solid phase reaction and exfoliation-reassembly, it was found that exfoliation-reassembly was the most effective in terms of intercalation of FA moiety between Ca-containing LDH layers. X-ray diffraction patterns and infrared spectra indicated that FA molecules were well stabilized in the interlayer space of LDHs through electrostatic interaction. From the atomic force and scanning electron microscopic studies, particle thickness of LDH was determined to be varied with tens, a few and again tens of nanometers in pristine, exfoliated and reassembled state, respectively, while preserving particle diameter. The result confirmed layer-by-layer hybrid structure of FA and LDHs was obtained by exfoliation-reassembly. Solid UV-vis spectra showed 2-dimensional molecular arrangement of FA moiety in hybrid, exhibiting slight red shift in n→π* and π→π* transition. The chemical formulae of FA intercalated Ca-containing LDH were determined to Ca1.30Al(OH)4.6FA0.74·3.33H2O and Ca1.53Fe(OH)5.06FA2.24·9.94H2O by inductively coupled plasma-atomic emission spectroscopy, high performance liquid chromatography and thermogravimetry, showing high nutraceutical content of FA and Ca.

  12. New synthetic route to Mg–Al–CO{sub 3} layered double hydroxide using magnesite

    SciTech Connect

    Wang, Xiaobo; Bai, Zhimin; Zhao, Dong; Chai, Yupu; Guo, Man; Zhang, Jingyu

    2013-03-15

    Highlights: ► The use of magnesite to prepare Mg–Al–CO{sub 3} LDH is novel. ► The result sample is systematically studied. ► Furthermore, the cost of preparing Mg–Al–CO{sub 3} LDH may be reduced through this synthetic route. ► In the synthesis process, there is no CO{sub 2} released. That is significant to environmental protection. - Abstract: A novel synthesis of Mg–Al–CO{sub 3} layered double hydroxide (LDH) through chemical precipitation and hydrothermal methods has been investigated in this paper. The advantages of this method are using magnesite as magnesium source and no CO{sub 2} released in the process of preparation. Mg–Al–CO{sub 3} LDH (ZY) prepared under the optimized condition (the molar ratio of magnesite and Al(NO{sub 3}){sub 3}·9H{sub 2}O was 2.5:1; the aging time and temperature were 16 h and 100 °C, respectively) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analyser (TG–DTA) and scanning electron microscope (SEM). The crystal morphology of the prepared LDH displays platelet-like structure with a hexagonal shape, which is agreed with the LDH produced by industrial chemicals. Through elemental analysis and inductively coupled plasma-atomic emission spectrometry (ICP-AES), the chemical formula of ZY is determined as Mg{sub 0.70}Al{sub 0.30}(OH){sub 2}(CO{sub 3}){sub 0.15}·0.6H{sub 2}O.

  13. Natural curcuminoids encapsulated in layered double hydroxides: a novel antimicrobial nanohybrid.

    PubMed

    Megalathan, Ajona; Kumarage, Sajeewani; Dilhari, Ayomi; Weerasekera, Manjula M; Samarasinghe, Siromi; Kottegoda, Nilwala

    2016-01-01

    Currently, there is an increased scientific interest to discover plant based drug formulations with improved therapeutic potential. Among the cornucopia of traditional medicinal plants, Curcuma longa rhizomes have been used as a powerful antibacterial and antifungal agent. However, its practical applications are limited due to its instability under thermal and UV radiation and its low bioavailability and the extensive procedures needed for isolation. This study focuses on exploring the potential of nanotechnology-based approaches to stabilize the natural curcuminoids, the major active components in turmeric without the need for its isolation, and to evaluate the release characteristics, stability and antimicrobial activity of the resulting nanohybrids. Natural curcuminoids were selectively encapsulated into nanolayers present in Mg-Al-layered double hydroxides (LDHs) using a method that avoids any isolation of the curcuminoids. The products were characterized using solid state techniques, while thermal and photo-stability were studied using thermogravimetric analysis (TGA) and UV exposure data. The morphological features were studied using scanning electron microscope (SEM) and transmission electron microscope (TEM). Drug release characteristics of the nanohybrid were quantitatively monitored under pH 3 and 5, and therapeutic potentials were assessed by using distinctive kinetic models. Finally, the antimicrobial activity of curcuminoids-LDH was tested against three bacterial and two fungal species. Powder X-ray diffraction, Fourier transform infra-red spectroscopy, SEM and TEM data confirmed the successful and selective encapsulation of curcuminoids in the LDH, while the TGA and UV exposure data suggested the stabilization of curcuminoids within the LDH matrix. The LDH demonstrated a slow and a sustained release of the curcuminoids in an acidic medium, while it was active against the three bacteria and two fungal species used in this study, suggesting its

  14. Mechano-hydrothermal synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxides

    SciTech Connect

    Zhang, Fengrong; Du, Na; Song, Shue; Liu, Jianqiang; Hou, Wanguo

    2013-10-15

    A mechano-hydrothermal method was developed to synthesize Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) from MgO, Al{sub 2}O{sub 3} and NaNO{sub 3} as starting materials. A two-step synthesis was conducted, that is, a mixture of MgO and Al{sub 2}O{sub 3} was milled for 1 h, followed by hydrothermal treatment with NaNO{sub 3} solution. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared and elemental analyses. Pre-milling played a key role in the LDH formation during subsequent hydrothermal treatment. The process is advantageous in terms of low reaction temperature and short reaction time compared with the conventional hydrothermal method, and the target products are of high crystallinity, good dispersion and regular shape compared with the conventional mechanochemical method. - Graphical abstract: The novel mechano-hydrothermal route to synthesize LDH has advantages in low reaction temperature and short reaction time, and the target product was of high crystallinity, good dispersion and regular shape. Display Omitted - Highlights: • A mechano-hydrothermal route was developed for layered double hydroxide synthesis. • Synthesis could be achieved at low temperature and in a short time. • Resulting layered double hydroxide samples were well dispersed and of regular shape. • A dissolution–recrystallization mechanism was proposed for the formation process.

  15. Use of high-pressure CO2 for concentrating CrVI from electroplating wastewater by Mg-Al layered double hydroxide.

    PubMed

    Lv, Xiangying; Chen, Zhi; Wang, Yongjing; Huang, Feng; Lin, Zhang

    2013-11-13

    The desorption of Cr(VI) from Cr(VI)-adsorbed layered double hydroxide (Cr(VI)-LDH) and the recycling of LDH adsorbent are the bottlenecks that limit the practical application of LDH in treating Cr(VI)-containing industrial wastewater. Given the strong affinity of LDH for CO2, we studied desorption and enrichment of Cr(VI) from Cr(VI)-LDH as well as recycling of LDH in the presence of high-pressure CO2. Results showed that Cr(VI) solution with concentration of 500 mg/L could be enriched more than 20 times in each adsorption-desorption cycle. The regenerated LDH maintained the layer structure and the sheets as revealed by XRD and TEM patterns. FT-IR data showed CO2 formed HCO3(-) at high pressure. The transformation from CO2 to HCO3(-) followed by the anion-exchange with CrO4(2-) was the critical factor for Cr(VI) desorption and LDH regeneration. A pilot-scale experiment was carried out with 20 L Cr(VI)-containing electroplating wastewater. The concentration of the desorbed Cr(VI) solution could reach up to 10000 mg/L, which could be used in electroplating after appropriate adjustment. The main advantages of this method are high concentration of Cr(VI), direct reuse of enriched Cr(VI), and efficient regeneration of LDH adsorbent. This method showed promises in recycling Cr(VI) and regenerating LDH in treating industrial wastewater.

  16. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    PubMed Central

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type–III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  17. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    PubMed

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  18. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  19. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water.

    PubMed

    Gomes Silva, Cláudia; Bouizi, Younès; Fornés, Vicente; García, Hermenegildo

    2009-09-30

    Oxygen generation through photocatalytic water splitting under visible light irradiation is a challenging process. In this work we have synthesized a series of Zn/Ti, Zn/Ce, and Zn/Cr layered double hydroxides (LDH) at different Zn/metal atomic ratio (from 4:2 to 4:0.25) and tested them for the visible light photocatalytic oxygen generation. The most active material was found to be (Zn/Cr)LDH with an atomic ratio of 4:2 that exhibits two absorption bands in the visible region at lambda(max) of 410 and 570 nm. It was found that the efficiency of these chromium layered double oxides for oxygen generation increases asymptotically with the Cr content. Using iron oxalate as chemical actinometer we have determined that the apparent quantum yields for oxygen generation (Phi apparent = 4 x mol oxygen/mol incident photons) are of 60.9% and 12.2% at 410 and 570 nm, respectively. These quantum yields are among the highest values ever determined with visible light for solid materials in the absence of light harvesting dye. The overall efficiency of (Zn/Cr)LDH for visible light oxygen generation was found to be 1.6 times higher than that of WO(3) under the same conditions.

  20. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng

    2013-03-01

    Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

  1. Study of the structure and luminescent properties of terbium complex intercalated Zn/Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Xie, Juan; Yin, Yaobing; Hao, Yongjing; Lian, Yiwei

    2016-01-01

    Terbium complex of ethylenediaminetetraacetate ([Tb(EDTA)]-) intercalated Zn/Al layered double hydroxide (LDH), as an inorganic-organic green-emitting phosphor, was synthesized through an ion exchange method. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectra exhibit a successful intercalation of [Tb(EDTA)]- anions between the hydroxide sheets of the LDH. The basal spacing of 14.5 Å indicate a vertical arrangement of [Tb(EDTA)]- anions with the maximal dimension in the gallery is adopted. The luminescent properties of this material were studied by excitation and emission spectra. The results show that the strongest emission peak of Tb3+ ion occurs at 544 nm. This material may supply a candidate of green light emitting phosphor.

  2. Poly(styrenesulfonate)-Modified Ni-Ti Layered Double Hydroxide Film: A Smart Drug-Eluting Platform.

    PubMed

    Ge, Naijian; Wang, Donghui; Peng, Feng; Li, Jinhua; Qiao, Yuqin; Liu, Xuanyong

    2016-09-21

    Drug-eluting stents (DESs) are widely used in the palliative treatment of many kinds of cancers. However, the covered polymers used in DESs are usually associated with stent migration and acute cholecystitis. Therefore, developing noncovered drug-loading layers on metal stents is of great importance. In this work, Ni-Ti layered double hydroxide (Ni-Ti LDH) films were prepared on the surface of nitinol via hydrothermal treatment, and the LDH films were further modified by poly(styrenesulfonate) (PSS). The anticancer drug doxorubicin could be effectively loaded onto the modified films, and drug release could be smartly controlled by the pH. Besides, the drug absorption amounts of cancer cells cultured on the films could be effectively improved. These results indicate that the PSS-modified LDH film may become a promising drug-loading platform that can be used in the design of DESs. PMID:27579782

  3. Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole.

    PubMed

    Nejati, Kamellia; Asadpour-Zeynali, Karim

    2014-02-01

    A new and simple approach based on the electrochemical method was used for preparation of reproducible nanostructure thin film of Ni/Fe-layered double hydroxides (Ni/Fe-LDH) on the glassy carbon electrode (GCE). The electrochemical behavior of the Ni/Fe-LDH deposited on GCE electrode is studied. Study of the scanning electron microscopy shows the formation of a nanostructure thin film on the glassy carbon electrode. Electrochemical experiments show that Ni/Fe-LDH modified glassy carbon electrode exhibits excellent electrocatalytic reduction activity with Metronidazole. The method was successfully applied for the analysis of Metronidazole in tablets. The results were favorably compared to those obtained by the reported BP method.

  4. Poly(styrenesulfonate)-Modified Ni-Ti Layered Double Hydroxide Film: A Smart Drug-Eluting Platform.

    PubMed

    Ge, Naijian; Wang, Donghui; Peng, Feng; Li, Jinhua; Qiao, Yuqin; Liu, Xuanyong

    2016-09-21

    Drug-eluting stents (DESs) are widely used in the palliative treatment of many kinds of cancers. However, the covered polymers used in DESs are usually associated with stent migration and acute cholecystitis. Therefore, developing noncovered drug-loading layers on metal stents is of great importance. In this work, Ni-Ti layered double hydroxide (Ni-Ti LDH) films were prepared on the surface of nitinol via hydrothermal treatment, and the LDH films were further modified by poly(styrenesulfonate) (PSS). The anticancer drug doxorubicin could be effectively loaded onto the modified films, and drug release could be smartly controlled by the pH. Besides, the drug absorption amounts of cancer cells cultured on the films could be effectively improved. These results indicate that the PSS-modified LDH film may become a promising drug-loading platform that can be used in the design of DESs.

  5. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    PubMed

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-01

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused.

  6. DFT-Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides.

    PubMed

    Zhang, Shi-Tong; Dou, Yibo; Zhou, Junyao; Pu, Min; Yan, Hong; Wei, Min; Evans, David G; Duan, Xue

    2016-09-01

    The thermal topotactic transformation mechanism of MgAl layered double hydroxides (LDHs) is investigated by a combined theoretical and experimental study. Thermogravimetric differential thermal analysis (TG-DTA) results reveal that the LDH phase undergoes four key endothermic events at 230, 330, 450, and 800 °C. DFT calculations show that the LDH decomposes into CO2 and residual O atoms via a monodentate intermediate at 330 °C. At 450 °C, the metal cations almost maintain their original distribution within the LDH(001) facet during the thermal dehydration process, but migrate substantially along the c-axis direction perpendicular to the (001) facet; this indicates that the metal arrangement/dispersion in the LDH matrix is maintained two-dimensionally. A complete collapse of the layered structure occurs at 800 °C, which results in a totally disordered cation distribution and many holes in the final product. The structures of the simulated intermediates are highly consistent with the observed in situ powder XRD data for the MgAl LDH sample calcined at the corresponding temperatures. Understanding the structural topotactic transformation process of LDHs would provide helpful information for the design and preparation of metal/metal oxides functional materials derived from LDH precursors. PMID:27273010

  7. Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency.

    PubMed

    Ding, Peng; Kang, Bai; Zhang, Jin; Yang, Jingwen; Song, Na; Tang, Shengfu; Shi, Liyi

    2015-02-15

    Polylactide (PLA)/layered double hydroxide (LDH) films with good flame retardant property and transparency were synthesized by solution exfoliation and film casting method. The organic-inorganic interfacial interaction between PLA and NiAl-LDH was carefully modified by 2-carboxylethyl-phenyl-phosphinic acid (CEPPA) to well solve the dispersion problem of NiAl-LDH nanolayers and get enhanced flame retardancy of PLA composites. The results showed the NiAl-LDH/CEPPA (LC) nanolayers had exfoliated structures and were homogenously dispersed in PLA matrixes. All the PLA/LDH films had good transparency even LC content was up to 10 wt%. The PLA/LDH films absorbed the ultraviolet light, which alleviates the embrittlement of PLA films in the using procedure. The flame retardant effect characterized by microscale combustion calorimeter was observed when LC contents increased. The total heat release value of the sample with 10 wt% LC decreased to 9.7 kJ/g from 12.0 kJ/g of virgin PLA.

  8. Design of a multifunctional nanohybrid system of the phytohormone gibberellic acid using an inorganic layered double-hydroxide material.

    PubMed

    Hafez, Inas H; Berber, Mohamed R; Minagawa, Keiji; Mori, Takeshi; Tanaka, Masami

    2010-09-22

    To offer a multifunctional and applicable system of the high-value biotechnological phytohormone gibberellic acid (GA), a nanohybrid system of GA using the inorganic Mg-Al layered double-hydroxide material (LDH) was formulated. The ion-exchange technique of LDH was applied to synthesize the GA-LDH hybrid. The hybrid structure of GA-LDH was confirmed by different spectroscopic techniques. The nanohybrid size was described by SEM to be ∼0.1 μm. The GA-LDH nanohybrid structure was the key parameter that controlled GA properties. The layered molecular structure of LDH limited the interaction of GA molecules in two-dimensional directions. Accordingly, GA molecules did not crystallize and were released in an amorphous form suitable for dissolution. At various simulated soil solutions, the nanohybrids showed a sustained release process following Higuchi kinetics. The biodegradation process of the intercalated GA showed an extended period of soil preservation as well as a slow rate of degradation. PMID:20722412

  9. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  10. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides

    SciTech Connect

    Wang, Yi; Zhang, Dun

    2011-11-15

    Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Al layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.

  11. Compositional and Structural Control on Anion Sorption Capability of Layered Double Hydroxides (LDHS)

    SciTech Connect

    Y. Wang; H. Gao

    2006-03-16

    Layered double hydroxides (LDHs) have shown great promise as anion getters. In this paper, we demonstrate that the sorption capability of a LDH for a specific oxyanion can be greatly increased by appropriately manipulating material composition and structure. A large set of LDH materials have been synthesized with various combinations of metal cations, interlayer anions, and the molar ratios of divalent cation M(II) to trivalent cation M(III). The synthesized materials have then been tested systematically for their sorption capabilities for pertechnetate (TcO{sub 4}{sup -}). It is discovered that for a given interlayer anion (either CO{sub 3}{sup 2-} or NO{sub 3}{sup -}) the Ni-Al LDH with a Ni/Al ratio of 3:1 exhibits the highest sorption capability among all the materials tested. The distribution coefficient (K{sub d}) is determined to be as high as 307 mL/g for Ni{sub 6}Al{sub 2}(0H){sub 16}CO{sub 3}nH{sub 2}O and 1390 mL/g for Ni{sub 6}Al{sub 2}(OH){sub 16}NO{sub 3}nH{sub 2}O at a pH of 8. The sorption of TcO{sub 4}{sup -} on M(II)-M(III)-CO{sub 3} LDHs is dominated by the edge sites of LDH layers and strongly correlated with the basal spacing d{sub 003} of the materials, which increases with the decreasing radii of both divalent and trivalent cations. The sorption reaches its maximum when the layer spacing is just large enough for a pertechnetate anion to fit into a cage space between two neighboring octahedra of metal hydroxides at the edge. Furthermore, the sorption is found to increase with the crystallinity of the materials. For a given combination of metal cations and an interlayer anion, a best crystalline LDH material is obtained generally with a M(II)/M(III) ratio of 3:1. Replacement of interlayer carbonate with readily exchangeable nitrate greatly increases the sorption capability of a LDH material for pertechnetate, due to the enhanced adsorption on edge sites and the possible contribution from interlayer anion exchanges. The work reported here will

  12. Hybridization Between Natural Extract of Angelica gigas Nakai and Inorganic Nanomaterial of Layered Double Hydroxide via Reconstruction Reaction.

    PubMed

    Kim, Tae-Hyun; Kim, Hyoung-Jun; Choi, Ae-Jin; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    We have hybridized layered double hydroxide (LDH) with Angelica gigas Nakai root extract (AGNR) through reversible dehydration-rehydration reaction which is known as reconstruction. LDHs having well-ordered hydrotalcite-like crystal structure and average size 250 ± 20 nm were prepared by hydrothermal method. The root of Angelica gigas Nakai, which has been utilized in the treatment of female disorders as herbal medicine, was treated with methanol to obtain extract. Pristine LDHs were calcined at 400 °C for 8 hours to obtain layered double oxide (LDO), which was further dispersed into extract solution with various AGNR/LDO weight ratios, 0.11, 0.21 and 0.43. The extract content in each hybrid increased in proportion to initial AGNR/LDO ratio, showing the highest content of ~12%. The zeta potential of LDH shifted from +44 mV to +20 mV upon hybridization with extract, which was attributed to the adsorption of negatively charged organic moieties in AGNR on LDH surface. The scanning electron microscopic (SEM) results exhibited that the random stacking of LDH nanolayers resulted in LDH-AGNR hybrid with house-of-cards structure, of which inter-particle cavity serves nano-reservoir for natural extract. According to quantitative analyses, it was revealed that the content of active components in AGNR increased when they were hybridized with LDHs compared with those in AGNR alone.

  13. Hybridization Between Natural Extract of Angelica gigas Nakai and Inorganic Nanomaterial of Layered Double Hydroxide via Reconstruction Reaction.

    PubMed

    Kim, Tae-Hyun; Kim, Hyoung-Jun; Choi, Ae-Jin; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    We have hybridized layered double hydroxide (LDH) with Angelica gigas Nakai root extract (AGNR) through reversible dehydration-rehydration reaction which is known as reconstruction. LDHs having well-ordered hydrotalcite-like crystal structure and average size 250 ± 20 nm were prepared by hydrothermal method. The root of Angelica gigas Nakai, which has been utilized in the treatment of female disorders as herbal medicine, was treated with methanol to obtain extract. Pristine LDHs were calcined at 400 °C for 8 hours to obtain layered double oxide (LDO), which was further dispersed into extract solution with various AGNR/LDO weight ratios, 0.11, 0.21 and 0.43. The extract content in each hybrid increased in proportion to initial AGNR/LDO ratio, showing the highest content of ~12%. The zeta potential of LDH shifted from +44 mV to +20 mV upon hybridization with extract, which was attributed to the adsorption of negatively charged organic moieties in AGNR on LDH surface. The scanning electron microscopic (SEM) results exhibited that the random stacking of LDH nanolayers resulted in LDH-AGNR hybrid with house-of-cards structure, of which inter-particle cavity serves nano-reservoir for natural extract. According to quantitative analyses, it was revealed that the content of active components in AGNR increased when they were hybridized with LDHs compared with those in AGNR alone. PMID:27398576

  14. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+ -doped Mg-Al layered double hydroxides.

    PubMed

    Kameda, Tomohito; Kondo, Eisuke; Yoshioka, Toshiaki

    2015-03-15

    Mg-Al layered double hydroxides (Mg-Al LDHs) doped with Fe(2+) adsorbed As(V) [Formula: see text] and Sb(V) [Formula: see text] from an aqueous solution through anion exchange with Cl(-) intercalated in the LDH interlayer. Fe(2+)-doped Mg-Al LDH exhibited superior As(V) removal compared with Mg-Al LDH. The oxidation of Fe(2+) doped in the Mg-Al LDH host layer to Fe(3+) increased the positive layer charge of the LDH, thus increasing the anion-uptake capacity owing to stronger electrostatic attractive force between the positively charged layer and the anion. However, Fe(2+)-doped Mg-Al LDH was not superior to Mg-Al LDH in terms of Sb(V) removal. This was attributed to the preferential intercalation of OH(-) over [Formula: see text] . The As(V) and Sb(V) removal by LDH followed Langmuir-type adsorption, which proceeded via a pseudo-first-order reaction. The equilibrium and kinetics studies confirm that the adsorption of As(V) and Sb(V) by Fe(2+)-doped Mg-Al LDH was the result of chemical adsorption, involving the anion exchange of [Formula: see text] and [Formula: see text] with the intercalated Cl(-).

  15. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1,2,3-benzotriazolate anions in layered double hydroxides: In situ X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Serdechnova, Maria; Salak, Andrei N.; Barbosa, Filipe S.; Vieira, Daniel E. L.; Tedim, João; Zheludkevich, Mikhail L.; Ferreira, Mário G. S.

    2016-01-01

    2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) are very promising inhibitors for the corrosion protection of aluminum alloys. These inhibitors can be incorporated in protective coatings in the form of anions intercalated into interlayers of layered double hydroxides (LDHs). Capacity and performance of such LDH-nanocontainers depend on the arrangement of the anions in their interlayers. In this work, intercalation of MBT- and BTA- into Mg-Al-NO3 and Zn-Al-NO3 LDHs were studied in detail using X-ray diffraction (XRD) methods including in situ XRD. The nitrate-to-MBT(BTA) anion exchange is much faster than considered previously. Well-formed Mg-Al-MBT, Zn-Al-MBT, Mg-Al-BTA LDHs were obtained after a 20-min exchange reaction at pH 11.5 at room temperature. It was demonstrated that Zn-Al-BTA LDH cannot be obtained under the same conditions due to the reaction between BTA and the Zn-Al hydroxide layers. Substitution of nitrates by organic anions occurs with the participation of hydroxide anions. Although no intermediate LDH phase intercalated with the combination of NO3 - and OH- appears, formation of the LDH-MBT and LDH-BTA phases results also in appearance of an LDH phase intercalated with OH- at the final stage of the anion exchange. In the LDH interlayer, MBT- and BTA- form a double layer in which these species have a tilted orientation against the layer plane (herringbone-like arrangement). Such an arrangement meets the LDH layer-interlayer electroneutrality and matches well with the observed values of the layer-interlayer distance.

  16. Thermal decomposition behavior of Cu–Al layered double hydroxide, and ethylenediaminetetraacetate-intercalated Cu–Al layered double hydroxide reconstructed from Cu–Al oxide for uptake of Y{sup 3+} from aqueous solution

    SciTech Connect

    Kameda, Tomohito; Hoshi, Kazuaki; Yoshioka, Toshiaki

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. ► The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. ► The edta·Cu–Al LDH could selectively take up rare earth ions from a mixed solution. -- Abstract: CO{sub 3}{sup 2−}-intercalated Cu–Al layered double hydroxide (CO{sub 3}·Cu–Al LDH) was calcined to yield Cu–Al oxide, and then ethylenediaminetetraacetate-intercalated Cu–Al LDH (edta·Cu–Al LDH) was prepared by reconstructing Cu–Al oxide in edta solution. Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. The production of Cu–Al oxide was caused by the thermal decomposition of CO{sub 3}·Cu–Al LDH until the third stage. The first stage was the elimination of adsorbed surface water and interlayer water in CO{sub 3}·Cu–Al LDH. The second and third stages were the dehydroxylation of the brucite-like octahedral layers and the elimination of CO{sub 3}{sup 2−} intercalated in the interlayers. The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. The uptake of Y{sup 3+} was caused not only by the chelating function of Hedta{sup 3−} in the interlayer but also by the chemical behavior of Cu–Al LDH itself. The edta·Cu–Al LDH was found to selectively take up rare earth ions from a mixed solution. The degree of uptake was high, in the order Sc{sup 3+} > Y{sup 3+} > La{sup 3+} for all time durations, which was attributable to differences among the stabilities of Sc(edta){sup −}, Y(edta){sup −} and La(edta){sup −}.

  17. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL. PMID:25016649

  18. Methotrexatum intercalated layered double hydroxides: statistical design, mechanism explore and bioassay study.

    PubMed

    Wang, Xiao-Feng; Liu, Su-Qing; Li, Shu-Ping

    2015-04-01

    A series of methotrexatum intercalated layered double hydroxide (MTX/LDH for short) hybrids have been synthesized by a mechanochemical-hydrothermal method, the statistical experiments are planned and conducted to find out the critical factor influencing the physicochemical properties. Four variables, i.e., addition of NaOH solution, grinding duration, hydrothermal temperature and time, are chosen to play as the examined factors in the orthogonal design. Furthermore, three respective levels, i.e., high, medium and low levels, are conducted in the design. The resulting hybrids are then characterized by X-ray diffraction (XRD) patterns, transmission electron microscope (TEM) graphs and Zeta potentials. XRD diffractions indicate that MTX anions have been successfully intercalated into LDH interlayers and the amount of NaOH solution can change the gallery height greatly. The information from TEM graphs and Zeta potentials state that the increase of alkali solution gives rise to regular morphology and the increase of Zeta potentials. As a result of the statistical analysis, addition of alkali solution is the major factor affecting the morphology and drug-loading capacity. At last, the mechanism of particle growth is explored emphatically, and the anticancer efficacy of some MTX/LDH hybrids is estimated by MTT assay on A549 cells as well.

  19. Ultrahigh Enzyme Activity Assembled in Layered Double Hydroxides via Mg(2+)-Allosteric Effector.

    PubMed

    Wang, Min; Huang, Shu-Wan; Xu, Dan; Bao, Wen-Jing; Xia, Xing-Hua

    2015-06-01

    It is well-known that some metal ions could be allosteric effectors of allosteric enzymes to activate/inhibit the catalytic activities of enzymes. In nanobiocatalytic systems constructed based on the positive metal ion-induced allosteric effect, the incorporated enzymes will be activated and thus exhibit excellent catalytic performance. Herein, we present an environmentally friendly strategy to construct a novel allosteric effect-based β-galactosidase/Mg-Al layered double hydroxide (β-gal/Mg-Al-LDH) nanobiocatalytic system via the delamination-reconstruction method. The intercalated β-gal in the LDH galleries changes its conformation significantly due to the Mg(2+)-induced allosteric interactions and other weak interactions, which causes the activation of enzymatic activity. The β-gal/Mg-Al-LDH nanobiocatalytic system shows much higher catalytic activity and affinity toward its substrate and about 30 times higher catalytic reaction velocity than the free β-gal, which suggests that Mg(2+)-induced allosteric effect plays a vital role in the improvement of enzymatic performance.

  20. Highly dispersed TiO6 units in a layered double hydroxide for water splitting.

    PubMed

    Zhao, Yufei; Chen, Pengyun; Zhang, Bingsen; Su, Dang Sheng; Zhang, Shitong; Tian, Lei; Lu, Jun; Li, Zhuoxin; Cao, Xingzhong; Wang, Baoyi; Wei, Min; Evans, David G; Duan, Xue

    2012-09-17

    A family of photocatalysts for water splitting into hydrogen was prepared by distributing TiO(6) units in an MTi-layered double hydroxide matrix (M = Ni, Zn, Mg) that displays largely enhanced photocatalytic activity with an H(2)-production rate of 31.4 μmol  h(-1) as well as excellent recyclable performance. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mapping and XPS measurement reveal that a high dispersion of TiO(6) octahedra in the layered doubled hydroxide (LDH) matrix was obtained by the formation of an M(2+)-O-Ti network, rather different from the aggregation state of TiO(6) in the inorganic layered material K(2)Ti(4)O(9). Both transient absorption and photoluminescence spectra demonstrate that the electron-hole recombination process was significantly depressed in the Ti-containing LDH materials relative to bulk Ti oxide, which is attributed to the abundant surface defects that serve as trapping sites for photogenerated electrons verified by positron annihilation and extended X-ray absorption fine structure (EXAFS) techniques. In addition, a theoretical study on the basis of DFT calculations demonstrates that the electronic structure of the TiO(6) units was modified by the adjacent MO(6) octahedron by means of covalent interactions, with a much decreased bandgap of 2.1 eV, which accounts for its superior water-splitting behavior. Therefore, the dispersion strategy for TiO(6) units within a 2D inorganic matrix can be extended to fabricate other oxide or hydroxide catalysts with greatly enhanced performance in photocatalysis and energy conversion.

  1. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials--An in vitro and in vivo study.

    PubMed

    Weizbauer, Andreas; Kieke, Marc; Rahim, Muhammad Imran; Angrisani, Gian Luigi; Willbold, Elmar; Diekmann, Julia; Flörkemeier, Thilo; Windhagen, Henning; Müller, Peter Paul; Behrens, Peter; Budde, Stefan

    2016-04-01

    The total hip arthroplasty is one of the most common artificial joint replacement procedures. Several different surface coatings have been shown to improve implant fixation by facilitating bone ingrowth and consequently enhancing the longevity of uncemented orthopaedic hip prostheses. In the present study, two different layered double hydroxides (LDHs), Mg-Fe- and Mg-Al-LDH, were investigated as potential magnesium (Mg)-containing coating materials for orthopaedic applications in comparison to Mg hydroxide (Mg(OH)2). In vitro direct cell compatibility tests were carried out using the murine fibroblast cell line NIH 3T3 and the mouse osteosarcoma cell line MG 63. The host response of bone tissue was evaluated in in vivo experiments with nine rabbits. Two cylindrical pellets (3 × 3 mm) were implanted into each femoral condyle of the left hind leg. The samples were analyzed histologically and with μ-computed tomography (μ-CT) 6 weeks after surgery. An in vitro cytotoxicity test determined that more cells grew on the LDH pellets than on the Mg(OH)2-pellets. The pH value and the Mg(2+) content of the cell culture media were increased after incubation of the cells on the degradable samples. The in vivo tests demonstrated the formation of fibrous capsules around Mg(OH)2 and Mg-Fe-LDH. In contrast, the host response of the Mg-Al-LDH samples indicated that this Mg-containing biomaterial is a potential candidate for implant coating. PMID:25939995

  2. Evidences for decarbonation and exfoliation of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture

    SciTech Connect

    Gordijo, Claudia R.; Leopoldo Constantino, Vera R.; Oliveira Silva, Denise de

    2007-07-15

    The behavior of a Hydrotalcite-like material (carbonate-containing Mg,Al-layered double hydroxide) in N,N-dimethylformamide (DMF)-ethanol mixture, at ambient temperature, has been investigated. The releasing of CO{sub 2} and production of a formate-containing material occurred mainly for 1:1 (v/v) solvent mixture. Decarbonation of Hydrotalcite is promoted by DMF hydrolysis followed by neutralization of brucite-like layers through HCOO{sup -} intercalation. Translucent colloidal dispersion of LDH nanoparticles from the formate-containing phase was characterized by transmission electron (TEM) and atomic force (AFM) microscopies. The absence of (00l) reflection at X-ray diffraction (XRD) pattern for dried colloidal dispersion indicated delamination of Hydrotalcite. The restacked sample exhibited broad reflections and typical hydroxide ordered layers non-basal (110) diffraction peaks. A LDH-HCOO{sup -} material was also prepared and characterized by FTIR and FT-Raman spectroscopies. Decarbonation and exfoliation of Hydrotalcite in N,N-dimethylformamide-ethanol mixed solvent provide an interesting method for preparation of new intercalated LDH materials. - Graphical abstract: Hydrotalcite suspended in 1:1 (v/v) N,N-dimethylformamide-ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent.

  3. Synthesis and characterization of metal (Core) - layered double hydroxide (Shell) nanostructures

    NASA Astrophysics Data System (ADS)

    Noh, Woo C.

    Layered double hydroxides (LDH) which belong to a class of inorganic ceramic layered materials have been studied since the mid-19th century for a variety of applications including catalysis, anion exchange, adsorbents and antacid, but more recently as a potential drug and gene delivery platform. Drug delivery platforms based on nano-sized geometries are nanovectors which promise a revolutionary impact on the therapy and imaging of various types of cancers and diseases. To date, various polymeric platforms have been the focus of intense research, but the development of inorganic, bio-hybrid nanoparticles for therapeutics and molecular imaging are at a stage of infancy. The hybridization of LDH with bioactive agents or the fabrication of metal (Core)---LDH (Shell) nanostructures could have many beneficial effects including multimodality, active targetability, and efficacy. For example, Core---Shell nanostructures may be designed to have a high scattering optical cross-section for imaging, but may also be tailored to strongly absorb near infrared (NIR) light for hyperthermic ablation. The central theme of this thesis was to demonstrate proof-of-concept of spherical silver and gold metal (Core)---LDH (Shell) nanostructures that have uniform size distribution and are agglomeration free. The effects of processing parameters on the characteristics of LDH as well as LDH-coated spherical metal (Ag, Au) nanoparticles have been evaluated using X-ray Diffraction, Dynamic Light Scattering, Scanning Electron Microscopy, Transmission Electron Microscopy, Rutherford Backscattering Spectrometry, and Inductively Coupled Plasma Emission Spectrometry to arrive at appropriate process windows. The core---shell nanostructures were also characterized for their optical properties in the ultra---violet---visible region, and the data were compared with simulated data, computed by using a quasi static model from Mie scattering theory. Moreover, in order to achieve a strong plasmon resonance

  4. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug.

    PubMed

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-09-01

    Para-amino salicylate (PAS), a tuberculosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear ((1)H, (13)C, and (27)Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD), elemental analysis and IR-spectroscopy to gain insight into the bulk and atomic level structure of these LDHs especially with a view to the purity of the LDH-PAS materials and the concentration of impurities. The intercalations of PAS in MgAl-, ZnAl-, and CaAl-LDH's were confirmed by (13)C SSNMR and PXRD. Moreover, (13)C MAS NMR and infrared spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using (27)Al single pulse and 3QMAS NMR spectra, which in combination with (1)H single and double quantum experiments also showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution (1)H SSNMR spectra of a CaAl LDH is reported and assigned using (1)H single and double quantum experiments in combination with (27)Al{(1)H} HETCOR.

  5. Characterization and film properties of electrophoretically deposited nanosheets of anionic titanate and cationic MgAl-layered double hydroxide.

    PubMed

    Matsuda, Atsunori; Sakamoto, Hisatoshi; Mohd Nor, Mohd Arif Bin; Kawamura, Go; Muto, Hiroyuki

    2013-02-14

    Anionic hydrated titanate (H(n)TiO(m): HTO) nanosheets and cationic magnesium-aluminum layered double hydroxide (Mg-Al LDH) nanosheets were electrophoretically deposited on positively and negatively charged indium tin oxide (ITO)-coated glass substrates, respectively. The HTO nanosheets and Mg-Al LDH nanosheets obtained were identified in neutral water as H(2)Ti(4)O(9)·nH(2)O with a ζ-potential of -23 mV and Mg(6)Al(2)(OH)(18)·4.5H(2)O with a ζ-potential of +41 mV, respectively. Dense and smooth HTO and Mg-Al LDH films with layered structures with thicknesses of about 10-15 μm were prepared in 300 s at 7.5 V by electrophoretic deposition (EPD) from the nanosheet suspensions. Both EPD HTO and LDH films showed elasticity because of their layered laminate structures. The HTO thick films demonstrated large adsorption properties and high photocatalytic activity, while the Mg-Al LDH thick films showed relatively high ionic conductivity of 10(-5) S cm(-1) at 80 °C and 80% relative humidity.

  6. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  7. Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release.

    PubMed

    Seftel, E M; Cool, P; Lutic, D

    2013-12-01

    Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400°C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic-mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6h with Phe solution. A delivery test in PBS of pH=7.4 showed the release of the Phe in several steps up to 25 h indicating different host-guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer.

  8. In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid

    PubMed Central

    Qin, Lili; Wang, Wenrui; You, Songhui; Dong, Jingmei; Zhou, Yunhe; Wang, Jibing

    2014-01-01

    Folic acid antioxidants were successfully intercalated into layered double hydroxides (LDH) nanoparticles according to a previous method with minor modification. The resultant folic acid-LDH constructs were then characterized by X-ray powder diffraction and transmission electron microscopy. The in vitro antioxidant activities, cytotoxicity effect, and in vivo antifatigue were examined by a series of assays. The results showed that folic acid-LDH antioxidant system can scavenge 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and chelate pro-oxidative Cu2+. The in vitro cytotoxicity assays indicated that folic acid-LDH antioxidant system had no significant cytotoxic effect or obvious toxicity to normal cells. It also prolonged the forced swimming time of the mice by 32% and 51% compared to folic acid and control groups, respectively. It had an obvious effect on decreasing the blood urea nitrogen and blood lactic acid, while increasing muscle and hepatic glycogen levels. Therefore, folic acid-LDH might be used as a novel antioxidant and antifatigue nutritional supplement. PMID:25506219

  9. Synthesis and investigation of magnetic nanocomposite of Fe3O4 with cetirizine-intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Nejati, K.; Davaran, S.; Baggalzadeh, R.

    2014-11-01

    In this research work the nanocomposite CT-LDH/Fe3O4 was prepared by deposition of cetirizine (CT) intercalated-Mg-Al layered double hydroxide (LDH) on Fe3O4 using a co-precipitation method for sustained drug-targeting delivery. The obtained products were characterized by the variety of methods such as (XRD), (FT-IR), (TG) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The XRD results, showed the coexistence of the strong diffractions of Fe3O4 and cetirizine intercalated LDH. Also, after intercalation, the basal spacing of LDH increased from 0.88 nm to 2.52 nm, indicating that cetirizine anions were successfully intercalated into the interlayer space of LDH as a monolayer. The thermal gravimetric studies indicate the thermal stability of cetirizine molecule has increased with intercalation. In vitro drug release experiments in phosphate buffer solution (pH = 7.4) have been investigated. Magnetic measurements revealed that the nanocomposite displayed superparamagnetic properties at room temperature.

  10. Synthesis of Mg-Al and Zn-Al-layered double hydroxide nanocrystals using laser ablation in water

    SciTech Connect

    Hur, Tae-Bong; Phuoc, Tran X.; Chyu, Minking K.

    2009-06-01

    In this paper, we report our results on the synthesis of Mg-Al and Zn-Al-layered double hydroxides using the laser ablation in the liquid technique. To prepare these layered double hydroxides (LDH) we first began with the laser generation of a Mg (or zinc) target submerged in deionized water and then ablated an aluminum target submerged in the previously prepared Mg-deionized water suspensions (Mg-dw) to produce Mg-Al LDH and in Zn-dw to prepare Zn-Al LDH. In these ablation tests, the Mg ablation duration was selected to vary from 5 to 60 min, while the Al ablation duration was kept constant at 30 min for all samples. The generated Mg-Al LDH was a gel-like and well crystallized nanoparticles of a rod-like shape and were arranged in a well-organized pattern. When the Mg ablation duration between 25 and 35 min, the synthesized nanocrystals were stoichiometric with a formula of Mg6Al2(OH)(18)4.5 (H2O), the interlayer distance (d((0 0 3))-spacing) was 7.8 angstrom and the average grain size was 8.0 nm. The synthesized Zn-Al LDH revealed various lamellar thin plate-like nanostructures of hexagonal morphologies. The average diameters of these structures was about 500 nm and the thickness of a single layer was approximately about 6.0 nm. The XRD diffraction peaks were indexed in hexagonal lattice with a(o) = 3.07 angstrom and c(o) = 15.12 angstrom. These indexes were (002), (004), and (008) and the corresponding interlayer distances, d-spacing (angstrom), were 7.56 (002), 3.782 (004), and 1.891 (008), respectively.

  11. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    DOE PAGESBeta

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; Varela, María; Jaafar, Miriam; Gómez-Herrero, Julio; Zamora, Félix; Ribera, Antonio; García, Hermenegildo; Coronado, Eugenio

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows thatmore » the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.« less

  12. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    SciTech Connect

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; Varela, María; Jaafar, Miriam; Gómez-Herrero, Julio; Zamora, Félix; Ribera, Antonio; García, Hermenegildo; Coronado, Eugenio

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows that the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.

  13. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy.

    PubMed

    Wei, Pei-Ru; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lee, Chia-Hung

    2015-09-01

    We designed a study for photodynamic therapy (PDT) using chitosan coated Mg-Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH-NH₂-ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH-NH₂-ICG and single layer chitosan-coated LDH-NH₂-ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.

  14. Intercalation of methotrexatum into layered double hydroxides via exfoliation-reassembly process

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Li, Shu-Ping; Li, Xiao-Dong

    2015-03-01

    In this paper, the intercalation of methotrexatum (MTX) into layered double hydroxides (LDHs) via an exfoliation-reassembly process was reported and the resulting hybrids were then characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) patterns etc. In the synthesis procedure, LDHs particles were firstly delaminated into well-dispersed 2D nanosheets in formamide by ultrasonic treatment at room temperature, and then the resulting LDH nanosheets were reassembled in MTX solution to form MTX intercalated LDH (MTX/LDHs) hybrids. AFM images showed that during the exfoliation process a large part of LDHs particles were delaminated into single and double brucite layers. XRD patterns and FTIR investigations manifested the successful intercalation of MTX anions into LDHs interlayers for the final samples. It was also found out that the drug-loading capacity of the hybrids increased with the concentrations of MTX solutions, while the morphology became even aggregated. At last, the cell cytotoxicity of the hybrids was estimated by MTT assays on the human lung cancer cells (A549), and the results stated that MTX/LDHs hybrids had effective suppress role on the proliferation of cancer cells.

  15. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  16. Incorporation of transition metals into Mg-Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator

    SciTech Connect

    Tsyganok, Andrey; Sayari, Abdelhamid . E-mail: Abdel.Sayari@science.uottawa.ca

    2006-06-15

    A comparative study on two different methods for preparing Mg-Al layered double hydroxides (LDH) containing various divalent transition metals M (M=Co, Ni, Cu) has been carried out. The first (conventional) method involved coprecipitation of divalent metals M(II) with Mg(II) and Al(III) cations using carbonate under basic conditions. The second approach was based on the ability of transition metals to form stable anionic chelates with edta{sup 4-} (edta{sup 4-}=ethylenediaminetetraacetate) that were synthesized and further introduced into LDH by coprecipitation with Mg and Al. The synthesized LDHs were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) methods, thermogravimetry with mass-selective detection of decomposition products (TG-MSD), Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The results obtained were discussed in terms of efficiency of transition metal incorporation into the LDH structure, thermal stability of materials and the ability of metal chelates to intercalate the interlayer space of Mg-Al LDH. Vibrational spectroscopy studies confirmed that the integrity of the metal chelates was preserved upon incorporation into the LDH. - Graphical abstract: Two ways for introducing transition metals M(II) into Mg-Al layered double hydroxides (MY{sup 2-} denotes the edta chelate of transition metal M(II)).0.

  17. Tailoring surface properties and structure of layered double hydroxides using silanes with different number of functional groups

    SciTech Connect

    Tao, Qi; He, Hongping; Li, Tian; Frost, Ray L.; Zhang, Dan; He, Zisen

    2014-05-01

    Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and {sup 29}Si MAS nuclear magnetic resonance spectra ({sup 29}Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and {sup 29}Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (S{sub BET}) and total pore volumes (V{sub p}) of the products. - Graphical abstract: The replacement of water by ethanol in the tactoids and aggregations of LDHs, and the polysiloxane oligomers formed during silylation process can dramatically increase the BET surface area (S{sub BET}) and the total pore volume (V{sub p}) of the silylated products. - Highlights: • Silanes with multifunctional groups were grafted onto LDH surface in C{sub 2}H{sub 5}OH medium. • The number of hydrolysable groups in silanes affects the structure of grafted LDH. • Replacement of H{sub 2}O by C{sub 2}H{sub 5}OH in aggregations increases S{sub BET} and V{sub p} of grafted LDH. • Polysiloxane oligomers contribute to the increase of S{sub BET} and V{sub p} of grafted LDH.

  18. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn{sub 2}Al layered double hydroxide

    SciTech Connect

    Tronto, Jairo; Pinto, Frederico G.; Costa, Liovando M. da; Leroux, Fabrice; Dubois, Marc; Valim, João B.

    2015-01-15

    A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermal treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made.

  19. A novel and easy chemical-clock synthesis of nanocrystalline iron-cobalt bearing layered double hydroxides.

    PubMed

    Hadi, Jebril; Grangeon, Sylvain; Warmont, Fabienne; Seron, Alain; Greneche, Jean-Marc

    2014-11-15

    A novel synthesis of cobalt-iron layered double hydroxide (LDH) with interlayer chlorides was investigated. The method consists in mixing concentrated solutions of hexaamminecobalt(III) trichloride with ferrous chloride at room temperature and in anoxic conditions. Four initial Fe/Co atomic ratios have been tried out (0.12, 0.6, 1.2 and 1.8). Neither heating nor addition of alkali was employed for adjusting the pH and precipitating the metal hydroxides. Still, each mixture led to the spontaneous precipitation of a LDH-rich solid having a crystal-chemistry that depended on the initial solution Fe/Co. These LDHs phases were carefully characterized by mean of X-ray diffraction, (57)Fe Mössbauer spectrometry, transmission electron microscopy and chemical analysis (total dissolution and phenanthroline method). Solution Eh and pH were also monitored during the synthesis. Increasing initial Fe/Co ratio impacted the dynamic of the observed stepwise reaction and the composition of the resulting product. Once the two solutions are mixed, a spontaneous and abrupt color change occurs after an induction time which depends on the starting Fe/Co ratio. This makes the overall process acting as a chemical clock. This spontaneous generation of CoFe-LDH arises from the interplay between redox chemistries of iron and cobalt-ammonium complexes. PMID:25173991

  20. A novel and easy chemical-clock synthesis of nanocrystalline iron-cobalt bearing layered double hydroxides.

    PubMed

    Hadi, Jebril; Grangeon, Sylvain; Warmont, Fabienne; Seron, Alain; Greneche, Jean-Marc

    2014-11-15

    A novel synthesis of cobalt-iron layered double hydroxide (LDH) with interlayer chlorides was investigated. The method consists in mixing concentrated solutions of hexaamminecobalt(III) trichloride with ferrous chloride at room temperature and in anoxic conditions. Four initial Fe/Co atomic ratios have been tried out (0.12, 0.6, 1.2 and 1.8). Neither heating nor addition of alkali was employed for adjusting the pH and precipitating the metal hydroxides. Still, each mixture led to the spontaneous precipitation of a LDH-rich solid having a crystal-chemistry that depended on the initial solution Fe/Co. These LDHs phases were carefully characterized by mean of X-ray diffraction, (57)Fe Mössbauer spectrometry, transmission electron microscopy and chemical analysis (total dissolution and phenanthroline method). Solution Eh and pH were also monitored during the synthesis. Increasing initial Fe/Co ratio impacted the dynamic of the observed stepwise reaction and the composition of the resulting product. Once the two solutions are mixed, a spontaneous and abrupt color change occurs after an induction time which depends on the starting Fe/Co ratio. This makes the overall process acting as a chemical clock. This spontaneous generation of CoFe-LDH arises from the interplay between redox chemistries of iron and cobalt-ammonium complexes.

  1. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  2. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides.

    PubMed

    Caporale, A G; Pigna, M; Dynes, J J; Cozzolino, V; Zhu, J; Violante, A

    2011-12-30

    This paper describes the sorption of arsenate on Al-Mg and Fe-Mg layered double hydroxides as affected by pH and varying concentrations of inorganic and organic ligands, and the effect of residence time on the desorption of arsenate by ligands. The capacity of ligands to inhibit the fixation of arsenate followed the sequence: nitrateLDH and nitrateLDH. The inhibition of arsenate sorption increased by increasing the initial ligand concentration and was greater on Al-Mg-LDH than on Fe-Mg-LDH. The longer the arsenate residence time on the LDH surfaces the less effective the competing ligands were in desorbing arsenate from sorbents. A greater percentage of arsenate was removed by phosphate from Al-Mg-LDH than from Fe-Mg-LDH, due to the higher affinity of arsenate for iron than aluminum. PMID:22071258

  3. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins.

    PubMed

    Jiang, Shu-Dong; Bai, Zhi-Man; Tang, Gang; Song, Lei; Stec, Anna A; Hull, T Richard; Hu, Yuan; Hu, Wei-Zhao

    2014-08-27

    Hierarchical mesoporous silica@Co-Al layered double hydroxide (m-SiO2@Co-Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co-Al LDH, the synthetic m-SiO2@Co-Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co-Al LDH nanosheets. Subsequently, the m-SiO2@Co-Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co-Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co-Al LDH play pivotal roles in the flame retardance enhancement.

  4. Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers.

    PubMed

    Huang, Heqin; Xu, Jianbin; Wei, Kongchang; Xu, Yang J; Choi, Chun Kit K; Zhu, Meiling; Bian, Liming

    2016-07-01

    Poly (ethylene glycol) (PEG) based hydrogels have been widely used in many biomedical applications such as regenerative medicine due to their good biocompatibility and negligible immunogenicity. However, bioactivation of PEG hydrogels, such as conjugation of bioactive biomolecules, is usually necessary for cell-related applications. Such biofunctionalization of PEG hydrogels generally involves complicated and time-consuming bioconjugation procedures. Herein, we describe the facile preparation of bioactive nanocomposite PEG hydrogel crosslinked by the novel multifunctional nanocrosslinkers, namely polydopamine-coated layered double hydroxides (PD-LDHs). The catechol-rich PD-LDH nanosheets not only act as effective nanocrosslinkers reinforcing the mechanical strength of the hydrogel, but also afford the hydrogels with robust bioactivity and bioadhesion via the cortical-mediated couplings. The obtained nanocomposite PEG hydrogels with the multifunctional PD-LDH crosslinking domains show tunable mechanical properties, self-healing ability, and bioadhesion to biological tissues. Furthermore, these hydrogels also promote the sequestration of proteins and support the osteogenic differentiation of human mesenchymal stem cells without any further bio-functionalization. Such facile preparation of bioactive and bioadhesive PEG hydrogels have rarely been achieved and may open up a new avenue for the design of nanocomposite PEG hydrogels for biomedical applications. PMID:27061462

  5. Potential for Layered Double Hydroxides-Based, Innovative Drug Delivery Systems

    PubMed Central

    Zhang, Kai; Xu, Zhi Ping; Lu, Ji; Tang, Zhi Yong; Zhao, Hui Jun; Good, David A.; Wei, Ming Qian

    2014-01-01

    Layered Double Hydroxides (LDHs)-based drug delivery systems have, for many years, shown great promises for the delivery of chemical therapeutics and bioactive molecules to mammalian cells in vitro and in vivo. This system offers high efficiency and drug loading density, as well as excellent protection of loaded molecules from undesired degradation. Toxicological studies have also found LDHs to be biocompatible compared with other widely used nanoparticles, such as iron oxide, silica, and single-walled carbon nanotubes. A plethora of bio-molecules have been reported to either attach to the surface of or intercalate into LDH materials through co-precipitation or anion-exchange reaction, including amino acid and peptides, ATPs, vitamins, and even polysaccharides. Recently, LDHs have been used for gene delivery of small molecular nucleic acids, such as antisense, oligonucleotides, PCR fragments, siRNA molecules or sheared genomic DNA. These nano-medicines have been applied to target cells or organs in gene therapeutic approaches. This review summarizes current progress of the development of LDHs nanoparticle drug carriers for nucleotides, anti-inflammatory, anti-cancer drugs and recent LDH application in medical research. Ground breaking studies will be highlighted and an outlook of the possible future progress proposed. It is hoped that the layered inorganic material will open up new frontier of research, leading to new nano-drugs in clinical applications. PMID:24786098

  6. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Benito, P.; Labajos, F. M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-01

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al 3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M 2+/M 3+ ratio and consequent modification of the cell parameters.

  7. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    SciTech Connect

    Wang, Yi; Zhang, Dun

    2012-11-15

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  8. From spent Mg/Al layered double hydroxide to porous carbon materials.

    PubMed

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.

  9. Potential for layered double hydroxides-based, innovative drug delivery systems.

    PubMed

    Zhang, Kai; Xu, Zhi Ping; Lu, Ji; Tang, Zhi Yong; Zhao, Hui Jun; Good, David A; Wei, Ming Qian

    2014-01-01

    Layered Double Hydroxides (LDHs)-based drug delivery systems have, for many years, shown great promises for the delivery of chemical therapeutics and bioactive molecules to mammalian cells in vitro and in vivo. This system offers high efficiency and drug loading density, as well as excellent protection of loaded molecules from undesired degradation. Toxicological studies have also found LDHs to be biocompatible compared with other widely used nanoparticles, such as iron oxide, silica, and single-walled carbon nanotubes. A plethora of bio-molecules have been reported to either attach to the surface of or intercalate into LDH materials through co-precipitation or anion-exchange reaction, including amino acid and peptides, ATPs, vitamins, and even polysaccharides. Recently, LDHs have been used for gene delivery of small molecular nucleic acids, such as antisense, oligonucleotides, PCR fragments, siRNA molecules or sheared genomic DNA. These nano-medicines have been applied to target cells or organs in gene therapeutic approaches. This review summarizes current progress of the development of LDHs nanoparticle drug carriers for nucleotides, anti-inflammatory, anti-cancer drugs and recent LDH application in medical research. Ground breaking studies will be highlighted and an outlook of the possible future progress proposed. It is hoped that the layered inorganic material will open up new frontier of research, leading to new nano-drugs in clinical applications.

  10. Removal of 2,4-dichlorophenoxyacetic acid by calcined Zn-Al-Zr layered double hydroxide.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2011-11-01

    The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Zn-Al layered double hydroxide incorporated with Zr(4+) were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr(4+) incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg L(-1). The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr(4+) ion content, relative to the total metals (Zr(4+)+Al(3+)+Zn(2+)). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, ΔH(ads) of -27.7±0.9 kJ mol(-1). Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorption-desorption cycles when exposed to an analyte concentration of 100 ppm.

  11. Synthesis and reversible hydration behavior of the thiosulfate intercalated layered double hydroxide of Zn and Al

    SciTech Connect

    Radha, S.; Milius, Wolfgang; Breu, Josef; Kamath, P. Vishnu

    2013-08-15

    The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent the end members of the hydration cycle, both adopt the structure of the 3R{sub 1} polytype. In the intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist. The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin. - Graphical abstract: Basal spacing evolution of the thiosulfate ion intercalated [Zn–Al] LDH during one complete hydration–dehydration cycle as a function of relative humidity. Display Omitted - Highlights: • Thiosulfate intercalated [Zn–Al] LDHs were synthesized by co-precipitation. • The LDH exhibits reversible hydration with variation in humidity. • Both the end members of the hydration cycle adopt the same polytype structure. • The interstratified intermediates observed are kinetic in origin.

  12. From spent Mg/Al layered double hydroxide to porous carbon materials.

    PubMed

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH. PMID:26257095

  13. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene.

    PubMed

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-21

    Ni(2+)Mn(3+) layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni(2+)/Mn(2+) salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery. PMID:27142232

  14. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn2Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Tronto, Jairo; Pinto, Frederico G.; da Costa, Liovando M.; Leroux, Fabrice; Dubois, Marc; Valim, João B.

    2015-01-01

    A layered double hydroxide (LDH) with cation composition Zn2Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), 13C CP-MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermal treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the 27Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O2- vacancies), formed during the thermal treatments.

  15. Strong interfacial attrition developed by oleate/layered double hydroxide nanoplatelets dispersed into poly(butylene succinate).

    PubMed

    Zhou, Qian; Verney, Vincent; Commereuc, Sophie; Chin, In-Joo; Leroux, Fabrice

    2010-09-01

    Poly(butylene succinate) (PBS) nanocomposite structure was studied as a function of the filler percentage loading. The resulting state of dispersion was evaluated by XRD and TEM, and the interfacial attrition between PBS chain and lamellar platelets by the melt rheological properties. Hybrid organic inorganic (O/I) layered double hydroxide (LDH) organo-modified by oleate anions was used as filler. It was found that the confinement supplied by the LDH framework forces the interleaved organic molecule to be more distant from each other than in the case of oleate salt, this having as an effect to decrease strongly the homonuclear intermolecular (1)H(1)H dipolar interaction. An additional consequence of this relatively free molecular rotation, affecting the (13)C CPMAS response as well, is to facilitate the delamination of the 2D-stacked layers during extrusion since an quasi-exfoliated PBS:Mg(2)Al/oleate structure is observed for filler loading lower than 5% w/w. This is in association to a non-linear viscoelasticity in the low-omega region and the observed shear-thinning tendency compares better than other PBS:silicate nanocomposite derivatives and is here explained by the presence of a percolated LDH nanoparticle network. Indeed the plastic deformation in the low-omega region is found to be restricted by well-dispersed LDH tactoids in association with a rather strong attrition phenomenon between tethered oleate anions and PBS chains.

  16. Synthesis and properties of mecoprop-intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Ahmed Khan, Modabber; Choi, Choong-Lyeal; Lee, Dong-Hoon; Park, Man; Lim, Bu-Kug; Lee, Jong-Yoon; Choi, Jyung

    2007-08-01

    This study carried out to elucidate the synthesis of MCPP LDH hybrid, release pattern of MCPP from MCPP LDH hybrid and their properties. MCPP LDH hybrid was synthesized from MCPP and Mg Al complex. Release pattern of MCPP from MCPP LDH hybrid was slower in distilled water and soil solution but it was slower in distilled water than soil solution. MCPP LDH hybrid has shown more stable condition than CO32- form of LDH in thermal and acidic condition. Therefore, MCPP LDH hybrid would lead as functional and benign pesticide to minimize the harmful effects on soil environment by bulk herbicides.

  17. Ion specific effects on the stability of layered double hydroxide colloids.

    PubMed

    Pavlovic, Marko; Huber, Robin; Adok-Sipiczki, Monika; Nardin, Corinne; Szilagyi, Istvan

    2016-05-01

    Positively charged layered double hydroxide particles composed of Mg(2+) and Al(3+) layer-forming cations and NO3(-) charge compensating anions (MgAl-NO3-LDH) were synthesized and the colloidal stability of their aqueous suspensions was investigated in the presence of inorganic anions of different charges. The formation of the layered structure was confirmed by X-ray diffraction, while the charging and aggregation properties were explored by electrophoresis and light scattering. The monovalent anions adsorb on the oppositely charged surface to a different extent according to their hydration state leading to the Cl(-) > NO3(-) > SCN(-) > HCO3(-) order in surface charge densities. The ions on the right side of the series induce the aggregation of MgAl-NO3-LDH particles at lower concentrations, whereas in the presence of the left ones, the suspensions are stable even at higher salt levels. The adsorption of multivalent anions gave rise to charge neutralization and charge reversal at appropriate concentrations. For some di, tri and tetravalent ions, charge reversal resulted in restabilization of the suspensions in the intermediate salt concentration regime. Stable samples were also observed at low salt levels. Particle aggregation was fast near the charge neutralization point and at high concentrations. These results, which evidence the colloidal stability of MgAl-NO3-LDH in the presence of various anions, are of prime fundamental interest. These are also critical for applications to develop stable suspensions of primary particles for water purification processes, with the aim of the removal of similar anions by ion exchange. PMID:26997621

  18. Atomistic simulation of nanoporous layered double hydroxide materials and their properties. II. Adsorption and diffusion

    NASA Astrophysics Data System (ADS)

    Kim, Nayong; Harale, Aadesh; Tsotsis, Theodore T.; Sahimi, Muhammad

    2007-12-01

    Nanoporous layered double hydroxide (LDH) materials have wide applications, ranging from being good adsorbents for gases (particularly CO2) and liquid ions to membranes and catalysts. They also have applications in medicine, environmental remediation, and electrochemistry. Their general chemical composition is [M1-xIIMxIII(OH-)2]x+[Xn/mm -•nH2O], where M represents a metallic cation (of valence II or III), and Xn/mm - is an m-valence inorganic, or heteropolyacid, or organic anion. We study diffusion and adsorption of CO2 in a particular LDH with MII=Mg, MIII=Al, and x ≃0.71, using an atomistic model developed based on energy minimization and molecular dynamics simulations, together with a modified form of the consistent-valence force field. The adsorption isotherms and self-diffusivity of CO2 in the material are computed over a range of temperature, using molecular simulations. The computed diffusivities are within one order of magnitude of the measured ones at lower temperatures, while agreeing well with the data at high temperatures. The measured and computed adsorption isotherms agree at low loadings, but differ by about 25% at high loadings. Possible reasons for the differences between the computed properties and the experimental data are discussed, and a model for improving the accuracy of the computed properties is suggested. Also studied are the material's hydration and swelling properties. As water molecules are added to the pore space, the LDH material swells to some extent, with the hydration energy exhibiting interesting variations with the number of the water molecules added. The implications of the results are discussed.

  19. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    SciTech Connect

    Lv, Ming; Liu, Haiqiang

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl

  20. Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor

    SciTech Connect

    Hu, Lihua; Yuan, Yan; Shi, Wenfang

    2011-02-15

    Graphical abstract: This is the HR-TEM micrograph of UV cured nanocomposite at 5 wt% LDH-2959 loading for a-5 sample. The dark lines are the intersections of LDH platelets. It can be seen that samples a-5 dispersed in the polymer matrix and lost the ordered stacking-structure and show the completely exfoliation after UV curing. This can be explained by the fact that the sample a-5 only containing LDH-2959 exhibited a relative lower photopolymerization rate, which was propitious to further expand the LDH intergallery to form the exfoliated structure. Research highlights: {yields} The UV cured polymer/LDH nanocomposites were prepared through the photopolymerization initiated by the photoinitiator-modified LDH precursor, LDH-2959. {yields} The exfoliated UV cured nanocomposites were achieved in the presence of LDH-2959 only. However, the UV cured nanocomposites prepared using both LDH-2959 and Irgacure 2959 showed the intercalated structure. {yields} Compared with the pure polymer, the exfoliated polymer/LDH nanocomposite showed remarkable enhanced thermal stability and mechanical properties because of their well dispersion in the polymer matrix. -- Abstract: The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate systems through an Irgacure 2959-modified LDH precursor (LDH-2959) as a photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. For comparison, the intercalated polymer/LDH nanocomposite was obtained with additive Irgacure 2959 addition. From the X-ray diffraction (XRD) measurements and HR-TEM observations, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix at 5 wt% LDH-2959 loading

  1. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    PubMed

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-01

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates. PMID:23043294

  2. Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions

    SciTech Connect

    Prasanna, Srinivasa V.; Kamath, P. Vishnu . E-mail: vishnukamath8@hotmail.com; Shivakumara, C.

    2007-06-05

    Chromate intercalated layered double hydroxides (LDHs) having the formula M{sup II} {sub 6}M'{sup III} {sub 2}(OH){sub 16}CrO{sub 4}.4H{sub 2}O (M{sup II} = Ca, Mg, Co, Ni, Zn with M'{sup III} = Al and M{sup II} = Mg, Co, Ni with M'{sup III} = Fe) have been prepared by coprecipitation. The products obtained are replete with stacking disorders. DIFFaX simulations show that the stacking disorders are of three kinds: (i) turbostratic disorder of an originally single layered hexagonal (1H) crystal (ii) random intergrowth of polytypes with hexagonal (2H) and rhombohedral (3R) symmetries and (iii) translation of randomly chosen layers by (2/3, 1/3, z) and (1/3, 2/3, z) leading to stacking faults having a local structure of rhombohedral symmetry. IR spectra show that the CrO{sub 4} {sup 2-} ion is incorporated either in the T {sub d} or in the C {sub 3v} symmetry. The interlayer spacing in the latter case is 7.3 A characteristic of a single atom thick interlayer showing that the CrO{sub 4} {sup 2-} ion is grafted to the metal hydroxide slab. On thermal treatment, the CrO{sub 4} {sup 2-} ion transforms into Cr(III) and is incorporated into the spinel oxide or phase separates as Cr{sub 2}O{sub 3}. In the LDH of Mg with Al, Cr(III) remains in the MgO lattice as a defect and promotes the reconstruction of the LDH on soaking in water. In different LDHs, 18-50% of the CrO{sub 4} {sup 2-} ion is replaceable with carbonate anions showing only partial mineralization of the water-soluble chromate. The extent of replaceable chromates depends upon the solubility of the corresponding LDH, which in turn is determined by the solubility of the MCrO{sub 4}. These studies have profound implications for the possible use of LDHs for chromate amelioration in green chemistry.

  3. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line Boisen; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-15

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg{sub 1−x}Ga{sub x}(OH){sub 2}(NO{sub 3}){sub x}·yH{sub 2}O] was investigated using solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg{sub 3}-OH, Mg{sub 2}Ga-OH and intergallery water molecules were assigned and quantified using ({sup 1}H,{sup 71}Ga) HETCOR and {sup 1}H MAS NMR. A single {sup 71}Ga site originating from the unique Ga site in the MgGa LDH's was observed in {sup 71}Ga MAS and 3QMAS NMR spectra. Both {sup 1}H MAS NMR spectra recorded at 21.1 T (900 MHz) and elemental analysis show that the synthesized MgGa LDH's had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH){sub 4}]{sup −} complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Ga-O-Ga connectivities or defects were detected for the MgGa LDH's. - Graphical abstract: Two types of hydroxides groups are observed in magnesium gallium layered double hydroxides revealing an ordering of Ga in the cation layer. - Highlights: • Ga is ordered in our magnesium gallium layered double hydroxides. • Ga depletion due to formation of soluble Ga complexes during synthesis. • No sign of Ga rich regions in magnesium gallium LDHs. • Solid state {sup 1}H and {sup 71}Ga give detailed insight into the structure.

  4. Structural Characterisation of Complex Layered Double Hydroxides and TGA-GC-MS Study on Thermal Response and Carbonate Contamination in Nitrate- and Organic-Exchanged Hydrotalcites.

    PubMed

    Conterosito, Eleonora; Palin, Luca; Antonioli, Diego; Viterbo, Davide; Mugnaioli, Enrico; Kolb, Ute; Perioli, Luana; Milanesio, Marco; Gianotti, Valentina

    2015-10-12

    Layered double hydroxides (LDHs) are versatile materials used for intercalating bioactive molecules in the fields of pharmaceuticals, nutraceuticals and cosmetics, with the purpose of protecting them from degradation, enhancing their water solubility to increase bioavailability and improving their pharmacokinetic properties and formulation stability. Moreover, LDHs are used in various technological applications to improve stability and processability. The crystal chemistry of hydrotalcite-like compounds was investigated by X-ray powder diffraction (XRPD), automated electron diffraction tomography (ADT) and thermogravimetric analysis (TGA)-GC-MS to shed light on the mechanisms involved in ion exchange and absorption of contaminants, mainly carbonate anions. For the first time, ADT allowed a structural model of LDH_NO3 to be obtained from experiment, shedding light on the conformation of nitrate inside LDH and on the loss of crystallinity due to the layer morphology. The ADT analysis of a hybrid LDH sample (LDH_EUS) clearly revealed an increase in defectivity in this material. XRPD demonstrated that the presence of carbonate can influence the intercalation of organic molecules into LDH, since CO3 -contaminated samples tend to adopt d spacings that are approximate multiples of the d spacing of LDH_CO3 . TGA-GC-MS allowed intercalated and surface- adsorbed organic molecules to be distinguished and quantified, the presence and amount of carbonate to be confirmed, especially at low concentrations (<2 wt %), and the different types and strengths of adsorption to be classified with respect to the temperature of elimination. PMID:26269963

  5. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  6. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.

    PubMed

    Li, Bei; Zhao, Yufei; Zhang, Shitong; Gao, Wa; Wei, Min

    2013-10-23

    A visible-light responsive photocatalyst was fabricated by anchoring NiTi-layered double hydroxide (NiTi-LDH) nanosheets to the surface of reduced graphene oxide sheets (RGO) via an in situ growth method; the resulting NiTi-LDH/RGO composite displays excellent photocatalytic activity toward water splitting into oxygen with a rate of 1.968 mmol g(-1) h(-1) and a quantum efficiency as high as 61.2% at 500 nm, which is among the most effective visible-light photocatalysts. XRD patterns and SEM images indicate that the NiTi-LDH nanosheets (diameter: 100-200 nm) are highly dispersed on the surface of RGO. UV-vis absorption spectroscopy exhibits that the introduction of RGO enhances the visible-light absorption range of photocatalysts, which is further verified by the largely decreased band gap (∼1.78 eV) studied by cyclic voltammetry measurements. Moreover, photoluminescence (PL) measurements indicate a more efficient separation of electron-hole pairs; electron spin resonance (ESR) and Raman scattering spectroscopy confirm the electrons transfer from NiTi-LDH nanosheets to RGO, accounting for the largely enhanced carrier mobility and the resulting photocatalytic activity in comparison with pristine NiTi-LDH material. Therefore, this work demonstrates a facile approach for the fabrication of visible-light responsive NiTi-LDH/RGO composite photocatalysts, which can be used as a promising candidate in solar energy conversion and environmental science.

  7. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal. PMID:25827268

  8. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal.

  9. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    PubMed

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%.

  10. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO4 Photoanodes.

    PubMed

    Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu

    2016-08-01

    The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is ∼1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs. PMID:27419597

  11. Biodiesel synthesis using calcined layered double hydroxide catalysts

    SciTech Connect

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam; Santillan-Jimenez, Eduardo; Morgan, Tonya; Ji, Yaying; Crocker, Mark; Toops, Todd J

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sites active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.

  12. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    PubMed

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction.

  13. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Dynes, J. J.; Cozzolino, V.; Zhu, J.; Violante, A.

    2012-04-01

    In recent decades, a class of anionic clays known as layered double hydroxides (LDHs) has attracted substantial attention due to the potential use in many applications, such as photochemistry, electrochemistry, polymerization, magnetization and biomedical science. There has also been considerable interest in using LDHs as adsorbents to remove environmental contaminants due to their large surface area, high anion exchange capacity and good thermal stability. We studied the sorption of arsenate on Al-Mg and Fe-Mg layered double hydroxides (easily reproducible at low-cost) as affected by pH and varying concentrations of inorganic (nitrate, nitrite, phosphate, selenite and sulphate) and organic (oxalate and tartrate) ligands, ii) the effect of residence time on the arsenate desorption by these ligands, and iii) the kinetics of arsenate desorption by phosphate. The Fe-Mg-LDH sorbed nearly twice the amount of arsenate compared to the Al-Mg-LDH, due, in part, to its greater surface area and lower degree of crystallinity. Moreover, the Fe-Mg-LDH sorbed more arsenate than phosphate, in contrast to the Al-Mg-LDH, which adsorbed more phosphate than arsenate, probably because of the greater affinity of arsenate than phosphate for Fe sites and, vice versa, the greater affinity of phosphate than arsenate for Al sites. Arsenate sorption onto samples decreased by increasing pH, due, maybe, to the high affinity of hydroxyl ions for LDHs and/or to the value of zero point charge of two sorbents. The rate of decline in the amount of arsenate sorbed was, however, relatively constant, decreasing the fastest for the Fe-Mg-LDH compared to the Al-Mg-LDH. The capacity of ligands to inhibit the fixation of arsenate followed the sequence: nitrate < nitrite < sulphate < selenite < tartrate < oxalate << phosphate on Al-Mg-LDH and nitrate < sulphate ≈ nitrite < tartrate < oxalate < selenite << phosphate on Fe-Mg-LDH. The inhibition of arsenate sorption increased by increasing the initial

  14. Synthesis, characterization and release of a-naphthaleneacetate from thin films containing Mg/Al-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Song, Jian; Jiao, Feipeng; Huang, Jian

    2014-05-01

    An active agent a-naphthaleneacetate (NAA), a plant growth regulator was intercalated into the layered double hydroxides Mg/Al-LDH by ion-exchange method. And we prepared the films by the method of layer-by-layer self-assembly with Cationic Polyacrylamide, Polyacrylic acid sodium and LDH. The obtained compounds were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FT-IR) and Scanning Electron Microscopy (SEM) techniques. The XRD datas demonstrated the guest size and the orientation of anions between the layers was determined. After intercalation, it was proposed that the NAA anions were accommodated in the interlayer region as a bilayer of species with the carboxyl attaching to the upper and lower layers. The FT-IR of the powder from film shows that Mg/Al-NAA-LDH was absorbed on the quartz glass. The film was putted into various solutions, and the release of NAA from the film showed obvious release effect. The release mechanism may be based on the dissolution and ion-exchange process according to first-order kinetics.

  15. How the method of synthesis governs the local and global structure of zinc aluminum layered double hydroxides

    SciTech Connect

    Pushparaj, Suraj Shiv Charan; Forano, Claude; Prevot, Vanessa; Lipton, Andrew S.; Rees, Gregory; Hanna, John V.; Nielsen, Ulla Gro

    2015-11-10

    A series of zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O with A = NO3-, Cl- or CO3] were prepared by the urea and co-precipitation synthesis methods, which allowed for a detailed investigation on how synthesis parameters such as pH, metal ion concentration and post synthesis treatment influence the local and global structure of the LDH product. Information about sample composition, purity, defects and other structural aspects of the LDH products were obtained from powder X-ray diffraction, transmission electron microscopy, micro-Raman, and elemental analysis, as well as solid state 1H, 27Al and 67Zn NMR spectroscopy. Our results show that the urea method results in LDHs, which on the global scale are highly crystalline LDHs, whereas solid state NMR shows the different local environments indicating local disorder most likely linked to the presence of Al-rich phases. However, these Alrich phases are not detected by global range techniques, as they either defects within the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by coprecipitation especially synthesized under careful pH control and subsequently hydrothermal treated have high local order and good crystallinity (particle size). Our results show that both molecular level and macroscopic techniques are needed to assess the composition of LDHs, as the conventional PXRD and TEM analysis of LDHs failed to identify the many structural defects and/or amorphous phases.

  16. Evolution of biogenic amine concentrations in foods through their induced chemiluminescence inactivation of layered double hydroxide nanosheet colloids.

    PubMed

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2014-10-15

    Turn-on/off fluorescence and visual sensors through hydrogen bonding recognition have been clearly established in the literature. There is apparently no good reason to disregard hydrogen bonding-induced inactivation of chemiluminescence (CL). In this work, serving as novel CL catalyst and CL resonance energy transfer acceptor (CRET), layered double hydroxide (LDH) nanosheet colloids can induce a significant increase in the CL intensity of bis(2,4,6-trichlorophenyl) oxalate (TCPO)-H2O2 system. On the other hand, biogenic amines can selectively inhibit the CL intensity of the LDH nanosheet-TCPO-H2O2 system as a result of inactivation of photoluminescence LDH nanosheets through the displacement of O-H ⋯ O bonding by O-H ⋯ N bonding. In addition, histamine is used as a common indicator of food spoilage, and it is found that the CL intensity is linear with histamine concentration in the range of 0.1-100 µM, and the detection limit for histamine (S/N=3) is 3.2 nM. The proposed method has been successfully applied to trace histamine evolution of spoiled fish and pork meat samples, displaying a time-dependent increase in the biogenic amines levels in such samples. PMID:24813913

  17. Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide

    SciTech Connect

    Britto, Sylvia Kamath, P. Vishnu

    2014-07-01

    “Imbibition” of Zn{sup 2+} ions into the cation vacancies of bayerite–Al(OH){sub 3} and NO{sub 3}{sup −} ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ∼3. NO{sub 3}{sup −} ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO{sub 4}{sup 2−} ions from solution. The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO{sub 4}{sup 2−} ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO{sub 4}{sup 2−} inclusion reveals that the CrO{sub 4}{sup 2−} ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell. - Graphical abstract: The structure of the [Zn–Al4-nitrate] LDH viewed along the a-axis. - Highlights: • Synthesis of Al-rich layered double hydroxide with Al/Zn ratio ∼3. • Rietveld refinement indicates that the imbibition of Zn into Al(OH){sub 3} is topochemical in nature. • The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm.

  18. Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides.

    PubMed

    Delazare, Thais; Ferreira, Letícia P; Ribeiro, Nielson F P; Souza, Mariana M V M; Campos, Juacyara C; Yokoyama, Lídia

    2014-01-01

    Hydrotalcite is a layered double hydroxide (LDH) consisting of brucite-like sheets of metal ions (Mg-Al). In this work, hydrotalcites were synthesized, and boron removal from oilfield wastewater was evaluated. LDHs were synthesized using the co-precipitation method. The calcined products (CLDHs) were obtained by heating at 500°C and characterized using X-ray diffraction, X-ray fluorescence, thermogravimetric analysis and the specific surface area (BET). The affinity of LDHs for borate ions was evaluated for calcined and uncalcined LDHs as a function of contact time, initial pH of the oilfield wastewater (pH ∼ 9) and the LDH surface area. The tests were conducted at room temperature (approximately 25ºC). The results indicated that 10 min were needed to reach a state of equilibrium during boron removal for calcined LDHs due to the high surface area (202.3 m(2) g(-1)) regardless of the initial pH of the oilfield wastewater, which resulted from the high buffering capacity of the LDHs. The adsorption capacity increased as the adsorbents levels increased for the range studied. After treatment of the oilfield wastewater containing 30 mg L(-1) of boron with Mg-Al-CO3-LDHs, the final concentration of boron was within the discharge limit set by current Brazilian environmental legislation, which is 5 mg L(-1). Pseudo-first-order and pseudo-second-order kinetic models were tested, and the latter was found to fit the experimental data better. Isotherms for boron adsorption by CLDHs were well described using the Langmuir and Freundlich equations.

  19. Delaminated Layered Double Hydroxide Nanosheets as an Efficient Vector for DNA Delivery.

    PubMed

    Wang, Junya; Bao, Wenlong; Umar, Ahmad; Wang, Qiang; O'Hare, Dermot; Wan, Yinglang

    2016-05-01

    The performance of delaminated Mg-Al-lactate and Mg-Al-acetate layered double hydroxides (LDHs) nanosheets (Mg-Al-lactate-NS, Mg-Al-acetate-NS) as efficient vectors for DNA adsorption and delivery to 293T cells was investigated. Mg-Al-lactate and Mg-Al-acetate LDHs were delaminated into single layers in water and were characterized using XRD, SEM, TEM, and Zeta potential measurements. The salmon sperm DNA adsorption capacity of Mg-Al-lactate-NS and Mg-Al-acetate-NS were evaluated by varying the adsorbent dosage and contacting time, which suggested that Mg-Al-lactate-NS had much higher adsorption capacity (649.6 μg mg-1) than that of Mg-Al-acetate-NS (340.0 μg mg(-1)). XRD analysis indicated that after DNA adsorption the Mg-Al-lactate-NS-DNA bio-inorganic nanohybrid still stayed in an exfoliated form. Due to the difficulty in separating the Mg-Al-lactate-NS-DNA from solution, electrophoresis analysis was also applied to detect the free DNA in solution after adsorption. Cytotoxicity studies using 293T cells verified that Mg-Al-lactate-NS was less toxic than Mg-Al-acetate-NS as a smaller dose of this LDH was needed to deliver the same amount of salmon DNA to 293T cells. Cellular uptake and confocal imaging studies demonstrated that Mg-Al-lactate-NS was successful in transfection of ssDNA-FITC into 293T cells. However, the FITC-coupled single strand DNA was failed to be internalized into these cells. The excellent DNA adsorption and delivery capacities indicate that delaminated Mg-Al-lactate LDHs nanosheets are a better DNA vector than bulk phase LDH.

  20. Delaminated Layered Double Hydroxide Nanosheets as an Efficient Vector for DNA Delivery.

    PubMed

    Wang, Junya; Bao, Wenlong; Umar, Ahmad; Wang, Qiang; O'Hare, Dermot; Wan, Yinglang

    2016-05-01

    The performance of delaminated Mg-Al-lactate and Mg-Al-acetate layered double hydroxides (LDHs) nanosheets (Mg-Al-lactate-NS, Mg-Al-acetate-NS) as efficient vectors for DNA adsorption and delivery to 293T cells was investigated. Mg-Al-lactate and Mg-Al-acetate LDHs were delaminated into single layers in water and were characterized using XRD, SEM, TEM, and Zeta potential measurements. The salmon sperm DNA adsorption capacity of Mg-Al-lactate-NS and Mg-Al-acetate-NS were evaluated by varying the adsorbent dosage and contacting time, which suggested that Mg-Al-lactate-NS had much higher adsorption capacity (649.6 μg mg-1) than that of Mg-Al-acetate-NS (340.0 μg mg(-1)). XRD analysis indicated that after DNA adsorption the Mg-Al-lactate-NS-DNA bio-inorganic nanohybrid still stayed in an exfoliated form. Due to the difficulty in separating the Mg-Al-lactate-NS-DNA from solution, electrophoresis analysis was also applied to detect the free DNA in solution after adsorption. Cytotoxicity studies using 293T cells verified that Mg-Al-lactate-NS was less toxic than Mg-Al-acetate-NS as a smaller dose of this LDH was needed to deliver the same amount of salmon DNA to 293T cells. Cellular uptake and confocal imaging studies demonstrated that Mg-Al-lactate-NS was successful in transfection of ssDNA-FITC into 293T cells. However, the FITC-coupled single strand DNA was failed to be internalized into these cells. The excellent DNA adsorption and delivery capacities indicate that delaminated Mg-Al-lactate LDHs nanosheets are a better DNA vector than bulk phase LDH. PMID:27305815

  1. Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides.

    PubMed

    Delazare, Thais; Ferreira, Letícia P; Ribeiro, Nielson F P; Souza, Mariana M V M; Campos, Juacyara C; Yokoyama, Lídia

    2014-01-01

    Hydrotalcite is a layered double hydroxide (LDH) consisting of brucite-like sheets of metal ions (Mg-Al). In this work, hydrotalcites were synthesized, and boron removal from oilfield wastewater was evaluated. LDHs were synthesized using the co-precipitation method. The calcined products (CLDHs) were obtained by heating at 500°C and characterized using X-ray diffraction, X-ray fluorescence, thermogravimetric analysis and the specific surface area (BET). The affinity of LDHs for borate ions was evaluated for calcined and uncalcined LDHs as a function of contact time, initial pH of the oilfield wastewater (pH ∼ 9) and the LDH surface area. The tests were conducted at room temperature (approximately 25ºC). The results indicated that 10 min were needed to reach a state of equilibrium during boron removal for calcined LDHs due to the high surface area (202.3 m(2) g(-1)) regardless of the initial pH of the oilfield wastewater, which resulted from the high buffering capacity of the LDHs. The adsorption capacity increased as the adsorbents levels increased for the range studied. After treatment of the oilfield wastewater containing 30 mg L(-1) of boron with Mg-Al-CO3-LDHs, the final concentration of boron was within the discharge limit set by current Brazilian environmental legislation, which is 5 mg L(-1). Pseudo-first-order and pseudo-second-order kinetic models were tested, and the latter was found to fit the experimental data better. Isotherms for boron adsorption by CLDHs were well described using the Langmuir and Freundlich equations. PMID:24766593

  2. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    SciTech Connect

    Benito, P.; Labajos, F.M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-15

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), {sup 27}Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al{sup 3+} and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M{sup 2+}/M{sup 3+} ratio and consequent modification of the cell parameters. - Graphical Abstract: The influence of the nature of the interlayer anion during the ageing process of carboxylate-intercalated (TA and ox) hydrotalcite-like compounds (HTlcs) is studied. Well crystallized for TA-containing compounds were obtained. However, the non-desired side-reaction of ox with the aluminum of the layers is enhanced by the microwaves and a partial destruction of the structure takes place.

  3. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    PubMed

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

  4. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-08-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as ‑0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at ‑0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under ‑0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination.

  5. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  6. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst.

    PubMed

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as -0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at -0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under -0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  7. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  8. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics

    PubMed Central

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-01-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467

  9. Nickel-aluminum layered double hydroxide as a nanosorbent for selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples.

    PubMed

    Abdolmohammad-Zadeh, H; Kohansal, S; Sadeghi, G H

    2011-04-15

    The nickel-aluminum layered double hydroxide (Ni-Al LDH) was synthesized by a simple co-precipitation method and used as a solid-phase extraction (SPE) sorbent for separation and pre-concentration of trace levels of salicylic acid (SA) from aqueous solutions. Extraction of analyte is based on the adsorption of salicylate ions on the Ni-Al (NO(3)(-)) LDH and/or their exchanging with LDH interlayer NO(3)(-) ions. The retained analyte on the LDH was stripped by 3 mol L(-1) NaOH solution and its concentration was subsequently determined spectrofluorometrically at λ(em)=400 nm with excitation at λ(ex)=270 nm. Various parameters affecting the extraction efficiency of SA on the Ni-Al (NO(3)(-)) LDH, such as pH, amount of nano-sorbent, sample loading flow rate, elution conditions, sample volume and matrix effects were investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg L(-1) and 40, respectively. The relative standard deviation (RSD) for six replicate determinations of 10 μg L(-1) SA was 2.3%. The calibration graph using the pre-concentration system was linear in the range of 0.3-45 μg L(-1) with a correlation coefficient of 0.9985. The optimized method was successfully applied to the determination of SA in blood serum, willow leaf and aspirin tablet.

  10. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics.

    PubMed

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-01-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467

  11. Aluminium substitution in iron(II-III)-layered double hydroxides: Formation and cationic order

    SciTech Connect

    Ruby, Christian Abdelmoula, Mustapha; Aissa, Rabha; Medjahdi, Ghouti; Brunelli, Michela; Francois, Michel

    2008-09-15

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe{sub 4}{sup II}Fe{sub (2-6y)}{sup III}Al{sub 6y}{sup III} (OH){sub 12} SO{sub 4}, 8H{sub 2}O are followed by pH titration curves, Moessbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO{sub 4}{sup 2-}), i.e. y=0, in which a bilayer of sulphate anions points to the Fe{sup 3+} species. A cationic order is proposed to occur in both GR(SO{sub 4}{sup 2-}) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cell parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO{sub 4}{sup 2-}) is preceded by the successive precipitation of Fe{sup III} and Al{sup III} (oxy)hydroxides. Adsorption of more soluble Al{sup III} species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount (y{approx}0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe{sup II} species of the material. - Graphical abstract: (a) Crystallographical structure of sulphated green rust: SO{sub 4}{sup 2-} point to the Fe{sup 3+} cations (red) that form an ordered array with the Fe{sup 2+} cations (green). (b) Width and asymmetry of the synchrotron XRD peaks increase rapidly when some Al{sup 3+} species substitute the Fe{sup 3+} cations; z is molar ratio Al{sup 3+}/Fe{sup 3+}.

  12. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  13. Organo-layered double hydroxides composite thin films deposited by laser techniques

    NASA Astrophysics Data System (ADS)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  14. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Gani, Shafinaz Abd; Fakurazi, Sharida; Zainal, Zulkarnain

    2015-01-01

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al-layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al-NO3-LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment.

  15. Synthesis and characterization of layered double hydroxides and their potential as nonviral gene delivery vehicles.

    PubMed

    Balcomb, Blake; Singh, Moganavelli; Singh, Sooboo

    2015-04-01

    Layered double hydroxides (LDHs) exhibit characteristic anion-exchange chemistry making them ideal carriers of negatively charged molecules like deoxyribonucleic acid (DNA). In this study, hydrotalcite (Mg-Al) and hydrotalcite-like compounds (Mg-Fe, Zn-Al, and Zn-Fe), also known as LDHs, were evaluated for their potential application as a carrier of DNA. LDHs were prepared by coprecipitation at low supersaturation and characterized by Powder X-ray diffraction (XRD), infrared (IR), Raman, and inductively coupled plasma-optical emission spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD patterns showed strong and sharp diffraction peaks for the (003) and (006) planes indicating well-ordered crystalline materials. TEM images yielded irregular circular to hexagonal-shaped particles of 50-250 nm in size. Varying degrees of DNA binding was observed for all the compounds, and nuclease digestion studies revealed that the LDHs afford some degree of protection to the bound DNA. Minimal toxicity was observed in human embryonic kidney (HEK293), cervical cancer (HeLa) and hepatocellular carcinoma (HepG2) cell lines with most showing a cell viability in excess of 80 %. All LDH complexes promoted significant levels of luciferase gene expression, with the DNA:Mg-Al LDHs proving to be the most efficient in all cell lines. PMID:25969811

  16. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors.

    PubMed

    Shao, Mingfei; Xu, Xiangyu; Han, Jingbin; Zhao, Jingwen; Shi, Wenying; Kong, Xianggui; Wei, Min; Evans, David G; Duan, Xue

    2011-07-01

    The ordered ultrathin films (UTFs) based on CoFe-LDH (layered double hydroxide) nanoplatelets and manganese porphyrin (Mn-TPPS) have been fabricated on ITO substrates via a magnetic-field-assisted (MFA) layer-by-layer (LBL) method and were demonstrated as an electrochemical sensor for glucose. The XRD pattern for the film indicates a long-range stacking order in the normal direction of the substrate. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the MFA LDH/Mn-TPPS UTFs reveal a continuous and uniform surface morphology. Cyclic voltammetry, impedance spectroscopy, and chronoamperometry were used to evaluate the electrochemical performance of the film, and the results show that the MFA-0.5 (0.5 T magnetic field) CoFe-LDH/Mn-TPPS-modified electrode displays the strongest redox current peaks and fastest electron transfer process compared with those of MFA-0 (without magnetic-field) and MFA-0.15 (0.15 T magnetic field). Furthermore, the MFA-0.5 CoFe-LDH/Mn-TPPS exhibits remarkable electrocatalytic activity toward the oxidation of glucose with a linear response range (0.1-15 mM; R(2) = 0.999), low detection limit (0.79 μM) and high sensitivity (66.3 μA mM(-1) cm(-2)). In addition, the glucose sensor prepared by the MFA LBL method also shows good selectivity and reproducibility as well as resistance to poisoning in a chloride ion solution. Therefore, the novel strategy in this work creates new opportunities for the fabrication of nonenzyme sensors with prospective applications in practical detection.

  17. Utilization of Mg2Al-layered double hydroxide as an effective sequestrator to trap Cu(II) ions from aqueous solution impacted by water quality parameters

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Linghu, Wensheng; Hu, Jun; Jiang, Gongyi; Sheng, Jiang

    2016-11-01

    Recently, Mg2Al-layered double hydroxide (Mg2Al-LDH) has been extensively studied as promising candidates to trap metal ions due to their high complexation and adsorption capacity. Herein, Mg2Al-LDH was utilized as an effectiveness sequestrator to trap Cu(II) ions from aqueous solution by an adsorption process using batch technique under ambient conditions. The results showed that Cu(II) adsorption on Mg2Al-LDH increases with pH increasing and maintains a high level at pH>7.0. The adsorption of Cu(II) was obviously affected by ionic strength at low pH, which was not dependent on ionic strength at high pH. The presence of HA or FA promotes the adsorption of Cu(II) on Mg2Al-LDH at low pH values, while reduces the adsorption of Cu(II) at high pH values. The adsorption isotherms of Cu(II) on Mg2Al-LDH at three different temperatures were simulated by the Langmuir, Freundlich, and Dubinin-Radushkevitch (D-R) models very well. The thermodynamic parameters were determined from the temperature-dependent adsorption, and the results showed that Cu(II) adsorption on Mg2Al-LDH was exothermic and the process was favored at high temperature. The results suggest that Mg2Al-LDH is suitable as a sorbent material for the recovery and attenuation of Cu(II)-polluted wastewater.

  18. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  19. Intercalation of papain enzyme into hydrotalcite type layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2012-09-01

    Intercalation of proteolytic enzyme papain into hydrotalcite type LDH structure was achieved by controlled co-precipitation at pH=9.0 in the presence of papain. Characterization of the MgAl-papain-LDH phase was carried out using X-ray powder diffraction (XRD), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). According to XRD, papain was successfully intercalated. The d-value for the basal spacing of MgAl-papain-LDH was found at ˜5.3 nm. Consequently, original papain (hydrodynamic diameter ˜7.2 nm) attains a compressed conformation during intercalation.Formation of MgAl-papain-LDH was confirmed by elemental analysis and transmission electron microscopy (TEM). Under SEM, MgAl-papain-LDH phases appear as nanothin platelets which are intergrown to flower-like aggregates. Steric size and activity of the enzyme was retained after deintercalation from MgAl-LDH framework, as was evidenced by light scattering and UV/vis measurements. Thus, papain is not denatured during intercalation, and LDH is a suitable host structure which can provide a time-controlled release of the biomolecule.

  20. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy

    PubMed Central

    Wei, Pei-Ru; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lee, Chia-Hung

    2015-01-01

    We designed a study for photodynamic therapy (PDT) using chitosan coated Mg–Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH–NH2–ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH–NH2–ICG and single layer chitosan-coated LDH–NH2–ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy. PMID:26340627

  1. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    PubMed Central

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-01-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334

  2. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  3. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Zhao, Na; Liu, Junfeng; Li, Feng; Evans, David G.; Duan, Xue; Forano, Claude; de Roy, Marie

    2011-12-01

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N 2 adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide.

  4. Fabrication of nanocomposites by collagen templated synthesis of layered double hydroxides assisted by an acrylic silane coupling agent

    NASA Astrophysics Data System (ADS)

    Sun, Yanqing; Zhou, Yuming; Wang, Zhiqiang; Ye, Xiaoyun

    2009-02-01

    The purpose of this study was to control the fabrication of nanocomposites at the nanoscale interface by collagen templated synthesis of Zn-Al layered double hydroxides (LDHs) assisted by γ-methacryloxypropyl trimethoxy silane (KH570) with further treatment of graft polymerization. The results show that collagen directs the growth of LDHs into curved nanorods by length of 300 nm in perfect consistency with collagen chain in both the size and flexility under the essential hydrophobic environment on the solid surface provided by KH570. The nanorods are aggregated into thin curved platelets due to strong interaction between collagen molecules themselves and strong interaction between collagen and LDH sheets. By further treatment of graft polymerization, the adjacent curved platelets encircle into numerous hollows via chemical linkage, achieving polyporous nanocomposites. Nanohybrid materials with this structure are especially interesting for applications as biosensors or supported catalysis.

  5. Ultrasonically-enhanced mechanochemical synthesis of CaAl-layered double hydroxides intercalated by a variety of inorganic anions.

    PubMed

    Szabados, Márton; Mészáros, Rebeka; Erdei, Szabolcs; Kónya, Zoltán; Kukovecz, Ákos; Sipos, Pál; Pálinkó, István

    2016-07-01

    CaAl-layered double hydroxides (CaAl-LDHs) were synthesised with various interlayer anions (CO3(2-), F(-), Cl(-), Br(-) and I(-)) by mechanochemical pre-treatment followed by ultrasonic irradiation in aqueous media. The parameters of the syntheses (duration of pre-milling and sonication, quality of the aqueous media, temperature) were altered in order to optimise the procedure and to understand the formation of LDH and other secondary products. The products were characterised by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The optimisation resulted in close-to-phase-pure CaAl-LDHs, not only with carbonate and chloride interlayer anions, but the hard-to-intercalate bromide and iodide as well.

  6. Surfactant-modified flowerlike layered double hydroxide-coated magnetic nanoparticles for preconcentration of phthalate esters from environmental water samples.

    PubMed

    Zhao, Xiaoli; Liu, Shuangliu; Wang, Peifang; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Wu, Fengchang; Wang, Hao; Meng, Wei; Giesy, John P

    2015-10-01

    A novel type of layered, flowerlike magnetic double hydroxide (MLDH) nanoparticles modified by surfactants has been successfully synthesized and was applied as an effective sorbent for pre-concentration of several phthalate ester pollutants (PAEs) from water prior to quantification. The MLDH was obtained via a simple ultrasound-assisted method by using silica coated Fe3O4 as the core and anisotropic Mg-Al layered double hydroxide (Mg-Al LDH) nanocrystals as the shell to which analytes were absorbed. Orientation and dimensionality hierarchical structure as well as the large expandable interlayer free space and positive charge of the Mg-Al LDH shell make it easier to form anionic surfactant micelles on its surface via self-assembly. Due to its high adsorption area, compared with non-mesoporous nano solid-phase extraction agents, mesoporous channel shell and reduction diffusion path, MLDH exhibited high extraction efficiency of organic target residues. Under optimized conditions, with a total of 30mg of adsorbant added to from samples containing 400mL water from the environment recoveries of DPP, DBP, DCP and DOP were consistent with ranges of 69-101%, 79-101%, 86-102% and 63-100%, respectively. Standard deviations of recoveries ranged from 1 to 7%, respectively and the method was sensitive with limits of detection of 12.3, 18.7, 36.5 and 15.6ngL(-1). To the best of our knowledge, this is the first report of use of surfactant-modified MLDH nanoparticles and its application as adsorbent to pre-concentration of PAEs from environmental water samples prior to instrumental analyses.

  7. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  8. Cu-Ce-O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance

    SciTech Connect

    Chang Zheng; Zhao Na; Liu Junfeng; Li Feng; Evans, David G.; Duan Xue; Forano, Claude; Roy, Marie de

    2011-12-15

    Cu/Zn/Al layered double hydroxide (LDH) precursors have been synthesized using an anion exchange method with anionic Ce complexes containing the dipicolinate (pyridine-2,6-dicarboxylate) ligand. Cu-Ce-O mixed oxides were obtained by calcination of the Ce-containing LDHs. The materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, and low temperature N{sub 2} adsorption/desorption measurements. The results reveal that the inclusion of Ce has a significant effect on the specific surface area, pore structure, and chemical state of Cu in the resulting Cu-Ce-O mixed metal oxides. The resulting changes in composition and structure, particularly the interactions between Cu and Ce centers, significantly enhance the activity of the Ce-containing materials as catalysts for the oxidation of phenol by hydrogen peroxide. - Graphical Abstract: Cu-Ce-O mixed oxides calcined from [Ce(dipic){sub 3}]{sup 3-}- intercalated Cu/Zn/Al layered double hydroxides were synthesized and displayed good catalytic performances in phenol oxidation due to the Cu-Ce interactions. Highlights: Black-Right-Pointing-Pointer [Ce(dipic){sub 3}]{sup 3-}-intercalated Cu/Zn/Al layered double hydroxides were synthesized. Black-Right-Pointing-Pointer Cu-Ce-O mixed oxides derivated from the LDHs were characterized as catalysts. Black-Right-Pointing-Pointer Presence of Ce influenced physicochemical property and catalytic performance. Black-Right-Pointing-Pointer Cu-Ce interaction was largely responsible for enhanced catalytic ability.

  9. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  10. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    NASA Astrophysics Data System (ADS)

    Manohara, G. V.; Vishnu Kamath, P.; Milius, Wolfgang

    2012-12-01

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueous exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 μm.

  11. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.

  12. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  13. Luminescent ultrathin film of anionic styrylbiphenyl derivative-layered double hydroxide and its reversible sensing for heavy metal ions.

    PubMed

    Yan, Dongpeng; Lu, Jun; Wei, Min; Li, Shuangde; Evans, David G; Duan, Xue

    2012-06-28

    Ordered ultrathin films (UTFs) with blue luminescence based on a styrylbiphenyl derivative (BTBS) and Mg-Al-layered double hydroxide (LDH) nanosheets have been constructed employing the layer-by-layer assembly technique. UV-visible absorption and fluorescence spectroscopy showed a stepwise and regular growth of the films upon increasing the number of deposition cycles. XRD, AFM and SEM indicated that the films possess a periodic layered structure with a period of ca. 1.5 nm, and uniform surface morphology. The film thickness can be precisely controlled in the range ca. 15-53 nm. The BTBS-LDH UTFs exhibit improved UV-light resistance capability compared with the pristine BTBS and show well-defined polarized photoemission, with anisotropy of ca. 0.24. The UTFs show a fast, selective and reversible luminescent response to aqueous solutions containing different heavy metal ions, with the most significant luminescent quenching occurring for the Hg(2+) solution, shedding light on the fact that these films can serve as a new type of selective solid luminescent metal-ion sensor.

  14. Luminescent ultrathin film of anionic styrylbiphenyl derivative-layered double hydroxide and its reversible sensing for heavy metal ions.

    PubMed

    Yan, Dongpeng; Lu, Jun; Wei, Min; Li, Shuangde; Evans, David G; Duan, Xue

    2012-06-28

    Ordered ultrathin films (UTFs) with blue luminescence based on a styrylbiphenyl derivative (BTBS) and Mg-Al-layered double hydroxide (LDH) nanosheets have been constructed employing the layer-by-layer assembly technique. UV-visible absorption and fluorescence spectroscopy showed a stepwise and regular growth of the films upon increasing the number of deposition cycles. XRD, AFM and SEM indicated that the films possess a periodic layered structure with a period of ca. 1.5 nm, and uniform surface morphology. The film thickness can be precisely controlled in the range ca. 15-53 nm. The BTBS-LDH UTFs exhibit improved UV-light resistance capability compared with the pristine BTBS and show well-defined polarized photoemission, with anisotropy of ca. 0.24. The UTFs show a fast, selective and reversible luminescent response to aqueous solutions containing different heavy metal ions, with the most significant luminescent quenching occurring for the Hg(2+) solution, shedding light on the fact that these films can serve as a new type of selective solid luminescent metal-ion sensor. PMID:22491140

  15. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine

    PubMed Central

    Zhao, Kai; Rong, Guangyu; Guo, Chen; Luo, Xiaomei; Kang, Hong; Sun, Yanwei; Dai, Chunxiao; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Cui, Shangjin; Sun, Qingshen

    2015-01-01

    Layered double hydroxide (LDH)@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs) was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs induced stronger cellular, humoral, and mucosal immune responses and achieved a greater sustained release effect than intramuscular naked plasmid DNA, and the protective efficacy after challenge with the strain F48E9 with highly virulent (mean death time of chicken embryos ≤60 hours, intracerebral pathogenicity index in 1 -day-old chickens >1.6) was 100%. Based on the results, LDH@SiO2 nanoparticles can be used as a delivery carrier for mucosal immunity of Newcastle disease DNA vaccine, and have great application potential in the future. PMID:25926734

  16. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine.

    PubMed

    Zhao, Kai; Rong, Guangyu; Guo, Chen; Luo, Xiaomei; Kang, Hong; Sun, Yanwei; Dai, Chunxiao; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Cui, Shangjin; Sun, Qingshen

    2015-01-01

    Layered double hydroxide (LDH)@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs) was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs induced stronger cellular, humoral, and mucosal immune responses and achieved a greater sustained release effect than intramuscular naked plasmid DNA, and the protective efficacy after challenge with the strain F48E9 with highly virulent (mean death time of chicken embryos ≤60 hours, intracerebral pathogenicity index in 1 -day-old chickens >1.6) was 100%. Based on the results, LDH@SiO2 nanoparticles can be used as a delivery carrier for mucosal immunity of Newcastle disease DNA vaccine, and have great application potential in the future. PMID:25926734

  17. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method.

    PubMed

    Gao, Yanshan; Wang, Qiang; Wang, Junya; Huang, Liang; Yan, Xingru; Zhang, Xi; He, Qingliang; Xing, Zipeng; Guo, Zhanhu

    2014-04-01

    High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties. PMID:24597470

  18. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method.

    PubMed

    Gao, Yanshan; Wang, Qiang; Wang, Junya; Huang, Liang; Yan, Xingru; Zhang, Xi; He, Qingliang; Xing, Zipeng; Guo, Zhanhu

    2014-04-01

    High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties.

  19. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    PubMed

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-01

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material. PMID:27513829

  20. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    SciTech Connect

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  1. Structure of oxides prepared by decomposition of layered double Mg–Al and Ni–Al hydroxides

    SciTech Connect

    Cherepanova, Svetlana V.; Leont’eva, Natalya N.; Arbuzov, Aleksey B.; Drozdov, Vladimir A.; Belskaya, Olga B.; Antonicheva, Nina V.

    2015-05-15

    Abstracts: Thermal decomposition of Mg–Al and Ni–Al layered double hydroxides LDH at temperatures lower than 800 °C leads to the formation of oxides with different structures. Mg–Al oxide has a very defective structure and consists of octahedral layers as in periclase MgO and mixed octahedral–tetrahedral layers as in spinel MgAl{sub 2}O{sub 4}. Mixed Ni–Al oxide has a sandwich-like structure, consisting of a core with Al-doped NiO-like structure and some surface layers with spinel NiAl{sub 2}O{sub 4} structure epitaxial connected with the core. Suggested models were verified by simulation of X-ray diffraction patterns using DIFFaX code, as well as HRTEM, IR-, UV-spectroscopies, and XPS. - Graphical abstract: In the Mg–Al layered double hydroxide Al{sup 3+} ions migrate into interlayers during decomposition. The Mg–Al oxide represents sequence of octahedral and octahedral–tetrahedral spinel layers with vacancies. The Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers as a result of migration of Al{sup 3+} ions on the surface. The models explain the presence and absence of “memory effect” for the Mg–Al and Ni–Al oxides, respectively. - Highlights: • We study products of Mg(Ni)–Al LDH decomposition by calcination at 500(400)–800 °C. • In Mg–Al/Ni–Al LDH Al ions migrate into interlayers/on the surface during decomposition. • Mg–Al oxide represents sequence of periclase- and spinel-like layers with vacancies. • Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers. • The models explain the presence/absence of “memory effect” for Mg–Al/Ni–Al oxides.

  2. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.

    PubMed

    Wu, Xilin; Tan, Xiaoli; Yang, Shitong; Wen, Tao; Guo, Hongli; Wang, Xiangke; Xu, Anwu

    2013-08-01

    In this study, nanocrystallined Mg/Al layered double hydroxides (LDH-CO3) and chloridion intercalated nanocrystallined Mg/Al LDHs (LDH-Cl) were synthesized and used for simultaneous removal of arsenic and natural organic matter (NOM) from contaminated groundwater. Humic acid (HA) was selected as a model compound of NOM. The maximum adsorption capacities of arsenate (As(V)) on LDH-CO3 and LDH-Cl are 44.66 and 88.30 mg/g, respectively, and those of HA on LDH-CO3 and LDH-Cl are 53.16 and 269.24 mg/g, respectively. It was found that more than 98% of arsenic and 94% of NOM were eliminated by LDH-Cl from both arsenic and NOM-rich groundwater, which is used as drinking water in Togtoh County, Inner Mongolia, China. The arsenic concentration declined from 231 to 4 μg/L, which meets the drinking water standard. The adsorption mechanisms were determined by using X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and extended X-ray absorption fine structure spectroscopy techniques (EXAFS). The results showed that the removal of HA was mainly via surface complexation as well as coagulation at the surface of LDHs, while the adsorption of As(V) was mainly via ion-exchange process. The presence of HA exhibited little inhibiting effect on As(V) adsorption by occupying partial binding sites on LDH surfaces. Nevertheless, it could not affect the ion-exchange process of As(V) with the interlayer anions of LDHs. The removal of As(V) and HA can be carried out independently due to the different adsorption mechanisms. By integrating the experimental results, it is clear that LDH-Cl can be potentially used as a cost-effective material for the purification of both arsenic and NOM contaminated groundwater. PMID:23582669

  3. Ordering double perovskite hydroxides by kinetically controlled aqueous hydrolysis.

    PubMed

    Neilson, James R; Kurzman, Joshua A; Seshadri, Ram; Morse, Daniel E

    2011-04-01

    The precipitation of crystals with stoichiometric and ordered arrangements of distinct metal cations often requires carefully designed molecular precursors and/or sufficient activation energy in addition to the necessary mass transport. Here, we study the formation of ordered double perovskite hydroxides, MnSn(OH)(6) and CoSn(OH)(6), of the generic chemical formula, BB'(OH)(6) (no A site), using kinetic control of aqueous hydrolysis from simple metal salt solutions. We find that the precipitation yields ordered compounds only when the B ion is Mn(II) or Co(II), and not when it is any other divalent transition metal ion, or Zn(II). The key step in forming the compounds is the prevention of rapid and uncontrolled hydrolysis of Sn(IV), and this is achieved by a fluoride counteranion. The two compounds, MnSn(OH)(6) and CoSn(OH)(6), are studied by high-resolution synchrotron X-ray diffraction and from the temperature dependence of magnetic behavior. From maximum entropy image restoration of the electron density and from Rietveld analysis, the degree of octahedral distortion and tilting and the small extent of anti-site disorder are determined. From the nonoverlapping electron density, we infer strongly ionic character of bonding. As the first magnetic study of such materials, we report simple paramagnetic behavior with no long-range magnetic order down to 2 K for the Mn(II) compound, while the cobalt compound presents uncompensated antiferromagnetic interactions, attributed to the single-ion anisotropy of octahedral Co(II).

  4. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    PubMed

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application. PMID:27337346

  5. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    PubMed

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.

  6. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    NASA Astrophysics Data System (ADS)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  7. Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system

    SciTech Connect

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Gani, Shafinaz Abd; Fakurazi, Sharida; Zainal, Zulkarnain

    2015-01-15

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al–layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al–NO{sub 3}–LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment. - Graphical abstract: Protocatechuate anions were arranged in monolayer mode with the angle of 24° for PZAE and 33° for PZAC from Z axis to maximize interaction between carboxylate groups and brucite-like layers. - Highlights: • Two methods gave nanocomposites with slightly different physico-chemical properties. • PZAE and PZAC have the potential to be used as a controlled release formulation. • The thermal stability of PA is markedly enhanced upon the intercalation process. • Higher cancer cell growth inhibition for PZAE and PZAC nanocomposites than for PA.

  8. Layered double hydroxide formation in Bayer liquor and its promotional effect on oxalate precipitation

    SciTech Connect

    Perrotta, A.J.; Williams, F.

    1996-10-01

    Enhancing the precipitation of sodium oxalate from Bayer process liquor to improve the quality of alumina product remains an important objective for Bayer refining. The formation of layered double hydroxides by the reaction of alkaline earth oxides, such as lime and magnesia, with Bayer liquor gives a crystal structure which is capable of intercalating anions, both inorganic and organic, within its structure. Both lime and magnesia, with long contact times in Bayer liquor, show layered double hydroxide formation. This layered double hydroxide formation is accompanied with a decrease in the sodium oxalate content in the liquor from about 3 g/L to below 1 g/L. Short contact times lead to a destabilization of the liquor which facilitates sodium oxalate precipitation. Additional work on magnesium hydroxide shows, in comparison to lime and magnesia, much less layered double hydroxide formation with equivalent residence time in the liquor. Destabilization of the liquor also occurs, giving enhanced oxalate precipitation with less alumina being consumed in agreement with lower layered double hydroxide formation. Thermal regeneration of these structures, followed by in-situ recrystallization in Bayer liquor, also gives enhanced oxalate precipitation, suggesting that there is an opportunity for a regenerable oxalate reduction system. The implementation of these experiments and other related technology into the plant has resulted in the Purox Process for enhancing the precipitation of sodium oxalate from Bayer liquor.

  9. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nejati, Kamellia; Davary, Soheila; Saati, Marziye

    2013-09-01

    The hydrotalcite-like compound of Cu-Fe-layered double hydroxide was studied as a potential adsorbent of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The nanoparticles of Cu-Fe layered double hydroxide were prepared by Cu/Fe molar ratio of 2:1 using a coprecipitation method at pH 8.5 and characterized by the X-ray powder diffraction (XRD), the Fourier transform infrared spectroscopy (FT-IR), the thermal gravimetric analysis (TGA) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The adsorption experiments on LDH, on the other hand, were conducted in three different procedures, namely, time-dependent, pH-dependent and temperature-dependent. Characterization of the adsorption products by the XRD method indicates that the intercalation of 2,4-D between the LDH layers has not occurred and the surface adsorption had taken place. The adsorption kinetic was tested for pseudo-first-order, pseudo-second-order, Elovich and Intra-particle diffusion kinetic models and the rate constants were calculated. The equilibrium adsorption data were described by Langmuir and Freundlich equations. It was observed that, the Langmuir isotherm slightly better fitted to the experimental data rather than that of Freundlich. In the adsorption experiments, the Gibbs free energy values, ΔG°, the enthalpy, ΔH°, and the entropy, ΔS° were also determined.

  10. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. • The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup −1} at the current density of 1 A g{sup −1}. The specific capacitance can remain 1274.7 F g{sup −1} at the current density of 15 A g{sup −1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be

  11. Synthesis of Li-Al layered double hydroxide intercalated with amino tris(methylene phosphonic acid) and kinetic and equilibrium studies of the uptake of Nd3+ and Sr2+ ions

    NASA Astrophysics Data System (ADS)

    Kameda, Tomohito; Shinmyou, Tetsu; Yoshioka, Toshiaki

    2016-03-01

    A Li-Al layered double hydroxide intercalated with amino tris(methylene phosphonic acid) (AMP·Li-Al LDH) was synthesized by the drop-wise addition of an Al-containing solution to a Li-AMP solution at a constant pH of 8.0. The AMP·Li-Al LDH was found to take up Nd3+ and Sr2+ ions from aqueous solutions; this phenomenon was attributable to the metal-chelating functionality of the AMP ions in the interlayers of the AMP·Li-Al LDH. Further, the AMP·Li-Al LDH was found to take up Nd3+ ions preferentially than Sr2+ ions. This was attributable to the stability of the Nd-AMP complex being higher than that of the Sr-AMP complex. The mass-transfer-controlled shrinking-core model could describe the uptake behavior better than the surface-reaction-control model. The AMP ions in the AMP·Li-Al LDH interlayers rapidly formed chelate complexes with the Nd3+ or Sr2+ ions. As a result, the transfer of Nd3+ and Sr2+ ions through the product layer was the rate-limiting step. Furthermore, this reaction could be explained by a Langmuir-type adsorption mechanism, indicating that it involved chemical adsorption; this was consistent with the formation of chelate complexes between Nd3+ and Sr2+ ions and the AMP ions in the interlayers of the AMP·Li-Al LDH.

  12. Enhanced Removal of Arsenic and Antimony in the Mining Site by Calcined γ-Fe2O3/Layered Double Hydroxide Nanocomposite

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2016-04-01

    Arsenic (As) and Antimony (Sb) have been recognized as harmful contaminants in aquatic environment due to its high toxicity and carcinogenicity. Especially, the contamination of arsenic in the mining areas is considered as a serious emerging environmental issue in Korea. Due to the hazardous effect of arsenic, the United States Environmental Protection Agency (US EPA) regulated maximum contamination level of arsenic to 10 μg/L in drinking water. The harmful effect on human health by excessive intake of antimony was also reported by previous studies, and severe contamination level (100 - 7,000 μg/L) of antimony reported in surface and groundwater of abandoned mining area in China and Slovakia. Therefore, US EPA regulated maximum contaminants level of antimony in drinking water to 6 μg/L. In order to remove anionic contaminants in drinking water, various type of nanomaterials have been developed. Layered double hydroxide (LDH) is the artificial anionic clay that is based on the layered structure of positively charged brucite-like layers with interlayers of anions. The LDH is one of the promising nanomaterials for the removal of anionic contaminants because it has high selectivity for arsenic, phosphate, chromium and antimony. However, the biggest problem of LDH for wastewater treatment is that the particles cannot be easily separated after the removal of contaminants. In this study, magnetic nanoparticles (γ-Fe2O3) supported LDH nanocomposite (γ-Fe2O3/LDH) was investigated to enhance magnetic particle recovery and removal efficiency for arsenic and antimony. The calcined γ-Fe2O3/LDH nanocomposites synthesized by co-precipitation method, and the crystallographic properties of maghemite (γ-Fe2O3) and layered structure of LDH were confirmed by X-ray diffraction. The nano-sized γ-Fe2O3 (30 to 50 nm) was stably attached on the surface of LDH (100 to 150 nm) and O1s spectrum by X-ray photoelectron spectroscopy (XPS) explained that there are both physical and

  13. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  14. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation.

    PubMed

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-01-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm(-2) (57 mA cm(-2) after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting. PMID:27306541

  15. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    PubMed Central

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-01-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel–vanadium-layered double hydroxide that shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel–iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting. PMID:27306541

  16. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-06-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm-2 (57 mA cm-2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

  17. Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet.

    PubMed

    Gong, Jingming; Han, Xinmei; Zhu, Xiaolei; Guan, Zhangqiong

    2014-11-15

    Novel organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of cationic exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets and carboxymethyl-β-cyclodextrin (CMCD) as a polyanion onto a glassy carbon electrode (GCE) via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of X-ray powder diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These films were found to possess a long range stacking order in the normal direction of the substrate with a continuous and uniform morphology. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/CMCD)n multilayer film, combining the individual properties of CMCD (a high supramolecule recognition and enrichment capability) together with LDH nanosheets (a rigid inorganic matrix), can be applied to a sensitive, simple, and label-free capacitive detection of acephatemet (AM). Molecular docking calculations further disclose that the selective sensing behavior toward AM may be attributed to the specific binding ability of CMCD to AM. Under the optimized conditions, the capacitive change of AM was proportional to its concentration ranging from 0.001 to 0.10 μg mL(-1) and 0.1 to 0.8 μg mL(-1) with a detection limit 0.6 ng mL(-1) (S/N=3). Toward the goal for practical applications, this simple probe was further evaluated by monitoring AM in real samples.

  18. Rich surface Co(iii) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from Co(II)Co(III) layered double hydroxide.

    PubMed

    Mo, Shengpeng; Li, Shuangde; Li, Jiaqi; Deng, Yuzhou; Peng, Shengpan; Chen, Jiayuan; Chen, Yunfa

    2016-08-25

    A hierarchical CoCo layered double hydroxide (LDH) nanostructure was constructed through a facile topochemical transformation route under a dynamic oxygen atmosphere. Self-assembled coral-like CoAl LDH nanostructures via the homogeneous precipitation method were also inspected under different ammonia-releasing reagents and solvents. Benzene and toluene were chosen as probe molecules to evaluate their catalytic performance over the metal oxide CoCoO and CoAlO calcined from their corresponding LDH precursors. Nanocatalyst of trivalent Co ions replaced Al(3+) ions in the bruited-like layer had a higher catalytic activity (T99(benzene) = 210 °C and T99(toluene) = 220 °C at a space velocity = 60 000 mL g(-1) h(-1)). Raman spectroscopy, XPS and H2-TPR demonstrated the existence of abundant high valence Co ions that serve as active sites. TPD verified the types of active oxygen species and surface acid properties. It was concluded that the high valence Co ions induced excellent low-temperature reducibility. Surface Lewis acid sites and the surface Oads/Olatt molar ratio (0.61) played relevant roles in determining its catalytic oxidation performance. Our design in this work provides a promising approach for the development of nanocatalysts with exposed desirable defects. PMID:27531821

  19. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    SciTech Connect

    Manohara, G.V.; Vishnu Kamath, P.; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueous exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.

  20. Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts.

    PubMed

    Iguchi, Shoji; Kikkawa, Soichi; Teramura, Kentaro; Hosokawa, Saburo; Tanaka, Tsunehiro

    2016-05-18

    Layered double hydroxide (LDH) photocatalysts, including Ni-Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation. In this study, we found that a series of LDHs exhibited anodic photocurrent which is a characteristic feature corresponding to n-type materials. Also, we estimated the potentials of photogenerated electrons and holes for LDHs, which are responsible for the photocatalytic reactions, using electrochemical techniques. The flat band potential of the Ni-Al LDH photocatalyst was estimated to be -0.40 V vs. NHE (pH = 0), indicating that the potential of the photogenerated electron is sufficient to reduce CO2 to CO. Moreover, we revealed that the flat band potentials of M(2+)-M(3+) LDH are clearly influenced by the type of trivalent metal (M(3+)) components. PMID:27145887

  1. Highly Stable and Sensitive Paper-Based Bending Sensor Using Silver Nanowires/Layered Double Hydroxides Hybrids.

    PubMed

    Wei, Yong; Chen, Shilong; Li, Fucheng; Lin, Yong; Zhang, Ying; Liu, Lan

    2015-07-01

    Highly sensitive flexible piezoresistive materials using silver nanowires (AgNWs) composites have been widely researched due to their excellent electrical, optical, and mechanical properties. Intrinsically, AgNWs tend to aggregate in polymer matrix because of the intense depletion-induced interactions, which seriously influence the percolation threshold of the composites. In this study, we report a highly stable and sensitive paper-based bending sensor using the AgNWs and layered double hydroxides (LDHs) to construct a hybrid conductive network in waterborne polyurethane that is easy to destruct and reconstruct under bending deformation. The nonconductive 2D LDH nanosheets are embedded into AgNWs network and assist dispersion of AgNWs, which depends on the hydrogen bonding between the two nanostructures. The percolation threshold of the composites decreases from 10.8 vol % (55 wt %) to 3.1 vol % (23.8 wt %), and the composites reaches a very low resistivity (10(-4) Ω·cm) with a small amount of AgNWs (8.3 vol %) due to the dispersion improvement of AgNWs with the effect of LDH nanosheets. The as-prepared conductive composites with low percolation threshold can be manufactured on paper via various methods such as rollerball pen writing, inkjet printing, or screen printing. The bending sensor prepared by manufacturing the composites on paper shows low-cost, excellent conductivity, flexibility (>3000 bending cycles), sensitivity (0.16 rad(-1)), fast response (120 ms) and relaxation time (105 ms), and nontoxicity. Therefore, a simple but efficient wearable sensor is developed to monitor the human motions (such as fingers and elbow joints movements) and presents good repeatability, stability, and responsiveness, making the bending sensor possibly able to meet the needs in numerous applications for robotic systems.

  2. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-09-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al3+ films. The electrochromic performance of the films were evaluated by means of UV-vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni3+/Ni2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film.

  3. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    SciTech Connect

    Morimoto, Kazuya; Tamura, Kenji; Anraku, Sohtaro; Sato, Tsutomu; Suzuki, Masaya; Yamada, Hirohisa

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  4. The Effect of Aging Time on the Properties of Mg-Al-CO3 Layered Double Hydroxides and Its Application as a Catalyst Support for TiO2.

    PubMed

    Guo, Yang; Cui, Xianlu; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2016-06-01

    By using chloride salts as the raw materials, Mg-Al-CO3 layered double hydroxides (Mg-Al-CO3 LDHs) with Mg/Al molar ratio 2:1 were prepared via a coprecipitation method. The effect of the aging time on the crystallinity, particle size, chemical composition, morphology, specific surface area, and pore size distribution of Mg-Al-CO3 LDHs were studied in details. The effect of aging time during LDHs preparation process on adsorption capacity of LDHs and their calcined products (mixed metal oxide, MMO) were investigated by removing the pollutant acid red 1 (AR1) from aqueous solution. The results showed that LDHs prepared at 90 degrees C for 4 h (LDH-4) had a higher specific area of 103.7 m2/g and LDHs prepared at 90 degrees C for 8 h (LDH-8) exhibited well-formed hexagonal crystals with a relative smooth surface. The LDH-4 and its calcined product are more effective in removing AR1 than LDH-8, which is related to the differences in their specific surface area. Meanwhile, anatase TiO2-coated MMO with MMO/TiO2 mass ratios at 1:1 and.2:1 were prepared via a chemical precipitation route in the presence of LDH, the composites showed an efficiently photocatalytic activity in the removal of AR1.

  5. The Effect of Aging Time on the Properties of Mg-Al-CO3 Layered Double Hydroxides and Its Application as a Catalyst Support for TiO2.

    PubMed

    Guo, Yang; Cui, Xianlu; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2016-06-01

    By using chloride salts as the raw materials, Mg-Al-CO3 layered double hydroxides (Mg-Al-CO3 LDHs) with Mg/Al molar ratio 2:1 were prepared via a coprecipitation method. The effect of the aging time on the crystallinity, particle size, chemical composition, morphology, specific surface area, and pore size distribution of Mg-Al-CO3 LDHs were studied in details. The effect of aging time during LDHs preparation process on adsorption capacity of LDHs and their calcined products (mixed metal oxide, MMO) were investigated by removing the pollutant acid red 1 (AR1) from aqueous solution. The results showed that LDHs prepared at 90 degrees C for 4 h (LDH-4) had a higher specific area of 103.7 m2/g and LDHs prepared at 90 degrees C for 8 h (LDH-8) exhibited well-formed hexagonal crystals with a relative smooth surface. The LDH-4 and its calcined product are more effective in removing AR1 than LDH-8, which is related to the differences in their specific surface area. Meanwhile, anatase TiO2-coated MMO with MMO/TiO2 mass ratios at 1:1 and.2:1 were prepared via a chemical precipitation route in the presence of LDH, the composites showed an efficiently photocatalytic activity in the removal of AR1. PMID:27427611

  6. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides

    SciTech Connect

    Kovanda, Frantisek Rojka, Tomas; Bezdicka, Petr; Jiratova, Kveta; Obalova, Lucie; Pacultova, Katerina; Bastl, Zdenek; Grygar, Tomas

    2009-01-15

    The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 deg. C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 deg. C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 deg. C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni{sup 2+} components. The NiAl{sub 2}O{sub 4} spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 deg. C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 deg. C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N{sub 2}O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains. - Graphical Abstract: Hydrothermal treatment of Ni-Al LDH precursors influenced the porous structure of related mixed oxides and considerably improved their catalytic activity in N{sub 2}O decomposition; the higher catalytic

  7. A combined FTIR and infrared emission spectroscopy investigation of layered double hydroxide as an effective electron donor.

    PubMed

    Zhang, Jia; Wei, Feng; Liang, Ying; Zhou, Jizhi; Xi, Yunfei; Qian, Guangren; Frost, Ray

    2016-02-01

    A novel method has been presented to characterize electron transfer in layered double hydroxides (LDHs) utilizing an investigation combing FTIR and infrared emission spectroscopy. At room temperature, electron could transfer to interlayer Fe(3+) through monodentate ligand cyanide, and resulted in a reduction of 40% Fe(3+) to Fe(2+). When the environmental temperature increased from 25 to 300°C, reduction of Fe(3+) and Ni(2+) increased to 94% and 42%. Furthermore, electron also transferred to interlayer cation through multidentate ligand EDTA. As a result, LDHs has been proven to be an effective electron donor, and FTIR was a feasible tool in characterizing this property by monitoring the valence state of cations. It was also concluded that octahedral units with OH(-) groups in LDH layer functioned as electron donor centers. Driving force for electron transfer is attributed to the charge density difference between cation layer and probe anion. These results could help to explain the mechanism of various applications of LDHs in catalysis and photocatalysis.

  8. A combined FTIR and infrared emission spectroscopy investigation of layered double hydroxide as an effective electron donor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Wei, Feng; Liang, Ying; Zhou, Jizhi; Xi, Yunfei; Qian, Guangren; Frost, Ray

    2016-02-01

    A novel method has been presented to characterize electron transfer in layered double hydroxides (LDHs) utilizing an investigation combing FTIR and infrared emission spectroscopy. At room temperature, electron could transfer to interlayer Fe3 + through monodentate ligand cyanide, and resulted in a reduction of 40% Fe3 + to Fe2 +. When the environmental temperature increased from 25 to 300 °C, reduction of Fe3 + and Ni2 + increased to 94% and 42%. Furthermore, electron also transferred to interlayer cation through multidentate ligand EDTA. As a result, LDHs has been proven to be an effective electron donor, and FTIR was a feasible tool in characterizing this property by monitoring the valence state of cations. It was also concluded that octahedral units with OH- groups in LDH layer functioned as electron donor centers. Driving force for electron transfer is attributed to the charge density difference between cation layer and probe anion. These results could help to explain the mechanism of various applications of LDHs in catalysis and photocatalysis.

  9. Acid and redox properties of mixed oxides prepared by calcination of chromate-containing layered double hydroxides

    SciTech Connect

    Arco, M. del; Carriazo, D.; Martin, C.; Perez-Grueso, A.M.; Rives, V. . E-mail: vrives@usal.es

    2005-11-15

    Layered double hydroxides (LDHs) with Mg and Al in the layers and carbonate, nitrate or chloride in the interlayer, or with Zn and Al in the layers and chloride in the interlayer, have been prepared by coprecipitation, and have been used as precursors to prepare chromate-containing LDHs. All these systems, as well as those obtained upon their calcination up to 800 deg. C, have been characterised by powder X-ray diffraction, FT-IR and vis-UV spectroscopies, temperature-programmed reduction (TPR), nitrogen adsorption at -196 deg. C for surface texture and porosity assessment, and FT-IR monitoring of pyridine adsorption for surface acidity determination. The results obtained show that the crystallinity of the chromate-containing LDH depends on the precursor used. The layered structure of the Mg, Al systems is stabilised up to 400 deg. C upon incorporation of chromate; however, the Zn,Al-chromate samples collapse between 200 and 300 deg. C, with simultaneous formation of ZnO. Calcination of the samples above 400 deg. C gives rise to a reduction of Cr(VI) to Cr(III), as concluded from vis-UV spectroscopic studies. The TPR profiles show that chromate in ZnAl hydrotalcite is more easily reduced than that incorporated in the magnesium ones. Moderately strong surface Lewis acid sites exist in all samples calcined below 500 deg. C.

  10. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    PubMed

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

  11. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion.

    PubMed

    Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G

    2016-03-01

    The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.

  12. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion.

    PubMed

    Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G

    2016-03-01

    The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water. PMID:26829617

  13. Thermal decomposition and reconstruction of CaFe-layered double hydroxide studied by X-ray diffractometry and 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Bugris, Valéria; Ádok-Sipiczki, Mónika; Anitics, Tamás; Kuzmann, Ernő; Homonnay, Zoltán; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2015-06-01

    In spite of numerous investigations on the various processes of the thermal decomposition and rehydration of layered double hydroxides (LDHs) by a variety sophisticated experimental means, many details are still unexplored and some contradictions are still unresolved. In this work, our efforts were focussed on clarifying the composition, structure and properties of thermally decomposed metaphases originating from CaFe-LDH, heat treated in the 373-973 K temperature range. The structure reconstruction ability of mixed metal oxide phases obtained after heat treatments was also investigated, mainly concentrating on the changes in the microenvironment of Fe(III), in the presence of controlled amount of water vapour (i.e., at different relative humidities). All samples were characterised by X-ray diffractometry, and the iron-containing phases were studied by 57Fe Mössbauer spectroscopy.

  14. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    PubMed

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions.

  15. Direct coating for layered double hydroxide/4,4'-diaminostilbene-2,2'-disulfonic acid nanocomposite with silica by seeded polymerization technique

    NASA Astrophysics Data System (ADS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2004-09-01

    Organic ultraviolet (UV) ray absorbents have been used as sunscreen materials, but may pose a safety problem when used at high concentration. In order to prevent direct contact of organic UV rays absorbent by the human skin, an organic UV absorbent such as 4,4'-diaminostilbene-2,2'-disulfonic acid (DASDSA) was intercalated into Zn 2Al-layered double hydroxide (Zn 2Al-LDHs) by coprecipiation reaction. The problem of deintercalation of organic molecules from LDHs by the anion exchange reaction with carbonate ion could be greatly depressed by forming a protection film of silica on the surface. Zn 2Al-LDH/DASDSA was directly coated with silica by means of a polymerization technique based on the Stöber method. The deintercalation behavior as well as UV-shielding properties were investigated for coated particles.

  16. Synthesis and characterisation of a new stable organo-mineral hybrid nanomaterial: 4-Chlorobenzenesulfonate in the zinc-aluminium layered double hydroxide

    SciTech Connect

    Lakraimi, Mohamed; Legrouri, Ahmed . E-mail: legrouri@aui.ma; Barroug, Allal; De Roy, Andre; Besse, Jean Pierre

    2006-09-14

    4-Chlorobenzenesulfonate (4-CBS) was intercalated between layers of Zn-Al layered double hydroxides (LDHs). Two methods of incorporation were applied: (1) direct synthesis by coprecipitation of metal nitrates and sodium 4-CBS and (2) ion exchange of the LDH nitrate with the organic ion. The solids were characterized by X-ray diffraction and infrared spectroscopy. The direct method, effected at different pH values, led to a hybrid material with good degree of intercalation. In order to optimise the exchange conditions, particular attention was given to the effect of solution pH, 4-CBS/NO{sub 3} ratio and exchange temperature. The total exchange was successful and a new stable hybrid nanostructured material was obtained at pH 8 and with a 4-CBS concentration of 0.0028 M. This solid was further characterised by chemical and thermal analyses.

  17. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Youn, Duck Hyun; Park, Yoon Bin; Kim, Jae Young; Magesh, Ganesan; Jang, Youn Jeong; Lee, Jae Sung

    2015-10-01

    As an efficient non-precious metal catalyst for oxygen evolution reaction (OER) in electrochemical and photoelectrochemical water splitting, NiFe layered double hydroxide (LDH)/reduced graphene oxide (NiFe/RGO) composite is synthesized by a simple solvothermal method in one-pot. NiFe LDHs are uniformly deposited on RGO layers of high electrical conductivity and large surface area. In electrochemical water splitting, NiFe/RGO shows superior OER performance compared to bare NiFe and reference IrO2 with a lower benchmark η10 value (required overpotential to drive 10 mA cm-2) of 0.245 V. Furthermore, NiFe/RGO substantially increases the performance of a hematite photoanode in photoelectrochemical water oxidation, demonstrating its potential as an OER co-catalyst for photoelectrodes.

  18. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  19. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    SciTech Connect

    Arizaga, Gregorio Guadalupe Carbajal

    2012-01-15

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 Degree-Sign C while the exothermic event in ZHN was 366 Degree-Sign C and in the LDH at 276 Degree-Sign C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 Degree-Sign C, while the highest exothermic event in ZHN was at 366 Degree-Sign C, and in the LDH it was at 276 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. Black-Right-Pointing-Pointer ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. Black-Right-Pointing-Pointer NH{sub 3} molecules can be intercalated into ZHC. Black-Right-Pointing-Pointer The amino group of amino acids limits the intercalation by ion-exchange.

  20. Removal of perchlorate in water by calcined MgAl-CO3 layered double hydroxides.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Deng, Yang; Yu, Guoping

    2013-04-01

    Perchlorate is widely known as an inorganic endocrine disruptor. In this study, MgAl-CO3 layered double hydroxides with different Mg/Al molar ratios were prepared using a coprecipitation method and followed by a calcination process at a temperature range of 300 to 700 degrees C. Results showed that the best synthesis conditions were a calcination temperature of 550 degrees C and Mg/Al molar ratio of 3. Further, the adsorbent and its adsorption product were characterized by x-ray diffraction, Fourier transform-infrared spectroscopy, and thermogravimetric-differential thermal analysis. The layered double hydroxides structures in the adsorbent were lost during calcination at 550 degrees C but were reconstructed subsequent to adsorption of perchlorate, indicating that the "memory effect" appeared to play an important role in perchlorate adsorption. The perchlorate adsorption pattern was best described by the pseudo-second-order kinetics model, while the Freundlich isotherms appropriately explained perchlorate adsorption data.

  1. Insight of an easy topochemical oxidative reaction in obtaining high performance electrochemical capacitor based on CoIICoIII monometallic cobalt Layered Double Hydroxide

    NASA Astrophysics Data System (ADS)

    Vialat, Pierre; Rabu, Pierre; Mousty, Christine; Leroux, Fabrice

    2015-10-01

    A series of monometallic Layered Double Hydroxides (LDH) using electroactive cation, i.e. divalent or trivalent cobalt, was prepared by Topochemical Oxidation Reaction (TOR) under O2 atmosphere at 40 °C from pristine β-Co(OH)2 platelets. The oxidation state of the ill-defined layered materials was evaluated by coupling thermal measurements and chemical titration (iodometry). Their characterization by ancillary techniques was completed by the study of their magnetic behavior. The obtained magnetic moments suggest the presence of structural local deformation around the CoII ions, unhomogeneous charge distribution yielding to clustering effects cannot be discarded. Their pseudo-faradic properties as supercapacitor in KOH solution was thoroughly investigated by using Cyclic Voltammetry (CV), Galvanostatic Cycling with Potential Limitation (GCPL) and Electrochemical Impedance Spectroscopy (EIS) techniques. As a function of the oxygen treatment, the relative amount of CoII/CoIII was found to range into 5.3 and 13.3, which is unusually high when compared to classical LDH charge distribution. Pseudocapacitance as high as 1540 F g-1 was obtained underlining a high percentage of CoII, ≈40%, involved in electrochemical process. This high percentage is tentatively explained by an extended outer-active electrochemical surface which demonstrates that TOR is a quick and easy process to get a high pseudocapacitive performance.

  2. Ethylene Glycol Intercalated Cobalt/Nickel Layered Double Hydroxide Nanosheet Assemblies with Ultrahigh Specific Capacitance: Structural Design and Green Synthesis for Advanced Electrochemical Storage.

    PubMed

    Wang, Changhui; Zhang, Xiong; Xu, Zhongtang; Sun, Xianzhong; Ma, Yanwei

    2015-09-01

    Because of the rapid depletion of fossil fuels and severe environmental pollution, more advanced energy-storage systems need to possess dramatically improved performance and be produced on a large scale with high efficiency while maintaining low-enough costs to ensure the higher and wider requirements. A facile, energy-saving process was successfully adopted for the synthesis of ethylene glycol intercalated cobalt/nickel layered double hydroxide (EG-Co/Ni LDH) nanosheet assembly variants with higher interlayer distance and tunable transitional-metal composition. At an optimized starting Co/Ni ratio of 1, the nanosheet assemblies display a three-dimensional, spongelike network, affording a high specific surface area with advantageous mesopore structure in 2-5 nm containing large numbers of about 1.2 nm micropores for promoting electrochemical reaction. An unprecedented electrochemical performance was achieved, with a specific capacitance of 4160 F g(-1) at a discharge current density of 1 A g(-1) and of 1313 F g(-1) even at 50 A g(-1), as well as excellent cycling ability. The design and optimization of EG-Co/Ni LDH nanosheets in compositions, structures, and performances, in conjunction with the easy and relatively "green" synthetic process, will play a pivotal role in meeting the needs of large-scale manufacture and widespread application for advanced electrochemical storage. PMID:26258432

  3. Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers

    PubMed Central

    Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan

    2012-01-01

    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682

  4. Degradability enhancement of poly(lactic acid) by stearate-Zn(3)Al LDH nanolayers.

    PubMed

    Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan

    2012-01-01

    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682

  5. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  6. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    PubMed

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  7. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  8. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.

    PubMed

    Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi

    2016-06-01

    The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications. PMID:27135301

  9. Thermodynamical and structural insights of orange II adsorption by Mg{sub R}AlNO{sub 3} layered double hydroxides

    SciTech Connect

    Mustapha Bouhent, Mohamed; Derriche, Zoubir; Denoyel, Renaud; Prevot, Vanessa; Forano, Claude

    2011-05-15

    [Mg{sub 1-x} Al{sub x}(OH){sub 2}][(NO{sub 3}){sub x}, nH{sub 2}O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar (R=(1-x)/x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}) and entropy ({Delta}S{sup o}) were calculated. The experimental values for {Delta}G{sup o} in temperature range between 10 and 40 {sup o}C were found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange. -- Graphical Abstract: Structural and thermodynamical insight of adsorption/Intercalation of OII in Mg{sub R}Al LDH Display Omitted Highlights: {yields} The nitrate containing hydrotalcite-like compounds (Mg{sub R}AlNO{sub 3} LDH) were prepared by the coprecipitation method. {yields} Adsorption of anionic orange dye(OII) is studied on LDHs at different temperatures. {yields} The adsorption process is well described by the Langmuir isotherm model. {yields} Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. {yields} Adsorption process does not occur on the surface of the LDH only but an intercalation process is also occurring concomitantly according to the thermodynamical values.

  10. Preparation and properties of UV-cured acrylated silane intercalated polymer/LDH nanocomposite

    SciTech Connect

    Yuan, Yan; Shi, Wenfang

    2011-01-15

    A novel UV-cured polymer/layered double hydroxide (LDH) nanocomposite was prepared by modifying the LDH with sodium dodecyl sulfate (SDS) and [3-(methyl-acroloxy)propyl]trimethoxysilane (KH570) followed by UV irradiation after blended into a acrylate system. From the XRD analyses, the SDS-modified LDH-DS presented the basal spacing of 2.67 nm, whereas the further KH570-intercalated LDH-KH showed a slight decrease to 2.41 nm. After UV irradiated the exfoliated microstructure was formed, and observed by TEM and HR-TEM, showing the fine dispersion and random orientation of LDH in the polymer matrix. The storage modulus and glass transition temperature of the nanocomposite containing 5% LDH-KH increased to 47.5 MPa and 67.8 {sup o}C, respectively, from 39.7 MPa and 66 {sup o}C of the pure polymer from DMTA measurements. The tensile strength and Persoz hardness were enhanced to 10.6 MPa and 111 s, respectively, from 7.7 MPa and 85 s of the pure polymer.

  11. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation route

    SciTech Connect

    Zhang Hui Wen Xing; Wang Yingxia

    2007-05-15

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Moessbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO{sub 4} {sup 2-}-containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO{sub 4} {sup 2-}-containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn{sub 0.435}.Fe{sup II} {sub 0.094}.Fe{sup III} {sub 0.470}.(OH){sub 2}].(SO{sub 4} {sup 2-}){sub 0.235}.1.0H{sub 2}O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO{sub 4} {sup 2-}-containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS. - Graphical abstract: For Zn{sup 2+}-Fe{sup 2+}-Fe{sup 3+} GR2(SO{sub 4} {sup 2-}), according to the derived chemical formula, Fe{sup 3+} was arranged at 1a (0, 0, 0) position, while all Zn{sup 2+} were in 2d position with the occupancy 0.645, and the left part of 2d positions were taken by Fe{sup 2+}/Fe{sup 3+}.

  12. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite

    PubMed Central

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2013-01-01

    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells. PMID:23737666

  13. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  14. Ni/Ti layered double hydroxide: synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue.

    PubMed

    Roy Chowdhury, Priyadarshi; Bhattacharyya, Krishna G

    2015-04-21

    Visible light responsive 2 : 1 Ni/Ti layered double hydroxide (LDH) was synthesized by a single step hydrothermal route using commercially available Ni(NO3)2·6H2O, TiCl4 and urea. The material exhibited significant absorption in the visible range with a very narrow band gap (2.68 eV). This could be attributed to structural defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. FT-IR, TGA, DTA, DSC, HR-TEM and SEM-EDX measurements yielded information about structural aspects, thermal stability and surface morphology. Surface and pore characteristics of the material were obtained from the BET isotherm for N2 adsorption at 77 K. Zeta potential measurements were used to characterize the electrical properties of the surface while XPS revealed changes in surface states and oxygen deficiencies. The material was found to be an excellent photocatalyst for the degradation of aqueous methylene blue in visible light. The photocatalytic properties of the material were explained on the basis of the narrow band gap, the high surface area and the presence of surface defects. The photocatalytic activity improved in alkaline media [pH 11.0, catalyst load 15 mg in 200 ml dye solution, dye concentration 1 × 10(-6) M (= 0.3198 mg L(-1))] due to the electrostatic attractions between the dye cations and the negative charges on the Ni/Ti LDH surface. The catalytic activity was found to be higher than the common commercial catalysts like ZnO, ZnS, NiO, TiO2 and Degussa P25. The catalytic activity was retained even after five methylene blue degradation cycles, demonstrating that the LDH could be an important addition to the field of wastewater treatment.

  15. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    PubMed

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples. PMID:23764441

  16. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    SciTech Connect

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  17. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  18. A molecular dynamic study of layered hydroxide induced depletion of mobile anions within the extracellular medium

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2015-10-01

    The strong surface electric charge density of clay mineral host nanolayers enables their use as host-guest nanohybrids in many different areas of application. In particular, layered double hydroxides (LDH) of metals have found applications in medicine. Drug-LDH or gene-LDH nanohybrids are used for targeted delivery of biomedical agents to diseased cells or cancer cells. Fragments of the LDH host nanolayers may remain both within the cell and in the extracellular medium after drug delivery. How these charged nanosheets affect the cell electrostatics is still poorly understood. In the present paper, the idealized case of a single pure Mg2/Al-LDH nanolayer interacting with the extracellular anion environment was investigated to estimate the order of magnitude of a possible shift of the cell membrane equilibrium potential. An approximate dependence of the change in the chloride equilibrium membrane potential on the concentration of pure Mg2/Al-LDH nanosheets was determined.

  19. New layered double hydroxides by prepared by the intercalation of gibbsite

    SciTech Connect

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-04-15

    New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl{sub 2}·2H{sub 2}O and ZnCl{sub 2} failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl{sub 4}(OH){sub 12}](NO{sub 3}){sub 2}·1.5H{sub 2}O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs.

  20. Layered-metal-hydroxide nanosheet arrays with controlled nanostructures to assist direct electronic communication at biointerfaces.

    PubMed

    An, Zhe; Lu, Shan; Zhao, Liwei; He, Jing

    2011-10-18

    In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets.

  1. Mössbauer and XRD study of intercalated CaFe-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Sipiczki, Mónika; Kuzmann, Ernő; Pálinkó, István; Homonnay, Zoltán; Sipos, Pál; Kukovecz, Ákos; Kónya, Zoltán

    2014-04-01

    N-containing fully saturated (L-prolinate) or aromatic (indole-2-carboxylate) heterocyclic anions were immobilised in CaFe-layered double hydroxide with the dehydration-rehydration method from aqueous ethanol or acetone. The structure of the resulting organic-inorganic hybrids was characterised mainly with powder X-ray diffraction and 57Fe Mössbauer spectroscopy, and as supplementary analysis scanning electron microscopy, energy dispersive X-ray spectroscopy with elemental mapping and molecular modelling were also applied. It was found that the solvent mixture used for the synthesis caused enormous difference in the interlayer spacings of the obtained inorganic-organic hybrids.

  2. Significantly Enhanced Separation using ZIF-8 Membranes by Partial Conversion of Calcined Layered Double Hydroxide Precursors.

    PubMed

    Liu, Yi; Peng, Yuan; Wang, Nanyi; Li, Yanshuo; Pan, Jia Hong; Yang, Weishen; Caro, Jürgen

    2015-11-01

    Significantly enhanced H2 /CH4 (ca. 80) selectivity was realized by effective suppression of the framework flexibility of a prepared ZIF-8 membrane. Initially a ZnO buffer layer consisting of 20 nm-sized ZnO-nanoparticle aggregates was fabricated by controlled calcination of a ZnAl-NO3 layered double hydroxide membrane. Owing to its high chemical reactivity, the ZnO buffer layer was partially converted into a well-intergrown ZIF-8 membrane with a certain penetration depth upon solvothermal treatment with ligands. Our method may represent a new concept for the design of advanced MOF membranes with high selectivity. PMID:26427908

  3. Double layer hydroxide minerals as host structures for bioorganic molecules. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lee, Ton; Arrhenius, Meichia L.; Hui, Stella S.-Y.; Ring, Ken M.; Gedulin, Benjamin I.; Orgel, Leslie E.; Arrhenius, Gustaf

    1994-01-01

    A central problem in molecular evolution concerns the selective concentration from dilute, multicomponent solution of source molecules into a reactive environment, where formation of larger molecular assemblages can take place. Minerals consisting of positively charged, separable metal hydroxide sheets have proven capable of these functions. This common structural type is represented by minerals such as pyroaurite (Mg-Fe(3+) hydroxide), hydrotalcite (Mg-Al), green rust Fe(2+)-Fe(3+) and others. Effective interlayer sorption is demonstrated for orthophosphate and condensed phosphates, anionic alkyl compounds, polypeptides, nucleic acids, cyanide complexes and glycolaldehyde phosphate, the latter shown to readily oligomerize to form and selectively retain racemic hexose -2, 4, 6-phosphates, preferentially of altrose (Pitsch, et al, 1993). The selective aldomerization and retention effects correlate with the charge distribution in the host mineral structure and the stereochemistry of the substrate molecules. Interaction between nucleic acid bases, and between the cyanide groups of glycolaldehyde phosphate nitrile at the low water activity in the mineral interlayer is indicated by doubling of the monomeric separation of the hydroxide mineral sheets.

  4. Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA.

    PubMed

    Moaty, S A Abdel; Farghali, A A; Khaled, Rehab

    2016-11-01

    Facile and simple processes to get Zn-Fe layered double hydroxide (LDH) with nitrate as the interlayer anion are reported. The method of co-precipitation produced high crystallinity LDH that is marked by XRD, SEM, TEM and FT-IR. Results showed that 99.8% of Cd(+2) removals were at pH11 and 4h. To get the adsorption isotherms, the concentration of metal ions extending from 6 to 18mg/L was utilized. Results supported the Langmuir adsorption model. In contrary, the adsorption process followed the pseudo-second-order reaction kinetics. Interestingly, the prepared LDH shows durable antimicrobial activities against Gram-negative (Proteous vulgaris, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes and MRSA) and fungi (Candida albicans, Aspergillus fumigatus, Geotricumcandidum, and Trichophyton mentagrophytes). The minimum inhibitory concentration (MIC) of Zn-Fe LDH varied from 0.49 to 15.60μg/mL according to the types of microorganisms. The prepared LDH achieved 90% at pH8.50 which is the pH of wastewater and at the same time exhibited durable antimicrobial activities against MRSA, Gram-negative, Gram-positive and fungi. Results have significant implications in the field of bioremediation of water with little cost, simple operation, high productivity and easiness of the equipment.

  5. Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA.

    PubMed

    Moaty, S A Abdel; Farghali, A A; Khaled, Rehab

    2016-11-01

    Facile and simple processes to get Zn-Fe layered double hydroxide (LDH) with nitrate as the interlayer anion are reported. The method of co-precipitation produced high crystallinity LDH that is marked by XRD, SEM, TEM and FT-IR. Results showed that 99.8% of Cd(+2) removals were at pH11 and 4h. To get the adsorption isotherms, the concentration of metal ions extending from 6 to 18mg/L was utilized. Results supported the Langmuir adsorption model. In contrary, the adsorption process followed the pseudo-second-order reaction kinetics. Interestingly, the prepared LDH shows durable antimicrobial activities against Gram-negative (Proteous vulgaris, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes and MRSA) and fungi (Candida albicans, Aspergillus fumigatus, Geotricumcandidum, and Trichophyton mentagrophytes). The minimum inhibitory concentration (MIC) of Zn-Fe LDH varied from 0.49 to 15.60μg/mL according to the types of microorganisms. The prepared LDH achieved 90% at pH8.50 which is the pH of wastewater and at the same time exhibited durable antimicrobial activities against MRSA, Gram-negative, Gram-positive and fungi. Results have significant implications in the field of bioremediation of water with little cost, simple operation, high productivity and easiness of the equipment. PMID:27524011

  6. Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Zhang, Yu; Xing, Wei; Li, Li; Xue, Qingzhong; Yan, Zifeng

    2016-11-01

    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g-1), excellent rate performance (67% retained at 30 A g-1), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh·Kg-1). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide.

  7. Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides.

    PubMed

    Chaara, D; Bruna, F; Ulibarri, M A; Draoui, K; Barriga, C; Pavlovic, I

    2011-11-30

    The preparation and characterization of organo/layered double hydroxide nanohybrids with dodecylsulfate and sebacate as interlayer anion were studied in detail. The aim of the modification of the layered double hydroxides (LDHs) was to change the hydrophilic character of the interlayer to hydrophobic to improve the ability of the nanohybrids to adsorb non-ionic pesticides such as alachlor and metolachlor from water. Adsorption tests were conducted on organo/LDHs using variable pH values, contact times and initial pesticide concentrations (adsorption isotherms) in order to identify the optimum conditions for the intended purpose. Adsorbents and adsorption products were characterized several physicochemical techniques. The adsorption test showed that a noticeable increase of the adsorption of the non-ionic herbicides was produced. Based on the results, the organo/LDHs could be good adsorbents to remove alachlor and metolachlor from water. Different organo/LDHs complexes were prepared by a mechanical mixture and by adsorption. The results show that HTSEB-based complex displays controlled release properties that reduce metolachlor leaching in soil columns compared to a technical product and the other formulations. The release was dependent on the nature of the adsorbent used to prepare the complexes. Thus, it can be concluded that organo/LDHs might act as suitable supports for the design of pesticide slow release formulations with the aim of reducing the adverse effects derived from rapid transport losses of the chemical once applied to soils. PMID:21978582

  8. Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides.

    PubMed

    Chaara, D; Bruna, F; Ulibarri, M A; Draoui, K; Barriga, C; Pavlovic, I

    2011-11-30

    The preparation and characterization of organo/layered double hydroxide nanohybrids with dodecylsulfate and sebacate as interlayer anion were studied in detail. The aim of the modification of the layered double hydroxides (LDHs) was to change the hydrophilic character of the interlayer to hydrophobic to improve the ability of the nanohybrids to adsorb non-ionic pesticides such as alachlor and metolachlor from water. Adsorption tests were conducted on organo/LDHs using variable pH values, contact times and initial pesticide concentrations (adsorption isotherms) in order to identify the optimum conditions for the intended purpose. Adsorbents and adsorption products were characterized several physicochemical techniques. The adsorption test showed that a noticeable increase of the adsorption of the non-ionic herbicides was produced. Based on the results, the organo/LDHs could be good adsorbents to remove alachlor and metolachlor from water. Different organo/LDHs complexes were prepared by a mechanical mixture and by adsorption. The results show that HTSEB-based complex displays controlled release properties that reduce metolachlor leaching in soil columns compared to a technical product and the other formulations. The release was dependent on the nature of the adsorbent used to prepare the complexes. Thus, it can be concluded that organo/LDHs might act as suitable supports for the design of pesticide slow release formulations with the aim of reducing the adverse effects derived from rapid transport losses of the chemical once applied to soils.

  9. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  10. Using Zn/Al layered double hydroxide as a novel solid-phase extraction adsorbent to extract polycyclic aromatic hydrocarbons at trace levels in water samples prior to the determination of gas chromatography-mass spectrometry.

    PubMed

    Liu, Yan-Long; Zhou, Jia-Bin; Zhao, Ru-Song; Chen, Xiang-Feng

    2012-09-01

    This paper demonstrates, for the first time, the great potential of using Zn/Al layered double hydroxide intercalated sodium dodecyl benzene sulfonate (Zn/Al-SDBS-LDH) as a solid-phase extraction (SPE) material in the extraction of persistent organic pollutants prior to the determination of gas chromatography-mass spectrometry in environmental water samples. Zn/Al-SDBS-LDH, a relatively inexpensive and simply prepared material, was synthesized and used as a SPE adsorbent to quantitatively determine the concentration of five polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Factors affecting extraction efficiency, such as, eluent type, eluent volume, flow rate of sample, sample volume, and amount of adsorbent, were investigated and optimized in detail. Experimental results indicate that there is an excellent linear relationship between peak area and the concentration of PAHs over the range of 5-500 ng L(-1), and the precisions (relative standard deviation (RSD)) were 2.5-6.3% under the optimum conditions. Based on the ratio of chromatographic signal-to-base line noise (S/N = 3), the limits of detection could reach 1.2-3.2 ng L(-1). This novel method was successfully applied to the analysis of PAHs in environmental water samples. As such, we show here that the use of Zn/Al-SDBS-LDH as SPE adsorbent materials, coupled with gas chromatography-mass spectrometry, is an excellent improvement in the routine analysis of PAHs at trace levels in the environment.

  11. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies.

    PubMed

    Shan, Ran-ran; Yan, Liang-guo; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO3 emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO3 precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe3O4/Mg-Al-CO3-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  12. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study.

    PubMed

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. PMID:26354264

  13. Electrochemical study of ferrocenemethanol-modified layered double hydroxides composite matrix: application to glucose amperometric biosensor.

    PubMed

    Shan, Dan; Yao, Wenjuan; Xue, Huaiguo

    2007-10-31

    A novel amperometric glucose sensor based on co-immobilization of ferrocenemethanol (MeOHFc) and glucose oxidase (GOD) in the layered double hydroxides (LDHs) was described. MeOHFc immobilized in LDHs played effectively the role of an electron shuttle and allowed the detection of glucose at 0.25 V (versus SCE), with dramatically reduced interference from easily oxidizable constituents. The sensor (LDHs/MeOHFc/GOD) exhibited a relatively fast response (response time was about 5s), low detection limit (3 microM), and high sensitivity (ca. 60 mA M(-1)cm(-2)) with a linear range of 6.7 x 10(-6) to 3.86 x 10(-4)M of glucose. Apparent Michaelis-Menten constant was calculated to be 2.25 mM. PMID:17720475

  14. New layered double hydroxides by prepared by the intercalation of gibbsite

    NASA Astrophysics Data System (ADS)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-04-01

    New layered double hydroxides (LDHs) with the composition [MAl4(OH)12]Cl2·1.5H2O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH)3, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl2·2H2O and ZnCl2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl4(OH)12](NO3)2·1.5H2O (M=Co, Ni) compounds.

  15. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study.

    PubMed

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells.

  16. Stabilization of Co{sup 2+} in layered double hydroxides (LDHs) by microwave-assisted ageing

    SciTech Connect

    Herrero, M.; Benito, P.; Labajos, F.M.; Rives, V.

    2007-03-15

    Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at -196 deg. C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation. - Graphical abstract: The use of microwave-hydrothermal treatment, controlling both temperature and ageing time, permits to synthesize well-crystallized nanomaterials with controlled surface properties. An enhancement in the crystallinity degree and an increase in the particle size are observed when the irradiation time is prolonged.

  17. Absorption of the selenite anion from aqueous solutions by thermally activated layered double hydroxide.

    PubMed

    Liu, Rui; Frost, Ray L; Martens, Wayde N

    2009-03-01

    The presence of selenite or selenate in potable water is a health hazard especially when consumed over a long period of time. Its removal from potable water is of importance. This paper reports technology for the removal of selenite from water through the use of thermally activated layered double hydroxides. Mg/Al hydrotalcites with selenite in the interlayer were prepared at different times from 0.5 to 20 h through ion exchange. X-ray diffraction of the MgAlSeO3 hydrotalcites indicates that the selenite anion entered the interlayer spacing of Mg/Al hydrotalcite and MgAlSeO3 hydrotalcite was formed. Raman spectra proved the presence of selenite anion in the hydrotalcite interlayer as the counter anion. The band intensity and width of MgAlSeO3 hydrotalcite in the region of 3800-3000 cm(-1) increase with the adsorption of selenite by the Mg/Al hydrotalcite. The characteristic bands of free selenite anions in the MgAlSeO3 hydrotalcites are located between the region between 850 and 800 cm(-1). The Raman spectra of the lower wave number region of 550-500 cm(-1) show a shift toward higher wave numbers with adsorption of the selenite. An estimation of the amount of selenite anion removed by the thermally activated layered double hydroxide was obtained through the measurement of the intensity of the selenite Raman bands at 814 and 835 cm(-1) resulting from the amount of selenite anion remaining in solution. Thermally activated LDHs provide a mechanism for removing selenite anions from aqueous solutions.

  18. Dissolution kinetics and mechanism of Mg-Al layered double hydroxides: a simple approach to describe drug release in acid media.

    PubMed

    Parello, Mara L; Rojas, Ricardo; Giacomelli, Carla E

    2010-11-01

    Layered double hydroxides (LDHs) weathering in acidic media is one of the main features that affects their applications in drug delivery systems. In this work, the dissolution kinetics of biocompatible Mg-Al LDHs was studied at different initial pH values and solid concentrations using a simple and fast experimental method that coupled flow injection analysis and amperometric detection. A carbonate intercalated sample was used to determine the controlling step of the process and the dissolution mechanism. Finally, the study was extended to an ibuprofen intercalated LDH. The obtained results showed that the weathering process was mainly controlled by the exposed area and surface reactivity of LDHs particles. The dissolution mechanism at the particle surface was described in two steps: fast formation of surface reactive sites by hydroxyl group protonation and slow detachment of metal ions from surface. At strongly acidic conditions, the reaction rate was pH dependent due to the equilibrium between protonated (active) and deprotonated (inactive) hydroxyl groups. On the other hand, at mildly acidic conditions, the dissolution behavior was also ruled by the equilibrium attained between the particle surface reactive sites and the dissolved species. LDHs solubility and dissolution rate presented strong dependence with the interlayer anion. The ibuprofen intercalated sample was more soluble and more rapidly dissolved than the carbonate intercalated one in acetic/acetate buffer. On the other hand, the dissolution mechanism was invariant with the interlayer anion.

  19. Selective Tumor Cell Inhibition Effect of Ni-Ti Layered Double Hydroxides Thin Films Driven by the Reversed pH Gradients of Tumor Cells.

    PubMed

    Wang, Donghui; Ge, Naijian; Li, Jinhua; Qiao, Yuqin; Zhu, Hongqin; Liu, Xuanyong

    2015-04-22

    Nitinol is widely fabricated as stents for the palliation treatment of many kinds of cancers. It is of great importance to develop nitinol stents with selective tumor cell inhibition effects. In this work, a series of pH sensitive films composed of Ni(OH)2 and Ni-Ti layered double hydroxide (Ni-Ti LDH) with different Ni/Ti ratios were prepared on the surface of nitinol via hydrothermal treatment. The films with specific Ni/Ti ratios would release a large amount of nickel ions under acidic environments but were relatively stable in neutral or weak alkaline medium. Cell viability tests showed that the films can effectively inhibit the growth of cancer cells but have little adverse effects to normal cells. Besides, extraordinarily high intracellular nickel content and reactive oxygen species (ROS) level were found in cancer cells, indicating the death of cancer cells may be induced by the excessive intake of nickel ions. Such selective cancer cell inhibition effect of the films is supposed to relate with the reversed pH gradients of tumor cells.

  20. Enhanced photocatalytic activity of TiO2-impregnated with MgZnAl mixed oxides obtained from layered double hydroxides for phenol degradation

    NASA Astrophysics Data System (ADS)

    de Almeida, Marciano Fabiano; Bellato, Carlos Roberto; Mounteer, Ann Honor; Ferreira, Sukarno Olavo; Milagres, Jaderson Lopes; Miranda, Liany Divina Lima

    2015-12-01

    A series of TiO2/MgZnAl photocatalysts were successfully synthesized from ternary (Mg, Zn and Al) layered double hydroxides impregnated with TiO2 nanoparticles by the co-precipitation method at variable pH with different Zn2+/Mg2+ molar ratios. The composite photocatalysts were calcined at 500 °C resulting in the incorporation of oxide zinc, in the calcined MgZnAl LDH structure. Synergistic effect between ZnO and TiO2 lead to significant enhancement of TiO2/MgZnAl photocatalytic activity. Composite photocatalysts were characterized by ICP-MS, N2 adsorption-desorption, XRD, SEM, EDS, IR and UV-vis DRS. Phenol in aqueous solution (50 mg/L) was used as a model compound for evaluation of UV-vis (filter cut-off for λ > 300 nm) photocatalytic activity. The most efficient photocatalyst composite was obtained at a 5% Zn2+/Mg2+ molar ratio, in the catalyst identified as TiO2/MgZnAl-5. This composite catalyst had high photocatalytic activity, completely destroying phenol and removing 80% of total organic carbon in solution after 360 min. The TiO2/MgZnAl-5 catalyst remained relatively stable, presenting a 15% decrease in phenol degradation efficiency after five consecutive photocatalytic cycles.

  1. Effect of Ni cations and microwave hydrothermal treatment on the related properties of layered double hydroxide-ethylene vinyl acetate copolymer composites.

    PubMed

    Wang, Lili; Li, Bin; Yang, Mingfei; Chen, Chunxia; Liu, Yongsheng

    2011-04-15

    The effect of Ni cations and synthetic methods on the crystallinity, morphology, thermal stability and hydrophobic properties of carbonate-containing layered double hydroxides (LDHs) was investigated. The conventional hydrothermal treatment (CHT) and microwave hydrothermal treatment (MHT) methods were used to synthesize LDHs. The microwave treatment LDHs (MgAl-MHT and NiMgAl-MHT) have higher crystallinity and smaller crystal sizes than the conventional hydrothermal treatment LDHs (MgAl-CHT and NiMgAl-CHT). IR results indicate that the interactions of both OH(-)-CO(3)(2-) and CO(3)(2-)-CO(3)(2-) in NiMgAl-MHT are weaker. Furthermore, the thermal decomposition of OH(-) and CO(3)(2-) in the NiMgAl-MHT sample occurred earlier and faster than that of other LDHs. The contact angle values indicate that NiMgAl-MHT has the highest hydrophobicity. The influences of the LDHs on the thermal degradation and flame retardance of ethylene vinyl acetate copolymer (EVA)-LDH composites have also been studied in detail. NiMgAl-MHT has the more homogeneous nano-dispersed layers in EVA matrix. All composites enhance the thermal stability compared with the pure EVA because of the release of H(2)O and CO(2). Flame retardance of NiMgAl-MHT-EVA was obviously higher than that of the pure EVA and other composites. PMID:21316061

  2. Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As(V): Effect of arsenic concentration, pH, and aging.

    PubMed

    Sommella, Alessia; Caporale, Antonio G; Denecke, Melissa A; Mangold, Stefan; Pigna, Massimo; Santoro, Anna; Terzano, Roberto; Violante, Antonio

    2015-12-30

    Arsenic (As) co-precipitation is one of the major processes controlling As solubility in soils and waters. When As is co-precipitated with Al and Mg, the possible formation of layered double hydroxides (LDHs) and other nanocomposites can stabilize As in their structures thus making this toxic element less available. We investigated the nature and reactivity of Mg-Al-arsenate [As(V)] co-precipitated LDHs formed in solution affected by As concentration, pH, and aging. At the beginning of the co-precipitation process, poorly crystalline LDH and non-crystalline Al(Mg)-oxides form. Prolonged aging of the samples promotes crystallization of LDHs, evidenced by an increase in As K XANES intensities and XRD peak intensities. During aging Al- and/or Mg-oxides are likely transformed by dissolution/re-precipitation processes into more crystalline but still defective LDHs. Surface area, chemical composition, reactivity of the precipitates, and anion exchange properties of As(V) in the co-precipitates are influenced by pH, aging, and As concentration. This study demonstrates that (i) As(V) retards or inhibits the formation and transformation of LDHs and (ii) more As(V) is removed from solution if co-precipitated with Mg and Al than by sorption onto well crystallized LDHs. PMID:26241870

  3. The effect of trivalent cations on the performance of Mg-M-CO(3) layered double hydroxides for high-temperature CO(2) capture.

    PubMed

    Wang, Qiang; Tay, Hui Huang; Ng, Desmond Jia Wei; Chen, Luwei; Liu, Yan; Chang, Jie; Zhong, Ziyi; Luo, Jizhong; Borgna, Armando

    2010-08-23

    The effect of trivalent cations on the performance of Mg-M-CO(3) (M=Al, Fe, Ga, Mn) layered double hydroxides (LDHs) for high-temperature CO(2) capture is systematically investigated for the first time. We demonstrate that the M(3+) determines the structure evolution of LDH derivatives under thermal treatment, and finally influences the CO(2) capture capacity. Very different calcination temperatures are required for the different LDHs to obtain their maximum CO(2) capture capacities. To have a clear understanding of the reason behind these big differences the physicochemical properties, thermal stability, and memory effect of the LDHs were investigated. Both the thermal stability and the memory effect of LDHs are greatly influenced by the type of trivalent cation. The CO(2) capture capacities were also evaluated under various conditions. Another important finding of this work is that the quasi-amorphous phase obtained by thermal treatment at the lowest possible temperature gives the highest CO(2) capture capacity.

  4. Effect of intercalated aromatic sulfonates on uptake of aromatic compounds from aqueous solutions by modified Mg-Al layered double hydroxide

    SciTech Connect

    Kameda, Tomohito; Yamazaki, Takashi; Yoshioka, Toshiaki

    2010-06-15

    In this study, we utilized Mg-Al layered double hydroxide (Mg-Al LDH) modified by intercalation with three aromatic sulfonates-2,7-naphthalene disulfonate (2,7-NDS{sup 2-}), benzenesulfonate (BS{sup -}), and benzenedisulfonate (BDS{sup 2-})-for the uptake of two aromatics-1,3-dinitrobenzene (DNB) and anisole (AS)-from aqueous solution and determined the effect of the aromatic sulfonates on the uptake of these aromatics. We found that the electron-rich aromatic ring of the intercalated aromatic sulfonates such as 2,7-NDS{sup 2-} undergoes strong {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB in aqueous solution, and these interactions result in a higher uptake of DNB by the modified Mg-Al LDHs. In contrast, the electron-poor aromatic ring of the aromatic sulfonates such as BDS{sup 2-} undergoes weak {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB, and these interactions result in a lower uptake of DNB by the modified Mg-Al LDHs.

  5. Photochemistry in constrained spaces: Zeolites and layered double metal hydroxides. Progress report, September 15, 1993--September 15, 1994

    SciTech Connect

    Dutta, P.K.

    1995-02-01

    The authors have continued their research in the area of assembly and reactivity of photochemical systems in zeolites and double layered metal hydroxides. Over the last year, the authors have focused on two issues, increasing the photochemical efficiency of charge separation in a triad system and the chemistry of Ru(bpy){sup 3+}{sub 3} in zeolites.

  6. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    SciTech Connect

    Wu Hongyu; Jiao Qingze; Zhao Yun; Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  7. Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure

    NASA Astrophysics Data System (ADS)

    von Hoessle, F.; Plank, J.; Leroux, F.

    2015-05-01

    A series of sulfonated melamine formaldehyde (SMF) polycondensates possessing different anionic charge amounts and molecular weights was synthesized and incorporated into a hydrocalumite type layered double hydroxide structure using the rehydration method. For this purpose, tricalcium aluminate was dispersed in water and hydrated in the presence of these polymers. Defined inorganic-organic hybrid materials were obtained as reaction products. All SMF polymers tested intercalated readily into the hydrocalumite structure, independent of their different molecular weights (chain lengths) and anionic charge amounts. X-ray diffraction revealed typical patterns for weakly ordered, highly polymer loaded LDH materials which was confirmed via elemental analysis and thermogravimetry. IR spectroscopy suggests that the SMF polymers are interleaved between the [Ca2Al(OH)6]+ main sheets via electrostatic interaction, and that no chemical bond between the host matrix and the guest anion is formed. The SMF polymers well ensconced within the LDH structure exhibit significantly slower thermal degradation.

  8. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciTech Connect

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  9. Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} redox in the interlayer determined by the charge density of Zn{sub n}Cr-layered double hydroxides

    SciTech Connect

    Zhang, Jia; Xu, Yunfeng; Liu, Jiangyong; Zhou, Jizhi; Xu, Zhi Ping; Qian, Guangren

    2013-02-15

    Redox of Fe(CN){sub 6}{sup 3-} and Fe(CN){sub 6}{sup 4-} in the ZnCr layered double hydroxide interlayer has been investigated. The conversion from Fe(CN){sub 6}{sup 3-} to Fe(CN){sub 6}{sup 4-} or from Fe(CN){sub 6}{sup 4-} to Fe(CN){sub 6}{sup 3-} in the ZnCr-LDH interlayer has been confirmed, depending on the Zn:Cr molar ratio. Both Fe(CN){sub 6}{sup 3-} and Fe(CN){sub 6}{sup 4-} are observed in all samples no matter whether the initial anion is Fe(CN){sub 6}{sup 3-} or Fe(CN){sub 6}{sup 4-} before precipitation. Deconvolution of the FTIR band around 2100 cm{sup -1} reveals that the relative amount of Fe(CN){sub 6}{sup 4-} and Fe(CN){sub 6}{sup 3-} in the LDH interlayer is considerably dependent on the Zn:Cr molar ratio. In brief, Fe(CN){sub 6}{sup 4-} is preferred at the ratio of 2:1 while there is more Fe(CN){sub 6}{sup 3-} in the ratio of 4:1. Therefore, it is our hypothesis that the charge density of the hydroxide layer is a key factor that directs the redox of Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-}. The possible redox processes have also been proposed. - Graphical abstract: Redox reactions of Fe(CN){sub 6}{sup 3-} and Fe(CN){sub 6}{sup 4-} take place in the ZnCr layered double hydroxide (LDH) interlayer, which are reflected by Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} FTIR area ratio. Highlights: Black-Right-Pointing-Pointer An interlayer redox phenomena was observed in Fe(CN){sub 6}{sup 3/4-} intercalated ZnCr-LDHs. Black-Right-Pointing-Pointer The ratio of interlayer redox was examined by FTIR fitting analysis. Black-Right-Pointing-Pointer The tendency of redox was influenced by Zn:Cr molar ratio. Black-Right-Pointing-Pointer The mechanism relies on the charge density of metal hydroxyl layer.

  10. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Araújo-Moreira, Fernando M; Ruiz-Hitzky, Eduardo

    2014-03-10

    This work introduces results on a new drug delivery system (DDS) based on the use of chitosan/layered double hydroxide (LDH) biohybrid beads coated with pectin for controlled release in the treatment of colon diseases. Thus, the 5-aminosalicylic acid (5ASA), the most used non-steroid-anti-inflammatory drug (NSAID) in the treatment of ulcerative colitis and Crohn's disease, was chosen as model drug aiming to a controlled and selective delivery in the colon. The pure 5ASA drug and the hybrid material prepared by intercalation in a layered double hydroxide of Mg2Al using the co-precipitation method, were incorporated in a chitosan matrix in order to profit from its mucoadhesiveness. These compounds processed as beads were further treated with the polysaccharide pectin to create a protective coating that ensures the stability of both chitosan and layered double hydroxide at the acid pH of the gastric fluid. The resulting composite beads presenting the pectin coating are stable to water swelling and procure a controlled release of the drug along their passage through the simulated gastrointestinal tract in in vitro experiments, due to their resistance to pH changes. Based on these results, the pectin@chitosan/LDH-5ASA bionanocomposite beads could be proposed as promising candidates for the colon-targeted delivery of 5ASA, with the aim of acting only in the focus of the disease and minimizing side effects.

  11. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni. PMID:21186070

  12. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni.

  13. Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step.

    PubMed

    Sommer Márquez, Alicia E; Lerner, Dan A; Fetter, Geolar; Bosch, Pedro; Tichit, Didier; Palomares, Eduardo

    2014-07-21

    In the first step to obtain an efficient nano-antenna in a bottom-up approach, new hybrid materials were synthesized using a set of layered double hydroxides (LDHs) with basic properties and pure chlorophyll a (Chl a). The stability of the adsorbed monolayer of Chl a was shown to be dependent on the nature and the ratio of the different metal ions present in the LDHs tested. The hybrid materials turned out to be adequate for stabilizing Chl a on Mg/Al LDHs for more than a month under ambient conditions while a limited catalytic decomposition was observed for the Ni/Al LDHs leading to the formation of pheophytin. These changes were followed by namely XRD, DR-UV-vis and fluorescence spectroscopies of the hybrid antennae and of the solutions obtained from their lixiviation with acetone or diethylether. On Mg/Al hydrotalcites the stability of the adsorbed Chl a was equivalent for values of the metal atom ratio ranging from 2 to 4. The latter hybrids should constitute a good basis to form efficient nanoscale light harvesting units following intercalation of selected dyes. This work describes an efficient preparation of Chl a that allows scale-up as well as the obtention of a stable Chl a monolayer on the surface of various LDHs.

  14. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    PubMed

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L.

  15. Short-time hydrothermal synthesis and delamination of ion exchangeable Mg/Ga layered double hydroxides

    SciTech Connect

    Unal, Ugur

    2007-09-15

    The hydrothermal synthesis of magnesium-gallium layered double hydroxides (Mg/Ga LDHs) was studied under static and agitated conditions. Not only well-crystallized and large-sized Mg/Ga LDHs having hexagonal morphology were obtained but also the reaction time was comparatively decreased from 24 to 2 h by means of agitation during hydrothermal synthesis. In static conditions, mainly GaOOH and magnesite phases were formed. The elemental analysis results show that the final Mg/Ga ratio is significantly different from the initial ratio. The reason was attributed to the difference in the hydrolytic behavior of Mg{sup 2+} and Ga{sup 3+}. Furthermore, the anion exchange studies with glycine, dodecyl sulfate, ferrocyanide and ferricyanide were performed to investigate the intercalation behavior of the anions into Mg/Ga LDHs. In addition, delamination of Mg/Ga LDHs was performed in formamide for the glycine exchanged forms. Large size of nanosheets thus obtained can be utilized in the fabrication of functional thin films. - Graphical abstract: Hydrothermal synthesis under agitation resulted in highly crystalline Mg/Ga LDHs slabs in a short time. The LDHs slabs were delaminated into two-dimensional nanosize sheets.

  16. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%.

  17. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGESBeta

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  18. Morphologies developed by the drying of droplets containing dispersed and aggregated layered double hydroxide platelets.

    PubMed

    Zhang, Yan; Evans, Julian R G

    2013-04-01

    Despite much interest in the structures formed from droplets of suspension as they dry, there are few studies involving plate-like particles. Layered double hydroxide suspensions were prepared with pH adjusted to give well-dispersed and flocculated variants that were characterised by sedimentation and rheology measurements. In the well-dispersed suspension, the three-phase boundary was pinned and radial flow created a peripheral wall. The platelet structure involved local flat packing but was replete with scrolls that result from the recirculation flows in the droplets as they dry. In contrast, the flocculating suspension produced flatter droplet relics and the microstructure consisted of ordered domains which were disoriented with respect to each other. Although of scientific interest, the control of these structures will make it possible to use direct ink-jet printing to build 3D shapes for the preparation of aligned, ordered nanocomposites based on plate-like particles in which platelet preferred orientation mimics the structures found in nacre.

  19. Mechanochemical approach to get layered double hydroxides: Mechanism explore on crystallite growth

    NASA Astrophysics Data System (ADS)

    Zeng, Mei-Gui; Huo, Xiao-Lei; Liu, Su-Qing; Li, Shu-Ping; Li, Xiao-Dong

    2014-02-01

    In this paper, the mechanochemical approach, which includes solid state reactions and hydrothermal treatment, has been proposed to synthesize magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). Specially, the reaction process of solid state reactions has been explored, and it presents that crystallite growth is the rate-controlling process. The hydrothermal treatment is performed after solid state reactions, on one hand, the crystallinity and monodispersity of final LDHs particles can be improved, on the other hand, such treatment can tailor the particle size efficiently. Furthermore, the relationship between particle size and hydrothermal conditions (time and temperature) has been systematically investigated, which indicates that the particle size and monodispersity can be effectively controlled. The crystallite growth along a-b plane and c-axis has been emphatically discussed, and the results show that under relatively low temperatures such as 100 °C, the gradual growth along c-axis has been found in the range of 48 h, and high temperatures will hider its growth on the contrary. Crystal growth along a-b plane could be accelerated by higher hydrothermal temperature and longer treatment time. Our studies also show that during the hydrothermal treatment, such events as aggregation, disaggregation and particle growth, occur in series or in parallel with time. At last, the Mg-Al-CO3-LDHs samples (synthesized at 100 °C for 24, 36 and 48 h) which were acid activated by HCOOH were used to adsorb fluoride ions present in aqueous solution.

  20. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    SciTech Connect

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.; Sturgeon, M.; Katahira, R.; Beckham, G. T.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCD of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.

  1. Ephemeral Fe(II)/Fe(III) layered double hydroxides in hydromorphic soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Shoba, S. A.

    2015-03-01

    Ephemeral green rust is formed seasonally in some hydromorphic soils. It consists of Fe(II)/Fe(III) layered double hydroxides with different types of interlayer anions and different oxidation degrees of iron ( x). In synthetized stoichiometric green rust, x = 0.25-0.33; in soil fougerite, it may reach 0.50-0.66. The mineral stability is provided by the partial substitution of Mg2+ for Fe2+. The ephemeral properties of the green rust are manifested in the high sensitivity to the varying redox regime in hydromorphic soils. Green rust disappears during oxidation stages, which complicates its diagnostics in soils. For green rust formation, excessively moist mineral soil needs organic matter as a source of energy for the vital activity of iron-reducing bacteria. In a gleyed Cambisol France, where fougerite is formed in the winter, the index of hydrogen partial pressure rH2 is 7.0-8.2, which corresponds to highly reducing conditions; upon the development of oxidation, fougerite is transformed into lepidocrocite. In the mineral siderite horizon of peatbogs in Belarus, where green rust is formed in the summer, rH2 is 11-14, which corresponds to the lower boundary of reducing conditions ( rH2 = 10-18); magnetite is formed in these soils in the winter season upon dehydration of the soil mass.

  2. Preparation and characterization of "dextran-magnetic layered double hydroxide-fluorouracil" targeted liposomes.

    PubMed

    Huang, Jie; Gou, Guojing; Xue, Bing; Yan, Qianshun; Sun, Yue; Dong, Li-E

    2013-06-25

    This work was aimed at assessing the preparation and characteristics of "dextran-magnetic layered double hydroxide-fluorouracil" liposomes (DMFL). DMFL was prepared by the optimized reverse evaporation method, which concerned the entrapment efficiency and slow-released effect. The factors affecting the entrapment efficiency of DMFL were studied using orthogonal design, and the optimum conditions are: weight ratio of lecithin to cholesterol (2:1), weight ratio of lecithin to DMF (7:1), emulsification time (30 min) and temperature (50 °C). The characteristics of optimized DMFL on encapsulation efficiency, mean diameter and pH value were 85.47±0.83, 160.4±0.55 nm and 6.58±0.05, respectively. In vitro drug release profile of DMFL followed the Higuchi release model equation Q=9.2338t(1/2)+22.821. The magnetic targeting results showed that DMFL had sensitive magnetic targeted responsibility. The results of XRD, FT-IR and TEM indicated that the structure and property of DMF were not destroyed during the process of forming DMFL, and the phospholipid bilayer and the hexagonal skeleton DMF were obvious and complete after being lyophilized powder. This lyophilized method could be used to store the DMFL easily. These results suggested that DMFL had the potential for developing as a practical preparation for administration. PMID:23591010

  3. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  4. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields.

  5. Evolution of rheological properties of the nanofluids composed of laponite particles and Mg–Fe layered double hydroxide nanosheets

    SciTech Connect

    Hur, Tae-Bong; Phuoc, Tran X.; Chyu, Minking K.; Romanov, Vyacheslav

    2011-05-01

    The thixotropic clay suspensions composed of laponite particles and Mg-Fe layered double hydroxide nanosheets were examined. By adding a very small amount of the layered double hydroxide nanosheets overall theological properties of the host laponite suspension have been changed. Though the particle concentration of the mixture suspension is only about 1 wt%, the mixture quickly becomes a gel in a day by the electrostatic attraction between nano-materials. When a constant shear rate is applied to the mixture gel suspension, at short time, stress increases linearly with elastic deformation of the mixture. Beyond the maximum of stress, while the solid-like gel structure is being broken down with time of shearing, the stress increases again by reflecting shear enhanced association of solid phase. This is likely that the mixture suspension shows partially the behavior of memory effect.

  6. Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Jagadale, Ajay D.; Guan, Guoqing; Li, Xiumin; Du, Xiao; Ma, Xuli; Hao, Xiaogang; Abudula, Abuliti

    2016-02-01

    CoMn LDH electrode is successfully prepared via facile and cost-effective electrodeposition method. The effect of Co2+/Mn2+ molar ratio on supercapacitive performance is systematically investigated. It is found that the presence of Mn(OH)6 unit in CoMn LDH offers an excellent reversibility as well as highly electrochemical activity for supercapacitor application. The CoMn LDH film with a Co2+/Mn2+ molar ratio of 9:1 loaded on Ni foam electrode exhibits the maximum specific capacitance of 1062.6 F/g at the current density of 0.7 A/g with an excellent cyclic stability of 96.3% over 5000 CD cycles. It indicates that CoMn LDH nanoflakes loaded on Ni foam can minimize the lattice mismatch which leads to an excellent cyclic stability. The asymmetric supercapacitor assembled with CoMn LDH/Ni foam and AC electrodes shows an excellent cyclic life of 84.2% and an energy density of 4.4 Wh/kg with a power density of 2500 W/kg.

  7. Study of bi-enzyme immobilization onto layered double hydroxides nanomaterials for histamine biosensor application.

    PubMed

    Baccar, Z M; Hidouri, S; Errachid, A; Sanchez, O Ruiz

    2011-10-01

    In this work, we present the development of a hybrid biomembrane based on the immobilization of diamine oxidase (DAO) into LDH thin films for histamine detection. The LDHs preselected as host matrixes are: hydrotalcites (Mg2Al(CO3)0.5(OH)6), lowaite (Mg4Fe(OH)10Cl) and hydrocalumite (Ca2Al(OH)6Cl). The immobilized probes were characterized by atomic force microscopy (AFM) and attenuated total reflection infrared spectroscopy (IR-ATR mode). The analysis of these results shows that the immobilization of DAO occurs with all type of selected LDH and is stable after a 7 day-immersion in phosphate buffer solution. The LDH incorporating magnesium or calcium divalent cations present high-quality surface topology for DAO immobilization and the ability to keep the enzyme in a well conformation for biogenic amines catabolism and histamine detection. PMID:22400262

  8. Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Britto, Sylvia; Kamath, P. Vishnu

    2014-07-01

    “Imbibition” of Zn2+ ions into the cation vacancies of bayerite-Al(OH)3 and NO3- ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ~3. NO3- ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO42- ions from solution. The uptake of CrO42- ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO42- ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO42- inclusion reveals that the CrO42- ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell.

  9. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    PubMed

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption.

  10. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    PubMed

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment. PMID:26818806

  11. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    PubMed

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.

  12. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability.

  13. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability. PMID:27474815

  14. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  15. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG

  16. In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture.

    PubMed

    Liu, Peng-Fei; Tao, Kai; Li, Guo-Chang; Wu, Meng-Ke; Zhu, Shuai-Ru; Yi, Fei-Yan; Zhao, Wen-Na; Han, Lei

    2016-08-01

    A hexagonal nanosheet LDH@ZIF-8 composite was fabricated by in situ growth of ZIF-8 on Zn-Al LDH without adding any zinc precursor, and exhibited a CO2 adsorption capacity of 1.0 mmol g(-1) at room temperature and 1 bar, which was significantly higher than that of pure Zn-Al LDH or ZIF-8, indicating a synergy between ZIF-8 and Zn-Al LDH. PMID:27356046

  17. Structural features of intercalated CaFe-layered double hydroxides studied by X-ray diffractometry, infrared spectroscopy and computations

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Ádok-Sipiczki, M.; Hannus, I.; Sipos, P.; Pálinkó, I.

    2015-06-01

    The intercalation of various N-containing carboxylic acid anions into CaFe-layered double hydroxides was performed by the dehydration-rehydration method. Particular attention was paid to the effect of solvent mixture used during preparation. It was found that various solvent mixtures resulted in different interlayer distances and, thus, different arrangements of the anions between the layers. The dimensions of the intercalated anions and detailed analysis of the infrared spectra gave clues for the reasonable prediction of the spatial arrangements of the anions in the interlamellar space.

  18. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  19. Synthesis of a novel green fluorescent material Ca3Al2O6:Tb3+ based on a layered double hydroxide precursor

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Jiang, Kangle; Hao, Yongjing; Chang, Tao; Yin, Yaobing

    2015-08-01

    A novel green light emitting material, Ca3Al2O6:Tb3+ was synthesized by calcination of a terbium doped Ca/Al layered double hydroxide precursor at 1350°C. The precursor was prepared by coprecipitation from metal nitrates with sodium hydroxide. The material shows characteristic green emission at 543 nm when excited with 266 nm UV source. The photoluminescence intensity reaches its maximum at Tb3+ concentration of 0.5 mol %.

  20. Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production.

    PubMed

    Rico, Juan; Yebra, María Jesús; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2008-06-01

    Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid. PMID:18231816

  1. Efficient fluorinating agent through topochemical fluorination of Co-Fe layered double hydroxides.

    PubMed

    Louvain, Nicolas; Peyroux, Jérémy; Dubois, Marc; Simond, Wikenson; Leroux, Fabrice

    2014-01-21

    Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F(•)-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial polyethylene film. (19)F solid state NMR and contact angle measurements underline the efficient fluorination of this polymer.

  2. Photocatalytic O{sub 2} evolution from water over Zn–Cr layered double hydroxides intercalated with inorganic anions

    SciTech Connect

    Hirata, Naoya; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2015-02-15

    Graphical abstract: The photocatalytic activity of Zn–Cr LDHs intercalated with various inorganic anions was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. The interlayer anions affected the photocatalytic activity of the LDHs. - Highlights: • Zn–Cr layered double hydroxides intercalated with inorganic anions were synthesized. • Photocatalytic activity of the LDHs was studied by O{sub 2} evolution. • All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. • The interlayer anions affected the photocatalytic activity of the LDHs. - Abstract: Zn–Cr layered double hydroxides (LDHs) intercalated with inorganic anions (CO{sub 3}{sup 2−}, Cl{sup −}, SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) were synthesized by the co-precipitation method and the anion exchange process. The photocatalytic activity of the LDHs was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. Besides, the interlayer anions affected the photocatalytic activity of the LDHs. After irradiation, Ag particles were formed on the LDHs by accepting the electrons generated during the photocatalytic reaction.

  3. Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B.

    PubMed

    Xia, Sheng-Jie; Liu, Feng-Xian; Ni, Zhe-Ming; Xue, Ji-Long; Qian, Ping-Ping

    2013-09-01

    A series of Zn/M-NO3-LDHs (M=Al, Fe, Ti, and Fe/Ti) have been synthesized by two different methods, and their activities for visible-light photocatalytic degradation on Rhodamine B (RB) were tested. Solids were analyzed by XRD, FT-IR, and ICP characterization, confirming the formation of pure LDH phase with good crystal structure. It was observed that the band gap of these nitrate LDH materials was following this order: Zn/Fe-NO3-LDHs (2.55 eV)>Zn/Fe/Ti-NO3-LDHs (2.88 eV)>Zn/Ti-NO3-LDHs (3.0 3eV)>Zn/Al-NO3-LDHs (3.23 eV); however, the degradation performance of RB by four materials followed the order: Zn/Ti-NO3-LDHs (98%)>Zn/Al-NO3-LDHs (96%)>Zn/Fe/Ti-NO3-LDHs (88%)>Zn/Fe-NO3-LDHs (72%). In addition, a possible mechanism for photocatalytic degradation on RB has also been presumed. Moreover, after three regeneration cycles, the percentage of RB degradation rate was still close to 90%.

  4. Successful transfer of plasmid DNA into in vitro cells transfected with an inorganic plasmid-Mg/Al-LDH nanobiocomposite material as a vector for gene expression

    NASA Astrophysics Data System (ADS)

    Jaffri Masarudin, Mas; Yusoff, Khatijah; Rahim, Raha Abdul; Zobir Hussein, Mohd

    2009-01-01

    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO3- layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg2+ to Al3+ molar ratio Ri = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 Å in LDH to 42 Å was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO3 after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.

  5. Efficient Fluorinating Agent through Topochemical Fluorination of Co-Fe Layered Double Hydroxides

    SciTech Connect

    Louvain, Nicolas; Peyroux, Jérémy; Dubois, Marc; Simond, Wikenson; Leroux, Fabrice

    2014-02-13

    Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial polyethylene film. 19F solid state NMR and contact angle measurements underline the efficient fluorination of this polymer.

  6. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co(+2)Mo(+6) LDH.

    PubMed

    Mostafa, Mohsen S; Bakr, Al-Sayed A; El Naggar, Ahmed M A; Sultan, El-Sayed A

    2016-01-01

    CoMo(CO3(2-)) layered double hydroxide of a highly energetic surface, as a new LDH consisting of divalent and hexavalent cations (M(+2)/M(+6)-LDH), was prepared by a homogeneous co-precipitation method. The structure and morphology of the prepared material was confirmed by several analytical techniques namely; X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), Fourier transform infra-red (FT-IR) spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), N2 adsorption-desorption isotherm and scanning electron microscope (SEM). The highly energetic surface of the prepared LDH was demonstrated via the X-ray photoelectron spectroscopy (XPS). The surface energy is due to the formation of +4 surface charges in the brucite layer between Co(+2) and Mo(+6). The prepared LDH was applied as a novel adsorbent for the removal of Pb (II) from its aqueous solution at different experimental conditions of time, temperature and initial Pb (II) concentrations. The change of the Pb (II) concentrations; due to adsorption, was monitored by atomic absorption spectrophotometer (AAS). The maximum uptake of Pb (II) by the Co Mo LDH was (73.4 mg/g) at 298 K. The Pb (II) adsorption was found to follow Langmuir isotherm and pseudo second order model. The adsorption process was spontaneous and endothermic. The interference of other cations on the removal of the Pb (II) was studied. Na(+) and K(+) were found to increase the adsorption capacity of the Co Mo LDH toward Pb (II) while it was slightly decreased by the presence of Mn(+2) and Cu(+2). The synthesized LDH showed a great degree of recoverability (7 times) while completely conserving its parental morphology and adsorption capacity. The mechanism of the lead ions removal had exhibited more reliability through a surface adsorption by the coordination between the Mo(+6) of the brucite layers and the oxygen atoms of the nitrates counter ions.

  7. Antibiofilm efficacy of photoactivated curcumin, triple and double antibiotic paste, 2% chlorhexidine and calcium hydroxide against Enterococcus fecalis in vitro

    PubMed Central

    Devaraj, Sharmila; Jagannathan, Nithya; Neelakantan, Prasanna

    2016-01-01

    Root canal disinfection is one of the most important factors governing success of root canal treatment, especially when regenerative strategies are used. This study evaluated the efficacy of 5 intracanal medicaments against mature biofilms of Enterococcus fecalis in vitro: Light activated curcumin, triple antibiotic paste (TAP), double antibiotic paste (DAP), chlorhexidine, calcium hydroxide. Untreated teeth with biofilms served as controls. Confocal microscopy was used to analyse the biofilm mass and percentage of live/dead bacteria within the root canal as well as dentinal tubules. Dentinal shavings obtained from the root canal walls (at 200 and 400 microns depth) were used to quantify the colony forming units/mL. The results showed that light activated curcumin and triple antibiotic paste brought about complete disruption of the biofilm structure (P < 0.05) while chlorhexidine and calcium hydroxide were not significantly different from the control (P > 0.05). Light activated curcumin brought about the highest percentage of dead cells at both depths, but this was not significantly different from triple antibiotic paste (P > 0.05). Curcumin, TAP and DAP brought about a significant reduction of CFU/mL at both depths compared to the control and other groups (P < 0.05). Light activated curcumin brought about a 7 log reduction of bacteria at both depths. PMID:27097667

  8. Antibiofilm efficacy of photoactivated curcumin, triple and double antibiotic paste, 2% chlorhexidine and calcium hydroxide against Enterococcus fecalis in vitro.

    PubMed

    Devaraj, Sharmila; Jagannathan, Nithya; Neelakantan, Prasanna

    2016-01-01

    Root canal disinfection is one of the most important factors governing success of root canal treatment, especially when regenerative strategies are used. This study evaluated the efficacy of 5 intracanal medicaments against mature biofilms of Enterococcus fecalis in vitro: Light activated curcumin, triple antibiotic paste (TAP), double antibiotic paste (DAP), chlorhexidine, calcium hydroxide. Untreated teeth with biofilms served as controls. Confocal microscopy was used to analyse the biofilm mass and percentage of live/dead bacteria within the root canal as well as dentinal tubules. Dentinal shavings obtained from the root canal walls (at 200 and 400 microns depth) were used to quantify the colony forming units/mL. The results showed that light activated curcumin and triple antibiotic paste brought about complete disruption of the biofilm structure (P < 0.05) while chlorhexidine and calcium hydroxide were not significantly different from the control (P > 0.05). Light activated curcumin brought about the highest percentage of dead cells at both depths, but this was not significantly different from triple antibiotic paste (P > 0.05). Curcumin, TAP and DAP brought about a significant reduction of CFU/mL at both depths compared to the control and other groups (P < 0.05). Light activated curcumin brought about a 7 log reduction of bacteria at both depths. PMID:27097667

  9. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals

    NASA Astrophysics Data System (ADS)

    Grégoire, Brian; Erastova, Valentina; Geatches, Dawn L.; Clark, Stewart J.; Greenwell, H. Christopher; Fraser, Donald G.

    2016-03-01

    The role of mineral surfaces in concentrating and facilitating the polymerisation of simple protobiomolecules during the Hadean and Archean has been the subject of much research in order to constrain the conditions that may have led to the origin of life on early Earth. Here we examine the adsorption of the amino acid aspartate on layered double hydroxide minerals, and use a combined computer simulation - experimental spectroscopy approach to gain insight into the resulting structures of the host-aspartate material. We show that the uptake of aspartate occurs in alkaline solution by anion exchange of the dianion form of aspartate, rather than by surface adsorption. Anion exchange only occurs at values of pH where a significant population of aspartate has the amino group deprotonated, and is then highly efficient up to the mineral anion exchange capacity.

  10. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  11. Synthesis and photoluminescence properties of europium doped Mg-Al layered double hydroxides intercalated with MoO anions

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Pan, Qingrui; Liu, Qi; He, Yang; Mann, Tom; Li, Rumin; Zhang, Milin; Liu, Lianhe

    2012-05-01

    Novel fluorescent Eu-containing layered double hydroxides (Eu-LDHs) were prepared by direct ion-exchange of EuMgAl-NO3 LDHs precursors with MoO anions. The samples were characterized by elemental analyses, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectra, photoluminescence spectroscopy. The results indicated that Eu3+ ions were likely incorporated into the hydrotalcite lattice and MoO anions were successfully intercalated into interlayer region of the LDHs with the Mo/Al molar ratio close to 0.40. The luminescence properties were largely enhanced compared with the EuMgAl-NO3 LDHs precursors, which were attributed to the energy transfer between Eu3+ and MoO.

  12. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide

    PubMed Central

    Saifullah, Bullo; Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB. PMID:25336952

  13. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products.

    PubMed

    Xiao, Ting; Tang, Yiwen; Jia, Zhiyong; Li, Dawei; Hu, Xiaoyan; Li, Bihui; Luo, Lijuan

    2009-11-25

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni2+-Fe3+ layered double hydroxides (LDHs). Flower-like Ni2+-Fe3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 degrees C in nitrogen gas, porous NiO/NiFe2O4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni2+-Fe3+ LDHs as well as porous NiO/NiFe2O4 nanosheets. PMID:19858561

  14. Synthesis and characterization of a mixture of CoFe2O4 and MgFe2O4 from layered double hydroxides: Band gap energy and magnetic responses

    NASA Astrophysics Data System (ADS)

    Agú, Ulises A.; Oliva, Marcos I.; Marchetti, Sergio G.; Heredia, Angélica C.; Casuscelli, Sandra G.; Crivello, Mónica E.

    2014-11-01

    A mixture of nanocrystals of cobalt ferrite and magnesium ferrite was obtained from Layered Double Hydroxides (LDH) through a co-precitation method with a theoretical molar ratio M2+:Fe3+=3:1, where M2+represents Mg2+ and/or Co2+. The molar ratios between Co2+:Fe3+ were 0.0 (0Co), 0.2 (5Co), and 0.4 (10Co). In order to assess the effect on the properties of the LDH and their oxides, the molar percentages were 0, 5 and 10%. Two different synthesis methods were evaluated; (i) ageing at room temperature (rt), and (ii) hydrothermal ageing at 200 °C in autoclave (ht), both methods needed 15 h of ageing. Then, these LDH were calcined in air atmosphere at 550 °C for 10 h. The calcined materials were characterized by X-ray diffraction (XRD), thermogravymetric analysis (TGA), temperature-programmed reduction (TPR), infrared spectroscopy with Fourier transform (FTIR), Diffuse Reflectance UV-visible spectroscopy (UV-vis-DRS), Mössbauer spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). The magnetic response was analyzed using a vibrating sample magnetometer (VSM). The band gap energy of the iron oxides was determined through the UV-vis-DRS analysis. Through these studies it was possible to identify the presence of a mixture of cobalt ferrite and magnesium ferrite. Samples did not show hematite and cobalt oxides, but the presence of MgO in the periclase phase was determined. This magnesium oxide promoted a good dispersion of the ferrites. Moreover, when a single ferrite phase of Co or Mg was formed, a diminution of the crystal size with consequent enlarged values of band gap energy was observed. Thus, materials synthesized by room temperature ageing promoted the superparamagnetic behaviour of samples, attributed to the content of the cobalt ferrite structure in nanocrystals. In regard to the estimated band gap energy, all samples exhibited low levels. These results indicate that these solids would be suitable for photocatalysts use in all

  15. Preparation of Mg-Al layered double hydroxides intercalated with 1,3,6-naphthalenetrisulfonate and 3-amino-2,7-naphthalenedisulfonate and assessment of their selective uptake of aromatic compounds from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kameda, Tomohito; Yamazaki, Takashi; Yoshioka, Toshiaki

    2010-05-01

    Mg-Al layered double hydroxides (Mg-Al LDHs) intercalated with 1,3,6-naphthalenetrisulfonate (NTS 3-) and 3-amino-2,7-naphthalenedisulfonate (ANDS 2-) ions were prepared by coprecipitation and were characterized by X-ray diffraction and chemical analyses. Based on X-ray diffraction patterns, the naphthalene rings of NTS 3- and ANDS 2- were most likely oriented parallel to the brucite-like host layers of the Mg-Al LDH, midway between layers. The prepared Mg-Al LDHs were able to selectively take up aromatics from aqueous solutions, and the order of percentage uptake was as follows: 1,3-dinitrobenzene > nitrobenzene > benzaldehyde > N,N-dimethylaniline > anisole > 1,2-dimethoxybenzene. The differences in the extent of π-π stacking interactions occurring between the benzene rings of the aromatics and the naphthalene ring of the intercalated NTS 3- and ANDS 2- probably resulted in these differences among the absorbed quantities of the various aromatics.

  16. Variable charge and electrical double layer of mineral-water interfaces: silver halides versus metal (hydr)oxides.

    PubMed

    Hiemstra, Tjisse

    2012-11-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface complexation modeling (SCM) as applied to metal (hydr)oxide interfaces. Ag halides and metal (hydr)oxides behave quite differently in some respect. The location of charge in the interface of Ag halides is not a priori obvious. For AgI(s), SCM indicates the separation of interfacial charge in which the smaller silver ions are apparently farther away from the surface than iodide. This charge separation can be understood from the surface structure of the relevant crystal faces. Charge separation with positive charge above the surface is due to monodentate surface complex formation of Ag(+) ions binding to I sites located at the surface. Negative surface charge is due to the desorption of Ag(+) ions out of the lattice. These processes can be described with the charge distribution (CD) model. The MO/DFT optimized geometry of the complex is used to estimate the value of the CD. SCM reveals the EDL structure of AgI(s), having two Stern layers in series. The inner Stern layer has a very low capacitance (C(1) = 0.15 ± 0.01 F/m(2)) in comparison to that of metal (hydr)oxides, and this can be attributed to the strong orientation of the (primary) water molecules on the local electrostatic field of the Ag(+) and I(-) ions of the surface (relative dielectric constant ε(r) ≈ 6). Depending on the extent of water ordering, mineral surfaces may in principle develop a second Stern layer. The corresponding capacitance (C(2)) will depend on the degree of water ordering that may decrease in the series AgI (C(2) = 0.57 F/m(2)), goethite (C(2) = 0.74 F/m(2)), and rutile (C(2) = ∞), as discussed. The charging principles of AgI minerals iodargyrite and miersite may also be applied to minerals

  17. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  18. Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides

    SciTech Connect

    Perez-Bernal, M.E.; Ruano-Casero, R.J.; Rives, V.

    2009-09-15

    Layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al, or Zn, Co and Al in the brucite-like layers and carbonate in the interlayer have been prepared by coprecipitation. The Zn/Co molar ratio was kept to 1 in all samples, while the divalent/trivalent molar ratio was varied from 2/1 to 1/2. The samples have been characterised by element chemical analysis, powder X-ray diffraction, differential thermal and thermogravimetric analysis, temperature-programmed reduction and FT-IR spectroscopy. A single hydrotalcite-like phase is formed for samples with molar ratio 2/1, which crystallinity decreases as the Al content is increased, developing small amounts of diaspore and dawsonite and probably an additional amorphous phase. Calcination at 1200 deg. C in air led to formation of spinels; a small amount of NaAlO{sub 2} was observed in the Al-rich samples, which was removed by washing. The nature of the spinels formed (containing Co{sup II}, Co{sup III}, Al{sup III} and Zn{sup II}) strongly depends on the cations molar ratio in the starting materials and the calcination treatment, leading to a partial oxidation of Co{sup II} species to Co{sup III} ones. Colour properties (L*a*b*) of the original and calcined solids have been measured. While the original samples show a pink colour (lighter for the series containing Zn), the calcined Co,Al samples show a dark blue colour and the Zn,Co,Al ones a green colour. Changes due to the different molar ratios within a given calcined series are less evident than between samples with the same composition in different series. These calcined materials could be usable as ceramic pigments. - Abstract: Mixed oxides from layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al or Zn, Co and Al in the brucite-like layers are potential candidates for ceramic pigments with tunable colour properties. Display Omitted

  19. Reversible intercalation of ammonia molecules into a layered double hydroxide structure without exchanging nitrate counter-ions

    SciTech Connect

    Carbajal Arizaga, Gregorio Guadalupe; Wypych, Fernando; Castillon Barraza, Felipe; Contreras Lopez, Oscar Edel

    2010-10-15

    A zinc/aluminum LDH was precipitated with recycled ammonia from a chemical vapor deposition reaction. The LDH presented a crystalline phase with basal distance of 8.9 A, typical for nitrate-containing LDHs, and another phase with a basal distance of 13.9 A. Thermal treatment at 150 {sup o}C eliminated the phase with the bigger basal distance leaving only the anhydrous nitrate-intercalated LDH structure with 8.9 A. Intense N-H stretching modes in the FTIR spectra suggested that the expansion was due to intercalation of ammonia in the form of [NH{sub 4}(NH{sub 3}){sub n}]{sup +} species. When additional samples were precipitated with pure ammonia, the conventional LDH nitrate structure was obtained (8.9 A basal distance) at pH=7, as well as a pure crystalline phase with 13.9 A basal distance at pH=10 due to ammonia intercalation that can be removed by heating at 150 {sup o}C or by stirring in acetone, confirming a unusual sensu stricto intercalation process into a LDH without exchanging nitrate ions. - Graphical abstract: LDH-nitrate precipitated with ammonia expands the interlayer space if ammonia is bubbled up to pH 10. The basal distance decreased when the compound was heated at 150 {sup o}C or stirred in acetone. Nitrate ions are not exchanged.

  20. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides.

    PubMed

    Gong, Jingming; Guan, Zhangqiong; Song, Dandan

    2013-01-15

    We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μg mL(-1) and 0.3 to 4.0μg mL(-1) with a detection limit 0.6ng mL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.

  1. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting.

    PubMed

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G; Duan, Xue

    2015-07-15

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm(2) at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting.

  2. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water.

    PubMed

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-09-15

    Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas.

  3. Functionalization of layered double hydroxides by intumescent flame retardant: Preparation, characterization, and application in ethylene vinyl acetate copolymer

    NASA Astrophysics Data System (ADS)

    Huang, Guobo; Fei, Zhengdong; Chen, Xiaoying; Qiu, Fangli; Wang, Xu; Gao, Jianrong

    2012-10-01

    A phosphorussbnd nitrogen containing compound, N-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)-hexylacetamide-2-propyl acid (PAHPA), is synthesized and characterized. A novel flame retardant, namely layered double hydroxides (LDHs) modified with PAHPA (PAHPA-LDHs), is prepared by ion-exchange of LDHs with PAHPA. The results from Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy dispersive X-ray analysis with a high-angle annular dark-field scanning transmission electron microscope show that PAHPA intercalated LDHs. The X-ray diffraction and transmission electron microscopy (TEM) results show that PAHPA-LDHs achieve well dispersion in ethylene vinyl acetate copolymer (EVA) matrix and the EVA/PAHPA-LDHs nanocomposites (i.e. EVA filled with 5 wt% PAHPA-LDHs) are formed by polymer melt intercalation. Thermal stability and flammability properties are investigated by thermogravimetric analysis and cone calorimeter tests. The results show that the addition of PAHPA-LDHs improves thermal stability and reduces obviously the flammability of EVA resin. Compared with pure EVA resin, the peak heat release rate of the EVA/PAHPA-LDHs nanocomposites is reduced by about 43%. The results of scanning electron microscopy and TEM indicate that a compact and dense intumescent char is formed for the EVA/PAHPA-LDHs nanocomposites after combustion.

  4. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  5. The decomposition of the layered double hydroxides of Co and Al: phase segregation of a new single phase spinel oxide.

    PubMed

    Babay, Salem; Bulou, Alain; Mercier, Anne Marie; Toumi, Mouhamed

    2015-04-15

    Monophasic Co-Al-CO3-like layered double hydroxides has been prepared by the coprecipitation method. It has been characterised by Rietveld refinement of the X-ray powder diffraction pattern, DTA-TGA, infrared and Raman spectroscopies. Its structure is trigonal, R3̅m with cell parameters a=0.3061(4) nm and c=2.252 (3) nm. The decomposition of this hydrotalcite-like structure on heating up to 800 °C yields to a single phase spinel oxide. Besides, infrared and Raman spectroscopies showed the presence of spinel-like domains. The results of Rietveld refinement have revealed that this compound has the Fd3̅m space group (a=0.8088(4) nm), with crystallographic formula [Co(II)0.75Al0.25](8a)[Co(II)0.252Co(III)0.77Al0.98](16d)O4, which is of the general formula Co1.77Al1.23O4. This structure is also validated by the charge distribution (CD) analysis.

  6. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  7. Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.

    PubMed

    Wang, Yinling; Wang, Zhangcui; Rui, Yeping; Li, Maoguo

    2015-02-15

    Carbon nanodots and CoFe layered double hydroxide composites (C-Dots/LDHs) were prepared via simply mixing C-Dots and CoFe-LDHs. The as-prepared composites were used for the immobilization of horseradish peroxidase (HRP) on the glass carbon (GC) electrode. The electrochemical behavior of the HRP/C-Dots/LDHs/GC electrode and its application as a H2O2 biosensor were investigated. The results indicated that HRP immobilized by C-Dots/LDHs retained the activity of enzyme and displayed quasi-reversible redox behavior and fast electron transfer with an electron transfer rate constant ks of 8.46 s(-1). Under optimum experimental conditions, the HRP/C-Dots/LDHs/GC electrode displayed good electrocatalytic reduction activity and excellent analytic performance toward H2O2. The H2O2 biosensor showed a linear range of 0.1-23.1 μM (R(2) = 0.9942) with a calculated detection limit of 0.04 μM (S/N = 3). In addition, the biosensor exhibited high sensitivity, good selectivity, acceptable reproducibility and stability. The superior properties of this biosensor are attributed to the synergistic effect of HRP, C-Dots and CoFe-LDHs, which has been proved by investigating their electrochemical response to H2O2. Thus the C-Dots and LDHs composites provide a promising platform for the immobilization of redox enzymes and construction of sensitive biosensors.

  8. Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides.

    PubMed

    Nguyen, Thi Kim Phuong; Beak, Min-wook; Huy, Bui The; Lee, Yong-Ill

    2016-03-01

    The calcined layered double hydroxides (cLDHs) Ti-doped and undoped MgFe for this study were prepared by co-precipitation method followed by calcination at 500 °C. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and UV-Vis diffuse reflectance spectrum (DRS) techniques and tested for adsorption and photodegradation (including photocatalytic and photo-Fenton-like) of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous solutions under visible light irradiation. In the range of studied operating conditions, the as-prepared samples exhibited excellent photo-Fenton-like activity, leading to more than 80-95% degradation of 2,4,5-T at initial concentration of 100 mg L(-1) with 4 g calcined LDHs per liter, was accomplished in 360 min, while 2,4,5-T half-life time was as short as 99-182 min. The kinetics of adsorption and photodegradation of 2,4,5-T were also discussed. These results offered a green, low cost and high efficiency photocatalyst for environmental remediation.

  9. Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    PubMed Central

    Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing

    2012-01-01

    Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627

  10. Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Qin, Haojing; Zuo, Ranfang; Bai, Zhimin

    2015-10-01

    Mg/Al/Ce ternary layered double hydroxides (LDHs) were synthesized via coprecipitation and intercalated by succinic acid and lauric acid through ion exchange method respectively. The LDHs products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FT-IR). Tribological properties of LDHs as lubricant additives were evaluated by four-ball friction and air compressor test. The results indicated that Mg/Al/Ce LDHs were prepared successfully with Ce/Al molar ratio of 0.05 and crystallization temperature of 140 °C. The interlayer spacing of LDHs precursor was expanded by succinic acid and lauric acid to 8.838 and 17.519 Å respectively. All the three LDHs products can reduce friction and wear of engine lubricating oil in the tests. LDHs intercalated with lauric acid showed best tribological performance among them which was attributed to sliding each other between laminates, good dispersibility in oil medium and a protective tribofilm formed on the worn surface.

  11. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    NASA Astrophysics Data System (ADS)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  12. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line B.; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-01

    Ordering of gallium(III) in a series of magnesium gallium layered double hydroxides (LDH’s), [Mg1-xGax(OH)2(NO3)x yH2O], was determined using solid-state 1H and 71Ga NMR spectroscopy. Depletion of Ga in these LDH’s is demonstrated to be the result of soluble [Ga(OH)4]-complexes formed during synthesis.

  13. Fenton-Like Catalysis and Oxidation/Adsorption Performances of Acetaminophen and Arsenic Pollutants in Water on a Multimetal Cu-Zn-Fe-LDH.

    PubMed

    Lu, Hongtao; Zhu, Zhiliang; Zhang, Hua; Zhu, Jianyao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-09-28

    Acetaminophen can increase the risk of arsenic-mediated hepatic oxidative damage; therefore, the decontamination of water polluted with coexisting acetaminophen and arsenic gives rise to new challenges for the purification of drinking water. In this work, a three-metal layered double hydroxide, namely, Cu-Zn-Fe-LDH, was synthesized and applied as a heterogeneous Fenton-like oxidation catalyst and adsorbent to simultaneously remove acetaminophen (Paracetamol, PR) and arsenic. The results showed that the degradation of acetaminophen was accelerated with decreasing pH or increasing H2O2 concentrations. Under the conditions of a catalyst dosage of 0.5 g·L(-1) and a H2O2 concentration of 30 mmol·L(-1), the acetaminophen in a water sample was completely degraded within 24 h by a Fenton-like reaction. The synthesized Cu-Zn-Fe-LDH also exhibited a high efficiency for arsenate removal from aqueous solutions, with a calculated maximum adsorption capacity of 126.13 mg·g(-1). In the presence of hydrogen peroxide, the more toxic arsenite can be gradually oxidized into arsenate and adsorbed at the same time by Cu-Zn-Fe-LDH. For simulated water samples with coexisting arsenic and acetaminophen pollutants, after treatment with Cu-Zn-Fe-LDH and H2O2, the residual arsenic concentration in water was less than 10 μg·L(-1), and acetaminophen was not detected in the solution. These results indicate that the obtained Cu-Zn-Fe-LDH is an efficient material for the decontamination of combined acetaminophen and arsenic pollution. PMID:27588429

  14. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, Ariel; Lima, Enrique; Uriostegui-Ortega, Gisselle A.; Oliver-Tolentino, Miguel A.; Rodríguez, Esaú E.

    2016-02-01

    Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV-vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g-1 obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence rad OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, 13C NMR showed differences for the adsorbed and photodegraded samples.

  15. Photocatalytic degradation of 2,4-dichlorophenol with MgAlTi mixed oxides catalysts obtained from layered double hydroxides.

    PubMed

    Mendoza-Damián, G; Tzompantzi, F; Mantilla, A; Barrera, A; Lartundo-Rojas, L

    2013-12-15

    MgAl and MgAlTi mixed oxides were obtained from the thermal treatment of LDH materials synthesized by the sol-gel method; these materials were characterized by N2 physisorption, XRD, UV-vis, XPS, EDS-SEM and TEM techniques. According to the results, Ti was incorporated in the LDH layer when content in the material was low. The MgAl and MgAlTi mixed oxides were evaluated in the photo-degradation of 2,4-dichlorophenol (2,4-DCP) in the presence of UV light. A superior efficiency in the photo-degradation of 2,4-DCP, in comparison with the Degussa P-25 TiO2 reference catalyst was observed, reaching a total decomposition of the 2,4-DCP molecule in less than 60 min. According to the results, Ti was incorporated in the LDH layer when the content in the material was low. The MgAl and MgAlTi mixed oxides were evaluated in the photo-degradation of 2,4-dichlorophenol (2,4-DCP) in the presence of UV light. A superior efficiency in the photo-degradation of 2,4-DCP with the MgAl and MgAlTi mixed oxides, in comparison with the Degussa P-25 TiO2 reference catalyst was observed, reaching a total decomposition of the 2,4-DCP molecule in less than 60 min.

  16. 5-Fluorouracil intercalated iron oxide@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications.

    PubMed

    Tuncelli, Gülsevde; Ay, Ahmet Nedim; Zümreoglu-Karan, Birgül

    2015-10-01

    We report the synthesis, characterization and in vitro release behavior of anti-cancer drug carrying iron oxide@layered double hydroxide core-shell nanocomposites with sizes ranging from 40 to 300 nm, good drug loading capacities and soft ferromagnetic properties. HRTEM analyses verified that nearly spherical isotropic carriers were obtained by coating spherical magnetite particles while anisotropic carriers were obtained by coating spindle-shaped hematite particles. They both displayed a fluctuating in vitro release profile with a higher release percentage for the anisotropic carrier.

  17. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  18. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  19. Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices.

    PubMed

    Saraji, Mohammad; Ghani, Milad

    2014-10-31

    A magnesium-aluminum layered double hydroxide coated on magnetic nanoparticles was synthesized and used as a sorbent to extract some phenolic acids including p-hydroxy benzoic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid from fruit juices. After extraction, the elution step was performed through dissolving double hydroxide layers containing the analytes by changing the solution pH. The extracted phenolic acids were separated and quantified using high performance liquid chromatography-photodiode array detection. Experimental parameters such as sorbent amount, solution pH, desorption solvent volume and extraction time were studied and optimized. The linearity range of the method was between 2 and 500μgL(-1) with the determination coefficient (r(2)) higher than 0.991. Relative standard deviations for intra- and inter-day precision for the analytes at 100μgL(-1) were in the range of 4.3-9.2% and 4.9-8.6%, respectively. Batch-to-batch reproducibility at 100μgL(-1) concentration level was in the range of 7.8-11% (n=3). The limits of detection were between 0.44 and 1.3μgL(-1). Relative recoveries higher than 81% with RSDs in the range of 4.2-9.7% were obtained in the analysis of fruit juice samples. PMID:25260344

  20. Incorporation of rare-earth ions in Mg-Al layered double hydroxides: intercalation with an [Eu(EDTA)]{sup -} chelate

    SciTech Connect

    Li Cang; Wang Ge; Evans, David G.; Duan Xue . E-mail: duanx@mail.buct.edu.cn

    2004-12-01

    Reaction of an aqueous slurry of an Mg{sub 2}Al-NO{sub 3} layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg{sub 0.68}Al{sub 0.32}(OH){sub 2}[Eu(EDTA)]{sub 0.10}(CO{sub 3}){sub 0.11}.0.66H{sub 2}O. The interlayer spacing of the material is 13.8A, corresponding to a gallery height of 9.0A, which accords with the maximal dimensions (9-10A) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)]{sup -} alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.

  1. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    PubMed Central

    Kura, Aminu Umar; Ain, Nooraini Mohd; Hussein, Mohd Zobir; Fakurazi, Sharida; Hussein-Al-Ali, Samer Hasan

    2014-01-01

    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 μg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment. PMID:24722565

  2. [Supra-molecular assembly and magnetic targeted slow-release effect of "dextran-magnetic layered double hydroxide-fluorouracil" drug delivery system].

    PubMed

    Gou, Guo-jing; Liu, Yan-hong; Sun, Yue; Huang, Je; Xue, Bing; Dong, Li-e

    2011-11-01

    The drug-loading system of DMF (dextran - magnetic layered double hydroxide - fluorouracil) was synthesized by "co-precipitation intercalated assembly - dextran composite in situ - solvent conversion" technology. The crystal-phase characteristic and slow-release performance of DMF were investigated through X-ray diffraction (XRD), infrared spectrum (IR), transmission electron microscopy (TEM), thermogravimetry (TG) and in vitro release experiment. The targeted transshipment and slow-release effect of DMF system were evaluated by in vivo animal experiment. It was showed that the XRD of DMF matched with R-sixtetragonum type layered double hydroxide and Fd-3m cubic type ferrite. IR test demonstrated that the DMF system was a supra-molecular complex consisted of Dextran (DET), magnetic layered double hydroxide (MLDH) and fluorouracil (FU) components. The two-level supra-molecular MLDH-FU presented six-edge lozenge TEM morphology, with layered characteristics. DET on the surface of DMF was capable of protecting the layered structure of MLDH-FU, improving particle dispersion properties, and strengthening the slow-release performance of the drug delivery system. The drug release model of DMF at pH 7.35 of PBS in vitro fit to the zero-order kinetics equation C = 1.1716 x 10(-5) + 4.4626 x 10(-7) t. The drug delivery system DMF could transport drugs principally to in vivo target organs with a local effect, targeted specificity, and excellent circulation transshipment performance. The pharmacokinetic process of DMF presented multi-peak phenomenon with peak attenuation and cyclic growth. The peaks appeared at 0.25, 1, 3, 5 and 9 d separately after dosing intervention. The first peak process of DMF accorded with a pharmacokinetic equation of C(FU) = 14.34 e(-0.530t) + 36.04 e(-0.321t) + 24.18 e(-0.96t), and presented the characteristic of slow absorption and fast elimination. As for subsequent peak processes, half-life increased, bioavailability increased, and plasma clearance

  3. Structure and luminescence behaviour of as-synthesized, calcined, and restored MgAlEu-LDH with high crystallinity.

    PubMed

    Zhao, Yushuang; Li, Ji-Guang; Fang, Fang; Chu, Nankai; Ma, Hui; Yang, Xiaojing

    2012-10-21

    Highly crystalline Eu(3+)-incorporated MgAl layered double hydroxides (LDHs) were synthesized by the homogeneous precipitation method. For the crystals as-prepared, after their calcination from 200-1000 °C, and, further, after restoration in a Na(2)CO(3) solution, the structural and luminescent changes were investigated for the first time. Eu(3+) ions with a coordination number of, probably, 8, were incorporated into the hydrotalcite layer, which led to a basal spacing (d(basal)) increase, microstrain formation, and crystalline morphology imperfections, while retaining the original lattice symmetry, R3[combining macron]m. In the deconstruction process due to calcination, the Eu(3+) ions restrained the formation of the spinel phase from the layered double oxide (LDO), but did not significantly change the memory effect, by which LDOs can convert to LDHs during the hydration process. For the reversible phase transformation between LDH and LDO, the morphology observation revealed that, in addition to the formation of pores on the surface, nano-slabs were formed, especially for the restored crystals. A layered phase with a d(basal) of 5.8 Å, due to bridging bidentate carbonates with the hydrotalcite layer, was formed in the calcination process at low temperature (300 °C) before the formation of LDO, but could not be restored to a large spacing. Typical (5)D(0) → (7)F(J) (J = 0-4) transitions of Eu(3+) at 579, 593, 615, 653, and 698 nm were observed in the photoluminescence spectra and the intensity of the dominating 615 nm band decreased with the LDH deconstruction and the formation of free water, and then increased with the formation of LDOs in the calcination process, and vice versa in the reconstruction process. The Eu(3+) ions had a probable 9- or 10-coordination mode in addition to the probable 8-coordination mode as the spinel phase appeared.

  4. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  5. Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg-Al-layered double hydroxides to detect Cd(II).

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Liu, Jin-Huai; Compton, Richard G; Huang, Xing-Jiu

    2013-03-21

    We report the use of nanostructured layered double hydroxides (LDHs) for the highly selective and sensitive detection of Cd(2+) using anodic stripping voltammetry (ASV). In particular, the modification of a glassy carbon electrode promotes the sensitivity and selectivity towards Cd(2+) in the presence of Pb(2+), Hg(2+), Cu(2+) and Zn(2+). The electrochemical characterization and anodic stripping voltammetric performance of Cd(2+) were evaluated using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV) analysis. Operational parameters, including supporting electrolytes, pH value, deposition potential and deposition time were optimized. In addition, the selectivity, interference and stability were also investigated under the optimized conditions. The results showed that the fabricated electrode possessed good selectivity, stability and reproducibility. The proposed electrochemical sensing strategy is thus expected to open new opportunities to broaden the use of ASV in analysis for detecting heavy metal ions in the environment.

  6. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing

    NASA Astrophysics Data System (ADS)

    Chen, Lijian; Sun, Kaifang; Li, Peipei; Fan, Xianzhong; Sun, Jianchao; Ai, Shiyun

    2013-10-01

    LDH nanosheets were obtained via continuous impaction and exfoliation by herring sperm DNA molecules using a constant vibration method. DNA-LDH nanohybrids were composed by electrostatic forces and they exhibited DNA-enhanced peroxidase-like activity. The morphology and structure of DNA-LDH nanohybrids were analyzed by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and atomic force microscopy (AFM) characterization. On the basis of the high catalytic activity of DNA/CuAl-LDH nanosheets, a rapid, sensitive, and convenient approach was developed for colorimetric detection of H2O2 and blood glucose. This method can be potentially applied in medical diagnostics and biotechnology fields.LDH nanosheets were obtained via continuous impaction and exfoliation by herring sperm DNA molecules using a constant vibration method. DNA-LDH nanohybrids were composed by electrostatic forces and they exhibited DNA-enhanced peroxidase-like activity. The morphology and structure of DNA-LDH nanohybrids were analyzed by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and atomic force microscopy (AFM) characterization. On the basis of the high catalytic activity of DNA/CuAl-LDH nanosheets, a rapid, sensitive, and convenient approach was developed for colorimetric detection of H2O2 and blood glucose. This method can be potentially applied in medical diagnostics and biotechnology fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03031h

  7. Estimation of the solubility product of hydrocalumite-hydroxide, a layered double hydroxide with the formula of [Ca2Al(OH)6]OH·nH2O

    NASA Astrophysics Data System (ADS)

    Gácsi, Attila; Kutus, Bence; Kónya, Zoltán; Kukovecz, Ákos; Pálinkó, István; Sipos, Pál

    2016-11-01

    From aqueous NaOH/Ca(OH)2/NaAl(OH)4 mixtures, after allowing short reaction times we observed the precipitation of Ca(OH)2(s) at lower, and a mixture of Ca(OH)2(s) and a layered double hydroxide, hydrocalumite (HC) at higher aluminate concentrations. From the maximum aluminate concentration, at which the equilibrium solid phase is still portlandite (i.e., further increase in the aluminate concentration results in HC appearing in the precipitate beside the portlandite), the concentration based solubility products of two polymorphs of HC with the formula of [Ca2Al(OH)6]OH·nH2O (differing in n) has been estimated and was found to be log LHC=-11.4 at 25 °C and -12.1 at 75 °C, respectively (where LHC=[Ca2+]2[Al(OH)4-][OH-]3) and at constant ionic strength (I=1 M NaCl). To the best of our knowledge, this is the first published estimate for the solubility product of hydrocalumite. Additionally, from the composition obtained for NaOH/Ca(OH)2/NaAl(OH)4 mother liquors in equilibrium with Ca(OH)2(s), attempts were made to extract the formation constant of the ion pair CaAl(OH)4+. It was found, that the effects caused by the supposed formation of this solution species are too small to be reliably determined, which allowed an upper estimate for its formation constant, K, to be suggested in the temperature range of 25-75 °C (K<200 and 40 M-1 at 25 and 75 °C, respectively).

  8. Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO3) LDH for defluoridation using 3(3) factorial, central composite and Box-Behnken design.

    PubMed

    Ghosal, Partha S; Gupta, Ashok K; Sulaiman, Ayoob

    2016-01-01

    Response surface methodology was applied for the first time in the optimization of the preparation of layered double hydroxide (LDH) for defluoridation. The influence of three vital process parameters (viz. pH, molar ratio and calcination temperature) in the synthesis of the adsorbent 'Calcined Ca‒Al (NO3) LDH' was thoroughly examined to maximize its fluoride scavenging potential. The process parameters were optimized using the 3(3) factorial, face centered central composite and Box-Behnken designs and a comparative assessment of the methods was conducted. The maximum fluoride removal efficiency was achieved at a calcination temperature of approximately 500ºC; however, the efficiency decreased with increasing pH and molar ratio. The outcome of the comparative assessment clearly delineates the case specific nature of the models. A better predictability over the entire experimental domain was obtained with the 3(3) factorial method, whereas the Box-Behnken design was found to be the most efficient model with lesser number of experimental runs. The desirability function technique was performed for optimizing the response, wherein face centered central composite design exhibited a maximum desirability. The calcined Ca‒Al (NO3) LDH, synthesized under the optimum conditions, demonstrated the removal efficiencies of 95% and 99% for the doses of 3 g L(-1) and 5 g L(-1), respectively.

  9. Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO3) LDH for defluoridation using 3(3) factorial, central composite and Box-Behnken design.

    PubMed

    Ghosal, Partha S; Gupta, Ashok K; Sulaiman, Ayoob

    2016-01-01

    Response surface methodology was applied for the first time in the optimization of the preparation of layered double hydroxide (LDH) for defluoridation. The influence of three vital process parameters (viz. pH, molar ratio and calcination temperature) in the synthesis of the adsorbent 'Calcined Ca‒Al (NO3) LDH' was thoroughly examined to maximize its fluoride scavenging potential. The process parameters were optimized using the 3(3) factorial, face centered central composite and Box-Behnken designs and a comparative assessment of the methods was conducted. The maximum fluoride removal efficiency was achieved at a calcination temperature of approximately 500ºC; however, the efficiency decreased with increasing pH and molar ratio. The outcome of the comparative assessment clearly delineates the case specific nature of the models. A better predictability over the entire experimental domain was obtained with the 3(3) factorial method, whereas the Box-Behnken design was found to be the most efficient model with lesser number of experimental runs. The desirability function technique was performed for optimizing the response, wherein face centered central composite design exhibited a maximum desirability. The calcined Ca‒Al (NO3) LDH, synthesized under the optimum conditions, demonstrated the removal efficiencies of 95% and 99% for the doses of 3 g L(-1) and 5 g L(-1), respectively. PMID:26549036

  10. Quick and efficient co-treatment of Zn(2+)/Ni(2+) and CN(-) via the formation of Ni(CN)4(2-) intercalated larger ZnAl-LDH crystals.

    PubMed

    Zhou, Ji Zhi; Liang, Ying; Zhang, Jia; Li, Li; Xu, Yunfeng; Ruan, Xiuxiu; Qian, Guangren; Xu, Zhi Ping

    2014-08-30

    The wide use of metal electroplating involving CN(-) necessitates the cost-effective treatment of both CN and metals (Zn, Cu, Ni etc.). In this research, we developed a novel strategy - Ni(2+)-assisted layered double hydroxide (LDH) precipitation - to simultaneously remove aqueous CN and Zn/Ni metals. The strategy is to convert CN(-)/Zn(CN)4(2-) to Ni(CN)4(2-) first, and then to quickly precipitate Ni(CN)4(2-)/CN(-) into LDH crystals. The conversion has been clearly evidenced by the change of CN characteristic FTIR bands of Zn-CN solution before and after adding Ni(NO3)2. The intercalation and efficient removal of CN have also been confirmed through the formation of LDH crystals XRD and SEM. In particular, a set of optimized experimental factors has been obtained by investigating their effects on CN removal efficiency in the simulated tests. Remarkably, over 95% CN were removed with high removal efficiencies of metals. Our results thus suggest that the current strategy is a quick, efficient and promising way to simultaneously treat both Ni and metals/CN rich electroplating wastewaters.

  11. NICKEL HYDROXIDES

    SciTech Connect

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  12. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    SciTech Connect

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-15

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni){sub 6}(SO{sub 4})(OH,Cl){sub 10}.5H{sub 2}O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO{sub 4}.7H{sub 2}O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn{sub 3.52}Ni{sub 1.63})(SO{sub 4}){sub 1.33}(OH{sub 7.64}).4.67H{sub 2}O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with 1/4 empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates. - Graphical abstract: SEM micrograph (secondary electrons) of the synthesized Zn/Ni guarinoite showing that aggregates are composed of small plate-like particles.

  13. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing.

    PubMed

    Chen, Lijian; Sun, Kaifang; Li, Peipei; Fan, Xianzhong; Sun, Jianchao; Ai, Shiyun

    2013-11-21

    LDH nanosheets were obtained via continuous impaction and exfoliation by herring sperm DNA molecules using a constant vibration method. DNA-LDH nanohybrids were composed by electrostatic forces and they exhibited DNA-enhanced peroxidase-like activity. The morphology and structure of DNA-LDH nanohybrids were analyzed by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and atomic force microscopy (AFM) characterization. On the basis of the high catalytic activity of DNA/CuAl-LDH nanosheets, a rapid, sensitive, and convenient approach was developed for colorimetric detection of H2O2 and blood glucose. This method can be potentially applied in medical diagnostics and biotechnology fields. PMID:24065121

  14. Synthesis and characterization of the LDH hydrotalcite-pyroaurite solid-solution series

    SciTech Connect

    Rozov, K.; Berner, U.; Taviot-Gueho, C.; Leroux, F.; Renaudin, G.; Kulik, D.; Diamond, L.W.

    2010-08-15

    A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg{sub 3}(Al{sub x}Fe{sub 1-x})(CO{sub 3}){sub 0.5}(OH){sub 8} with 1 - x = 0.0, 0.1...1.0 was prepared by co-precipitation at 23 {+-} 2 {sup o}C and pH = 11.40 {+-} 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO{sub 3}{sup 2-}, OH{sup -}, and H{sub 2}O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters a{sub o} and c{sub o} from peak profile analysis. The parameter a{sub o} = b{sub o} was found to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H{sub 2}O molecules and CO{sub 3}{sup 2-} anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers. Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (x{sub Fe} > 0.5) is attributed to possible fluorescence phenomena. Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of {Delta}G{sup o}{sub f}(hydrotalcite) = - 3773.3 {+-} 51.4 kJ/mol and {Delta}G{sup o}{sub f}(pyroaurite) = - 3294.5 {+-} 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.

  15. Synthesis and Cell Imaging of a Near-Infrared Fluorescent Magnetic "CdHgTe-Dextran-Magnetic Layered Double Hydroxide-Fluorouracil" Composite.

    PubMed

    Jin, XueQin; Zhang, Min; Gou, GuoJing; Ren, Jie

    2016-05-01

    In this article, a water-soluble near-infrared quantum dots of CdHgTe were prepared and subsequently combined with the drug delivery system "dextran-magnetic layered double hydroxide-fluorouracil" (DMF) to build a new nanostructure platform in form of CdHgTe@DMF, in which the fluorescent probe function of quantum dots and the magnetic targeting transport and slow-release curative effect of DMF were blended availably together. The luminescent property particle size, and internal structure of the composite were characterized using fluorescence spectrophotometer, ultraviolet spectrophotometer, laser particle size distribution, TEM, X-ray diffraction, and Fourier transform infrared. The experimental study on fluorescent tags effect and magnetic targeting performance of the multifunctional platform were performed by fluorescent confocal imaging. The results showed that the CdHgTe could be grafted successfully onto the surface of DMF by electrostatic coupling. The CdHgTe@DMF composite showed super-paramagnetic and photoluminescence property in the near-infrared wavelength range of 575-780 nm. Compared with CdHgTe, the CdHgTe@DMF composite could significantly improve the cell imaging effect, the label intensity increased with the magnetic field intensity, and obeyed the linear relationship Dmean = 1.758 + 0.0075M under the conditions of magnetic field interference. It can be implied that the CdHgTe@DMF may be an effective multifunction tool applying to optical bioimaging and magnetic targeted therapy.

  16. [Influence of reaction time of urea hydrolysis-based co-precipitation on the structure of ZnAl layered double hydroxides and the phosphate adsorption].

    PubMed

    Lu, Ying; Cheng, Xiang; Xing, Bo; Sun, Zhong-en; Sun, De-zhi

    2012-08-01

    A series of ZnAl layered double hydroxides (LDHs) were prepared by urea hydrolysis-based homogeneous co-precipitation for studying their structure and phosphate adsorption capacities. The results show that all the samples exhibited a typical layered structure as the reaction time extended from 12 h to 96 h, whereas Zn/Al molar ratio in the ZnAls decreased from 2.06 to 0.70 and the specific surface area markedly increased to be 7.6-fold higher than that of ZnAl-12. Phosphate adsorption capacity of the ZnAl was in general increased gradually with the reaction time extension, which can be attributed to the surface area rising as well as the increased positive charge of LDHs layer caused by a higher proportion of Al. This reveals that physicochemical adsorption on LDHs surface would have played an important role during the phosphate adsorption. With a reaction time of 24 h, a high amount of exchangeable interlayer anions was observed, giving rise to a highest phosphate uptake of 34.1 mg x g(-1) by the ZnAl-24. It indicates the ion exchange was another major pathway for the phosphate removal. For all the ZnAls with different reaction times, the phosphate adsorption isotherms fit well with Langmuir-type equations; the adsorption kinetics followed pseudo-second-order models.

  17. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  18. Chromium (VI) and zinc (II) waste water co-treatment by forming layered double hydroxides: mechanism discussion via two different processes and application in real plating water.

    PubMed

    Zhang, Jia; Li, Yang; Zhou, Jizhi; Chen, Dan; Qian, Guangren

    2012-02-29

    Two processes, adsorption after synthesis (AAS) and adsorption during synthesis (ADS) were compared in CrO4(2-) and Zn2+/CrO4(2-) removal. Kinetic results showed that ADS was a better method than AAS, since Cr content was 0.65/0.81 mmol/g in Cr-ADS/ZnCr-ADS, but it was only 0.37/0.56 mmol/g in Cr-AAS/ZnCr-AAS. Then, a low-cost mixture was proposed to function as ADS raw materials in treating real plating waters. This mixture first got an isothermal saturation of 1.1 mmol/g in simulated CrO4(2-) water. When Zn2+ was co-treated, it was increased to 1.3 mmol/g. At the same time, a Zn2+ removal of 1.5 mmol/g was attained. Furthermore, real plating water co-treatment reached equilibrium in 6h and obtained 1.4/0.9 mmol/g for Zn2+/CrO4(2-), respectively. According to XRD analysis, this co-treatment enhancement resulted from the formation of Zn and Cr contained layered double hydroxide.

  19. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    PubMed

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection.

  20. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples.

  1. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model

    PubMed Central

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection. PMID:26855572

  2. Synthesis and Cell Imaging of a Near-Infrared Fluorescent Magnetic "CdHgTe-Dextran-Magnetic Layered Double Hydroxide-Fluorouracil" Composite.

    PubMed

    Jin, XueQin; Zhang, Min; Gou, GuoJing; Ren, Jie

    2016-05-01

    In this article, a water-soluble near-infrared quantum dots of CdHgTe were prepared and subsequently combined with the drug delivery system "dextran-magnetic layered double hydroxide-fluorouracil" (DMF) to build a new nanostructure platform in form of CdHgTe@DMF, in which the fluorescent probe function of quantum dots and the magnetic targeting transport and slow-release curative effect of DMF were blended availably together. The luminescent property particle size, and internal structure of the composite were characterized using fluorescence spectrophotometer, ultraviolet spectrophotometer, laser particle size distribution, TEM, X-ray diffraction, and Fourier transform infrared. The experimental study on fluorescent tags effect and magnetic targeting performance of the multifunctional platform were performed by fluorescent confocal imaging. The results showed that the CdHgTe could be grafted successfully onto the surface of DMF by electrostatic coupling. The CdHgTe@DMF composite showed super-paramagnetic and photoluminescence property in the near-infrared wavelength range of 575-780 nm. Compared with CdHgTe, the CdHgTe@DMF composite could significantly improve the cell imaging effect, the label intensity increased with the magnetic field intensity, and obeyed the linear relationship Dmean = 1.758 + 0.0075M under the conditions of magnetic field interference. It can be implied that the CdHgTe@DMF may be an effective multifunction tool applying to optical bioimaging and magnetic targeted therapy. PMID:27039355

  3. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    PubMed Central

    Gu, Zi; Wu, Aihua; Li, Li; Xu, Zhi Ping

    2014-01-01

    The synthesis method of layered double hydroxides (LDHs) determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen) using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h). After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties. PMID:24858732

  4. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593

  5. Fe(II)-Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate.

    PubMed

    Zhong, Yu; Yang, Qi; Luo, Kun; Wu, Xiuqiong; Li, Xiaoming; Liu, Yang; Tang, Wangwang; Zeng, Guangming; Peng, Bo

    2013-04-15

    Bromate is recognized as an oxyhalide disinfection byproduct in drinking water. In this paper, Fe(II)-Al(III) layered double hydroxides (Fe-Al LDHs) prepared by the ultrasound-assisted co-precipitation method were used for the reduction of bromate in solution. The Fe-Al LDHs particles were characterized by X-ray diffractometer, scanning electron microscopy and thermogravimetry-differential scanning calorimetry. It was found that ultrasound irradiation assistance promoted the formation of the hydrotalcite-like phase and then improved the removal efficiency of bromate. In addition, the effects of solid-to-solution ratio, contact time, initial bromate concentration, initial pH, coexisting anions on the bromate removal were investigated. The results showed the bromate with an initial concentration of 1.56 μmol/L could be completely removed from solution by Fe-Al LDHs within 120 min. When the initial bromate concentration was 7.81 μmol/L, the Fe-Al LDHs with irradiation time of 30 min exhibited the optimum removal efficiency and the bromate removal capacity (qe) was 6.80 μmol/g. In addition, the appearance of sulfate and production of bromide were observed simultaneously in this process, which suggested that ion-exchange between sulfate and bromate, and the reduction of bromate to bromide by Fe(2+) were the main mechanisms responsible for the bromate removal by Fe-Al LDHs.

  6. Organo-modified layered double hydroxide-catalyzed Fenton-like ultra-weak chemiluminescence for specific sensing of vitamin B₁₂ in egg yolks.

    PubMed

    Zhang, Lijuan; Rong, Wanqi; Lu, Chao; Zhao, Lixia

    2014-11-01

    In general, the chemiluminescence (CL) sensing of vitamin B12 is achieved by determining Co(II) liberated from acidified vitamin B12 by a luminol system. However, the luminol system for sensing vitamin B12 has poor selectivity due to serious interference from other metal ions. In this study, as a novel CL amplifier of the Co(II)+H2O2+OH(-) ultra-weak CL reaction (Fenton-like system), dodecylbenzene sulfonate (DBS)-layered double hydroxides (LDHs) have been applied to the specific determination of vitamin B12 by liberating Co(II). The CL intensity increased with increasing the concentration of vitamin B12 in a wide range from 1.0 ng mL(-1) to 5 μg mL(-1) with a detection limit of 0.57 ng mL(-1) (S/N=3). The proposed method has been successfully applied to determine vitamin B12 in egg yolk with simple procedures, shorter time and higher selectivity. Recoveries from spiked real samples were 96-103%. The results of the proposed method for sensing vitamin B12 in real samples were agreed with those obtained by the standard inductively coupled plasma mass spectrometry (ICP-MS) method. To the best of our knowledge, this is the first report on the CL sensing of vitamin B12 with high selectivity in the absence of luminol.

  7. Synthesis of self-assembled layered double hydroxides/carbon composites by in situ solvothermal method and their application in capacitors

    SciTech Connect

    Wei, Jinbo; Wang, Jun; Song, Yanchao; Li, Zhanshuang; Gao, Zan; Mann, Tom; Zhang, Milin

    2012-12-15

    Nickel-aluminum layered double hydroxides/carbon (Ni-Al LDHs/C) composites have been successfully fabricated via a facile in situ water-ethanol system. LDHs nanosheets could highly disperse on the surface of colloidal carbonaceous spheres through the interfacial electrostatic force. Ni-Al LDHs/C composite electrode prepared at 50% ethanol system exhibits the highest capacitance of 1064 F g{sup -1} at a current of 2.5 A g{sup -1}, leading to a significant improvement in relation to each individual counterpart (3.5 and 463 F g{sup -1} for carbon and Ni-Al LDHs at 2.5 A g{sup -1}, respectively). And a possible mechanism was proposed for the formation of the composites. Highlights: Black-Right-Pointing-Pointer Ni-Al LDHs/C composites have been self-assembled by an in situ solvothermal method. Black-Right-Pointing-Pointer A possible growth mechanism to explain the composite is proposed. Black-Right-Pointing-Pointer Ni-Al LDHs/C composites display better electrochemical performance.

  8. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.

    PubMed

    Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

    2012-12-01

    A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. PMID:23122732

  9. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal.

    PubMed

    Zhang, Xiangling; Chen, Qiaozhen; Guo, Lu; Huang, Hualing; Ruan, Chongying

    2015-06-16

    A comparative study was carried out for the removal of phosphorus in simulated unplanted vertical-flow constructed wetlands with different layered double hydroxide (LDHs) coated anthracite substrates. Three particle sizes of anthracites were selected and modified separately with nine kinds of LDH coating. The simulated substrates test columns loaded with the original and modified anthracites were constructed to treat the contaminated water. For the medium and large particle size modified anthracite substrates, the purification effects of total phosphorus, total dissolved phosphorus and phosphate were improved by various degrees, and the purification effect of the medium particle size anthracite is better than that of the large size one. The medium size anthracite modified by ZnCo-LDHs had optimal performance with average removal efficiencies of total phosphorus, total dissolved phosphorus and phosphate reaching 95%, 95% and 98%, respectively. The maximum adsorption capacity on ZnCo-LDHs and ZnAl-LDHs modified medium sizes anthracites were 65.79 (mg/kg) and 48.78 (mg/kg), respectively. In comparison, the small size anthracite is not suitable for LDHs modification.

  10. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    SciTech Connect

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  11. Selective extraction and release using (EDTA-Ni)-layered double hydroxide coupled with catalytic oxidation of 3,3',5,5'-tetramethylbenzidine for sensitive detection of copper ion.

    PubMed

    Tang, Sheng; Chang, Yuepeng; Chia, Guo Hui; Lee, Hian Kee

    2015-07-23

    Copper is an important heavy metal in various biological processes. Many methods have been developed for detecting of copper ions (Cu(2+)) in aqueous samples. However, an easy, cheap, selective and sensitive method is still desired. In this study, a selective extraction-release-catalysis approach has been developed for sensitive detection of copper ion. Ethylenediaminetetraacetic acid (EDTA) chelated with nickel ion (Ni(2+)) were intercalated in a layered double hydroxide via a co-precipitation reaction. The product was subsequently applied as sorbent in dispersive solid-phase extraction for the enrichment of Cu(2+) at pH 6. Since Cu(2+) has a stronger complex formation constant with EDTA, Ni(2+) exchanged with Cu(2+) selectively. The resulting sorbent containing Cu(2+) was transferred to catalyze the 3,3',5,5'-tetramethylbenzidine oxidation reaction, since Cu(2+) could be released by the sorbent effectively and has high catalytic ability for the reaction. Blue light emitted from the oxidation product was measured by ultraviolet-visible spectrophotometry for the determination of Cu(2+). The extraction temperature, extraction time, and catalysis time were optimized. The results showed that this method provided a low limit of detection of 10nM, a wide linear range (0.05-100μM) and good linearity (r(2)=0.9977). The optimized conditions were applied to environmental water samples. Using Cu(2+) as an example, this work provided a new and interesting approach for the convenient and efficient detection of metal cations in aqueous samples. PMID:26231895

  12. The layered double hydroxide route to Bi-Zn co-doped TiO₂ with high photocatalytic activity under visible light.

    PubMed

    Benalioua, Bahia; Mansour, Meriem; Bentouami, Abdelhadi; Boury, Bruno; Elandaloussi, El Hadj

    2015-05-15

    In this work, a co-doped Bi-Zn-TiO₂ photocatalist is synthesized by an original synthesis route of layered double hydroxide followed by heat treatment at 670 °C. After characterization the photocatalyst efficiency is estimated by the photo-discoloration of an anionic dye (indigo carmine) under visible light and compare to TiO₂-P25 as reference material. In this new photocatalyst, anatase and ZnO wurtzite are the only identified crystalline phase, rutile and Bi₂O₃ being undetected. Moreover, the binding energy of Bi determined (XPS analysis) is different from the one of Bi in Bi₂O₃. Compared to TiO₂-P25, the absorption is red shifted (UV-vis DRS) and the Bi-Zn-TiO₂ photocatalyst showed sorption capacity toward indigo carmine higher than that TiO₂-P25. The kinetics of the photo-discoloration is faster with Bi-Zn-TiO₂ than with TiO₂-P25. Indeed, a complete discoloration is obtained after 70 min and 120 min in the presence of Bi-Zn-TiO₂ and TiO₂-P25 respectively. The identification of the responsible species on photo-discoloration was carried out in the presence of different scavengers. The study showed that the first responsible is h(+) specie with a moderate contribution of superoxide anion radical and a minor contribution of the hydroxyl radical. The material showed high stability after five uses with the same rate of photo-discoloration. PMID:25699677

  13. Selective extraction and release using (EDTA-Ni)-layered double hydroxide coupled with catalytic oxidation of 3,3',5,5'-tetramethylbenzidine for sensitive detection of copper ion.

    PubMed

    Tang, Sheng; Chang, Yuepeng; Chia, Guo Hui; Lee, Hian Kee

    2015-07-23

    Copper is an important heavy metal in various biological processes. Many methods have been developed for detecting of copper ions (Cu(2+)) in aqueous samples. However, an easy, cheap, selective and sensitive method is still desired. In this study, a selective extraction-release-catalysis approach has been developed for sensitive detection of copper ion. Ethylenediaminetetraacetic acid (EDTA) chelated with nickel ion (Ni(2+)) were intercalated in a layered double hydroxide via a co-precipitation reaction. The product was subsequently applied as sorbent in dispersive solid-phase extraction for the enrichment of Cu(2+) at pH 6. Since Cu(2+) has a stronger complex formation constant with EDTA, Ni(2+) exchanged with Cu(2+) selectively. The resulting sorbent containing Cu(2+) was transferred to catalyze the 3,3',5,5'-tetramethylbenzidine oxidation reaction, since Cu(2+) could be released by the sorbent effectively and has high catalytic ability for the reaction. Blue light emitted from the oxidation product was measured by ultraviolet-visible spectrophotometry for the determination of Cu(2+). The extraction temperature, extraction time, and catalysis time were optimized. The results showed that this method provided a low limit of detection of 10nM, a wide linear range (0.05-100μM) and good linearity (r(2)=0.9977). The optimized conditions were applied to environmental water samples. Using Cu(2+) as an example, this work provided a new and interesting approach for the convenient and efficient detection of metal cations in aqueous samples.

  14. Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances

    NASA Astrophysics Data System (ADS)

    Su, Ling-Hao; Zhang, Xiao-Gang

    Co-Al layered double hydroxides (LDH) were synthesized from nitrates and sodium benzoate by direct coprecipitation, and heated at 600 °C for 3 h in argon gas flow to obtain Co-Al double oxides. The effect of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on structural reconstruction was investigated by X-ray diffraction, scanning electron microscope, Raman spectroscopy, and infrared spectroscopy techniques. It is horizontal arrangement rather than vertical dilayer orientation in the interlayer spacing that was adopted by benzoate. An abnormal phenomenon was found that when immersed in aqueous 6 M KOH solution in air, the double oxides restacked to Co-Al layered double hydroxides with more regular crystal than before. The reason is believed that carbon was confined in the matrix of resulting double oxides, which prevented further collapse of the layered structure. Cyclic voltammetries (CV) and constant current charge/discharge measurements reveal that the restacked Co-Al layered double hydroxide has good long-life capacitive performance with a capacitance up to 145 F g -1 even at a large current of 2 A g -1. In addition, two clear slopes in chronoampermetric test demonstrated two different diffusion coefficients, explaining the slope of about 118.4 mV in the plot of formal potential E f versus pOH.

  15. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.

    PubMed

    Ma, Wei; Ma, Renzhi; Wang, Chengxiang; Liang, Jianbo; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2015-02-24

    Cost-effective electrocatalysts based on nonprecious metals for efficient water splitting are crucial for various technological applications represented by fuel cell. Here, 3d transition metal layered double hydroxides (LDHs) with varied contents of Ni and Fe were successfully synthesized through a homogeneous precipitation. The exfoliated Ni-Fe LDH nanosheets were heteroassembled with graphene oxide (GO) as well as reduced graphene oxide (rGO) into superlattice-like hybrids, in which two kinds of oppositely charged nanosheets are stacked face-to-face in alternating sequence. Heterostructured composites of Ni2/3Fe1/3 LDH nanosheets and GO (Ni2/3Fe1/3-GO) exhibited an excellent oxygen evolution reaction (OER) efficiency with a small overpotential of about 0.23 V and Tafel slope of 42 mV/decade. The activity was further improved via the combination of Ni2/3Fe1/3 LDH nanosheets with more conductive rGO (Ni2/3Fe1/3-rGO) to achieve an overpotential as low as 0.21 V and Tafel plot of 40 mV/decade. The catalytic activity was enhanced with an increased Fe content in the bimetallic Ni-Fe system. Moreover, the composite catalysts were found to be effective for hydrogen evolution reaction. An electrolyzer cell powered by a single AA battery of 1.5 V was demonstrated by using the bifunctional catalysts.

  16. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    PubMed

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  17. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    PubMed Central

    Hussein, Mohd Zobir; Mohamad Jaafar, Adila; Hj. Yahaya, Asmah; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  18. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    PubMed

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  19. Phylogenetic analysis of vertebrate lactate dehydrogenase (LDH) multigene families.

    PubMed

    Li, Yi-Ju; Tsoi, Stephen C-M; Mannen, Hideyuka; Shoei-lung Li, Steven

    2002-05-01

    In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human-killifish pair than a human-lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60-70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. PMID:11965434

  20. Phylogenetic analysis of vertebrate lactate dehydrogenase (LDH) multigene families.

    PubMed

    Li, Yi-Ju; Tsoi, Stephen C-M; Mannen, Hideyuka; Shoei-lung Li, Steven

    2002-05-01

    In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human-killifish pair than a human-lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60-70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B.

  1. Preparation and photoluminescence property of a loose powder, Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+} by calcination of a layered double hydroxide precursor

    SciTech Connect

    Gao Xiaorui; Lei Lixu Lv Changgui; Sun Yueming; Zheng Hegen; Cui Yiping

    2008-08-15

    A novel red light-emitting material, Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is the first example found in the Ca{sub 3}Al{sub 2}O{sub 6} host, was prepared by calcination of a layered double hydroxide precursor at 1350 deg. C. The precursor, [Ca{sub 2.9-x}Al{sub 2}Eu{sub x}(OH){sub 9.8}](NO{sub 3}){sub 2+x}.2.5H{sub 2}O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350 deg. C and the concentration of Eu{sup 3+} was 1.0%. The material emits bright red emission at 614 nm under a radiation of {lambda}=250 nm. - Graphical abstract: Calcination of a layered double hydroxide precursor produces Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is very easy to be pulverized. It is proposed that Eu{sup 3+} takes the place of one Ca{sup 2+} (green spheres in the picture, pink pyramids are [AlO{sub 4}] tetrahedrons) in the cell of Ca{sub 3}Al{sub 2}O{sub 6}. The Ca{sup 2+} could be any one of the bigger green spheres without inversion symmetry, and emits red light under a UV radiation of {lambda}=250 nm. Display Omitted.

  2. Determination of 1-naphthol and 2-naphthol from environmental waters by magnetic solid phase extraction with Fe@MgAl-layered double hydroxides nanoparticles as the adsorbents prior to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Li, Jing; Zhao, Kuifu; Liu, Yongli

    2016-04-01

    Magnetic Fe@MgAl-layered double hydroxides (MgAl-LDHs) composite was firstly synthesized by coating MgAl-layered double hydroxides on the surface of the dispersed nanoscale zero valent irons with co-precipitation method and characterized by transmission electron microscopy and X-ray diffraction techniques. The synthesized Fe@MgAl-LDHs nanoparticles were investigated for magnetic solid phase extraction (MSPE) of 1-naphthol and 2-naphthol from the water samples. The elutent containing 1-naphthol and 2-naphthol was analyzed by high performance liquid chromatography with variable wavelength detection (HPLC-UV). Under optimal conditions, there is good linear relationship between the concentration and the peak area in the range of 0.5-200 μgL(-1) with the correlation coefficients (r(2)) above 0.998 for 1-naphthol and 2-naphthol. The limits of detection were 0.22 μgL(-1) and 0.19 μgL(-1) for 1-naphthol and 2-naphthol, respectively, and precisions were both below 2.5% (n=6). The real water analysis demonstrated that the spiked recoveries were in the range of 79.2-80.9% (n=3). All these results indicated that the developed MSPE-HPLC-UV method was proved to be an efficient tool for the analysis of naphthols.

  3. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    PubMed

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical

  4. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    PubMed

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical

  5. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  6. Validation of an LDH Assay for Assessing Nanoparticle Toxicity

    PubMed Central

    Han, Xianglu; Gelein, Robert; Corson, Nancy; Wade-Mercer, Pamela; Jiang, Jingkun; Biswas, Pratim; Finkelstein, Jacob N.; Elder, Alison; Oberdörster, Günter

    2014-01-01

    Studies showed that certain cytotoxicity assays were not suitable for assessing nanoparticle (NP) toxicity. We evaluated a lactate dehydrogenase (LDH) assay for assessing copper (Cu-40, 40 nm), silver (Ag-35, 35 nm; Ag-40, 40 nm), and titanium dioxide (TiO2-25, 25 nm) NPs by examining their potential to inactivate LDH and interference with β-nicotinamide adenine dinucleotide (NADH), a substrate for the assay. We also performed a dissolution assay for some of the NPs. We found that the copper NPs, because of their high dissolution rate, could interfere with the LDH assay by inactivating LDH. Ag-35 could also inactivate LDH probably because of the carbon matrix used to cage the particles during synthesis. TiO2-25 NPs were found to adsorb LDH molecules. In conclusion, NP interference with the LDH assay depends on the type of NPs and the suitability of the assay for assessing NP toxicity should be examined case by case. PMID:21722700

  7. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    PubMed

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  8. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice.

    PubMed

    Kankala, Ranjith Kumar; Kuthati, Yaswanth; Sie, Huei-Wun; Shih, Hung-Yuan; Lue, Sheng-I; Kankala, Shravankumar; Jeng, Chien-Chung; Deng, Jin-Pei; Weng, Ching-Feng; Liu, Chen-Lun; Lee, Chia-Hung

    2015-11-15

    Multiple layers of pH-sensitive enteric copolymers were coated over layered double hydroxide (LDH) nanoparticles for controllable drug release and improved solubility of hydrophobic drugs. The nano-sized LDH carriers significantly improved the accessibility of sulfasalazine molecules that have positively charged frameworks. In addition, the successful encapsulation of negatively charged enteric copolymers was achieved via electrostatic attractions. The multi-layered enteric polymer coating could potentially protect nanoparticle dissolution at gastric pH and accelerate the dissolution velocity, which would improve the drug bioavailability in the colon. Next, biological studies of this formulation indicated a highly protective effect from the scavenging of superoxide free radicals and diethyl maleate (DEM) induced lipid peroxidation, which are major cell signalling pathways for inflammation. The histological view of the liver and kidney sections revealed that the nanoformulation is safe and highly biocompatible. The animal studies conducted via paw inflammation induced by complete Freund's adjuvant (CFA) revealed that enteric-coated LDH-sulfasalazine nanoparticles provided a sustained release that maintained the sulfasalazine concentrations in a therapeutic window. Therefore, this nanoformulation exhibited preferential efficacy in reducing the CFA-induced inflammation especially at day 4. PMID:26225492

  9. Calcium hydroxide poisoning

    MedlinePlus

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  10. Oxamic acid analogues as LDH-C4-specific competitive inhibitors.

    PubMed

    Rodríguez-Páez, Lorena; Chena-Taboada, Miguel Angel; Cabrera-Hernández, Arturo; Cordero-Martínez, Joaquín; Wong, Carlos

    2011-08-01

    We performed kinetic studies to determine whether oxamate analogues are selective inhibitors of LDH-C4, owing to their potential usefulness in fertility control and treatment of some cancers. These substances were shown to be competitive inhibitors of LDH isozymes and are able to discriminate among subtle differences that differentiate the active sites of LDH-A4, LDH-B4 and LDH-C4. N-Ethyl oxamate was the most potent inhibitor showing the highest affinity for LDH-C4. However, N-propyl oxamate was the most selective inhibitor showing a high degree of selectivity towards LDH-C4. Non-polar four carbon atoms chains, linear or branched, dramatically diminished the affinity and selectivity towards LDH-C4. N-Propyl oxamate significantly reduced ATP levels, capacitation and mouse sperm motility, in line with results shown by others, suggesting that LDH-C4 plays an essential role in mouse fertility.

  11. STUDIES ON THE IN VIVO AND IN VITRO MULTIPLICATION OF THE LDH VIRUS OF MICE

    PubMed Central

    du Buy, Herman G.; Johnson, Martin L.

    1966-01-01

    In vivo analysis of the virus titer in various loci, 24 hr after infection, showed that a titer similar to that in the blood plasma was found in the ascitic fluid of Erlich ascites cancer-bearing mice, and in lymph nodes, spleen, and thymus, i.e. loci which contain macrophages as a common cell type. However, only in the lymph nodes and in the ascitic fluid did the increase in virus titer precede or parallel the increase in the plasma. The LDH virus titer in the plasma of X-irradiated mice was similar to that of control mice, eliminating radiation-sensitive cells but not macrophages as target cells of the virus. Electron microscopic observation of infected lymph node cells revealed the presence of two types of particles: one consisting of small densely stained annuli, about 25 mµ in diameter and one of similar dense annuli with a halo extending the diameter to about 50 mµ. Such particles were repeatedly observed within single or double membraned vesicles. In vitro, the LDH virus multiplied only in cultures of mouse peritoneal macrophages, maintained in medium 199 with 10% FBS. The virus titer could be maintained for at least 33 days, during eleven serial passages, involving an overall dilution factor of 1011. These results corroborate the findings of Evans and Salaman, who used peritoneal macrophages maintained in Eagle's medium and 5 to 10% lamb serum. However, in the serial passage experiments reported here, the virus titer could only be maintained following trypsinization of each successive inoculum. The role of macrophages as the target cell for LDH virus multiplication in vivo is discussed. PMID:4957460

  12. Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation.

    PubMed

    Hou, Yang; Wen, Zhenhai; Cui, Shumao; Feng, Xinliang; Chen, Junhong

    2016-04-13

    Developing photoanodes with efficient sunlight harvesting, excellent charge separation and transfer, and fast surface reaction kinetics remains a key challenge in photoelectrochemical water splitting devices. Here we report a new strongly coupled ternary hybrid aerogel that is designed and constructed by in situ assembly of N-deficient porous carbon nitride nanosheets and NiFe-layered double hydroxide into a 3D N-doped graphene framework architecture using a facile hydrothermal method. Such a 3D hierarchical structure combines several advantageous features, including effective light-trapping, multidimensional electron transport pathways, short charge transport time and distance, strong coupling effect, and improved surface reaction kinetics. Benefiting from the desirable nanostructure, the ternary hybrid aerogels exhibited remarkable photoelectrochemical performance for water oxidation. Results included a record-high photocurrent density that reached 162.3 μA cm(-2) at 1.4 V versus the reversible hydrogen electrode with a maximum incident photon-to-current efficiency of 2.5% at 350 nm under AM 1.5G irradiation, and remarkable photostability. The work represents a significant step toward the development of novel 3D aerogel-based photoanodes for solar water splitting. PMID:26963768

  13. Vibrational spectroscopic study of the sulphate mineral glaucocerinite (Zn,Cu)10Al6(SO4)3(OH)32ṡ18H2O - A natural layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Theiss, Frederick L.; López, Andrés; Scholz, Ricardo

    2014-06-01

    We have studied the molecular structure of the mineral glaucocerinite (Zn,Cu)5Al3(SO4)1.5(OH)16ṡ9(H2O) using a combination of Raman and infrared spectroscopy. The mineral is one of the hydrotalcite supergroup of natural layered double hydroxides. The Raman spectrum is characterised by an intense Raman band at 982 cm-1 with a low intensity band at 1083 cm-1. These bands are attributed to the sulphate symmetric and antisymmetric stretching mode. The infrared spectrum is quite broad with a peak at 1020 cm-1. A series of Raman bands at 546, 584, 602, 625 and 651 cm-1 are assigned to the ν4 (SO4)2- bending modes. The observation of multiple bands provides evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 762 cm-1 is attributed to a hydroxyl deformation mode associated with AlOH units. Vibrational spectroscopy enables aspects of the molecular structure of glaucocerinite to be determined.

  14. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    SciTech Connect

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  15. Potassium hydroxide poisoning

    MedlinePlus

    This article discusses poisoning from swallowing or touching potassium hydroxide or products that contain this chemical. This article is for information only. Do NOT use it to treat or manage an actual poison exposure. If ...

  16. Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide.

    PubMed

    Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude; Rees, Gregory J; Prevot, Vanessa; Hanna, John V; Ravnsbæk, Dorthe B; Bjerring, Morten; Nielsen, Ulla Gro

    2016-09-19

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs. PMID:27598036

  17. Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide.

    PubMed

    Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude; Rees, Gregory J; Prevot, Vanessa; Hanna, John V; Ravnsbæk, Dorthe B; Bjerring, Morten; Nielsen, Ulla Gro

    2016-09-19

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

  18. Unusual hydrocarbon chain packing mode and modification of crystallite growth habit in the self-assembled nanocomposites zinc-aluminum-hydroxide oleate and elaidate (cis-and trans-[Zn2Al(OH)6(CH3(CH2)7CH=CH(CH2)7COO-)] and magnesium analogues.

    SciTech Connect

    Wang, Yifeng; Braterman, Paul S.; Xu, Zhi-Ping; Brinker, C. Jeffrey; Xu, Huifang; Yu, Kui

    2004-05-01

    We report a novel packing mode specific to the cis unsaturated hydrocarbon chain in the title compound, a self-assembled layered double hydroxide-surfactant hybrid nanomaterial, and its influence on crystallite morphology and structure. The kink imposed by the cis double bond in oleate leads to partial overlap between chains on adjacent layers, with incomplete space filling, in contrast to the more usual (and more efficient) mono- and bilayer packings exhibited by the trans analogues. Incorporation of surfactant into the growing crystallite leads to a reversal of the usual LDH growth habit and results in crystallite shapes featuring ribbonlike sheets. The thermal decomposition behavior of the as-prepared organic/inorganic nanocomposites in air and N{sub 2} is described.

  19. Nanosized Ni–Al layered double hydroxides—Structural characterization

    SciTech Connect

    Jitianu, Mihaela; Gunness, Darren C.; Aboagye, Doreen E.; Zaharescu, Maria; Jitianu, Andrei

    2013-05-15

    Highlights: ► The takovite anionic clays were obtained using the sol–gel method. ► The effect of samples’ composition on the structural and textural characteristics has been investigated. ► X-ray analysis. ► FTIR spectroscopy evidenced a disordered interlayer structure. ► FESEM and TEM analysis showed that the samples have high porosity. - Abstract: Takovite, a natural mineral with the formula Ni{sub 6}Al{sub 2}(OH){sub 6}CO{sub 3}·5H{sub 2}O belongs to the large class of layered double hydroxides (LDHs) and contains positively charged Ni(II) and Al(III) layers alternating with layers containing carbonate ions and water molecules. Mesoporous takovite-type layered double hydroxides (LDH) of the general formula [Ni{sub 1−x}Al{sub x}(OH){sub 2}]{sup x+}(CO{sub 3}{sup 2−}){sub x/2}·nH{sub 2}O with different Ni/Al molar ratios (1.9–2.8) have been successfully synthesized by the sol–gel method, followed by anionic exchange using nickel acetylacetonate and aluminum isopropylate as cation precursors. A single LDH phase and an anisotropic growth of very small crystallites (below 4 nm) have been evidenced by X-ray diffraction. The effect of samples’ composition on their structural and textural characteristics has been investigated. The BET surface area values are in the range of 100–122 m{sup 2}/g. BJH pore radius decreased with increase in the Al(III) content in the LDHs. FESEM micrographs show large aggregates of highly porous LDH particles, while TEM analysis reveals irregular agglomerates of crystallites, among which some of them displayed a developing hexagonal shape. The average particle size variation with the Al(III) content in the samples follows the same trend as the pore radius, the sample with the highest Ni/Al ratio displaying also the smallest particle size. This sample becomes even more interesting, since TEM analysis shows agglomerates with inside circular structures, feature not observed for the other Ni/Al ratios investigated.

  20. Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay.

    PubMed

    Wang, Gang; Zhang, Jianping; Dewilde, Abiche H; Pal, Anoop K; Bello, Dhimiter; Therrien, Joel M; Braunhut, Susan J; Marx, Kenneth A

    2012-09-28

    The lactate dehydrogenase (LDH) assay accurately quantifies cytotoxicity of chemicals via the measurement of LDH released from damaged cells. In the assay, LDH catalyzes formation of a reporter chromophore that can be quantified spectrophotometrically at its 490 nm peak, a standard assay, and related to the released LDH concentration. However, certain engineered nanomaterials have been reported to produce aberrant values, resulting in inaccurate assessment of toxicity as measured by LDH levels in media. We studied this effect spectroscopically by measuring unexpected changes in the complete visible spectrum of the product chromophore resulting from using either purified LDH or LDH from lysed cells in the presence of varying concentrations of single walled carbon nanotubes (SWCNTs) or carbon nanohorns (SWCNH-oxs). Basically, at constant LDH concentrations, the 490 nm product peak decreased with increasing carbon nanotube concentration, while the 580 nm peak increased to a lesser extent and the maximum absorbing wavelength increased. The product chromophore spectrum was altered in different ways by potential interactions with a number of components in the reaction mixture including: BSA, LDH, SWCNTs, SWCNT-oxs, or various combinations of these species. We propose to improve the accuracy of the LDH assay when evaluated in the presence of varying concentrations of these carbon nanostructures by use of both the 490 and 580 nm peak absorbances combined via regression analysis. Our results indicate that molecular probes of cytotoxicity must be assessed individually for accuracy in the presence of engineered nanomaterials.

  1. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy.

    PubMed

    Sada, Nagisa; Lee, Suni; Katsu, Takashi; Otsuki, Takemi; Inoue, Tsuyoshi

    2015-03-20

    Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs.

  2. Uptake and degradation of Orange II by zinc aluminum layered double oxides.

    PubMed

    Zhang, Luhong; Xiong, Zhigang; Li, Li; Burt, Ryan; Zhao, X S

    2016-05-01

    In this work ZnAl-layered double oxide composites (LDO) were developed to remove organic dyes in wastewater by adsorption and photocatalysis. Various LDO composites were synthesized by adjusting synthetic parameters including the molar ratio of Zn to Al, and calcination temperature. LDO adsorption and photocatalytic properties for decomposition of organic dyes were also investigated. Orange II sodium salt (OrgII), an azo dye and water contaminant, was chosen as the model to investigate the properties of LDOs compared with commercial ZnO, TiO2 (P25) and ZnO-LDH. The adsorption and photocatalytic performance results showed that LDO composites significantly enhanced adsorption-photocatalytic performance for OrgII degradation. LDO at the Zn/Al molar ratio of 2 (2)LDO has the best adsorption capacity (800.8 mg/g of OrgII for (2)LDO), and improved photocatalytic activity (74.3% of OrgII decomposition for (2)LDO). It is believed that the better adsorption properties of LDO are due to the adsorption and intercalation of dyes in the interlayer during LDO's rehydration process. ZnO/ZnAl-rehydrated layered double hydroxide composites (ZnO-rLDH) after rehydration of LDOs in aqueous solution was also obtained. After restoration in water, the structure and morphology of ZnO-rLDHs were characterized by XRD, FTIR, SEM/TEM, N2 adsorption/desorption and UV-vis-DRS. Finally, the relations between the structural features of the ZnO-rLDH composites and the adsorption properties and photocatalytic activity of LDO was studied. PMID:26894871

  3. Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte.

    PubMed

    Tadanaga, Kiyoharu; Furukawa, Yoshihiro; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2010-10-15

    An alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts is proposed. So-called hydrotalcite clay, Mg–Al layered double hydroxide intercalated with CO₃²⁻, is shown to be a hydroxide ion conductor. An alkaline-type DEFC using this natural clay as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibits excellent electrochemical performance from room temperature to 80 °C.

  4. Electrosynthesis and stabilization of α-cobalt hydroxide in the presence of trivalent cations

    NASA Astrophysics Data System (ADS)

    Dixit, Mridula; Vishnu Kamath, P.

    Layered double hydroxides (LDHs) of cobalt with aluminium and chromium, isostructural with α-cobalt(II) hydroxide, are electrosynthesized. This paves the way for their possible impregnation into porous metal plaques for ready use as electrodes in alkaline secondary cells. Unlike pure cobalt hydroxide, the LDHs of cobalt are not amphoteric and retain their α-like structure in strong alkali, even after prolonged ageing. In addition, they exhibit electrochemical activity as shown by cyclic voltammetric studies.

  5. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media

    NASA Astrophysics Data System (ADS)

    Starukh, G.; Rozovik, O.; Oranska, O.

    2016-04-01

    Cationic dye sorption by Zn-Al-layered double hydroxides (LDHs) modified with anionic surfactants was examined using methylene blue (MB) dye as a compound model in aqueous solutions. The modification of Zn-Al LDHs was performed by reconstruction method using dodecyl sulfate anion (DS) solutions. DS contained Zn-Al LDHs were characterized by XRD, FTIR, thermogravimetric, and SEM analysis. The reconstructed organo/Zn-Al LDHs comprise the crystalline phases (DS-intercalated LDHs, hydrotalcite), and the amorphous phase. The intercalation of DS ions into the interlayer galleries and DS adsorption on the surface of the LDHs occurred causing the MB adsorption on the external and its sorption in the internal surfaces of modified LDHs. The presence of DS greatly increased the affinity of organo/Zn-Al LDHs for MB due to hydrophobic interactions between the surfactants and the dye molecules. The optical properties of sorbed MB were studied.

  6. Preliminary Study on Serum Lactate Dehydrogenase (LDH)-Prognostic Biomarker in Carcinoma Breast

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gupta, Dilip; Reddy, M.V.R.

    2016-01-01

    Introduction Serum Lactate Dehydrogenase (LDH) is one of the biochemical markers for breast cancer. Serum LDH is enzyme required for anaerobic glycolysis. One of its isoenzyme is increased in breast cancer due to up-regulation in its gene. It leads to increase in serum LDH level in breast cancer patients. Serum LDH is economical, easily available and easy to estimate. Aim In the present study, we evaluated the LDH levels in circulation of newly diagnosed patients of breast cancer and tried to correlate it with different TNM staging of carcinoma breast before interventions and after adjuvant therapy of these patients. Materials and Methods This prospective study was done on 83 diagnosed patients of breast cancer was conducted among poor patients in rural area. This study was conducted in the Department of Surgery between October 2008 to October 2010, at MGIMS, Sevagram, Maharashtra, a rural medical college located in Central India. Out of total 83 participants, 10 participants were having adverse events following surgery and remaining 73 participants were without adverse events following surgery. The significant difference in serum LDH levels between two groups, with and without adverse surgical outcome was calculated by Mann-Whitney U test. Results Patients with higher clinical TNM staging were having higher serum LDH levels. The serum LDH levels at sixth months following surgery showed a trend of statistically significant difference between patients with and without adverse events. As increased serum LDH levels in breast cancer patients shows poor prognosis, surgical outcome or advanced metastases. Conclusion Serum LDH monitoring can be used as a prognostic biomarker in patients of breast cancer. For confirmation of this finding, we require further more studies on larger sample size and long-term follow-up in patients specifically with higher serum LDH levels. PMID:27134855

  7. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  8. Karchevskyite, [Mg18Al9(OH)54][Sr2(CO3,PO4)9(H2O,H3O)11], a new mineral species of the layered double hydroxide family

    NASA Astrophysics Data System (ADS)

    Britvin, S. N.; Chukanov, N. V.; Bekenova, G. K.; Yagovkina, M. A.; Antonov, A. V.; Bogdanova, A. N.; Krasnova, N. I.

    2008-12-01

    Karchevskyite, a new mineral related to the family of layered double hydroxides (LDHs), has been found in the Iron open pit at the Kovdor carbonatite massif, Kola Peninsula, Russia. The mineral occurs as spherulites of up to 1.5 mm in diameter composed of thin, curved lamellae. Dolomite, magnetite, quintinite-3 T, strontium carbonate, and fluorapatite are associated minerals. Karchevskyite is white in aggregates and colorless in separate platelets. Its luster is vitreous with a pearly shine on the cleavage surface. The new mineral is nonfluorescent. The Mohs hardness is 2. The cleavage is eminent (micalike), parallel to {001}. The measured density is 2.21(2) g/cm3, and the calculated value is 2.18(1) g/cm3. Karchevskyite is colorless and nonpleochroic in immersion liquids. It is uniaxial, negative, ω = 1.542(2), and ɛ = 1.534(2). The chemical composition (electron microprobe, average of ten point analyses, standard deviation in parentheses, wt %) is as follows: 29.7(1.1) MgO, 18.3(0.7) Al2O3, 7.4(0.4) SrO, 0.2(0.1) CaO, 1.3(0.2) P2O5, 14.5(0.4) CO2, and 28.6 H2O (estimated by difference); the total is 100. The empirical formula calculated on the basis of nine Al atoms is Mg18.00Al9.00(OH)54.00(Sr1.79Mg0.48Ca0.09)2.36 (Ca3)8.26(PO4)0.46(H2O)6.54(H3O)4.18. The idealized formula is [Mg18Al9(OH)54][Sr2(CO3, PO4)9(H2O, H3O)11]. The new mineral slowly dissolves in 10% HCl with weak effervescence. Karchevskyite is trigonal; possible space groups are P3, P3, P overline 3 1 m, P31 m, P312, P312, P3 m1, or P3 m1; unit-cell dimensions are a = 16.055(6), c = 25.66(1) Å, V = 5728(7) Å3, Z = 3. The strongest reflections in the X-ray powder diffraction pattern [ d, ( I, %)( hkl)] are: 8.52(10)(003), 6.41(4)(004), 5.13(3)(005), 4.27(6)(006), 3.665(9)(007), 3.547(9)(107), 3.081(6)(315). Wavenumbers of absorption bands in the infrared spectrum of the new mineral are (cm-1; s is shoulder): 3470, 3420s, 3035, 2960s, 1650, 1426, 1366, 1024, 937, 860, 779, 678, 615s, 553, 449, 386

  9. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation.

    PubMed

    Buffet, Jean-Charles; Byles, Coral F H; Felton, Ryan; Chen, Chunping; O'Hare, Dermot

    2016-03-14

    We report the synthesis of solid catalysts based on a zirconocene supported on either silica@AMO-LDH or zeolite@AMO-LDH for the slurry phase polymerisation of ethylene. The hybrid catalysts demonstrate synergistic effects in which the polymerisation activity is up to three times higher than the zirconocene supported on analogous single phase silica or zeolite supports.

  10. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis.

    PubMed

    Debelyy, Mykhaylo O; Thoms, Sven; Connerth, Melanie; Daum, Günther; Erdmann, Ralf

    2011-06-01

    Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels. PMID:21478434

  11. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    NASA Technical Reports Server (NTRS)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  12. sup 51 Cr loss and lactate dehydrogenase (LDH) release in irradiated human tumor cells

    SciTech Connect

    Ts'ao, C.; Molteni, A.; Hinz, J. )

    1991-03-11

    Much of what is known about tumor cell radiosensitivity in vitro derives from the colony formation assay. Other endpoints of cytotoxicity in irradiated tumor cells are rarely examined. The purpose of this study was to determine whether loss of {sup 51}Cr from prelabeled cells and release of LDH could be used to quantify radiation injury in two cultured human tumor cell lines: a prostate carcinoma and a melanoma. Bovine aortic endothelial cells (EC) known to release {sup 51}Cr and LDH following irradiation, were cotested. Radioactivity and LDH activity in the culture medium were determined after 0-40 Gy of {sup 60}CO {gamma} rays. Proliferation of irradiated tumor cells was also studied. EC exhibited a time- and radiation dose-dependent increase in {sup 51}Cr and LDH release. Both tumor cell lines showed a time-dependent increase in {sup 51}Cr release, but this baseline release was not elevated after irradiation. LDH release from the prostate cancer cell line was observed within 8 hr after 40 Gy, and at 48 hr by 10 Gy. Irradiated melanoma cells, in contrast, never release excess LDH into the culture medium. Melanoma cells continued to proliferate after 10 Gy, while proliferation of prostate cancer cells was totally arrested by this dose of exposure. While {sup 51}Cr loss and LDH release appear to be sensitive indicators of radiation-induced damage in EC, they have limited value in the assessment of radiation-induced cytotoxicity in human prostate cancer and melanoma cells.

  13. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.

    PubMed

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-08-01

    Sperm specific lactate dehydrogenases (LDH-C₄) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika's heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C₄, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.

  14. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.

    PubMed

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-01-01

    Sperm specific lactate dehydrogenases (LDH-C₄) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika's heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C₄, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment. PMID:27490559

  15. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika

    PubMed Central

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-01-01

    Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika’s heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment. PMID:27490559

  16. Elevated Plasma Activity of Lactate Dehydrogenase Isoenzyme-3 (LDH3) in Experimentally Induced Immunologic Lung Injury

    PubMed Central

    Hagadorn, J. E.; Bloor, C. M.; Yang, M. S.

    1971-01-01

    Normal rats injected intravenously with rabbit antiserum to rat lung develop acute pulmonary lesions characterized by an altered vascular permeability. In the present study, an increase in plasma LDH3 activity is shown to be positively correlated with the different levels of circulating antilung antibodies and with the morphologic severity of lung injury elicited by these pathogenic immunoglobulins. Within 24 hours, the acute lung changes are resolved, accompanied by a return of the activities of plasma LDH isoenzymes to normal. It is proposed that the plasma LDH3 isoenzymes are released into the circulation from injured alveolar capillary endothelial cells. ImagesFig 1 PMID:5133518

  17. LDH Concentration in Nasal-Wash Fluid as a Biochemical Predictor of Bronchiolitis Severity

    PubMed Central

    Laham, Federico R.; Trott, Amanda A.; Bennett, Berkeley L.; Kozinetz, Claudia A.; Jewell, Alan M.; Garofalo, Roberto P.; Piedra, Pedro A.

    2011-01-01

    Objective Because the decision to hospitalize an infant with bronchiolitis is often supported by subjective criteria and objective indicators of bronchiolitis severity are lacking, we tested the hypothesis that lactate dehydrogenase (LDH), which is released from injured cells, is a useful biochemical indicator of bronchiolitis severity. Patients and Methods We retrospectively analyzed a study of children <24 months old presenting to the emergency department with bronchiolitis. Demographic, clinical information, nasal-wash (NW) and serum specimens were obtained. NW samples were analyzed for respiratory viruses, caspase 3/7 activity and a panel of cytokines and chemokines. Total LDH activity was tested in NW samples and sera. Results Of 101 enrolled children (median age, 5.6 months), 98 had NW specimens available. A viral etiology was found in 82 patients (83.6%), with respiratory syncytial virus (RSV) (66%) and rhinovirus (19%) being the most common viruses detected. Concentrations of LDH in NW specimens were independent from those in sera, and were higher in children with RSV infection or with dual infection. Significant correlations were found between NW LDH and NW cytokines/chemokines. Similarly, NW LDH correlated with NW-caspase 3/7 activity (r=0.75; P<.001). In a multivariate analysis, NW LDH concentration in the upper quartile was significantly associated with a reduced risk of hospitalization (odds ratio: 0.19; 95% confidence interval: 0.05–0.68; P=0.011). Conclusions NW LDH levels in young children with bronchiolitis varied according to viral etiology and disease severity. Values in the upper quartile were associated with ~80% risk reduction in hospitalization, likely reflecting a robust antiviral response. NW LDH may be a useful biomarker to assist the clinician in the decision to hospitalize a child with bronchiolitis. PMID:20100751

  18. Pleural LDH as a prognostic marker in adenocarcinoma lung with malignant pleural effusion

    PubMed Central

    Verma, Akash; Phua, Chee Kiang; Sim, Wen Yuan; Algoso, Reyes Elmer; Tee, Kuan Sen; Lew, Sennen J. W.; Lim, Albert Y. H.; Goh, Soon Keng; Tai, Dessmon Y. H.; Kor, Ai Ching; Ho, Benjamin; Abisheganaden, John

    2016-01-01

    Abstract To study the performance of serum and pleural lactate dehydrogenase (LDH) level in predicting survival in patients with adenocarcinoma lung presenting with malignant pleural effusions (MPE) at initial diagnosis. Retrospective cohort study of the patient hospitalized for adenocarcinoma lung with MPE in year 2012. Univariate analyses showed lower pleural fluid LDH 667 (313–967) versus 971 (214–3800), P = 0.04, female gender 9 (100%) versus 27 (41.5%), P = 0.009, never smoking status 9 (100%) versus 36 (55.3%), P = 0.009, and epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy 8 (89%) versus 26 (40%), P = 0.009 to correlate with survival of more than 1.7 year versus less than 1.7 year. In multivariate analysis, low pleural fluid LDH and female gender maintained significance. The pleural LDH level of ≤1500 and >1500 U/L discriminated significantly (P = 0.009) between survival. High pleural LDH (>1500 IU/L) predicts shorter survival (less than a year) in patients with adenocarcinoma lung presenting with MPE at the time of initial diagnosis. This marker may be clinically applied for selecting therapeutic modality directed at prevention of reaccumulation of MPE. Patients with low pleural LDH may be considered suitable for measures that provide more sustained effect on prevention of reaccumulation such as chemical pleurodesis or tunneled pleural catheter. PMID:27368006

  19. The inhibition of endotoxin-induced local inflammation by LDH virus or LDH virus-infected tumors is mediated by interferon.

    PubMed

    Heremans, H; Billiau, A; Coutelier, J P; De Somer, P

    1987-05-01

    The footpad swelling reaction induced by local injection of S. marcescens lipopolysaccharide was found to be inhibited in mice given a transplantable tumor (TA3) or cell-free ascitic fluid from tumor-bearing mice. The tumor was shown to contain LDH virus, which is known to cause inapparent persistent infections in mice. Monoclonal antibodies directed against protein VP3 of the LDH virus could partially abrogate the anti-inflammatory effect of the TA3-ascitic fluid, and, conversely, the anti-inflammatory effect could be obtained by LDH virus isolated from the tumor and reproduced by serial passage of cell-free fluids. Inhibition of the footpad reaction was seen in the acute but not in the chronic phase of LDH virus infection, suggesting that the anti-inflammatory effect might be due to endogenous interferon (IFN) which, similarly, was only detectable in the acute phase. Newcastle disease virus, another potent interferon inducer, had a similar inhibitory effect on the footpad reactivity. Moreover, the inhibitory effect of LDH virus infection could partially be abrogated by administration of a polyclonal antibody directed against murine IFN-alpha,beta. Finally, passively administered natural murine IFN-alpha,beta or recombinant murine IFN-alpha 1 (but not recombinant murine IFN-beta) was found to cause inhibition of the footpad reaction. Since Gram-negative bacteria and their lipopolysaccharides have the ability to induce a systemic interferon response, our findings suggest that this interferon may play a modulatory role in local inflammation caused by these bacteria. Our findings also open a new perspective for interferon therapy of certain inflammatory reactions to bacterial infections.

  20. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching. PMID:19380194

  1. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process. PMID:27030646

  2. Homogeneous Precipitation of Nickel Hydroxide Powders

    SciTech Connect

    Bora Mavis

    2003-12-12

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the m