Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system
NASA Astrophysics Data System (ADS)
Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald
2016-03-01
Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.
NASA Astrophysics Data System (ADS)
Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.
2017-12-01
We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.
Yan, Zai You; Hung, Kin Chew; Zheng, Hui
2003-05-01
Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.
Green's function of radial inhomogeneous spheres excited by internal sources.
Zouros, Grigorios P; Kokkorakis, Gerassimos C
2011-01-01
Green's function in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them is evaluated through a Schwinger-Lippmann volume integral equation. In the case of a radial inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The simple case treated here can be extended to more difficult situations involving inhomogeneous density as well as to the corresponding electromagnetic or elastic problem. Finally, numerical results are given for various inhomogeneous compressibility distributions.
NASA Astrophysics Data System (ADS)
Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür
2015-03-01
In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.
NASA Astrophysics Data System (ADS)
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm
NASA Astrophysics Data System (ADS)
Beek, J. F.; Blokland, P.; Posthumus, P.; Aalders, M.; Pickering, J. W.; Sterenborg, H. J. C. M.; van Gemert, M. J. C.
1997-11-01
The optical properties (absorption and scattering coefficients and the scattering anisotropy factor) were measured in vitro for cartilage, liver, lung, muscle, myocardium, skin, and tumour (colon adenocarcinoma CC 531) at 630, 632.8, 790, 850 and 1064 nm. Rabbits, rats, piglets, goats, and dogs were used to obtain the tissues. A double-integrating-sphere setup with an intervening sample was used to determine the reflectance, and the diffuse and collimated transmittances of the sample. The inverse adding - doubling algorithm was used to determine the optical properties from the measurements. The overall results were comparable to those available in the literature, although only limited data are available at 790 - 850 nm. The results were reproducible for a specific sample at a specific wavelength. However, when comparing the results of different samples of the same tissue or different lasers with approximately the same wavelength (e.g. argon dye laser at 630 nm and HeNe laser at 632.8 nm) variations are large. We believe these variations in optical properties should be explained by biological variations of the tissues. In conclusion, we report on an extensive set of in vitro absorption and scattering properties of tissues measured with the same equipment and software, and by the same group. Although the accuracy of the method requires further improvement, it is highly likely that the other existing data in the literature have a similar level of accuracy.
NASA Astrophysics Data System (ADS)
Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun
2018-03-01
In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.
Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments
NASA Astrophysics Data System (ADS)
Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook
2016-05-01
The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Goodarzi, Mohammad; Aernouts, Ben; Gellynck, Karolien; Vlaminck, Lieven; Bockstaele, Ronny; Cornelissen, Maria; Ramon, Herman; Saeys, Wouter
2014-05-01
Near infrared spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. NIR measurements can be performed in vivo with an implantable single-chip based optical NIR sensor. However, the application of NIR spectroscopy for accurate estimation of the analyte concentration in highly scattering biological systems still remains a challenge. For instance, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues allow only a small fraction of the collimated light to pass, this might result in a large reduction of the light throughput. To quantify the effect of presence of a thin tissue layer in the optical path, the bulk optical properties of tissue samples grown on sensor dummies which had been implanted for several months in goats were characterized using Double Integrating Spheres and unscattered transmittance measurements. The measured values of diffuse reflectance, diffuse transmittance and collimated transmittance were used as input to Inverse Adding-Doubling algorithm to estimate the bulk optical properties of the samples. The estimates of absorption and scattering coefficients were then used to calculate the light attenuation through a thin tissue layer. Based on the lower reduction in unscattered transmittance and higher absorptivity of glucose molecules, the measurement in the combination band was found to be the better option for the implantable sensor. As the tissues were found to be highly forward scattering with very low unscattered transmittance, the diffuse transmittance measurement based sensor configuration was recommended for the implantable glucose sensor.
NASA Astrophysics Data System (ADS)
Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.
2004-05-01
The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
Experimental investigation of shock wave diffraction over a single- or double-sphere model
NASA Astrophysics Data System (ADS)
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor
NASA Astrophysics Data System (ADS)
Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong
2017-09-01
Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.
Light collection optics for measuring flux and spectrum from light-emitting devices
McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.
2016-05-24
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Resolving power of diffraction imaging with an objective: a numerical study.
Wang, Wenjin; Liu, Jing; Lu, Jun Qing; Ding, Junhua; Hu, Xin-Hua
2017-05-01
Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.
Two-axis control of a singlet-triplet qubit with an integrated micromagnet.
Wu, Xian; Ward, D. R.; Prance, J. R.; ...
2014-08-04
The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit’s Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T*2 is determined. By measuringmore » T*2 at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T*2 arising from charge noise and from coupling to nuclear spins.« less
Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa
2013-11-01
Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun
2015-08-26
N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
NASA Technical Reports Server (NTRS)
Morrison, R. H.
1972-01-01
Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.
Integrating-Sphere Measurements for Determining Optical Properties of Tissue-Engineered Oral Mucosa
NASA Astrophysics Data System (ADS)
Ionescu, A. M.; Cardona, J. C.; Garzón, I.; Oliveira, A. C.; Ghinea, R.; Alaminos, M.; Pérez, M. M.
2015-02-01
Surgical procedures carried out in the oral and maxillofacial region can result in large tissue defects. Accounting for the shortage of oral mucosa to replace the excised tissues, different models of an organotypic substitute of the oral mucosa generated by tissue engineering have recently been proposed. In this work, the propagation of light radiation through artificial human oral mucosa substitutes based on fibrin-agarose scaffolds (fibrin, fibrin-0.1% agarose, fibrin-0.2%agarose) is investigated, and their optical properties are determined using the inverse adding-doubling (IAD) method based on integrating-sphere measurements. Similar values for the absorption and scattering coefficients between the fibrin and fibrin-0.1% agarose bioengineered tissues and the native oral mucosa were found. These results suggest the adequacy of these biomaterials for potential clinical use in human oral mucosa applications. These optical properties represent useful references and data for applications requiring the knowledge of the light transport through this type of tissues, applications used in clinical practice. It also provides a new method of information analysis for the quality control of the development of the artificial nanostructured oral mucosa substitutes and its comparison with native oral mucosa tissues.
Development and Performance of a Filter Radiometer Monitor System for Integrating Sphere Sources
NASA Technical Reports Server (NTRS)
Ding, Leibo; Kowalewski, Matthew G.; Cooper, John W.; Smith, GIlbert R.; Barnes, Robert A.; Waluschka, Eugene; Butler, James J.
2011-01-01
The NASA Goddard Space Flight Center (GSFC) Radiometric Calibration Laboratory (RCL) maintains several large integrating sphere sources covering the visible to the shortwave infrared wavelength range. Two critical, functional requirements of an integrating sphere source are short and long-term operational stability and repeatability. Monitoring the source is essential in determining the origin of systemic errors, thus increasing confidence in source performance and quantifying repeatability. If monitor data falls outside the established parameters, this could be an indication that the source requires maintenance or re-calibration against the National Institute of Science and Technology (NIST) irradiance standard. The GSFC RCL has developed a Filter Radiometer Monitoring System (FRMS) to continuously monitor the performance of its integrating sphere calibration sources in the 400 to 2400nm region. Sphere output change mechanisms include lamp aging, coating (e.g. BaSO4) deterioration, and ambient water vapor level. The Filter Radiometer Monitor System (FRMS) wavelength bands are selected to quantify changes caused by these mechanisms. The FRMS design and operation are presented, as well as data from monitoring four of the RCL s integrating sphere sources.
Lemaillet, Paul; Bouchard, Jean-Pierre; Allen, David W
2015-07-01
The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2018-02-01
In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.
Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles
NASA Astrophysics Data System (ADS)
Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.
2012-01-01
Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.
Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation
NASA Astrophysics Data System (ADS)
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert
2018-06-01
In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity approximation. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-01
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-26
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Insignia for the Apollo program
NASA Technical Reports Server (NTRS)
1966-01-01
The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.
NASA Astrophysics Data System (ADS)
Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana
2013-06-01
A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.
Directional spectral emissivity measurement system
NASA Technical Reports Server (NTRS)
Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)
1992-01-01
Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.
Filtered back-projection algorithm for Compton telescopes
Gunter, Donald L [Lisle, IL
2008-03-18
A method for the conversion of Compton camera data into a 2D image of the incident-radiation flux on the celestial sphere includes detecting coincident gamma radiation flux arriving from various directions of a 2-sphere. These events are mapped by back-projection onto the 2-sphere to produce a convolution integral that is subsequently stereographically projected onto a 2-plane to produce a second convolution integral which is deconvolved by the Fourier method to produce an image that is then projected onto the 2-sphere.
Research on effects of baffle position in an integrating sphere on the luminous flux measurement
NASA Astrophysics Data System (ADS)
Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei; Xia, Ming
2016-09-01
In the field of optical metrology, luminous flux is an important index to characterize the quality of electric light source. Currently, the majority of luminous flux measurement is based on the integrating sphere method, so measurement accuracy of integrating sphere is the key factor. There are plenty of factors affecting the measurement accuracy, such as coating, power and the position of light source. However, the baffle which is a key part of integrating sphere has important effects on the measurement results. The paper analyzes in detail the principle of an ideal integrating sphere. We use moving rail to change the relative position of baffle and light source inside the sphere. By experiments, measured luminous flux values at different distances between the light source and baffle are obtained, which we used to take analysis of the effects of different baffle position on the measurement. By theoretical calculation, computer simulation and experiment, we obtain the optimum position of baffle for luminous flux measurements. Based on the whole luminous flux measurement error analysis, we develop the methods and apparatus to improve the luminous flux measurement accuracy and reliability. It makes our unifying and transferring work of the luminous flux more accurate in East China and provides effective protection for our traceability system.
Effect of blood vessels on light distribution in optogenetic stimulation of cortex.
Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin
2015-05-15
In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.
Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
NASA Astrophysics Data System (ADS)
Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong
2017-03-01
A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.
Benchmark radar targets for the validation of computational electromagnetics programs
NASA Technical Reports Server (NTRS)
Woo, Alex C.; Wang, Helen T. G.; Schuh, Michael J.; Sanders, Michael L.
1993-01-01
Results are presented of a set of computational electromagnetics validation measurements referring to three-dimensional perfectly conducting smooth targets, performed for the Electromagnetic Code Consortium. Plots are presented for both the low- and high-frequency measurements of the NASA almond, an ogive, a double ogive, a cone-sphere, and a cone-sphere with a gap.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Taylor, Deborah B.
1987-01-01
An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources
NASA Astrophysics Data System (ADS)
Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.
2011-05-01
The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
NASA Astrophysics Data System (ADS)
Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki
2017-08-01
This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen
2018-02-01
In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.
Clifford, Harry J [Los Alamos, NM
2011-03-22
A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.
Einstein-Yang-Mills scattering amplitudes from scattering equations
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2015-01-01
We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.
2012-02-01
Double Alfvén wave solutions of the magnetohydrodynamic equations in which the physical variables (the gas density ρ, fluid velocity u, gas pressure p, and magnetic field induction B) depend only on two independent wave phases ϕ1(x,t) and ϕ2(x,t) are obtained. The integrals for the double Alfvén wave are the same as for simple waves, namely, the gas pressure, magnetic pressure, and group velocity of the wave are constant. Compatibility conditions on the evolution of the magnetic field B due to changes in ϕ1 and ϕ2, as well as constraints due to Gauss's law ∇ · B = 0 are discussed. The magnetic field lines and hodographs of B in which the tip of the magnetic field B moves on the sphere |B| = B = const. are used to delineate the physical characteristics of the wave. Hamilton's equations for the simple Alfvén wave with wave normal n(ϕ), and with magnetic induction B(ϕ) in which ϕ is the wave phase, are obtained by using the Frenet-Serret equations for curves x=X(ϕ) in differential geometry. The use of differential geometry of 2D surfaces in a 3D Euclidean space to describe double Alfvén waves is briefly discussed.
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1988-01-01
In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.
NASA Technical Reports Server (NTRS)
Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.;
1999-01-01
EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres agreed to within +/- 2.5% from the average at blue wavelengths and to within +/- 1.7% from the average at red and near infrared wavelengths. This level of agreement lends confidence in the use of the transfer radiometers in validating the radiance scales assigned by EOS instrument calibration facilities to their integrating sphere sources.
Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei
2011-01-04
In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.
Structural and Acoustic Damping Characteristics of Polyimide Microspheres
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Park, Junhong
2005-01-01
A broad range of tests have been performed to evaluate the capability of tiny lightweight polyimide spheres to reduce sound and vibration. The types of testing includes impedance tube measurement of propagation constant, sound power insertion loss for single and double wall systems, particle frame wave characterization and beam vibration reduction. The tests were performed using spheres made of two types of polyimide and with varying diameter. Baseline results were established using common noise reduction treatment materials such as fiberglass and foam. The spheres were difficult to test due to their inherent mobility. Most tests required some adaptation to contain the spheres. One test returned obvious non-linear behavior, a result which has come to be expected for treatments of this type. The polyimide spheres are found to be a competent treatment for both sound and vibration energy with the reservation that more work needs to be done to better characterize the non-linear behavior.
Interaction of a shock wave with multiple spheres suspended in different arrangements
NASA Astrophysics Data System (ADS)
Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui
2018-03-01
In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.
Near Infrared Optical Properties of Whole Human Blood and Blood Containing Nanoparticulates
NASA Astrophysics Data System (ADS)
Mimun, Lawrence C.; Yust, Brian; Nash, Kelly L.; Sardar, Dhiraj K.
2010-10-01
Whole human blood is optically characterized in the near infrared (NIR) with and without the addition of nanocrystals. The optical properties were obtained using the double-integrating sphere technique at the Nd excitation wavelength of 808 nm. Y2O3 and Nd^3+:Y2O3 nanoparticles were added in predetermined amounts to water, blood plasma, and whole blood samples, from which a computational analysis was conducted using the Kubelka-Munk calculational method, the Inverse Adding Doubling Method, and the Magic Light Monte Carlo Method to characterized the optical properties such as the absorption (μa) and scattering coefficients (μs) and the scattering anisotropy (g). Through comparison with control samples, the optical properties of each component (blood, plasma, and nanoparticles) can be determined individually, thus illuminating any changes due to the biological environment. The emission from the Nd^3+:Y2O3 particles through the blood is also detected thus exhibiting their usefulness as real world biological markers.
Hou, Chieh; Ateshian, Gerard A.
2015-01-01
Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492
Hou, Chieh; Ateshian, Gerard A
2016-01-01
Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.
Spectral Radiance of a Large-Area Integrating Sphere Source
Walker, James H.; Thompson, Ambler
1995-01-01
The radiance and irradiance calibration of large field-of-view scanning and imaging radiometers for remote sensing and surveillance applications has resulted in the development of novel calibration techniques. One of these techniques is the employment of large-area integrating sphere sources as radiance or irradiance secondary standards. To assist the National Aeronautical and Space Administration’s space based ozone measurement program, a commercially available large-area internally illuminated integrating sphere source’s spectral radiance was characterized in the wavelength region from 230 nm to 400 nm at the National Institute of Standards and Technology. Spectral radiance determinations and spatial mappings of the source indicate that carefully designed large-area integrating sphere sources can be measured with a 1 % to 2 % expanded uncertainty (two standard deviation estimate) in the near ultraviolet with spatial nonuniformities of 0.6 % or smaller across a 20 cm diameter exit aperture. A method is proposed for the calculation of the final radiance uncertainties of the source which includes the field of view of the instrument being calibrated. PMID:29151725
Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures
NASA Astrophysics Data System (ADS)
Löwen, Hartmut; Allahyarov, Elshad
2011-10-01
Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.
NASA Astrophysics Data System (ADS)
Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama
2018-03-01
The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.
DSMC Simulation and Experimental Validation of Shock Interaction in Hypersonic Low Density Flow
2014-01-01
Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10−4, the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%. PMID:24672360
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere
NASA Technical Reports Server (NTRS)
Krenn, Angela G.
2011-01-01
There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.
Allison, Stuart A; Xin, Yao
2005-08-15
A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.
Emissivity measurements of shocked tin using a multi-wavelength integrating sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifter, A; Holtkamp, D B; Iverson, A J
Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less
Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere
NASA Technical Reports Server (NTRS)
Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.
2007-01-01
Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
JaSTA-2: Second version of the Java Superposition T-matrix Application
NASA Astrophysics Data System (ADS)
Halder, Prithish; Das, Himadri Sekhar
2017-12-01
In this article, we announce the development of a new version of the Java Superposition T-matrix App (JaSTA-2), to study the light scattering properties of porous aggregate particles. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precision superposition T-matrix codes for multi-sphere clusters in random orientation, developed by Mackowski and Mischenko (1996). The new version consists of two options as part of the input parameters: (i) single wavelength and (ii) multiple wavelengths. The first option (which retains the applicability of older version of JaSTA) calculates the light scattering properties of aggregates of spheres for a single wavelength at a given instant of time whereas the second option can execute the code for a multiple numbers of wavelengths in a single run. JaSTA-2 provides convenient and quicker data analysis which can be used in diverse fields like Planetary Science, Atmospheric Physics, Nanoscience, etc. This version of the software is developed for Linux platform only, and it can be operated over all the cores of a processor using the multi-threading option.
Training of Industrial Sphere Managers in a Specially Organized Education Environment
ERIC Educational Resources Information Center
Gorshenina, Margarita; Firsova, Elena
2016-01-01
The professional activity of industrial sphere managers has an integrated character and includes managerial, economic and production activity. Due to this the structure of readiness of industrial sphere managers for professional activity is composed of three components: subject, reflexive and technological ones. The objective of this paper…
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-06-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-04-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.
Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M
2017-12-01
Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
The OLI Radiometric Scale Realization Round Robin Measurement Campaign
NASA Technical Reports Server (NTRS)
Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart
2011-01-01
A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.
Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.
García-Sánchez, Pablo; Ramos, Antonio
2015-11-01
We theoretically study the rotation induced on a metal sphere immersed in an electrolyte and subjected to a rotating electric field. The rotation arises from the interaction of the field with the electric charges induced at the metal-electrolyte interface, i.e., the induced electrical double layer (EDL). Particle rotation is due to the torque on the induced dipole, and also from induced-charge electro-osmostic flow (ICEO). The interaction of the electric field with the induced dipole on the system gives rise to counterfield rotation, i.e., the direction opposite to the rotation of the electric field. ICEO generates co-field rotation of the sphere. For thin EDL, ICEO generates negligible rotation. For increasing size of EDL, co-field rotation appears and, in the limit of very thick EDL, it compensates the counter-field rotation induced by the electrical torque. We also report computations of the rotating fluid velocity field around the sphere.
NASA Astrophysics Data System (ADS)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto
2015-01-01
The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975
Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters.
Collauto, Alberto; Mishra, Smriti; Litvinov, Aleksei; Mchaourab, Hassane S; Goldfarb, Daniella
2017-08-01
We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn 2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn 2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn 2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.
3D printing of tissue-simulating phantoms for calibration of biomedical optical devices
NASA Astrophysics Data System (ADS)
Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.
2016-10-01
Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.
Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.
1991-01-01
A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.
Heat shield characterization: Outer planet atmospheric entry probe
NASA Technical Reports Server (NTRS)
Mezines, S. A.; Rusert, E. L.; Disser, E. F.
1976-01-01
A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.
Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage
NASA Astrophysics Data System (ADS)
Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo
2016-02-01
Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07064c
Integrating sphere based reflectance measurements for small-area semiconductor samples
NASA Astrophysics Data System (ADS)
Saylan, S.; Howells, C. T.; Dahlem, M. S.
2018-05-01
This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.
Johnson, B. Carol; Sakuma, F.; Butler, J. J.; Biggar, S. F.; Cooper, J. W.; Ishida, J.; Suzuki, K.
1997-01-01
As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS). PMID:27805113
Wavelets on the Group SO(3) and the Sphere S3
NASA Astrophysics Data System (ADS)
Bernstein, Swanhild
2007-09-01
The construction of wavelets relies on translations and dilations which are perfectly given in R. On the sphere translations can be considered as rotations but it difficult to say what are dilations. For the 2-dimensional sphere there exist two different approaches to obtain wavelets which are worth to be considered. The first concept goes back to Freeden and collaborators [2] which defines wavelets by means of kernels of spherical singular integrals. The other concept developed by Antoine and Vandergheynst and coworkers [3] is a purely group theoretical approach and defines dilations as dilations in the tangent plane. Surprisingly both concepts coincides for zonal functions. We will define wavelets on the 3-dimensional sphere by means of kernels of singular integrals and demonstrate that wavelets constructed by Antoine and Vandergheynst for zonal functions meet our definition.
Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Thome, Kurtis; Aaron, David; Leigh, Larry
2006-01-01
NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber.
NASA Astrophysics Data System (ADS)
Ricceri, Biagio
2006-12-01
Given a bounded domain [Omega][subset of]Rn, we prove that if is a C1 function whose gradient is Lipschitzian in Rn+1 and non-zero at 0, then, for each r>0 small enough, the restriction of the integral functional to the sphere has a unique global minimum and a unique global maximum.
Effects of Measurement Geometry on Spectral Reflectance and Color
1998-01-01
calibration of outdoor color imagery were made using integrating sphere and 45°/0° geometry. The differing results are discussed using CIELAB linear... CIELAB color coordinate results were obtained for different measurement geometries. Such results should affect the digital photographic measurements...measurement geometry on spectral reflectance and CIELAB values using integrating sphere and 45°/0° measurement geometries. An example of the phenomenology
Surface phenomena and the evolution of radiating fluid spheres in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Jimenez, J.; Esculpi, M.
1989-10-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.
NASA Astrophysics Data System (ADS)
Torquato, S.
1984-12-01
We derive a cluster expansion for the effective dielectric constant ɛ* of a dispersion of equal-sized spheres distributed with arbitrary degree of impenetrability. The degree of impenetrability is characterized by some parameter λ whose value varies between zero (in the case of randomly centered spheres, i.e., fully penetrable spheres) and unity (in the instance of totally impenetrable spheres). This generalizes the results of Felderhof, Ford, and Cohen who obtain a cluster expansion for ɛ* for the specific case of a dispersion of totally impenetrable spheres, i.e., the instance λ=1. We describe the physical significance of the contributions to the average polarization of the two-phase system which arise from inclusion-overlap effects. Using these results, we obtain a density expansion for ɛ*, which is exact through second order in the number density ρ, and give the physical interpretations of all of the cluster integrals that arise here. The use of a certain family of equilibrium sphere distributions is suggested in order to systematically study the effects of details of the microstructure on ɛ* through second order in ρ. We show, furthermore, that the second-order term can be written as a sum of the contribution from a reference system of totally impenetrable spheres and an excess contribution, which only involves effects due to overlap of pairs of inclusions. We also obtain an expansion for ɛ* which is exact through second order in φ2, where φ2 is the sphere volume fraction. We evaluate, for concreteness, some of the integrals that arise in this study, for arbitrary λ, in the permeable-sphere model and in the penetrable concentric-shell model introduced in this study.
NASA Astrophysics Data System (ADS)
Xie, Dexuan; Jiang, Yi
2018-05-01
This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
Extension of Nikiforov-Uvarov method for the solution of Heun equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.
2015-06-15
We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.
Integrating spheres for improved skin photodynamic therapy
NASA Astrophysics Data System (ADS)
Glennie, Diana L.; Farrell, Thomas J.; Hayward, Joseph E.; Patterson, Michael S.
2010-09-01
The prescribed radiant exposures for photodynamic therapy (PDT) of superficial skin cancers are chosen empirically to maximize the success of the treatment while minimizing adverse reactions for the majority of patients. They do not take into account the wide range of tissue optical properties for human skin, contributing to relatively low treatment success rates. Additionally, treatment times can be unnecessarily long for large treatment areas if the laser power is not sufficient. Both of these concerns can be addressed by the incorporation of an integrating sphere into the irradiation apparatus. The light fluence rate can be increased by as much as 100%, depending on the tissue optical properties. This improvement can be determined in advance of treatment by measuring the reflectance from the tissue through a side port on the integrating sphere, allowing for patient-specific treatment times. The sphere is also effective at improving beam flatness, and reducing the penumbra, creating a more uniform light field. The side port reflectance measurements are also related to the tissue transport albedo, enabling an approximation of the penetration depth, which is useful for real-time light dosimetry.
Effective transport properties of composites of spheres
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
1994-06-01
The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.
Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat
2009-10-20
In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.
Novel morphology of calcium carbonate controlled by poly(L-lysine).
Yao, Yuan; Dong, Wenyong; Zhu, Shenmin; Yu, Xinhai; Yan, Deyue
2009-11-17
The novel calcium carbonate (CaCO(3)) morphology, twin-sphere with an equatorial girdle, has been obtained under the control of poly(L-lysine) (PLys) through gas-diffusion method. The effect of the concentration of calcium cation and PLys, the reaction time, and the initial pH value are investigated, and various interesting morphologies, including twin-sphere, discus-like, hexagonal plate, and hallow structure are observed by using scanning electronic microscopy. Laser microscopic Raman spectroscopy studies indicated that all these CaCO(3) are vaterite. A possible mechanism is suggested to explain the formation of the twin-sphere based morphologies according to the results. It is proven that alkaline polypeptides can control the mineralization of CaCO(3) precisely as the reported acidic polypeptides and double hydrophilic block copolymers.
Area law microstate entropy from criticality and spherical symmetry
NASA Astrophysics Data System (ADS)
Dvali, Gia
2018-05-01
It is often assumed that the area law of microstate entropy and the holography are intrinsic properties exclusively of the gravitational systems, such as black holes. We construct a nongravitational model that exhibits an entropy that scales as area of a sphere of one dimension less. It is represented by a nonrelativistic bosonic field living on a d -dimensional sphere of radius R and experiencing an angular-momentum-dependent attractive interaction. We show that the system possesses a quantum critical point with the emergent gapless modes. Their number is equal to the area of a d -1 -dimensional sphere of the same radius R . These gapless modes create an exponentially large number of degenerate microstates with the corresponding microstate entropy given by the area of the same d -1 -dimensional sphere. Thanks to a double-scaling limit, the counting of the entropy and of the number of the gapless modes is made exact. The phenomenon takes place for arbitrary number of dimensions and can be viewed as a version of holography.
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-01-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467
NASA Astrophysics Data System (ADS)
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-12-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
Cannon, Theodore W.
1994-01-01
A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.
Cannon, T.W.
1994-07-26
A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.
Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.
Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan
2017-01-25
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
A new spatial integration method for luminous flux determination of light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhou, Xiaoli; Zhu, Shaolong; Shen, Haiping; Liu, Muqing
2010-10-01
Spatial integrated measurement using an integrating sphere is usually used for the luminous flux determination of light sources. Devices using an integrating sphere are bulky for use on a production assembly line. This paper proposes an alternative spatial integration method for accurately measuring the total luminous flux of light-emitting diodes (LEDs) having no backward emission. A compound parabolic concentrator is introduced to collect the light from an LED in conjunction with a detector which in turn measures the luminous flux. The study reported here combines both modeling and experiment to show the applicability of this novel method. The uncertainty in the measurements is then evaluated for the total luminous flux measurement from an LED.
Lectures on the scattering of light. [by dielectric sphere
NASA Technical Reports Server (NTRS)
Saxon, D. S.
1974-01-01
The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.
Yao, Jixin; Zhang, Kang; Wang, Wen; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Wu, Mingzai; Li, Guang
2018-05-03
Excellent corrosion resistance is crucial for photovoltaic devices to acquire high and stable performance under high corrosive complicated environments. Creative inspiration comes from sandwich construction, whereby Fe3O4 nanoparticles were anchored onto hollow core-shell carbon mesoporous microspheres and wrapped by N-graphene nanosheets (HCCMS/Fe3O4@N-RGO) to obtain integrated high corrosive resistance and stability. The as-prepared multiple composite material possesses outstanding performance as a result of structure optimization, performance improvement, and interface synergy. Therefore, it can effectively suppress corrosion from the electrolyte in recycled tests many times, indicating the ultrahigh corrosion resistance life of this double carbon-based nanocomposite. Furthermore, the electrical conductivity and conversion efficiency of the composite are well maintained due to the triple synergistic interactions, which could serve as a guideline in establishing high-performance multifunctional HCCMS/Fe3O4@N-RGO with great prospects in energy devices, such as lithium batteries, supercapacitors and electrode materials, etc.
Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang
2017-01-01
To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.
Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang
2017-01-01
To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
NASA Astrophysics Data System (ADS)
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
NASA Astrophysics Data System (ADS)
Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt
2015-03-01
A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.
Improved integrating-sphere throughput with a lens and nonimaging concentrator.
Chenault, D B; Snail, K A; Hanssen, L M
1995-12-01
A reflectometer design utilizing an integrating sphere with a lens and nonimaging concentrator is described. Compared with previous designs where a collimator was used to restrict the detector field of view, the concentrator-lens combination significantly increases the throughput of the reflectometer. A procedure for designing lens-concentrators is given along with the results of parametric studies. The measured angular response of a lens-concentrator system is compared with ray-trace predictions and with the response of an ideal system.
Bubble baths: just splashing around?
NASA Astrophysics Data System (ADS)
Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd
2016-11-01
Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.
Optical levitation of 10-ng spheres with nano-g acceleration sensitivity
NASA Astrophysics Data System (ADS)
Monteiro, Fernando; Ghosh, Sumita; Fine, Adam Getzels; Moore, David C.
2017-12-01
We demonstrate optical levitation of SiO2 spheres with masses ranging from 0.1 to 30 ng. In high vacuum, we observe that the measured acceleration sensitivity improves for larger masses and obtain a sensitivity of 0.4 ×10-6g /√{Hz } for a 12-ng sphere, more than an order of magnitude better than previously reported for optically levitated masses. In addition, these techniques permit long integration times and a mean acceleration of (-0.7 ±2.4 [stat] ±0.2 [syst] ) ×10-9g is measured in 1.4 ×104 s. Spheres larger than 10 ng are found to lose mass in high vacuum where heating due to absorption of the trapping laser dominates radiative cooling. This absorption constrains the maximum size of spheres that can be levitated and allows a measurement of the absorption of the trapping light for the commercially available spheres tested here. Spheres consisting of material with lower absorption may allow larger objects to be optically levitated in high vacuum.
NASA Astrophysics Data System (ADS)
Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.
2003-09-01
A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.
NASA Astrophysics Data System (ADS)
Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou
2018-04-01
Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.
Richard, David; Speck, Thomas
2018-03-28
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
NASA Astrophysics Data System (ADS)
Richard, David; Speck, Thomas
2018-03-01
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
Effects of Lambertian sources design on uniformity and measurements
NASA Astrophysics Data System (ADS)
Cariou, Nadine; Durell, Chris; McKee, Greg; Wilks, Dylan; Glastre, Wilfried
2014-10-01
Integrating sphere (IS) based uniform sources are a primary tool for ground based calibration, characterization and testing of flight radiometric equipment. The idea of a Lambertian field of energy is a very useful tool in radiometric testing, but this concept is being checked in many ways by newly lowered uncertainty goals. At an uncertainty goal of 2% one needs to assess carefully uniformity in addition to calibration uncertainties, as even sources with a 0.5% uniformity are now substantial proportions of uncertainty budgets. The paper explores integrating sphere design options for achieving 99.5% and better uniformity of exit port radiance and spectral irradiance created by an integrating sphere. Uniformity in broad spectrum and spectral bands are explored. We discuss mapping techniques and results as a function of observed uniformity as well as laboratory testing results customized to match with customer's instrumentation field of view. We will also discuss recommendations with basic commercial instrumentation, we have used to validate, inspect, and improve correlation of uniformity measurements with the intended application.
Analytical expressions for the correlation function of a hard sphere dimer fluid
NASA Astrophysics Data System (ADS)
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Analytical expression for the correlation function of a hard sphere chain fluid
NASA Astrophysics Data System (ADS)
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
SPHERES: From Ground Development to Operations on ISS
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of experts who can guide the Payload Developer (PD) and Principle Investigator (PI) in reaching critical milestones to make their science a reality using the SPHERES platform. From performing integrated safety and verification assessments, to assisting in developing crew procedures and operations products, to organizing, planning, and executing all test sessions, to helping manage data products, the SPHERES team at ARC is available to support microgravity research with the SPEHRES Guest Scientist Program.
Intercomparison of Laboratory Radiance Calibration Standards
NASA Technical Reports Server (NTRS)
Pavri, Betina; Chrien, Tom; Green, Robert; Williams, Orlesa
2000-01-01
Several standards for radiometric calibration were measured repeatedly with a spectroradiometer in order to understand how they compared in accuracy and stability. The tested radiance standards included a NIST 1000 W bulb and halon panel, two calibrated and stabilized integrating spheres, and a cavity blackbody. Results indicate good agreement between the blackbody and 1000 W bulb/spectralon panel, If these two radiance sources are assumed correct, then the integrating spheres did not conform. to their manufacturer-reported radiances in several regions of the spectrum. More detailed measurements am underway to investigate the discrepancy.
NASA Astrophysics Data System (ADS)
Hodgkinson, J.; Masiyano, D.; Tatam, R. P.
2013-02-01
We have studied the effect on 2nd harmonic wavelength modulation spectroscopy of the use of integrating spheres as multipass gas cells. The gas lineshape becomes distorted at high concentrations, as a consequence of the exponential pathlength distribution of the sphere, introducing nonlinearity beyond that expected from the Beer-Lambert law. We have modelled this numerically for methane absorption at 1.651 μm, with gas concentrations in the range of 0-2.5 %vol in air. The results of this model compare well with experimental measurements. The nonlinearity for the 2 fWMS measurements is larger than that for direct scan measurements; if this additional effect were not accounted for, the resulting error would be approximately 20 % of the reading at a concentration of 2.5 %vol methane.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
NASA Astrophysics Data System (ADS)
Pogosyan, S. I.; Durgaryan, A. M.; Konyukhov, I. V.; Chivkunova, O. B.; Merzlyak, M. N.
2009-12-01
A device for integrating cavity absorption measurements (ICAM) with an internal diameter of 80 mm suitable for field research is described. The spectral features of the light absorption by some cyanobacteria, green algae, and diatoms in the integrating sphere were studied and the dependences of the absorption on the cell concentration were determined in comparison with the conventional measurements in a 1-cm cuvette. The sensitivity of the chlorophyll estimation with the ICAM reached 0.2-0.5 mg m-3. The results of the ICAM application for the direct analysis of the natural phytoplankton and dissolved organic (“yellow“) matter in the Black Sea and the Sea of Japan are described.
Improved AFM Mapping of ICF Target Surfaces
NASA Astrophysics Data System (ADS)
Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.
2003-10-01
Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.
Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and themore » solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also discussed.« less
Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David
2015-02-02
Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
1994-09-30
experimental proof-of-concept series hybrid thermo-mechano-elec- tromechanical and/or electromechanical All-Wheel-Driven (AWD) pro- pulsion, All-Wheel...caterpillar-tracks’ motorized sprocket-, road- and tensioner- wheels form a complete proof-of-concept series hybrid thermo- mechano-electromechanical and/or...tromechanical AWA supension spheres and skid-steering conversion spheres used as integral spheres together with future new concept hybrid thermo
NASA Astrophysics Data System (ADS)
Liu, Yueru; Hu, Kunhong; Hu, Enzhu; Guo, Jianhua; Han, Chengliang; Hu, Xianguo
2017-01-01
Molybdenum disulfide (MoS2) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS2, novel double-hollow-sphere MoS2 (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.
Potential application of Chinese traditional medicine (CTM) as enhancer for tissue optical clearing
NASA Astrophysics Data System (ADS)
Chen, Wei; Jiang, Jingying; Wang, Ruikang K.; Xu, Kexin
2009-02-01
Many biocompatible hyperosmotic agents such as dimethyl sulfoxide(DMSO) have been used as enhancers for tissue optical clearing technique. However, previous investigations showed that DMSO can induce bradycardia, respiratory problems, and alterations in blood pressure. Also, DMSO could potentially alter the chemical structure, and hence the functional properties, of cell membranes. In this talk, Borneol among natural and nontoxic CTMs was introduced as new enhancer for optical clearing of porcine skin tissue since it has been widely used as new penetration promoter in the field of trandermial drug delivery system(TDDS) and been proved to be effective. In the first, the spectral characteristics of borneol was obtained and analyzed by Fourier Transformation Infrared (FTIR) spectrophotometer. And further experimental studies were performed to probe if borneol is capable of optical clearing of porcine skin tissue in vitro with near infrared spectroscopy, double integrating-spheres system and Inverse Adding-Doubling(IAD) algorithm. Spectral results show that light penetration depth into skin tissue got the increase. Meanwhile, absorption coefficient and scattering coefficient of porcine skin treated by borneol got the decrease during the permeation of Borneol. Therefore, Borneol could be potentially used as enhancer for tissue optical clearing to improve non-invasive light-based diagnostic and imaging techniques while practically optical application and clinical safety are under consideration.
Equation of state and critical point behavior of hard-core double-Yukawa fluids.
Montes, J; Robles, M; López de Haro, M
2016-02-28
A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.
NASA Astrophysics Data System (ADS)
Tomes, John J.; Finlayson, Chris E.
2016-09-01
We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.
An Automated Flying-Insect-Detection System
NASA Technical Reports Server (NTRS)
Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert
2005-01-01
An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.
Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming
2017-11-01
Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping
2015-07-01
Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small CuxS nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-CuxS composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached CuxS nanoparticles and the enhanced chemotherapy promoted by the heat from the CuxS-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small CuxS nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-CuxS composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached CuxS nanoparticles and the enhanced chemotherapy promoted by the heat from the CuxS-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy. Electronic supplementary information (ESI) available: XRD patterns, zeta potential and FT-IR spectra of the samples obtained in different steps. N2 adsorption/desorption isotherm and the pore size distribution of Y2O3:Yb,Er@mSiO2-CuxS. Confocal images of HeLa cancer cells dyed with calcein AM and propidium iodide co-stained cells after treatment of Y2O3:Yb,Er@mSiO2-CuxS without or with 980 nm laser irradiation. CLSM images of HeLa cells incubated with DOX-Y2O3:Yb,Er@mSiO2-NH2-FA-CuxS-PEG and DOX-Y2O3:Yb,Er@mSiO2-NH2-CuxS-PEG for different times. The digital photographs of the H22 tumor-bearing Balb/c mice injected in situ with DOX-Y2O3:Yb,Er@mSiO2-NH2-FA-CuxS-PEG and DOX-Y2O3:Yb,Er@mSiO2-NH2-CuxS-PEG and the corresponding tumor sizes. See DOI: 10.1039/c5nr02269j
Analytic study of a rolling sphere on a rough surface
NASA Astrophysics Data System (ADS)
Florea, Olivia A.; Rosca, Ileana C.
2016-11-01
In this paper it is realized an analytic study of the rolling's sphere on a rough horizontal plane under the action of its own gravity. The necessities of integration of the system of dynamical equations of motion lead us to find a reference system where the motion equations should be transformed into simpler expressions and which, in the presence of some significant hypothesis to permit the application of some original methods of analytical integration. In technical applications, the bodies may have a free rolling motion or a motion constrained by geometrical relations in assemblies of parts and machine parts. This study involves a lot of investigations in the field of tribology and of applied dynamics accompanied by experiments. Multiple recordings of several trajectories of the sphere, as well as their treatment of images, also followed by statistical processing experimental data allowed highlighting a very good agreement between the theoretical findings and experimental results.
Spheres: from Ground Development to ISS Operations
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2016-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.
Method of preparing copper-dendritic composite alloys for mechanical reduction
Verhoeven, John D.; Gibson, Edwin D.; Schmidt, Frederick A.; Spitzig, William A.
1988-01-01
Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2000 .mu.m, and the platelets thicknesses of 100 to 2000 .mu.m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt.
Method of preparing copper-dendritic composite alloys for mechanical reduction
Verhoeven, J.D.; Gibson, E.D.; Schmidt, F.A.; Spitzig, W.A.
1988-09-13
Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2,000 [mu]m, and the platelets thicknesses of 100 to 2,000 [mu]m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt. 3 figs.
Parametric study of power absorption from electromagnetic waves by small ferrite spheres
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1989-01-01
Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.
Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method.
Patel, Roshni S; Cho, Daniel Y; Tian, Cheng; Chang, Amy; Estrellas, Kenneth M; Lavin, Danya; Furtado, Stacia; Mathiowitz, Edith
2012-01-01
We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.
Boundary integral equation analysis for suspension of spheres in Stokes flow
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Veerapaneni, Shravan
2018-06-01
We show that the standard boundary integral operators, defined on the unit sphere, for the Stokes equations diagonalize on a specific set of vector spherical harmonics and provide formulas for their spectra. We also derive analytical expressions for evaluating the operators away from the boundary. When two particle are located close to each other, we use a truncated series expansion to compute the hydrodynamic interaction. On the other hand, we use the standard spectrally accurate quadrature scheme to evaluate smooth integrals on the far-field, and accelerate the resulting discrete sums using the fast multipole method (FMM). We employ this discretization scheme to analyze several boundary integral formulations of interest including those arising in porous media flow, active matter and magneto-hydrodynamics of rigid particles. We provide numerical results verifying the accuracy and scaling of their evaluation.
The double-layer of penetrable ions: an alternative route to charge reversal.
Frydel, Derek; Levin, Yan
2013-05-07
We investigate a double-layer of penetrable ions near a charged wall. We find a new mechanism for charge reversal that occurs in the weak-coupling regime and, accordingly, the system is suitable for the mean-field analysis. The penetrability is achieved by smearing-out the ionic charge inside a sphere, so there is no need to introduce non-electrostatic forces and the system in the low coupling limit can be described by a modified version of the Poisson-Boltzmann equation. The predictions of the theory are compared with the Monte Carlo simulations.
From GLC to double-null coordinates and illustration with static black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugier, Fabien, E-mail: fnugier@ntu.edu.tw
We present a system of coordinates deriving directly from the so-called Geodesic Light-Cone (GLC) coordinates and made of two null scalars intersecting on a 2-dimensional sphere parameterized by two constant angles along geodesics. These coordinates are shown to be equivalent to the well-known double-null coordinates. As GLC, they present interesting properties for cosmology and astrophysics. We discuss this latter topic for static black holes, showing simple descriptions for the metric or particles and photons trajectories. We also briefly comment on the time of flight of ultra-relativistic particles.
The Music of the Spheres: Cross-Curricular Perspectives on Music and Science
ERIC Educational Resources Information Center
Rogers, George L.
2016-01-01
The integration of music and science is embodied in the music of the spheres, the ancient concept that the universe is ordered in a manner consistent with principles of musical harmony. This idea boasts a long history, from the teachings of Pythagoras (ca. 600 BC) through Isaac Newton in the eighteenth century, and makes a fascinating…
The Momentum behind the International Primary Curriculum in Schools in England
ERIC Educational Resources Information Center
Bunnell, Tristan
2010-01-01
The year 2007 saw a discrete yet significant development in the sphere of "international education" in England: a doubling in number of state-funded schools offering the International Primary Curriculum. This curriculum had been developed in 2000 for the Shell Company Group of Schools. It first emerged in England in 2003; two years later…
Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya
2017-01-25
A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1 while they form a pointlike one in model 2. We then examine the effects of geometric features of the solute on the amplitudes and asymmetry of the entropic potential field acting on the solute along the filament. A large aspherical solute with a cleft near the solute-filament interface, which mimics the myosin motor domain, is considered in the examination. Thus, the two fields in our physical picture described above are qualitatively reproduced. The factors to be taken into account in further studies are also discussed.
Stochastic interactions of two Brownian hard spheres in the presence of depletants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karzar-Jeddi, Mehdi; Fan, Tai-Hsi, E-mail: thfan@engr.uconn.edu; Tuinier, Remco
2014-06-07
A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamicsmore » as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.« less
Negative radiation forces on spheres illuminated by acoustic Bessel beams.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Thiessen, David B.
2007-11-01
An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).
Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C
2010-02-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.
Hesford, Andrew J.; Astheimer, Jeffrey P.; Greengard, Leslie F.; Waag, Robert C.
2010-01-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method. PMID:20136208
Dose control for noncontact laser coagulation of tissue
NASA Astrophysics Data System (ADS)
Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.
1995-01-01
Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.
Improved Calibration Shows Images True Colors
NASA Technical Reports Server (NTRS)
2015-01-01
Innovative Imaging and Research, located at Stennis Space Center, used a single SBIR contract with the center to build a large-scale integrating sphere, capable of calibrating a whole array of cameras simultaneously, at a fraction of the usual cost for such a device. Through the use of LEDs, the company also made the sphere far more efficient than existing products and able to mimic sunlight.
What is a completely integrable nonholonomic dynamical system?
NASA Astrophysics Data System (ADS)
Bates, Larry; Cushman, Richard
1999-10-01
We compare the geometry of a toral fibration defined by the common level sets of the integrals of a Liouville integrable Hamiltonian system with a toral fibration coming from a completely integrable nonholonomic system. We illustrate their differences using the following examples: the nonholonomic oscillator, Chaplygin's skate, Routh's sphere and the rolling oblate ellipsoid of revolution.
Xu, Peiman; Li, Jingwei; Luo, Jiaxian; Wei, Licheng; Zhang, Dawei; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng
2018-06-21
Earth-abundant and efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly significant for renewable energy systems. However, the performance of existing electrocatalysts is usually restricted by the low electroic conductivity and the limited amount of exposed active sites. In this work, (Fe 0.2 Ni 0.8 ) 0.96 S tubular spheres supported on Ni foam have been prepared by a sulfuration of FeNi layered double hydroxide spheres grown on Ni foam. Benefiting from the unique tubular sphere architecture, the rich inner defects and the enhanced electron interactions between Fe, Ni and S, this electrocatalyst shows low overpotential of 48 mV for HER at 10 mA cm -2 in 1.0 mol L -1 KOH solution, which is one of the lowest value of non-previous electrocatalyts for HER in alkaline electrolyte. Furthermore, assembled this versatile electrode as an alkaline electrolyzer for overall water splitting, a current density of 10 mA cm -2 is achieved at a low cell voltage of 1.56 V, and reach up to 30 mA cm -2 only at an operating cell voltage of 1.65 V.
NASA Astrophysics Data System (ADS)
Pizio, O.; Sokołowski, S.; Sokołowska, Z.
2014-05-01
We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.
NASA Astrophysics Data System (ADS)
Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.
1998-05-01
The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.
Resonant dielectric metamaterials
Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B
2014-12-02
A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.
NASA Astrophysics Data System (ADS)
Li, Liangbin; Meng, Fenghua; Zhong, Zhiyuan; Byelov, Dmytro; de Jeu, Wim H.; Feijen, Jan
2007-01-01
The morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) (PCL-b-PEO) block copolymer has been studied with in situ simultaneously small and wide-angle x-ray scattering as well as atomic force microscopy. The molecular masses Mn of the PCL and PEO blocks are 24 000 and 5800, respectively. X-ray scattering and rheological measurements indicate that no microphase separation occurs in the melt. Decreasing the temperature simultaneously triggers off a crystallization of PCL and microphase separation between the PCL and PEO blocks. Coupling and competition between microphase separation and crystallization results in a morphology of PEO spheres surrounded by PCL partially crystallized in lamella. Further decreasing temperature induces the crystallization of PEO spheres, which have a preferred orientation due to the confinements from hard PCL crystalline lamella and from soft amorphous PCL segments in different sides. The final morphology of this highly asymmetric block copolymer is similar to the granular morphology reported for syndiotactic polypropylene and other (co-) polymers. This implies a similar underlying mechanism of coupling and competition of various phase transitions, which is worth further exploration.
Structure of ternary additive hard-sphere fluid mixtures.
Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano
2002-12-01
Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.
iSPHERE - A New Approach to Collaborative Research and Cloud Computing
NASA Astrophysics Data System (ADS)
Al-Ubaidi, T.; Khodachenko, M. L.; Kallio, E. J.; Harry, A.; Alexeev, I. I.; Vázquez-Poletti, J. L.; Enke, H.; Magin, T.; Mair, M.; Scherf, M.; Poedts, S.; De Causmaecker, P.; Heynderickx, D.; Congedo, P.; Manolescu, I.; Esser, B.; Webb, S.; Ruja, C.
2015-10-01
The project iSPHERE (integrated Scientific Platform for HEterogeneous Research and Engineering) that has been proposed for Horizon 2020 (EINFRA-9- 2015, [1]) aims at creating a next generation Virtual Research Environment (VRE) that embraces existing and emerging technologies and standards in order to provide a versatile platform for scientific investigations and collaboration. The presentation will introduce the large project consortium, provide a comprehensive overview of iSPHERE's basic concepts and approaches and outline general user requirements that the VRE will strive to satisfy. An overview of the envisioned architecture will be given, focusing on the adapted Service Bus concept, i.e. the "Scientific Service Bus" as it is called in iSPHERE. The bus will act as a central hub for all communication and user access, and will be implemented in the course of the project. The agile approach [2] that has been chosen for detailed elaboration and documentation of user requirements, as well as for the actual implementation of the system, will be outlined and its motivation and basic structure will be discussed. The presentation will show which user communities will benefit and which concrete problems, scientific investigations are facing today, will be tackled by the system. Another focus of the presentation is iSPHERE's seamless integration of cloud computing resources and how these will benefit scientific modeling teams by providing a reliable and web based environment for cloud based model execution, storage of results, and comparison with measurements, including fully web based tools for data mining, analysis and visualization. Also the envisioned creation of a dedicated data model for experimental plasma physics will be discussed. It will be shown why the Scientific Service Bus provides an ideal basis to integrate a number of data models and communication protocols and to provide mechanisms for data exchange across multiple and even multidisciplinary platforms.
Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications
NASA Astrophysics Data System (ADS)
Caimi, F. M.; Kocak, D. M.; Justak, J. F.
2006-04-01
Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.
NASA Astrophysics Data System (ADS)
Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun
2017-02-01
A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao
2017-01-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662
Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E
2013-10-01
An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a valuable tool for probing enhanced absorption by soot at atmospherically relevant concentrations.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Dai, Jing-Min; Zhang, Lei; Pan, Wei-Dong
2013-08-01
The spectral emissivity and transmissivity of zinc sulphide (ZnS) infrared windows in the spectral region from 2 to 12 μm and temperature range from 20 to 700°C is measured by a facility built at the Harbin Institute of Technology (HIT). The facility is based on the integrating-sphere reflectometry. Measurements have been performed on two samples made of ZnS. The results measured at 20°C are in good agreement with those obtained by the method of radiant energy comparison using a Fourier transform infrared spectrometer. Emissivity measurements performed with this facility present an uncertainty of 5.5% (cover factor=2).
Double Fourier Series Solution of Poisson’s Equation on a Sphere.
1980-10-29
algebraic systems, the solution of these systems, and the inverse transform of the solution in Fourier space back to physi- cal space. 6. Yee, S. Y. K...Multiply each count in steps (2) through (5) by K] 7. Inverse transform um(0j j = 1, J - 1, to obtain u k; set u(P) = u 0 (P). [K(J - 1) log 2 K
Public sphere as assemblage: the cultural politics of roadside memorialization.
Campbell, Elaine
2013-09-01
This paper investigates contemporary academic accounts of the public sphere. In particular, it takes stock of post-Habermasian public sphere scholarship, and acknowledges a lively and variegated debate concerning the multiple ways in which individuals engage in contemporary political affairs. A critical eye is cast over a range of key insights which have come to establish the parameters of what 'counts' as a/the public sphere, who can be involved, and where and how communicative networks are established. This opens up the conceptual space for re-imagining a/the public sphere as an assemblage. Making use of recent developments in Deleuzian-inspired assemblage theory - most especially drawn from DeLanda's (2006) 'new philosophy of society' - the paper sets out an alternative perspective on the notion of the public sphere, and regards it as a space of connectivity brought into being through a contingent and heterogeneous assemblage of discursive, visual and performative practices. This is mapped out with reference to the cultural politics of roadside memorialization. However, a/the public sphere as an assemblage is not simply a 'social construction' brought into being through a logic of connectivity, but is an emergent and ephemeral space which reflexively nurtures and assembles the cultural politics (and political cultures) of which it is an integral part. The discussion concludes, then, with a consideration of the contribution of assemblage theory to public sphere studies. (Also see Campbell 2009a). © London School of Economics and Political Science 2013.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.
Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk
2013-11-20
Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers
NASA Astrophysics Data System (ADS)
Belafhal, A.; Ez-zariy, L.; Hricha, Z.
2016-11-01
By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.
Liouvillian integrability of gravitating static isothermal fluid spheres
NASA Astrophysics Data System (ADS)
Iacono, Roberto; Llibre, Jaume
2014-10-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka-Volterra quadratic polynomial differential system in {R}^2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka-Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka-Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.
Inductance Calculations of Variable Pitch Helical Inductors
2015-08-01
8217 ’ Integral solution using Simpson’s Rule ’ Dim i As Integer Dim Pi As Double, uo As Double, kc As Double Dim a As Double, amax As Double, da As...Double Dim steps As Integer Dim func1a As Double, func1b As Double ’ On Error GoTo err_TorisV1 steps = 1000 Pi = 3.14159 uo = 4 * Pi * 0.0000001...As Double ’ ’ Integral solution using Simpson’s Rule ’ Dim i As Integer Dim Pi As Double, uo As Double, kc As Double Dim a As Double, amax As
Bounds on the conductivity of a suspension of random impenetrable spheres
NASA Astrophysics Data System (ADS)
Beasley, J. D.; Torquato, S.
1986-11-01
We compare the general Beran bounds on the effective electrical conductivity of a two-phase composite to the bounds derived by Torquato for the specific model of spheres distributed throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be identical and to depend on the microstructure through the sphere volume fraction φ2 and a three-point parameter ζ2, which is an integral over a three-point correlation function. We evaluate ζ2 exactly through third order in φ2 for distributions of impenetrable spheres. This expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of whom employed the superposition approximation for the three-particle distribution function involved in ζ2. The results indicate that the exact ζ2 will be greater than the value calculated under the superposition approximation. For reasons of mathematical analogy, the results obtained here apply as well to the determination of the thermal conductivity, dielectric constant, and magnetic permeability of composite media and the diffusion coefficient of porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitationalmore » acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.« less
Hao, Zhi-Qiang; Cao, Jing-Pei; Zhao, Xiao-Yan; Wu, Yan; Zhu, Jun-Sheng; Dang, Ya-Li; Zhuang, Qi-Qi; Wei, Xian-Yong
2018-03-01
A novel strategy is proposed for the increase of specific surface area (SSA) of porous carbon sphere (PCS) by oxidation and activation. 2-keto-l-gulonic acid mother liquor (GAML) as a high-pollution waste has a relatively high value of reutilization. For its high value-added utilization, GAML is used as the precursor for preparation of PCS as carbon-based electrode materials for electric double-layer capacitor. PCS is prepared by hydrothermal carbonization, carbonization and KOH activation, and Fe(NO 3 ) 3 9H 2 O is used as an oxidizing agent during carbonization. The as-prepared PCS has excellent porosity and high SSA of 2478 m 2 g -1 . Meanwhile, the pore structure of PCS can be controlled by the adjustment of carbonization parameters (carbonization temperature and the loading of Fe(NO 3 ) 3 9H 2 O). Besides, the SSA and specific capacitance of PCS can be increased remarkably when Fe(NO 3 ) 3 9H 2 O is added in carbonization. The specific capacitance of PCS can reach 303.7 F g -1 at 40 mA g -1 . PCSs as electrode material have superior electrochemical stability. After 8000 cycles, the capacitance retention is 98.3% at 2 A g -1 . The electric double-layer capacitance of PCS is improved when CS is carbonized with Fe(NO 3 ) 3 9H 2 O, and the economic and environmental benefits are achieved by the effective recycle of GAML. Copyright © 2017 Elsevier Inc. All rights reserved.
Polarization-analyzing circuit on InP for integrated Stokes vector receiver.
Ghosh, Samir; Kawabata, Yuto; Tanemura, Takuo; Nakano, Yoshiaki
2017-05-29
Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.
NASA Astrophysics Data System (ADS)
Dodig, H.
2017-11-01
This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.
Gentle, A R; Smith, G B
2014-10-20
Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based spectrophotometers and integrating spheres. Localized "hot spots" of intensity are common in such materials, so data on small samples is unreliable. A novel device and simple protocols have been developed and undergone validation testing. Simultaneous solar and visible transmittance and reflectance data have been acquired for skylight components and multilayer polycarbonate roof panels. The pyranometer and lux sensor setups also directly yield "light coolness" in lumens/watt. Sample areas must be large, and, although mainly in sheet form, some testing has been done on curved panels. The instrument, its operation, and the simple calculations used are described. Results on a subset of diffuse and partially diffuse materials with no hot spots have been cross checked using 150 mm integrating spheres with a spectrophotometer and the Air Mass 1.5 spectrum. Indications are that results are as good or better than with such spheres for transmittance, but reflectance techniques need refinement for some sample types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonsson, Jacob C.; Branden, Henrik
2006-10-19
This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be usedmore » to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.« less
Woo, Eamor M; Nurkhamidah, Siti; Chen, Yu-Fan
2011-10-21
Top-surface and three-dimensional views of Type-1 and Type-2 of ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) in thicker bulk crystallized on a nucleating potassium bromide (KBr) substrate were examined using various microscopy techniques: scanning electron microscopy (SEM), polarized-optical microscopy (POM), and atomic-force microscopy (AFM). In PNT crystallized at higher crystallization temperature (T(c)) with heterogeneous nucleating substrate, typically two types of ring-banded spherulites are present that differ significantly in patterns and ring spacings: Type-1 Type-2 (single- and double-ring-banded spherulites). Three-dimensional view on fractured spherulites in bulk PNT samples reveals that the single-ring-banded spherulite (Type-1) tends to be well-rounded spheres as they are nucleated homogeneously from bulk; the double-ring-banded spherulite (Type-2) is concentric hemisphere or truncated sphere shells owing to be nucleated from bottom. With confined thickness of films, the 3-D hemispheres in PNT may become truncated into multi-shell annular cones or arcs when thickness or growth is restricted. Based on the top-surface vs. interior views of banded lamellar assembly, origins and inner structures of dual types of ring bands in PNT were examined in greater details. This journal is © the Owner Societies 2011
Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.
Yu, Huijuan; Huang, Qiangxian; Zhao, Jian
2014-06-25
A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.
Huang, Xinhua; Kim, Seok; Heo, Min Seon; Kim, Ji Eun; Suh, Hongsuk; Kim, Il
2013-10-01
An easy template-free approach to the fabrication of pure carbon microspheres has been achieved via direct pyrolysis of as-prepared polyaromatic hydrocarbons including polynaphthalene and polypyrene. The polyaromatics were synthesized from aromatic hydrocarbons (AHCs) using anhydrous zinc chloride as the Friedel-Crafts catalyst and chloromethyl methyl ether as a cross-linker. The experimental results show that the methylene bridges between phenyl rings generate a hierarchical porous polyaromatic precursor to form three-dimensionally (3D) interconnected micro-, meso-, and macroporous networks during carbonization. These hierarchical porous carbon aggregates of spherical carbon spheres exhibit faster ion transport/diffusion behavior and increased surface area usage in electric double-layer capacitors. Furthermore, micropores are present in the 3D interconnected network inside the cross-linked AHC-based carbon microspheres, thus imparting an exceptionally large, electrochemically accessible surface area for charge accumulation.
The role of heroic doubling in ideologically motivated state and terrorist violence.
Griffin, Roger
2017-08-01
The psychiatrist Robert Lifton developed his model of 'doubling' to account for the capacity of some human beings to commit atrocities in one compartment of their lives, while continuing to maintain normal social relations in their domestic sphere, a phenomenon which he encountered both in interviews with former Nazi doctors working in concentration camps, and with terrorists belonging to the Japanese Aum Shinrikyo cult. By supplementing this model with a theory of heroization based on existential anthropology and Jung's concept of the Shadow, a composite heuristic explanatory paradigm is formed, 'heroic doubling', which may contribute to the empathetic understanding of acts of extreme violence being carried out by individuals who do not present symptoms of psychiatric disorder and maintain normal existences, yet are prepared to kill and be killed for a cause that confers on their lives a sense of transcendent purpose and sacrality.
NASA Technical Reports Server (NTRS)
Craven, P. D.; Gary, G. A.
1972-01-01
The Mie theory of light scattering by spheres was used to calculate the scattered intensity functions resulting from single scattering in a polydispersed collection of spheres. The distribution used behaves according to the inverse fourth power law; graphs and tables for the angular dependence of the intensity and polarization for this law are given. The effects of the particle size range and the integration increment are investigated.
Magnetic zero-modes, vortices and Cartan geometry
NASA Astrophysics Data System (ADS)
Ross, Calum; Schroers, Bernd J.
2018-04-01
We exhibit a close relation between vortex configurations on the 2-sphere and magnetic zero-modes of the Dirac operator on R^3 which obey an additional nonlinear equation. We show that both are best understood in terms of the geometry induced on the 3-sphere via pull-back of the round geometry with bundle maps of the Hopf fibration. We use this viewpoint to deduce a manifestly smooth formula for square-integrable magnetic zero-modes in terms of two homogeneous polynomials in two complex variables.
Experimental and numerical study on bubble-sphere interaction near a rigid wall
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, A. M.; Han, R.; Liu, Y. Q.
2017-09-01
This study is concerned with the interaction between a violently oscillating bubble and a movable sphere with comparable size near a rigid wall, which is an essential physical phenomenon in many applications such as cavitation, underwater explosion, ultrasonic cleaning, and biomedical treatment. Experiments are performed in a cubic water tank, and the underwater electric discharge technique (580 V DC) is employed to generate a bubble that is initiated between a rigid wall and a sphere in an axisymmetric configuration. The bubble-sphere interactions are captured using a high-speed camera operating at 52 000 frames/s. A classification of the bubble-sphere interaction is proposed, i.e., "weak," "intermediate," and "strong" interactions, identified with three distinct bubble shapes at the maximum volume moment. In the numerical simulations, the boundary integral method and the auxiliary function method are combined to establish a full coupling model that decouples the mutual dependence between the force and the sphere motion. The main features of bubble dynamics in different experiments are well reproduced by our numerical model. Meanwhile, the pressure and velocity fields are also provided for clarifying the associated mechanisms. The effects of two dimensionless standoff parameters, namely, γs (defined as ds/Rm, where ds is the minimum distance between the initial bubble center and the sphere surface and Rm is the maximum bubble radius) and γw (defined as dw/Rm, where dw is the distance between the initial bubble center and the rigid wall), are also discussed.
LEHMANN, CHRISTIAN; JOBS, GABRIELE; THOMAS, MARKUS; BURTSCHER, HELMUT; KUBBIES, MANFRED
2012-01-01
The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24−/CD44+ and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil-sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells. PMID:23042145
Generalized Lorenz equations on a three-sphere
NASA Astrophysics Data System (ADS)
Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.
2017-06-01
Edward Lorenz is best known for one specific three-dimensional differential equation, but he actually created a variety of related N-dimensional models. In this paper, we discuss a unifying principle for these models and put them into an overall mathematical framework. Because this family of models is so large, we are forced to choose. We sample the variety of dynamics seen in these models, by concentrating on a four-dimensional version of the Lorenz models for which there are three parameters and the norm of the solution vector is preserved. We can therefore restrict our focus to trajectories on the unit sphere S 3 in ℝ4. Furthermore, we create a type of Poincaré return map. We choose the Poincaré surface to be the set where one of the variables is 0, i.e., the Poincaré surface is a two-sphere S 2 in ℝ3. Examining different choices of our three parameters, we illustrate the wide variety of dynamical behaviors, including chaotic attractors, period doubling cascades, Standard-Map-like structures, and quasiperiodic trajectories. Note that neither Standard-Map-like structure nor quasiperiodicity has previously been reported for Lorenz models.
George, Jineesh; Ebenezer, D D; Bhattacharyya, S K
2010-10-01
A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
Absorption and scattering by fractal aggregates and by their equivalent coated spheres
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Heng, Ri-Liang; Pilon, Laurent
2015-01-01
This paper demonstrates that the absorption and scattering cross-sections and the asymmetry factor of randomly oriented fractal aggregates of spherical monomers can be rapidly estimated as those of coated spheres with equivalent volume and average projected area. This was established for fractal aggregates with fractal dimension ranging from 2.0 to 3.0 and composed of up to 1000 monodisperse or polydisperse monomers with a wide range of size parameter and relative complex index of refraction. This equivalent coated sphere approximation was able to capture the effects of both multiple scattering and shading among constituent monomers on the integral radiation characteristics of the aggregates. It was shown to be superior to the Rayleigh-Debye-Gans approximation and to the equivalent coated sphere approximation proposed by Latimer. However, the scattering matrix element ratios of equivalent coated spheres featured large angular oscillations caused by internal reflection in the coating which were not observed in those of the corresponding fractal aggregates. Finally, the scattering phase function and the scattering matrix elements of aggregates with large monomer size parameter were found to have unique features that could be used in remote sensing applications.
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-11-01
This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is necessary when solving well-known problems. Second, we illustrate that the method of integration by parts can be directly applied to many of the classic pedagogical problems in the literature concerning double integrals, without taking the well-worn steps associated with reversing the order of integration. Third, we examine the benefits and limitations of such a method. In our conclusion, we advocate for integration by parts to be a part of the pedagogical conversation in the learning and teaching of double integral methods; and call for more debate around its use in the learning and teaching of other areas of mathematics. Finally, we emphasize the need for critical approaches in the pedagogy of mathematics more broadly.
NASA Astrophysics Data System (ADS)
Yazdani, Mohsen
Transient electromagnetic scattering by a radially uniaxial dielectric sphere is explored using three well-known methods: Debye series, Mie series, and ray tracing theory. In the first approach, the general solutions for the impulse and step responses of a uniaxial sphere are evaluated using the inverse Laplace transformation of the generalized Mie series solution. Following high frequency scattering solution of a large uniaxial sphere, the Mie series summation is split into the high frequency (HF) and low frequency terms where the HF term is replaced by its asymptotic expression allowing a significant reduction in computation time of the numerical Bromwich integral. In the second approach, the generalized Debye series for a radially uniaxial dielectric sphere is introduced and the Mie series coefficients are replaced by their equivalent Debye series formulations. The results are then applied to examine the transient response of each individual Debye term allowing the identification of impulse returns in the transient response of the uniaxial sphere. In the third approach, the ray tracing theory in a uniaxial sphere is investigated to evaluate the propagation path as well as the arrival time of the ordinary and extraordinary returns in the transient response of the uniaxial sphere. This is achieved by extracting the reflection and transmission angles of a plane wave obliquely incident on the radially oriented air-uniaxial and uniaxial-air boundaries, and expressing the phase velocities as well as the refractive indices of the ordinary and extraordinary waves in terms of the incident angle, optic axis and propagation direction. The results indicate a satisfactory agreement between Debye series, Mie series and ray tracing methods.
Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media
Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado
2013-01-01
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404
ERIC Educational Resources Information Center
Dubois-Shaik, Farah
2014-01-01
This article proposes combining discourse theory and perspectives on political membership developments in Western European societies. It combines theories and examples of policy discourses about "migrant integration" in the Swiss national context in the sphere of education. This examination aims to deconstruct specific membership framing…
Peace Pilgrim, Exemplar of Level V
ERIC Educational Resources Information Center
Piechowski, Michael
2009-01-01
Cases of secondary integration (Level V), the most advanced level of development through positive disintegration, are easily found within the religious sphere. To find a secular case of secondary integration presents a greater challenge. The life of Peace Pilgrim (1908-1981), known personally to a great many people, appears to be such a case. The…
On-chip quantum interference of a superconducting microsphere
NASA Astrophysics Data System (ADS)
Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.
2018-04-01
We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.
Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime
NASA Astrophysics Data System (ADS)
Teo, L. P.
2014-05-01
We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading order term is linear in D, indicating a larger correction at higher dimensions. The methodologies employed in this work and the results obtained can be used to study the one-loop effective action of the system of two spherical objects in the universe.
Development of a low background test facility for the SPICA-SAFARI on-ground calibration
NASA Astrophysics Data System (ADS)
Dieleman, P.; Laauwen, W. M.; Ferrari, L.; Ferlet, M.; Vandenbussche, B.; Meinsma, L.; Huisman, R.
2012-09-01
SAFARI is a far-infrared camera to be launched in 2021 onboard the SPICA satellite. SAFARI offers imaging spectroscopy and imaging photometry in the wavelength range of 34 to 210 μm with detector NEP of 2•10-19 W/√Hz. A cryogenic test facility for SAFARI on-ground calibration and characterization is being developed. The main design driver is the required low background of a few attoWatts per pixel. This prohibits optical access to room temperature and hence all test equipment needs to be inside the cryostat at 4.5K. The instrument parameters to be verified are interfaces with the SPICA satellite, sensitivity, alignment, image quality, spectral response, frequency calibration, and point spread function. The instrument sensitivity is calibrated by a calibration source providing a spatially homogeneous signal at the attoWatt level. This low light intensity is achieved by geometrical dilution of a 150K source to an integrating sphere. The beam quality and point spread function is measured by a pinhole/mask plate wheel, back-illuminated by a second integrating sphere. This sphere is fed by a stable wide-band source, providing spectral lines via a cryogenic etalon.
NASA Astrophysics Data System (ADS)
Hu, Z.; Chen, Z.; Peng, X.; Du, T.; Cui, Z.; Ge, L.; Zhu, W.; Wang, Z.; Zhu, X.; Chen, J.; Zhang, G.; Li, X.; Chen, J.; Zhang, H.; Zhong, G.; Hu, L.; Wan, B.; Gorini, G.; Fan, T.
2017-06-01
A Bonner sphere spectrometer (BSS) plays an important role in characterizing neutron spectra and determining their neutron dose in a neutron-gamma mixed field. A BSS consisting of a set of nine polyethylene spheres with a 3He proportional counter was developed at Peking University to perform neutron spectrum and dosimetry measurements. Response functions (RFs) of the BSS were calculated with the general Monte Carlo code MCNP5 for the neutron energy range from thermal up to 20 MeV, and were experimentally calibrated with monoenergetic neutron beams from 144 keV to 14 MeV on a 4.5 MV Van de Graaff accelerator. The calculated RFs were corrected with the experimental values, and the whole response matrix was completely established. The spectrum of a 241Am-Be source was obtained after unfolding the measurement data of the BSS to the source and in fair agreement with the expected one. The integral ambient dose equivalent corresponding to the spectrum was 0.95 of the expected value. Results of the unfolded spectrum and the integral dose equivalent measured by the BSS verified that the RFs of the BSS were well established.
Clifford coherent state transforms on spheres
NASA Astrophysics Data System (ADS)
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t , t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
On the inversion of geodetic integrals defined over the sphere using 1-D FFT
NASA Astrophysics Data System (ADS)
García, R. V.; Alejo, C. A.
2005-08-01
An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
1980-08-01
an audio oscillator , speaker, frequency counter, and oscilloscope the spheres could be driven into resonance. This procedure was first done for the...cavity, some of the electromagnetic energy is absorbed by an absorbing media. Heating of the gas occurs with the resultant pressure change creating an...acoustic wave. Due to the double open-ended organ pipe design, a pressure maximum occurs midway down the cavity. Because of the symetric placement of the
The curious case of large-N expansions on a (pseudo)sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
The curious case of large-N expansions on a (pseudo)sphere
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
2015-02-03
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria
2014-08-14
Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.
ERIC Educational Resources Information Center
Tisdell, Christopher C.
2017-01-01
This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is…
The Special Needs of Women: A Plea for an Integrated Approach and Some Programme Proposals.
ERIC Educational Resources Information Center
Bharadwaj, Geeta R.; Srivastava, Suman
The paper examines family planning and nutrition needs as well as education and employment while exploring ideas of how an integrated approach is possible in promoting quality of both the reproductive and productive sphere of women's lives. It is suggested that understanding women's differential role will make it possible for planners, policy…
Moments of Inertia of Disks and Spheres without Integration
ERIC Educational Resources Information Center
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Radiation Budget Instrument (RBI) for JPSS-2
NASA Technical Reports Server (NTRS)
Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul
2015-01-01
Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES instruments approach. To monitor climate change and to get stable and traceable results, it is critical to assure stable calibration over instrument lifetime.
Reflection measurements for luminescent powders
NASA Astrophysics Data System (ADS)
Kroon, R. E.
2018-04-01
Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.
Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
NASA Astrophysics Data System (ADS)
Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.
2018-03-01
Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.
Recovering the negative mode for type B Coleman-de Luccia instantons
NASA Astrophysics Data System (ADS)
Yang, I.-Sheng
2013-04-01
The usual (type A) thin-wall Coleman—de Luccia instanton is made by a bigger-than-half sphere of the false vacuum and a smaller-than-half sphere of the true vacuum. It has the standard O(4) symmetric negative mode associated with changing the size of the true vacuum region. On the other hand, the type B instanton, made by two smaller-than-half spheres, was believed to have lost this negative mode. We argue that such a belief is misguided due to an overrestriction on the Euclidean path integral. We introduce the idea of a “purely geometric junction” to visualize why such a restriction could be removed, and then we explicitly construct this negative mode. We also show that type B and type A instantons have the same thermal interpretation for mediating tunnelings.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
Chen, Ze; Ye, Sunjie; Evans, Stephen D; Ge, Yuanhang; Zhu, Zhifeng; Tu, Yingfeng; Yang, Xiaoming
2018-05-01
Carbonaceous nanotubes (CTs) represent one of the most popular and effective carbon electrode materials for supercapacitors, but the electrochemistry performance of CTs is largely limited by their relatively low specific surface area, insufficient usage of intratube cavity, low content of heteroatom, and poor porosity. An emerging strategy for circumventing these issues is to design novel porous CT-based nanostructures. Herein, a spheres-in-tube nanostructure with hierarchical porosity is successfully engineered, by encapsulating heteroatom-doping hollow carbon spheres into one carbonaceous nanotube (HCSs@CT). This intriguing nanoarchitecture integrates the merits of large specific surface area, good porosity, and high content of heteroatoms, which synergistically facilitates the transportation and exchange of ions and electrons. Accordingly, the as-prepared HCSs@CTs possess outstanding performances as electrode materials of supercapacitors, including superior capacitance to that of CTs, HCSs, and their mixtures, coupled with excellent cycling life, demonstrating great potential for applications in energy storage. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
Sapozhnikov, Oleg A.; Bailey, Michael R.
2013-01-01
A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086
Determinants and conformal anomalies of GJMS operators on spheres
NASA Astrophysics Data System (ADS)
Dowker, J. S.
2011-03-01
The conformal anomalies and functional determinants of the Branson-GJMS operators, P2k, on the d-dimensional sphere are evaluated in explicit terms for any d and k such that k <= d/2 (if d is even). The determinants are given in terms of multiple gamma functions and a rational multiplicative anomaly, which vanishes for odd d. Taking the mode system on the sphere as the union of Neumann and Dirichlet ones on the hemisphere is a basic part of the method and leads to a heuristic explanation of the non-existence of 'super-critical' operators, 2k > d for even d. Significant use is made of the Barnes zeta function. The results are given in terms of ratios of determinants of operators on a (d + 1)-dimensional bulk dual sphere. For odd dimensions, the log determinant is written in terms of multiple sine functions and agreement is found with holographic computations, yielding an integral over a Plancherel measure. The N-D determinant ratio is also found explicitly for even dimensions. Ehrhart polynomials are encountered.
NASA Technical Reports Server (NTRS)
Bogart, D. D.; Shook, D. F.; Fieno, D.
1973-01-01
Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.
Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V
2007-07-21
The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.
Simulation of diffuse-charge capacitance in electric double layer capacitors
NASA Astrophysics Data System (ADS)
Sun, Ning; Gersappe, Dilip
2017-01-01
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
The astronomy of Andean myth: The history of a cosmology
NASA Astrophysics Data System (ADS)
Sullivan, William F.
It is shown that Andean myth, on one level, represents a technical language recording astronomical observations of precession and, at the same time, an historical record of simultaneous social and celestial transformations. Topographic and architectural terms of Andean myth are interpreted as a metaphor for the organization of and locations on the celestial sphere. Via ethoastronomical date, mythical animals are identified as stars and placed on the celestial sphere according to their topographical location. Tested in the planetarium, these arrays generate cluster of dates - 200 B.C. and 650 A.D. Analysis of the names of Wiraqocha and Manco Capac indicates they represent Saturn and Jupiter and that their mythical meeting represents their conjunction in 650 A.D. The astronomy of Andean myth is then used as an historical tool to examine how the Andean priest-astronomers recorded the simultaneous creation of the avllu and of this distinctive astronomical system about 200 B.C. The idea that the agricultural avllu, with its double descent system stressing the importance of paternity, represents a transformation of society from an earlier matrilineal/horticultural era is examined in light of the sexual imagery employed in myth. Wiraqocha's androgyny and the division of the celestial sphere into male (ecliptic) and female (celestial equator = earth) are interpreted as cosmological validations of the new social structure.
Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment
Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.
2001-01-01
An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.
Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment
Wong-Ng, W.; Siegrist, T.; DeTitta, G. T.; Finger, L. W.; Evans, H. T.; Gabe, E. J.; Enright, G. D.; Armstrong, J. T.; Levenson, M.; Cook, L. P.; Hubbard, C. R.
2001-01-01
An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material® for single crystal diffractometer alignment. This SRM is a set of ≈3500 units of Cr-doped Al2O3, or ruby spheres [(0.420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals: the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 ű0.0062 Å, and c=12.9979 ű0.020 Å (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Hägg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies– are rhombohedral, with space group R3¯c. The certified mean unit cell parameters are a=4.76080±0.00029 Å, and c=12.99568 ű0.00087 Å (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Hägg transmission measurements on five samples of powdered rubies (a=4.7610 ű0.0013 Å, and c = 12.9954 ű0.0034 Å) agreed well with the values obtained from the single crystal spheres. PMID:27500067
Optical control of the coherent acoustic vibration of metal nanoparticles
NASA Astrophysics Data System (ADS)
Arbouet, A.; Del Fatti, N.; Vallee, F.
2006-04-01
Optical control of the coherent breathing vibrations of silver nanospheres is demonstrated using a high-sensitivity femtosecond pump-probe technique in a double-pump pulse configuration. Oscillation of the fundamental mode that usually dominates the time-domain vibrational response can thus be stopped, permitting observation of the first order radial mode and determination of its properties. These are found to be in agreement with the predictions of the model of an elastic sphere embedded in an elastic matrix.
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Mach Cones in a Coulomb Lattice and a Dusty Plasma
NASA Astrophysics Data System (ADS)
Samsonov, D.; Goree, J.; Ma, Z. W.; Bhattacharjee, A.; Thomas, H. M.; Morfill, G. E.
1999-11-01
Mach cones, or V-shaped disturbances created by supersonic objects, have been detected in a two-dimensional Coulomb crystal. Electrically charged microspheres levitated in a glow-discharge plasma formed a dusty plasma, with particles arranged in a hexagonal lattice in a horizontal plane. Beneath this lattice plane, a sphere moved faster than the lattice sound speed. Mach cones were double, first compressive then rarefactive, due to the strongly coupled crystalline state. Molecular dynamics simulations using a Yukawa potential also show multiple Mach cones.
NASA Astrophysics Data System (ADS)
Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.
2013-09-01
An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.
Integrated double-clad photonic crystal fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Jun; Gu, Yanran; Chen, Zilun
2017-10-01
This paper studies and fabricates an integrated double-clad photonic crystal fiber amplifier, which overcomes the shortcomings of space application and makes full use of excellent property of double-clad photonic crystal fiber. In the experiment, the (6 + 1) × 1 end-pump coupler with DC-PCF is fabricated. The six pump fibers are fabricated with 105 / 125μm (NA = 0.22) multi-mode fiber. The signal fiber is made of ordinary single-mode fiber SMF-28. Then we spliced the tapered fiber bundle to photonic crystal fiber. At last, we produce double-clad photonic crystal fiber with an end-cap that are able to withstand high average power and protect the system. We have fabricated an integrated Yb-double-clad photonic crystal fiber amplifier.
1990-12-01
nadir radiometer viewing angle. The reference standard was a 25.4 cm x 25.4 cm x 1.0 cm pressed Halon "Spectralon" plate that was backed by a 0.5 cm...against the sphere’s sample port. Light transmitted through the leaf was trapped in the sample chamber and did not pass back into the integrating sphere...leaf layers. The leaves were added to the back of the stack, so leaf #1 was always the first leaf in the stack. Each spectrum was taken in the lower 1
Determination of Lubricants on Ball Bearings by FT-IR using an Integrating Sphere
NASA Technical Reports Server (NTRS)
Street, K. W.; Pepper, S. V.; Wright, A.
2003-01-01
The lifetime determination of space lubricants is done at our facility by accelerated testing. Several micrograms of lubricant are deposited on the surface of a ball by syringing tens of micro liters of dilute lubricant solution. The solvent evaporates and the mass of lubricant is determined by twenty weighings near the balance reliability limit. This process is timely but does not produce a good correlation between the mass of lubricant and the volume of solution applied, as would be expected. The amount of lubricant deposited on a ball can be determined directly by Fourier Transform - Infrared Spectroscopy using an integrating sphere. In this paper, we discuss reasons for choosing this methodology, optimization of quantification conditions and potential applications for the technique. The volume of lubricant solution applied to the ball gives better correlation to the IR intensity than does the weight.
Yang, Seul Ki; Lee, J; Kim, Sug-Whan; Lee, Hye-Young; Jeon, Jin-A; Park, I H; Yoon, Jae-Ryong; Baek, Yang-Sik
2014-01-13
We report a new and improved photon counting method for the precision PDE measurement of SiPM detectors, utilizing two integrating spheres connected serially and calibrated reference detectors. First, using a ray tracing simulation and irradiance measurement results with a reference photodiode, we investigated irradiance characteristics of the measurement instrument, and analyzed dominating systematic uncertainties in PDE measurement. Two SiPM detectors were then used for PDE measurements between wavelengths of 368 and 850 nm and for bias voltages varying from around 70V. The resulting PDEs of the SiPMs show good agreement with those from other studies, yet with an improved accuracy of 1.57% (1σ). This was achieved by the simultaneous measurement with the NIST calibrated reference detectors, which suppressed the time dependent variation of source light. The technical details of the instrumentation, measurement results and uncertainty analysis are reported together with their implications.
Hypersonic merged layer blunt body flows with wakes
NASA Technical Reports Server (NTRS)
Jain, Amolak C.; Dahm, Werner K.
1991-01-01
An attempt is made here to understand the basic physics of the flowfield with wake on a blunt body of revolution under hypersonic rarefied conditions. A merged layer model of flow is envisioned. Full steady-state Navier-Stokes equations in spherical polar coordinate system are computed from the surface with slip and temperature jump conditions to the free stream by the Accelerated Successive Replacement method of numerical integration. Analysis is developed for bodies of arbitrary shape, but actual computations have been carried out for a sphere and sphere-cone body. Particular attention is paid to set the limit of the onset of separation, wake closure, shear-layer impingement, formation and dissipation of the shocks in the flowfield. Validity of the results is established by comparing the present results for sphere with the corresponding results of the SOFIA code in the common region of their validity and with the experimental data.
Superintegrability of geodesic motion on the sausage model
NASA Astrophysics Data System (ADS)
Arutyunov, Gleb; Heinze, Martin; Medina-Rincon, Daniel
2017-06-01
Reduction of the η-deformed sigma model on AdS_5× S5 to the two-dimensional squashed sphere (S^2)η can be viewed as a special case of the Fateev sausage model where the coupling constant ν is imaginary. We show that geodesic motion in this model is described by a certain superintegrable mechanical system with four-dimensional phase space. This is done by means of explicitly constructing three integrals of motion which satisfy the sl(2) Poisson algebra relations, albeit being non-polynomial in momenta. Further, we find a canonical transformation which transforms the Hamiltonian of this mechanical system to the one describing the geodesic motion on the usual two-sphere. By inverting this transformation we map geodesics on this auxiliary two-sphere back to the sausage model. This paper is a tribute to the memory of Prof Petr Kulish.
A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst
Karunagaran, Ramesh; Tung, Tran Thanh; Tran, Diana; Coghlan, Campbell; Doonan, Christian
2017-01-01
The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe2O3) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway. PMID:28792432
NASA Technical Reports Server (NTRS)
Shia, R.-L.; Yung, Y. L.
1986-01-01
The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.
Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W
2016-03-24
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.
Flash Lamp Integrating Sphere Technique for Measuring the Dynamic Reflectance of Shocked Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Gerald; La Lone, Brandon; Veeser, Lynn
2013-07-08
Accurate reflectance (R) measurements of metals undergoing shock wave compression can benefit high pressure research in several ways. For example, pressure dependent reflectance measurements can be used to deduce electronic band structure, and discrete changes with pressure or temperature may indicate the occurrence of a phase boundary. Additionally, knowledge of the wavelength dependent emissivity (1 -R, for opaque samples) of the metal surface is essential for accurate pyrometric temperature measurement because the radiance is a function of both the temperature and emissivity. We have developed a method for measuring dynamic reflectance in the visible and near IR spectral regions withmore » nanosecond response time and less than 1.5% uncertainty. The method utilizes an integrating sphere fitted with a xenon flash-lamp illumination source. Because of the integrating sphere, the measurements are insensitive to changes in surface curvature or tilt. The in-situ high brightness of the flash-lamp exceeds the sample’s thermal radiance and also enables the use of solid state detectors for recording the reflectance signals with minimal noise. Using the method, we have examined the dynamic reflectance of gallium and tin subjected to shock compression from high explosives. The results suggest significant reflectance changes across phase boundaries for both metals. We have also used the method to determine the spectral emissivity of shock compressed tin at the interface between tin and a LiF window. The results were used to perform emissivity corrections to previous pyrometry data and obtain shock temperatures of the tin/LiF interface with uncertainties of less than 2%.« less
Sesé, Luis M; Bailey, Lorna E
2007-04-28
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45
On the far-field computation of acoustic radiation forces.
Martin, P A
2017-10-01
It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic waves can be calculated by evaluating certain integrals of velocity potentials over a sphere surrounding the scatterer. The goal is to evaluate these integrals using far-field approximations and appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections are made to textbook derivations of optical theorems.
PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.
FALANGHE, H; SMITH, A K; RACKIS, J J
1964-07-01
Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.
Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey
Falanghe, Helcio; Smith, A. K.; Rackis, J. J.
1964-01-01
Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023
GraXe, graphene and xenon for neutrinoless double beta decay searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.
2012-02-01
We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to themore » xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.« less
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke
2013-09-01
Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.
2011-07-13
Anton A. Stoorvogel b, Håvard Fjær Grip a aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752...utwente.nl ( Anton A. Stoorvogel), grip@ieee.org (Håvard Fjær Grip). of a double integrator controlled by a saturating linear static state feedback...References Chitour, Y., 2001. On the Lp stabilization of the double integrator subject to input saturation. ESAIM: Control, Optimization and Calculus
Evolution of asteroidal orbits with high inclinations
NASA Astrophysics Data System (ADS)
Solovaya, Nina A.; Pittich, Eduard M.
1993-10-01
The 20,000 years orbital evolution of massless fictitious asteroid located at a border of the Hill's gravitational sphere has been investigated. The eleven orbits with the eccentricities from 0.0 to 0.4 in five groups of inclinations from 40 deg to 80 deg were numerically integrated with planetary perturbations of six major planets, using the numerical integration n-body program with the Everhart's integrator RA 15. For each group time evolution of orbital elements of the asteroids is presented.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Early, Edward E.; Eplee, Robert E., Jr.; Barnes, Robert A.; Caffrey, Robert T.
1999-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.
NASA Astrophysics Data System (ADS)
Hirt, Christian; Kuhn, Michael
2017-08-01
Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.
Double-shell target fabrication workshop-2016 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Oertel, John; Farrell, Michael
On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less
Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik
2004-11-01
The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.
Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin
2016-09-20
A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Double Ramification Cycles and Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Buryak, Alexandr; Rossi, Paolo
2016-03-01
In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
Design and tolerance analysis of a transmission sphere by interferometer model
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao
2015-09-01
The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.
From Rising Bubble to RNA/DNA and Bacteria
NASA Astrophysics Data System (ADS)
Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech
2017-04-01
In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Liu, Rui; Mahurin, Shannon Mark
A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk-shell Au{at}Carbon nanocomposites. The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au{at}C nanocomposites are catalytically active.
Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.
Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R
2017-03-01
In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.
NASA Astrophysics Data System (ADS)
Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi
2015-05-01
In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.
NASA Astrophysics Data System (ADS)
Slattery, W.
2003-12-01
The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or experimentation during the face-to-face component of the course. Follow-up interviews and classroom visits to student teaching sites confirm that pre-service teachers are using Earth systems science concepts and cooperative teaching techniques to teach science as an integrated whole.
NASA Astrophysics Data System (ADS)
Hu, Zhimeng; Zhong, Guoqiang; Ge, Lijian; Du, Tengfei; Peng, Xingyu; Chen, Zhongjing; Xie, Xufei; Yuan, Xi; Zhang, Yimo; Sun, Jiaqi; Fan, Tieshuan; Zhou, Ruijie; Xiao, Min; Li, Kai; Hu, Liqun; Chen, Jun; Zhang, Hui; Gorini, Giuseppe; Nocente, Massimo; Tardocchi, Marco; Li, Xiangqing; Chen, Jinxiang; Zhang, Guohui
2018-07-01
The neutron field measurement was performed in the Experimental Advanced Superconducting Tokamak (EAST) experimental hall using a Bonner sphere spectrometer (BSS) based on a 3He thermal neutron counter. The measured spectra and the corresponding integrated neutron fluence and dose values deduced from the spectra at two exposed positions were compared to the calculated results obtained by a general Monte Carlo code MCNP5, and good agreements were found. The applicability of a homemade dose survey meter installed at EAST was also verified with the comparison of the ambient dose equivalent H*(10) values measured by the meter and BSS.
An Automated Flying-Insect Detection System
NASA Technical Reports Server (NTRS)
Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert
2007-01-01
An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has sufficient sensitivity and frequency measuring capability to differentiate between male and female mosquitoes (Figure 1, bottom panel) and fruit flies (data not shown). Similar studies show that AFIDS can be utilized to detect discrete differences between two mosquito species, Aedes aegypti and Aedes albopictus. When fully deployable, a wireless network of AFIDS monitors could be used in combination with other remotely sensed data and visually displayed in a geographic information system (GIS) to provide real-time surveillance (see Figure 2). More accurate and sensitive insect population forecasts and effective rapid response and mitigation of insect issues would then be possible.
Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo
2017-04-01
Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.
Yu, Yi-Kuo
2003-08-15
The exact analytical result for a class of integrals involving (associated) Legendre polynomials of complicated argument is presented. The method employed can in principle be generalized to integrals involving other special functions. This class of integrals also proves useful in the electrostatic problems in which dielectric spheres are involved, which is of importance in modeling the dynamics of biological macromolecules. In fact, with this solution, a more robust foundation is laid for the Generalized Born method in modeling the dynamics of biomolecules. c2003 Elsevier B.V. All rights reserved.
Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources
NASA Technical Reports Server (NTRS)
McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher
2012-01-01
Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.
Three-Dimensional Self-Assembled Photonic Crystal Waveguide
NASA Astrophysics Data System (ADS)
Baek, Kang-Hyun
Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.
Cheng, Jian; Deriche, Rachid; Jiang, Tianzi; Shen, Dinggang; Yap, Pew-Thian
2014-11-01
Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and should integrate to unity throughout the unit sphere S(2). However, to our knowledge, most existing SH-based SD methods enforce non-negativity only on discretized points and not the whole continuum of S(2). Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to errors caused by numerical spherical integration. Existing SD methods are also known to overestimate the number of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and anisotropy contrast between isotropic and anisotropic regions. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arunachalam, V.; Marlow, W.H.; Lu, J.X.
1998-09-01
The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The American Physical Society}« less
Morrison, William R; Lee, Doo-Hyung; Reissig, W Harvey; Combs, David; Leahy, Kathleen; Tuttle, Arthur; Cooley, Daniel; Leskey, Tracy C
2016-08-01
Investigating the chemical ecology of agricultural systems continues to be a salient part of integrated pest management programs. Apple maggot fly, a key pest of apple in eastern North America, is a visual specialist with attraction to host fruit-mimicking cues. These cues have been incorporated into red spherical traps used for both monitoring and behaviorally based management. Incorporating generalist or specialist olfactory cues can potentially increase the overall success of this management system. The primary aim of this study was to evaluate the attractiveness of a generalist olfactory cue, ammonium carbonate, and the specialist olfactory cue, a five-component apple volatile blend, when included as a component of a red attracticidal sphere system. Secondly, we assessed how critical it was to maintain minimal deviation from the optimal, full-round specialist visual stimulus provided by red spheres. Finally, attracticidal spheres were deployed with specialist olfactory cues in commercial apple orchards to evaluate their potential for effective management of apple maggot. Ammonium carbonate did not increase residency, feeding time, or mortality in the laboratory-based trials. Field deployment of specialist olfactory cues increased apple maggot captures on red spheres, while the generalist cue did not. Apple maggot tolerated some deviation from the optimal visual stimulus without reducing captures on red spheres. Attracticidal spheres hung in perimeter trees in orchards resulted in acceptable and statistically identical levels of control compared with standard insecticide programs used by growers. Overall, our study contributes valuable information for developing a reliable attract-and-kill system for apple maggot. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F.G., E-mail: F.G.Mitri@ieee.org; Li, R.X., E-mail: rxli@mail.xidian.edu.cn; Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071
A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topologicalmore » charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.« less
Global Dynamic Modeling of Space-Geodetic Data
NASA Technical Reports Server (NTRS)
Bird, Peter
1995-01-01
The proposal had outlined a year for program conversion, a year for testing and debugging, and two years for numerical experiments. We kept to that schedule. In first (partial) year, author designed a finite element for isostatic thin-shell deformation on a sphere, derived all of its algebraic and stiffness properties, and embedded it in a new finite element code which derives its basic solution strategy (and some critical subroutines) from earlier flat-Earth codes. Also designed and programmed a new fault element to represent faults along plate boundaries. Wrote a preliminary version of a spherical graphics program for the display of output. Tested this new code for accuracy on individual model plates. Made estimates of the computer-time/cost efficiency of the code for whole-earth grids, which were reasonable. Finally, converted an interactive graphical grid-designer program from Cartesian to spherical geometry to permit the beginning of serious modeling. For reasons of cost efficiency, models are isostatic, and do not consider the local effects of unsupported loads or bending stresses. The requirements are: (1) ability to represent rigid rotation on a sphere; (2) ability to represent a spatially uniform strain-rate tensor in the limit of small elements; and (3) continuity of velocity across all element boundaries. Author designed a 3-node triangle shell element which has two different sets of basis functions to represent (vector) velocity and all other (scalar) variables. Such elements can be shown to converge to the formulas for plane triangles in the limit of small size, but can also applied to cover any area smaller than a hemisphere. The difficult volume integrals involved in computing the stiffness of such elements are performed numerically using 7 Gauss integration points on the surface of the sphere, beneath each of which a vertical integral is performed using about 100 points.
Simulations of induced-charge electro-osmosis in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
2005-03-01
Theories of nonlinear electrokinetic phenomena generally assume a uniform, neutral bulk electroylte in contact with a polarizable thin double layer near a metal or dielectric surface, which acts as a "capacitor skin". Induced-charge electro-osmosis (ICEO) is the general effect of nonlinear electro-osmotic slip, when an applied electric field acts on its own induced (diffuse) double-layer charge. In most theoretical and experimental work, ICEO has been studied in very simple geometries, such as colloidal spheres and planar, periodic micro-electrode arrays. Here we use finite-element simulations to predict how more complicated geometries of polarizable surfaces and/or electrodes yield flow profiles with subtle dependence on the amplitude and frequency of the applied voltage. We also consider how the simple model equations break down, due to surface conduction, bulk diffusion, and concentration polarization, for large applied voltages (as in most experiments).
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
The notion of "double consciousness" in Alfred Binet's psychological experimentalism.
Foschi, Renato; Cicciola, Elisabetta
2006-01-01
Between 1889 and 1892, Binet published two remarkable essays, On Double Consciousness and Les alterations de la personnalité, which marked the end of a period of researches and interests closely linked to the doctrines on hypnosis and hysteria elaborated by the Ecole de la Salpêtrière. Later on, Binet was to abandon the utilization of hypnosis as a technique of experimentation, after he realized that the suggestibility of the "subjects" of these experiences had led to major experimental mistakes. However, during the years of his work at the Salpêtrière, he elaborated the notion of "double consciousness," which can be considered an alternative both to Ribot's idea of dissociation and to Janet's idea of disaggregation. The notion of double consciousness reveals both the originality of Binet's psychology--which was elaborated at the end of the nineteenth century--and its verifiable link to twentieth-century psychology. Unlike Janet, in fact, Binet did not support a theory of psychological deficiency or "misery," or of the retraction of the sphere of consciousness, which a normal capacity for psychological synthesis would oppose. On the contrary, Binet's psychology resulted in a theory stating that the duality of consciousness works in a perfect and autonomous way within the individual and, thanks to hypnosis, can be investigated in a laboratory.
Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.
Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C
2010-05-01
A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.
Critical Dimensions of Water-tamped Slabs and Spheres of Active Material
DOE R&D Accomplishments Database
Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.
1946-08-06
The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.
Longman, C
2010-01-01
This contribution contains a synthesis of the results of two socio-cultural anthropological research projects among Orthodox Jewry concerning the 'identity', 'emancipation' and 'integration' of women. First the meaning of female religiosity from the perspective of strictly Orthodox, including Chassidic, women is discussed. Whereas in the public and institutional religious sphere men are the paradigmatic "Orthodox Jews", due to the sacralisatie of daily life, religious roles for women are not less extensive or any less important but are predominantly situated in the private and domestic sphere. It is argued that from an anthropological and gender critical perspective, women's religious gender identity therefore cannot be straightforwardly interpreted as either "oppressed" nor "emancipator". The second study concerns Jewish Orthodox women (ranging from strictly to modern Orthodox) in Antwerp who transgress religious gender norms by studying or working in the surrounding secular society. Their life stories show very different trajectories of encounters with the "outside world" that are sometimes enriching yet sometimes also experienced in terms of intercultural conflicts. It is concluded that maintaining cultural identity, next to emancipation and integration from within the Orthodox Jewish community is not impossible, but that this requires minimal mutual dialogue and understanding.
Spinor description of D = 5 massless low-spin gauge fields
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2016-07-01
Spinor description for the curvatures of D = 5 Yang-Mills, Rarita-Schwinger and gravitational fields is elaborated. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are analyzed. In the absence of sources symmetric curvature spinors with 2s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold {SO}(1,4)/({SO}(1,1)× {ISO}(3)) isomorphic to the three-sphere is considered. Superparticle model that contains such Lorentz harmonics as dynamical variables, as well as harmonics parametrizing the two-sphere {SU}(2)/U(1) is proposed. The states in its spectrum are given by the functions on S 3 that upon integrating over the Lorentz harmonics reproduce on-shell symmetric curvature spinors for various supermultiplets of D = 5 space-time supersymmetry.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
NASA Astrophysics Data System (ADS)
Ashmawy, E. A.
2017-03-01
In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.
Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian
2012-03-28
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huš, Matej; Urbic, Tomaz, E-mail: tomaz.urbic@fkkt.uni-lj.si; Munaò, Gianmarco
Thermodynamic and structural properties of a coarse-grained model of methanol are examined by Monte Carlo simulations and reference interaction site model (RISM) integral equation theory. Methanol particles are described as dimers formed from an apolar Lennard-Jones sphere, mimicking the methyl group, and a sphere with a core-softened potential as the hydroxyl group. Different closure approximations of the RISM theory are compared and discussed. The liquid structure of methanol is investigated by calculating site-site radial distribution functions and static structure factors for a wide range of temperatures and densities. Results obtained show a good agreement between RISM and Monte Carlo simulations.more » The phase behavior of methanol is investigated by employing different thermodynamic routes for the calculation of the RISM free energy, drawing gas-liquid coexistence curves that match the simulation data. Preliminary indications for a putative second critical point between two different liquid phases of methanol are also discussed.« less
Zhou, Weizheng; Tong, Gangsheng; Wang, Dali; Zhu, Bangshang; Ren, Yu; Butler, Michael; Pelan, Eddie; Yan, Deyue; Zhu, Xinyuan; Stoyanov, Simeon D
2016-04-06
Hierarchical porous structures are ubiquitous in biological organisms and inorganic systems. Although such structures have been replicated, designed, and fabricated, they are often inferior to naturally occurring analogues. Apart from the complexity and multiple functionalities developed by the biological systems, the controllable and scalable production of hierarchically porous structures and building blocks remains a technological challenge. Herein, a facile and scalable approach is developed to fabricate hierarchical hollow spheres with integrated micro-, meso-, and macropores ranging from 1 nm to 100 μm (spanning five orders of magnitude). (Macro)molecules, micro-rods (which play a key role for the creation of robust capsules), and emulsion droplets have been successfully employed as multiple length scale templates, allowing the creation of hierarchical porous macrospheres. Thanks to their specific mechanical strength, these hierarchical porous spheres could be incorporated and assembled as higher level building blocks in various novel materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey
2016-01-01
Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the ∼1.7 M{sub ⊙} Herbig star HD 100453. A ∼0.3 M{sub ⊙} M dwarf companion, HD 100453 B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at ∼45 AU in scattered light images, and excites two spiral arms in themore » remaining (circumprimary) disk with a near m = 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle ∼5°), and that the entire disk-companion system rotates counterclockwise on the sky. The HD 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems.« less
Yi, Faliu; Jeoung, Yousun; Moon, Inkyu
2017-05-20
In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.
The person's conception of the structures of developing intellect: early adolescence to middle age.
Demetriou, A; Efklides, A
1989-08-01
According to experiential structuralism, thought abilities have six capacity spheres: experimental, propositional, quantitative, imaginal, qualitative, and metacognitive. The first five are applied to the environment. The metacognitive capacity is applied to the others, serving as the interface between reality and the cognitive system or between any of the other capacities. To test this postulate, 648 subjects aged 12 to 40 years, solved eight tasks that were addressed, in pairs, to the first four capacity spheres. One of the tasks in each pair tapped the first and the other the third formal level of the sphere. Having solved the tasks, the subjects were required to rate each pair of tasks in terms of similarity of operations, difficulty, and success of solution. Factor analysis of difficulty and success evaluation scores revealed the same capacity-specific factors as the analysis of performance scores. Factor analysis of similarity scores differentiated between same- and different-sphere pairs. Analysis of variance showed that difficulty and success evaluation scores preserved performance differences between the first and the third formal tasks. Cognitive level, age, socioeconomic status, and sex were related to the metacognitive measures in ways similar to their relations to performance measures. These findings were integrated into a model aimed at capturing real-time metacognitive functioning.
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang
2007-01-01
Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.
[Music therapy as a part of complex healing].
Sliwka, Agnieszka; Jarosz, Anna; Nowobilski, Roman
2006-10-01
Music therapy is a method which takes the adventage of therapeutic influence of musie on psychological and somatic sphere of the human body. Its therapeutic properties are more and more used. Current scientific research have proved its modifying influence on vegetative, circulatory, respiratory and endocrine systems. Works devoted to the effects of musie on the patients' psychological sphere have also confirmed that it reduces psychopathologic symptoms (anxiety and depression), improves self-rating, influences quality and disorders of sleep, reduces pain, improves moral immunity and patients' openness, readiness, co-operation in treatment process. Music therapy is treated as a method which complements conventional treatment and makes up part of an integral whole together with physiotherapy, kinesitherapy and recuperation.
2017-09-26
Several Praxair trucks begin to depart Launch Pad 39B at NASA's Kennedy Space Center in Florida, after offloading their loads of liquid oxygen, or LO2, one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere was gradually chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
Forming Professional Competency of Education Managers in Central European Countries
ERIC Educational Resources Information Center
Tovkanets, Oksana
2017-01-01
The article deals with the problem of forming education managers' professional competency in the context of European integration educational processes. The peculiarities of education managers' competences as well as directions of their professional training in motivational, cognitive and metacognitive spheres have been theoretically justified. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY, T.C.
2006-03-17
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; Keum, Jong K; Naskar, Amit K
2018-05-29
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m 2 /g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.
Explicit and implicit assessment of gender roles.
Fernández, Juan; Quiroga, M Ángeles; Escorial, Sergio; Privado, Jesús
2014-05-01
Gender roles have been assessed by explicit measures and, recently, by implicit measures. In the former case, the theoretical assumptions have been questioned by empirical results. To solve this contradiction, we carried out two concatenated studies based on a relatively well-founded theoretical and empirical approach. The first study was designed to obtain a sample of genderized activities of the domestic sphere by means of an explicit assessment. Forty-two raters (22 women and 20 men, balanced on age, sex, and level of education) took part as raters. In the second study, an implicit assessment of gender roles was carried out, focusing on the response time given to the sample activities obtained from the first study. A total of 164 adults (90 women and 74 men, mean age = 43), with experience in living with a partner and balanced on age, sex, and level of education, participated. Taken together, results show that explicit and implicit assessment converge. The current social reality shows that there is still no equity in some gender roles in the domestic sphere. These consistent results show considerable theoretical and empirical robustness, due to the double implicit and explicit assessment.
Unsteady sedimentation of flocculating non-Brownian suspensions
NASA Astrophysics Data System (ADS)
Zinchenko, Alexander
2017-11-01
Microstructural evolution and temporal dynamics of the sedimentation rate U(t) are studied for a monodisperse suspension of non-Brownian spherical particles subject to van der Waals attraction and electrostatic repulsion in the realistic range of colloidal parameters (Hamaker constant, surface potential, double layer thickness etc.). A novel economical high-order multipole algorithm is used to fully resolve hydrodynamical interactions in the dynamical simulations with up to 500 spheres in a periodic box and O(106) time steps, combined with geometry perturbation to incorporate lubrication and extend the solution to arbitrarily small particle separations. The total colloidal force near the secondary minimum often greatly exceeds the effective gravity/buoyancy force, resulting in the formation of strong but flexible bonds and large clusters as the suspension evolves from an initial well-mixed state of non-aggregated spheres. Ensemble averaging over many initial configurations is used to predict U(t) for particle volume fractions between 0.1 and 0.25. The results are fully convergent, system-size independent and cover a 2-2.5 fold growth of U(t) after a latency time.
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2016-10-01
The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.
2010-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.
Demixing in simple dipolar mixtures: Integral equation versus density functional results
NASA Astrophysics Data System (ADS)
Range, Gabriel M.; Klapp, Sabine H. L.
2004-09-01
Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.
The Meaning of Leisure in Middle Adulthood. A Developmental Study.
ERIC Educational Resources Information Center
Freysinger, Valeria J.
1987-01-01
A study assessing how 54 middle-aged adults perceived leisure time indicated that they saw themselves and the meaning of major life spheres to have changed since young adulthood. Leisure was integrally related with other realms of life such as work, family, homelife, community participation, and friendship. (CB)
NASA Technical Reports Server (NTRS)
Witmer, E. A.
1975-01-01
The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large-deflection transient and/or permanent strain data on simple well-defined structural specimens and materials: initially-flat 6061-T651 aluminum beams with both ends ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides forcing function information of small uncertainty. These data will be useful for evaluating pertinent structural response prediction methods. A second objective was to obtain high-quality transient-strain data for a well-defined structural/material model subjected to impact by a rigid body of known mass, impact velocity, and geometry; large-deflection, elastic-plastic transient response conditions are of primary interest. The beam with both ends clamped and a steel sphere as the impacting body were chosen. The steel sphere was launched vertically by explosive propulsion to achieve various desired impact velocities. The sphere/beam impact tests resulted in producing a wide range of structural responses and permanent deformations, including rupture of the beam from excessive structural response in two cases. The transient and permanent strain data as well as the permanent deflection data obtained are of high quality and should be useful for checking and evaluating methods for predicting the responses of simple 2-d structures to fragment (sphere) impact. Transient strain data very close to the point of impact were not obtained over as long a time as desirable because the gage(s) in that region became detached during the transient response.
Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept
NASA Technical Reports Server (NTRS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.
2005-01-01
Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.
Absolute quantum yield measurement of powder samples.
Moreno, Luis A
2012-05-12
Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation. 5. Corrected quantum yield calculation. 6. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.
Deep penetration of light into biotissue
NASA Astrophysics Data System (ADS)
Bearden, Edward D.; Wilson, James D.; Zharov, Vladimir P.; Lowery, Curtis L.
2001-07-01
The results of a study of deep (several centimeters) light penetration into biological tissue are presented in order to estimate its significance to potentially photosensitive structures and processes including the fetal eyes. In order to accomplish this goal, samples of various tissues (fat, muscle, and uterus) from surgical patients and autopsies were examined with a double integrating sphere arrangement to determine their optical properties. The results were implemented in a Monte Carlo modeling program. Next, optical fiber probes were inserted into the uterus and abdominal wall of patients undergoing laparoscopic procedures. The fibers were couples to a photomultiplier tube with intervening filters allowing measurements of light penetration at various wavelengths. To determine the feasibility of stimulation in utero, a xenon lamp and waveguide were used to transilluminate the abdomen of several labor patients. Light in the range of 630 to 670 nm where the eye sensitivity and penetration depth are well matched, will likely provide the best chance of visual stimulation. Fetal heart rate, fetal movement, and fetal magnetoencephalography (SQUID) and electroencephalography (EEG) were observed in different studies to determine if stimulation has occurred. Since internal organs and the fetus are completely dark adapted, the amount of light required to simulate in our opinion could be on the order of 10(superscript -8 Watts.
Behavior of optical properties of coagulated blood sample at 633 nm wavelength
NASA Astrophysics Data System (ADS)
Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto
2011-03-01
Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.
Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.
2016-01-01
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623
Optical properties of mouse brain tissue after optical clearing with FocusClear™
NASA Astrophysics Data System (ADS)
Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard
2015-09-01
Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200 μm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in increased tissue transparency and optical imaging depth. The goal of this study was to determine the time- and wavelength-resolved dynamics of the optical scattering properties of rodent brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.
Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications
NASA Astrophysics Data System (ADS)
Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.
2013-08-01
The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.
NASA Astrophysics Data System (ADS)
Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah
2015-04-01
Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators, BACCO GEM-SA, TRANSFORM-EO.
NASA Astrophysics Data System (ADS)
Hayashi, Tomohiko; Oshima, Hiraku; Harano, Yuichi; Kinoshita, Masahiro
2016-09-01
For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.
An Approximate Dissipation Function for Large Strain Rubber Thermo-Mechanical Analyses
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2003-01-01
Mechanically induced viscoelastic dissipation is difficult to compute. When the constitutive model is defined by history integrals, the formula for dissipation is a double convolution integral. Since double convolution integrals are difficult to approximate, coupled thermo-mechanical analyses of highly viscous rubber-like materials cannot be made with most commercial finite element software. In this study, we present a method to approximate the dissipation for history integral constitutive models that represent Maxwell-like materials without approximating the double convolution integral. The method requires that the total stress can be separated into elastic and viscous components, and that the relaxation form of the constitutive law is defined with a Prony series. Numerical data is provided to demonstrate the limitations of this approximate method for determining dissipation. Rubber cylinders with imbedded steel disks and with an imbedded steel ball are dynamically loaded, and the nonuniform heating within the cylinders is computed.
Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier
2002-01-01
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366
Tests on Double Layer Metalization
NASA Technical Reports Server (NTRS)
Woo, D. S.
1983-01-01
28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.
Generating functions for weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Guay-Paquet, Mathieu; Harnad, J.
2017-08-01
Double Hurwitz numbers enumerating weighted n-sheeted branched coverings of the Riemann sphere or, equivalently, weighted paths in the Cayley graph of Sn generated by transpositions are determined by an associated weight generating function. A uniquely determined 1-parameter family of 2D Toda τ -functions of hypergeometric type is shown to consist of generating functions for such weighted Hurwitz numbers. Four classical cases are detailed, in which the weighting is uniform: Okounkov's double Hurwitz numbers for which the ramification is simple at all but two specified branch points; the case of Belyi curves, with three branch points, two with specified profiles; the general case, with a specified number of branch points, two with fixed profiles, the rest constrained only by the genus; and the signed enumeration case, with sign determined by the parity of the number of branch points. Using the exponentiated quantum dilogarithm function as a weight generator, three new types of weighted enumerations are introduced. These determine quantum Hurwitz numbers depending on a deformation parameter q. By suitable interpretation of q, the statistical mechanics of quantum weighted branched covers may be related to that of Bosonic gases. The standard double Hurwitz numbers are recovered in the classical limit.
A Radial Axial-symmetric Intermediary Model for the Roto-orbital Motion
NASA Astrophysics Data System (ADS)
Crespo, F.; Molero, F. J.; Ferrer, S.; Scheeres, D. J.
2018-03-01
We study the roto-orbital dynamics of a uniform sphere and a body with axial symmetry by means of a radial intermediary, which defines an integrable system. Numerical comparisons of the MacCullagh's truncation of the gravity gradient potential and intermediary models are performed, concluding that the intermediary provides a valuable approximation with small differences when compared with the MacCullagh's one. Our analysis includes the analytical integration and a study of the special solutions and relative equilibria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Light scattering properties of new materials for glazing applications
NASA Astrophysics Data System (ADS)
Bergkvist, Mikael; Roos, Arne
1991-12-01
Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.
The acoustic radiation force on a heated (or cooled) rigid sphere - Theory
NASA Technical Reports Server (NTRS)
Lee, C. P.; Wang, T. G.
1984-01-01
A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.
2017-09-26
A large plume of mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
Muñoz-García, Ana Belén; Seijo, Luis
2011-02-10
The atomistic structure, energetics, and electronic structure of single-substitutional Ce and La defects and double-substitutional Ce-La defects in Ce,La-codoped yttrium aluminum garnet (YAG) Y(3)Al(5)O(12) have been studied by means of first-principles periodic boundary conditions density functional theory calculations. Single substitution of Y by Ce or by La produces atomistic expansions around the impurities, which are significantly smaller than the ionic radii mismatches and the overall lattice distortions are found to be confined within their second coordination spheres. In double-substitutional defects, the impurities tend to be as close as possible. La-codoping Ce:YAG provokes an anisotropic expansion around Ce defects. The Ce impurity introduces 4f occupied states in the 5.0 eV computed gap of YAG, peaking 0.25 eV above the top of the valence band, and empty 4f, 5d, and 6s states starting at 3.8 eV in the gap and spreading over the conduction band. La-codoping produces very small effects on the electronic structure of Ce:YAG, the most visible one being the decrease in covalent bonding with one of the oxygen atoms, which shifts 0.05 Å away from Ce and gets 0.04 Å closer to La in the most stable Ce-La double-substitutional defect.
Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li
2014-09-10
To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.
Characteristics of a 1.6 W Gifford-McMahon Cryocooler with a Double Pipe Regenerator
NASA Astrophysics Data System (ADS)
Masuyama, S.; Numazawa, T.
2017-12-01
This paper focuses on the second stage regenerator of a 4 K Gifford-McMahon (G-M) cryocooler. A three-layer layout of lead (Pb), HoCu2 and Gd2O2S spheres in the second stage regenerator derives a good performance at 4 K. After some modifications, we confirmed that the cooling power of 1.60 W at 4.2 K was achieved by using this three-layer layout. A two-stage G-M cryocooler is RDK-408D2 (SHI) and a compressor is C300G (SUZUKISHOKAN) with a rated electric input power of 7.3 kW at 60 Hz. In order to further improve, a double pipe regenerator was applied to the second stage regenerator. As a double pipe, a stainless steel pipe with thin wall was inserted in the coaxial direction into the second stage regenerator. The helium flow in the second stage regenerator is expected to be non-uniform flow because of the distribution of helium density and the imperfect packing of regenerator material. The double pipe regenerator is considered to have an effect of restraining the non-uniform flow. From the experimental results, the second stage cooling power of 1.67 W at 4.2 K and the first stage cooling power of 64.9 W at 50 K were achieved.
241-AY Double Shell Tanks (DST) Integrity Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENSEN, C.E.
1999-09-21
This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.
Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms
NASA Astrophysics Data System (ADS)
Bourjaily, Jacob L.; McLeod, Andrew J.; Spradlin, Marcus; von Hippel, Matt; Wilhelm, Matthias
2018-03-01
We derive an analytic representation of the ten-particle, two-loop double-box integral as an elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a fourfold, rational (Feynman-)parametric representation for the integral, expressed directly in terms of dual-conformally invariant cross ratios; from this, the desired form is easily obtained. The essential features of this integral are illustrated by means of a simplified toy model, and we attach the relevant expressions for both integrals in ancillary files. We propose a normalization for such integrals that renders all of their polylogarithmic degenerations pure, and we discuss the need for a new "symbology" of mixed iterated elliptic and polylogarithmic integrals in order to bring them to a more canonical form.
DESIGN NOTE: New apparatus for haze measurement for transparent media
NASA Astrophysics Data System (ADS)
Yu, H. L.; Hsiao, C. C.; Liu, W. C.
2006-08-01
Precise measurement of luminous transmittance and haze of transparent media is increasingly important to the LCD industry. Currently there are at least three documentary standards for measuring transmission haze. Unfortunately, none of those standard methods by itself can obtain the precise values for the diffuse transmittance (DT), total transmittance (TT) and haze. This note presents a new apparatus capable of precisely measuring all three variables simultaneously. Compared with current structures, the proposed design contains one more compensatory port. For optimal design, the light trap absorbs the beam completely, light scattered by the instrument is zero and the interior surface of the integrating sphere, baffle, as well as the reflectance standard, are of equal characteristic. The accurate values of the TT, DT and haze can be obtained using the new apparatus. Even if the design is not optimal, the measurement errors of the new apparatus are smaller than those of other methods especially for high sphere reflectance. Therefore, the sphere can be made of a high reflectance material for the new apparatus to increase the signal-to-noise ratio.
Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere
NASA Astrophysics Data System (ADS)
Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano
2018-06-01
The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.
NASA Technical Reports Server (NTRS)
Delano, J. W.; Mcguire, J.
1992-01-01
Six varieties of lunar volcanic glass are known to occur within the Apollo 17 sample collection. Investigations have shown that 25 volatile elements are known to be concentrated on the exterior surfaces of individual volcanic glass spheres. Since bulk analyses of volcanic glass provide an integrated abundance of an element on and with the glass spherules, other methods must be relied on to determine the interior abundance of an element. The interior abundance of an element with a volcanic glass sphere establishes the abundance of that element in the melt at the time of quench. The current study is part of a comprehensive attempt to measure the abundance of three volatile elements (Na, S, and K) within representative spheres of the 25 varieties of lunar volcanic glass currently known to exist at the Apollo landing sites. Comparison of the measured abundances of these elements within the interiors of individual glasses with bulk analyses and crystalline mare basalts will furnish new constraints on the geochemical behavior of volatile elements during lunar mare volcanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongbin; White, R. D.
In the calculation of the linearized Boltzmann collision operator for an inverse-square force law interaction (Coulomb interaction) F(r)=κ/r{sup 2}, we found the widely used scattering angle cutoff θ≥θ{sub min} is a wrong practise since the divergence still exists after the cutoff has been made. When the correct velocity change cutoff |v′−v|≥δ{sub min} is employed, the scattering angle can be integrated. A unified linearized Boltzmann collision operator for both inverse-square force law and rigid-sphere interactions is obtained. Like many other unified quantities such as transition moments, Fokker-Planck expansion coefficients and energy exchange rates obtained recently [Y. B. Chang and L. A.more » Viehland, AIP Adv. 1, 032128 (2011)], the difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and −3 for inverse-square force law interactions. When the cutoff is removed by setting δ{sub min}=0, Hilbert's well known kernel for rigid-sphere interactions is recovered for γ = 1.« less
Optical waveguide loop for planar trapping of blood cells and microspheres
NASA Astrophysics Data System (ADS)
Ahluwalia, Balpreet S.; Hellesø, Olav G.
2013-09-01
The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.
NASA Astrophysics Data System (ADS)
Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying
2018-05-01
Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.
Towards a manufacturing ecosystem for integrated photonic sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miller, Benjamin L.
2017-03-01
Laboratory-scale demonstrations of optical biosensing employing structures compatible with CMOS fabrication, including waveguides, Mach-Zehnder interferometers, ring resonators, and photonic crystals, have provided ample validation of the promise of these technologies. However, to date there are relatively few examples of integrated photonic biosensors in the commercial sphere. The lack of successful translation from the laboratory to the marketplace is due in part to a lack of robust manufacturing processes for integrated photonics overall. This talk will describe efforts within the American Institute for Manufacturing Photonics (AIM Photonics), a public-private consortium funded by the Department of Defense, State governments, Universities, and Corporate partners to accelerate manufacturing of integrated photonic sensors.
Li, Shunxing; Cai, Jiabai; Wu, Xueqing; Liu, Biwen; Chen, Qiaoying; Li, Yuehai; Zheng, Fengying
2018-03-15
An solar-light-driven and bifunctional photocatalyst was designed for photo-reduction of Cr(VI) and selective photo-oxidation of benzyl alcohol into benzaldehyde in the presence of water under ambient conditions. Double-shelled and sandwiched TiO 2 @Pt@CeO 2 hollow spheres were prepared by using functionalized polystyrene spheres, sol-gel, hydrothermal reaction, and calcination. The Pt nanoparticles (NPs) were controllably loaded between the TiO 2 shell and CeO 2 shell. Under solar-light irradiation, the photo-reduction rate of Cr(VI) (μmol h -1 ) was in the order of TiO 2 @Pt@CeO 2 (1.901) > TiO 2 @CeO 2 (1.424) > TiO 2 (1.040) > CeO 2 (0.992). Among the above-mentioned photocatalysts, the conversion rate of benzyl alcohol for TiO 2 @Pt@CeO 2 was also the best. These results were attributed to the combination of TiO 2 and CeO 2 as photocatalyst and oxygen buffer, the double-shelled and sandwiched nanostructure, and the addition of Pt NPs as cocatalyst and electron trap site, which could store and shuttle photo-generated electrons, reduce the recombination of the electron-hole, and then enhance photo-generation of active radicals. This conclusion was verified by the electron paramagnetic resonance (EPR) spectroscopy. Considering the versatile combination of photocatalyst, oxygen buffer and cocatalyst, this work could provide new insights into the design of high-performance bifunctional photocatalysts for heavy metal removal and selective synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Cui, Ying; Niu, Yan-Li; Cao, Man-Li; Wang, Ke; Mo, Hao-Jun; Zhong, Yong-Rui; Ye, Bao-Hui
2008-07-07
A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.
Using a Flatbed Scanner to Measure Detergency: A Cost-Effective Undergraduate Laboratory
ERIC Educational Resources Information Center
Poce-Fatou, J. A.; Bethencourt, M.; Moreno-Dorado, F. J.; Palacios-Santander, J. M.
2011-01-01
The efficiency of a laundry-washing process is typically assessed using reflection measurements. A spectrometer and an integrating sphere are used to obtain the reflection data. The similarities between this equipment and a commercially available flatbed scanner are examined, and the way a flatbed scanner can be used to obtain detergent…
ERIC Educational Resources Information Center
Khairutdinova, Milyausha R.; Lebedeva, Olga V.
2016-01-01
The relevance of the research problem is determined by intensification of integration processes in all spheres of life, which results in broadening international cooperation and cultural interaction between different nations and countries. The modern contradictory and heterogeneous world requires serious rethinking of the existing traditions of…
ERIC Educational Resources Information Center
Zook, Darren C.
2010-01-01
The political framework through which the various communities of disabled persons in Cambodia advocate for and claim their rights is complex and confusing. Both governmental and non-governmental actors engage this political framework through the mobilization of persons from the various disabled communities, competing in the civic sphere through…
On coherent states for the simplest quantum groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-01-01
The coherent states for the simplest quantum groups ( q-Heisenberg-Weyl, SU q (2) and the discrete series of representations of SU q (1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on ℂ, a sphere, and the Lobatchevsky plane are discussed.
Distance Education in Higher Education in Latvia
ERIC Educational Resources Information Center
Vasilevska, Daina
2012-01-01
For a modern society it is common to have a new point of view about education, which changes functional role of system of education and makes it an integrative social institution. The process of globalization in all spheres of public life makes implementation of the task of continuing education of the population a necessity. The Education…
Integrated Circuitry: Catharine Brown across Gender, Race, and Religion
ERIC Educational Resources Information Center
Nelson, Joshua B.
2006-01-01
This article talks about a Cherokee woman named Catharine Brown who was converted to Christianity by missionaries, as well as historical and theoretical contexts regarding the Cherokee. The author presents views from critics, such as Theda Perdue, Carolyn Ross Johnston, and Arnold Krupat, on Catharine Brown's experiences across spheres such as…
European Vocational Education and Training: A Prerequisite for Mobility?
ERIC Educational Resources Information Center
Rauner, Felix
2008-01-01
Purpose: The purpose of this paper is to demonstrate that the internationalisation of nearly all spheres of society and the process of European integration will be leading to the development of a European vocational education and training VET architecture. Design/methodology/approach: The analysis of the "Copenhagen process" is based on…
"Bettering Her Education and Widening Her Sphere": Betwixt and between Coeducational Experiences
ERIC Educational Resources Information Center
Snowden, Monique L.
2011-01-01
This article is a focused response to the call for a "conscious use of crystallization," in qualitative research. To this end, the author brings into play a full-bodied textual metaphor, the "palimpsest," to stimulate the expansion of an integrated crystallization typology--comprised of woven and patched approaches.…
Chess, David J.; Billings, Eric; Covian, Raúl; Glancy, Brian; French, Stephanie; Taylor, Joni; de Bari, Heather; Murphy, Elizabeth; Balaban, Robert S.
2013-01-01
Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation Complexes (MOPC) is modulated at multiple sites. Herein, a method of optically monitoring electron distribution within and between MOPC is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (~465 to 630 nm) were modeled using linear least squares analysis with individual chromophore spectra. Classical mitochondrial activity transitions (e.g., ADP-induced increase in oxygen consumption) were used to characterize this approach. Most notable in these studies was the observation that intermediates of the catalytic cycle of cytochrome oxidase are dynamically modulated with metabolic state. The MOPC redox state, along with measurements of oxygen consumption and mitochondrial membrane potential, was used to evaluate the conductances of different sections of the electron transport chain. This analysis then was applied to mitochondria isolated from rabbit hearts subjected to ischemia-reperfusion (I/R). Surprisingly, I/R resulted in an inhibition of all measured MOPC conductances, suggesting a coordinated down-regulation of mitochondrial activity with this well-established cardiac perturbation. PMID:23665273
Integrated rheology model: Explosive Composition B-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin
2014-04-30
An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.
NASA Astrophysics Data System (ADS)
Chen, H. C.; Lai, S. K.
1992-03-01
The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.
A Noninvasive In Vivo Glucose Sensor Based on Mid-Infrared Quantum Cascade Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Xu, Laura; Gmachl, Claire
Diabetes affects over 387 million people worldwide; a number which grows every year. The most common method of measuring blood glucose concentration involves a finger prick which for some can be a harrowing process. Therefore, a portable, accurate, noninvasive glucose sensor can significantly improve the quality of life for many of these diabetics who draw blood multiple times a day to monitor their glucose levels. We have implemented a noninvasive, mobile glucose sensor using a mid-infrared (MIR) quantum cascade laser (QCL), integrating sphere, and thermal electrically (TE) cooled detector. The QCL is scanned from 8 - 10 microns wavelength over which are distinct absorption features of glucose molecules with little competition of absorption from other molecules found in the blood and interstitial fluid. The obtained absorption spectra are analyzed using a neural network algorithm which relates the small changes in absorption to the changing glucose concentration. The integrating sphere has increased the signal-to-noise ratio from a previous design, allowing us to use the TE-cooled detector which increases mobility without loss of accuracy.
Gaspardo, B; Del Zotto, S; Torelli, E; Cividino, S R; Firrao, G; Della Riccia, G; Stefanon, B
2012-12-01
Fourier transform near infrared (FT-NIR) spectroscopy is an analytical procedure generally used to detect organic compounds in food. In this work the ability to predict fumonisin B(1)+B(2) contents in corn meal using an FT-NIR spectrophotometer, equipped with an integration sphere, was assessed. A total of 143 corn meal samples were collected in Friuli Venezia Giulia Region (Italy) and used to define a 15 principal components regression model, applying partial least square regression algorithm with full cross validation as internal validation. External validation was performed to 25 unknown samples. Coefficients of correlation, root mean square error and standard error of calibration were 0.964, 0.630 and 0.632, respectively and the external validation confirmed a fair potential of the model in predicting FB(1)+FB(2) concentration. Results suggest that FT-NIR analysis is a suitable method to detect FB(1)+FB(2) in corn meal and to discriminate safe meals from those contaminated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integrated rheology model: Explosive Composition B-3
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...
2018-03-20
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, I.; Grobner, J.; Wacker, S.
The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a differencemore » of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.« less
NASA Astrophysics Data System (ADS)
Pisut, D.; MacIntosh, E.; McDougall, C.; Peddicord, H.; Russell, E. L.; Zepecki, S., III
2017-12-01
A small group of scientists and museum directors sit in a room and ponder, "What do we do with this thing?" It was ten years ago, and the Science On a Sphere was a nascent educational technology. Since that time, NOAA has built a energetic community of practice, with over 150 institutional network members ranging from museums and aquariums, to scientific laboratories, and even documentary producers. A key to the long term success of this educational community has been its constant evolution - driven by needs assessments of the network partners, NOAA's foresight on how to improve user experiences by integrating new visualizations, storytelling, and improved technology, and the ability of institutions to integrate the technologies into their other STEM offerings. In this talk we'll cover specific examples of the challenges that have arisen, and how NOAA, and its close partner NASA, has evolved the program offerings and technologies to meet the needs of this educational community of practice, along with some thoughts on the future of the Science On a Sphere Collaborative Network and NOAA's STEM educational technology portfolio.
Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors
NASA Astrophysics Data System (ADS)
Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.
2016-07-01
Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.
pyGFC - A Python Extension to the C++ Geodesy Foundation Classes
2008-09-01
imperative for a successful emulation of a dynamic MANET as intended. To achieve this objective, the same algorithm and its implementation for...solution has two options: (1) selecting, implementing, and integrating an appropriate algorithm into the tool and in the MANE system, or (2) using an...GFCCoord *estimate_southeast_coords(double, double); double lat; double lon; double alt; private: CEarth *earth; char * cstr
Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M
2014-01-01
Vitreoretinal surgery is performed using mechanical dissection that sometimes results in iatrogenic complications, including vitreous hemorrhage, retinal breaks, incomplete membrane delamination, retinal distortion, microscopic damage, etc. An ultraprecise laser probe would be an ideal tool for cutting away pathologic membranes; however, the depth of surgery should be precisely controlled to protect the sensitive underlying retina. The ultraprecise surgical microprobe formed by chains of dielectric spheres for use with the erbium:YAG laser source (λ=2940 nm), with extremely short optical penetration depth in tissue, was optimized. Numerical modeling demonstrated a potential advantage of five-sphere focusing chains of sapphire spheres with index n=1.71 for ablating the tissue with self-limited depth around 10 to 20 μm. Novel detachable microsphere scalpel tips formed by chains of 300 μm sapphire (or ruby) spheres were tested on ophthalmic tissues, ex vivo. Detachable scalpel tips could allow for reusability of expensive mid-infrared trunk fibers between procedures, and offer more surgical customization by interchanging various scalpel tip configurations. An innovative method for aiming beam integration into the microsphere scalpel to improve the illumination of the surgical site was also shown. Single Er:YAG pulses of 0.2 mJ and 75-μs duration produced ablation craters in cornea epithelium for one, three, and five sphere structures with the latter generating the smallest crater depth (10 μm) with the least amount of thermal damage depth (30 μm). Detachable microsphere laser scalpel tips may allow surgeons better precision and safety compared to mechanical scalpels when operating on delicate or sensitive areas like the retina.
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent
2016-05-01
This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were sufficiently accurate to predict the fluence rate and local rate of photon absorption in PBRs.
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.; Dobbins, J. A.
2002-01-01
In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems.
NASA Astrophysics Data System (ADS)
Mueller, H. J.; Beckmann, F.; Dobson, D. P.; Hunt, S. A.; Secco, R.; Lauterjung, J.; Lathe, C.
2014-12-01
Viscosity data of melts measured under in situ high pressure conditions are crucial for the understanding of Earth's lower mantle and the interior of terrestrial and extrasolar Super-Earth planets. We report recent technical advances and techniques enabling falling sphere viscosity measurements in single- and double-stage DIA-type multi-anvil apparatus. For the experiments we used presses with a maximum load of 250 tons and 1750 tons. We anticipate that our system will enable viscosity measurements up to the maximum pressure for non-diamond anvils, i.e. pressures up to some 30 GPa. For the development of the new set ups the deformation of the cell assemblies were analyzed by X-ray absorption tomography at beamline W II at DESY/HASYLAB after the high pressure runs. These analysis gave considerable insights into strategies for improving the cell assembly with the result that the optimized assemblies could be used at much higher pressures without blow-outs. We think this approach is much faster and more beneficial than the classical way of trial and error. Additionally to prevent high pressure blow outs the task was to make the whole melting chamber accessible for the high pressure X-radiography system up to the maximum pressures. This way the accuracy and reliability of the measurements can be improved. For this goal we used X-ray transparent cBN-anvils at the single-stage DIA large volume press. Because this material is recently not available for the cube size of 32 mm this aproach did not work for the double-stage DIA. As a very useful and economical alternative we used slotted carbide anvils filled with fired pyrophyllite bars. To improve the frame quality of the platinum spheres taken by the CCD-camera the energy of the monochromatic X-rays had to be increased to 100 keV. The resulting ascent of scattered radiation required a new design of the X-radiography unit. Our results are demonstrated with viscosity measurements following Stokes law by evaluation of X-radiography sequences taken by a CCD-camera at pressures of 5 GPa as well as 10 GPa and temperatures of 1890 K. As the first result we could increase the maximum pressure range of published viscosity measurements with dacite melts by almost factor 1.5 (see Tinker et al., 2004).
Integrated stationary Ornstein-Uhlenbeck process, and double integral processes
NASA Astrophysics Data System (ADS)
Abundo, Mario; Pirozzi, Enrica
2018-03-01
We find a representation of the integral of the stationary Ornstein-Uhlenbeck (ISOU) process in terms of Brownian motion Bt; moreover, we show that, under certain conditions on the functions f and g , the double integral process (DIP) D(t) = ∫βt g(s) (∫αs f(u) dBu) ds can be thought as the integral of a suitable Gauss-Markov process. Some theoretical and application details are given, among them we provide a simulation formula based on that representation by which sample paths, probability densities and first passage times of the ISOU process are obtained; the first-passage times of the DIP are also studied.
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher
2015-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.
NASA Technical Reports Server (NTRS)
Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.
1993-01-01
The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher
2016-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa, J. R.; Vega, C.; Sanz, E.
2014-10-07
The interfacial free energy between a crystal and a fluid, γ{sub cf}, is a highly relevant parameter in phenomena such as wetting or crystal nucleation and growth. Due to the difficulty of measuring γ{sub cf} experimentally, computer simulations are often used to study the crystal-fluid interface. Here, we present a novel simulation methodology for the calculation of γ{sub cf}. The methodology consists in using a mold composed of potential energy wells to induce the formation of a crystal slab in the fluid at coexistence conditions. This induction is done along a reversible pathway along which the free energy difference betweenmore » the initial and the final states is obtained by means of thermodynamic integration. The structure of the mold is given by that of the crystal lattice planes, which allows to easily obtain the free energy for different crystal orientations. The method is validated by calculating γ{sub cf} for previously studied systems, namely, the hard spheres and the Lennard-Jones systems. Our results for the latter show that the method is accurate enough to deal with the anisotropy of γ{sub cf} with respect to the crystal orientation. We also calculate γ{sub cf} for a recently proposed continuous version of the hard sphere potential and obtain the same γ{sub cf} as for the pure hard sphere system. The method can be implemented both in Monte Carlo and Molecular Dynamics. In fact, we show that it can be easily used in combination with the popular Molecular Dynamics package GROMACS.« less
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.
2012-01-01
Three terms, ''Waterman's T-matrix method'', ''extended boundary condition method (EBCM)'', and ''null field method'', have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIMþSOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIMþSOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIMþSOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIMþSOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging.
Control of crystallite orientation and size in Fe and FeCo nanoneedles.
Mendoza-Reséndez, Raquel; Luna, Carlos; Barriga-Castro, Enrique Diaz; Bonville, Pierre; Serna, Carlos J
2012-06-08
Uniform magnetic nanoneedles have been prepared by hydrogen reduction of elongated nanoarchitectures. These precursors are as-prepared or cobalt-coated aggregates of highly oriented haematite nanocrystals (∼5 nm). The final materials are flattened nanoneedles formed by chains of assembled Fe or FeCo single-domain nanocrystals. The microstructural properties of such nanoneedles were tailored using renewed and improved synthetic strategies. In this fashion, the needle elongation and composition, the crystallite size (from 15 up to 30 nm), the nanocrystal orientation (with the 〈110〉 or 〈001〉 directions roughly along the long axis of the nanoneedle) and their type of arrangement (single chains, frustrated double chains and double chains) were controlled by modifying the reduction time, the axial ratio of the precursor haematite and the presence of additional coatings of aluminum or yttrium compounds. The values of the coercivity H(C) found for these nanoneedles are compared with the values predicted by the chain of spheres model assuming a symmetric fanning mechanism for magnetization reversal.
Analytic double product integrals for all-frequency relighting.
Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun
2013-07-01
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chukbar, B. K., E-mail: bchukbar@mail.ru
Two methods of modeling a double-heterogeneity fuel are studied: the deterministic positioning and the statistical method CORN of the MCU software package. The effect of distribution of microfuel in a pebble bed on the calculation results is studied. The results of verification of the statistical method CORN for the cases of the microfuel concentration up to 170 cm{sup –3} in a pebble bed are presented. The admissibility of homogenization of the microfuel coating with the graphite matrix is studied. The dependence of the reactivity on the relative location of fuel and graphite spheres in a pebble bed is found.
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. A mist is visible as LO2 is offloaded from one of the trucks into the giant storage sphere located at the northwest corner of the pad has begun. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will begin to offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Engineers watch as several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
NASA Astrophysics Data System (ADS)
Miller, S. C.
1989-09-01
With relation to advanced technology for gas turbines, the overall process of product definition and development, concentrating particularly on the integration of activities between engineering design and manufacturing, is surveyed. The development of new philosophies in each of these spheres of activity is concluded to be cost effective technology and to make a highly significant contribution to the competitiveness and profitability of the industry.
Boundary Objects and Curriculum Change: The Case of Integrated versus Subject-Based Teaching
ERIC Educational Resources Information Center
Hultén, Magnus
2013-01-01
The article examines the stability and success of ideas within pedagogical discourses. Why do certain ideas attract actors and how does change come about? These general questions are dealt with through considering the example of the swift spread of an interdisciplinary idea, "arbetsområde" (translated to "spheres of work") in…
ERIC Educational Resources Information Center
Gazizova, Alfiya
2012-01-01
The article presents a comparative analysis of Turkish and Russian higher education sector development, focusing upon private-state partnership in the academic sphere, the role of universities in contemporary life, and their integration into present-day European structures. The author describes prospects, constructive ideas, and six strategies in…
Thermochemical Process Integration, Scale-Up, and Piloting | Bioenergy |
; represented by spheres of hydrogen and carbon monoxide, then to "Gas Cleanup, Solids Removal, Reforming ; represented by a gasoline dispenser nozzle. A green arrow of "Fast Pyrolysis" and blue arrows for Distillation," and finally to "Fuels," represented by a gasoline dispenser nozzle Variety of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less
Widdas, W F
2006-10-30
Hyde's scientific book The Language of Shape has emphasized the importance of minimum surfaces in the structure of biological membranes. Minimum surfaces can be visualized as the property which brings many droplets of liquids to spherical bubbles, since a sphere has the minimum surface to volume ratio. Thus, a sphere with a surface of 4pir2 and volume of 4/3pir3 has a surface to volume ratio of 3/r, that is, the ratio is dependent upon the reciprocal of the radius. The chemistry of water as dihydrides of the electronegative element oxygen is fundamentally dependent upon its polar properties and particularly the delta positive charges on the hydrogen atoms and the double delta negative charge on the larger oxygen atom, which from its mass (16 Da) is regarded as the centre of the water molecules. The cohesion of water as a liquid or as semi-crystal like structures in the surface depends upon electrostatic forces that are comparable in strength to covalent bonds. This review discusses the functional implications of some unexpected properties which have been evinced by model building and illustrated as a Poster in the 4th World Congress of Cellular and Molecular Biology.
Frequency dispersion in dipolophoresis of metallodielectric Janus spheres
NASA Astrophysics Data System (ADS)
Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia
2013-11-01
Dipolophoresis (DIP) is an umbrella term for the two non-linear electrokinetic phenomenon of induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). It has previously been shown that this effect is responsible for the obtainment of a finite velocity by a metallodielectric (comprised of one conducting and one dielectric hemisphere) Janus spheres, even under the application of a uniform AC field. At low frequencies, this mobility is dominated by induced-charge effects, wherein the stronger induced-charge electroosmotic flow around the polarizable hemisphere propels the particle perpendicular to the electric field in the direction of its dielectric end. Surprisingly, it was observed that this motion is at a maximum for applied frequencies in the range of 1kHz beyond which the effect decays. Here we examine the effect of varying experimental conditions including electrolyte concentration and particle size on this limit. Additionally, we present for the first time an analytical solution which is capable of predicting this optimum based on our previous formulation which is uniquely valid for arbitrary electric double layer length. This work is of both fundamental and practical importance and may be used to optimize the behavior of Janus micromotors in lab-on-a-chip systems.
Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; ...
2018-05-29
Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less
Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Das, Siddhartha
2015-11-01
Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.
A symmetric integral identity for Bessel functions with applications to integral geometry
NASA Astrophysics Data System (ADS)
Salman, Yehonatan
2017-12-01
In the article of Kunyansky (Inverse Probl 23(1):373-383, 2007) a symmetric integral identity for Bessel functions of the first and second kind was proved in order to obtain an explicit inversion formula for the spherical mean transform where our data is given on the unit sphere in Rn . The aim of this paper is to prove an analogous symmetric integral identity in case where our data for the spherical mean transform is given on an ellipse E in R2 . For this, we will use the recent results obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the expansions into eigenfunctions of Bessel functions of the first and second kind in elliptical coordinates.
Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi
2016-09-27
Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.
Performance evaluation of a high resolution dedicated breast PET scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis
2016-05-15
Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) weremore » simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance for its clinical use and shows an improved resolution and lesion detectability of small lesions compared to WB-PET.« less
Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector
Gaigalas, A. K.; Wang, Lili; Karpiak, V.; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm. PMID:26900524
NASA Astrophysics Data System (ADS)
Galenko, Peter K.; Alexandrov, Dmitri V.; Titova, Ekaterina A.
2018-01-01
The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Ding, Yan-Hong; Huang, Guo-Long; Li, Huan-Huan; Xie, Hai-Ming; Sun, Hai-Zhu; Zhang, Jing-Ping
2015-12-01
Double carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology. The thickness of carbon coating on D-LiFePO4/C was about 1.7 nm and the content of carbon was 2.48 wt%, according to HRTEM and TG analysis. The electrochemical impedance spectroscopy analysis indicated that the D-LiFePO4/C composite presented the charge-transfer resistance of 68 Ω and Li ion diffusion coefficient of 2.68 x 10(-13) cm2 S(-1), while the single carbon-coated LiFePO4 (S-LiFePO4/C) exhibited 135.5Ω and 4.03 x 10(-14) cm2 S(-1). Especially, the prepared D-LiFePO4/C electrode showed discharge capacities of 102.9 (10C) and 87.1 (20C) mA h g(-1), respectively, with almost no capacity lost after 400 cycles at 10C, which were much better than those of S-LiFePO4/C composite.
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Effect of elastic constants of liquid crystals in their electro-optical properties
NASA Astrophysics Data System (ADS)
Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.
Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.
Electromagnetic δ -function sphere
NASA Astrophysics Data System (ADS)
Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver
2017-10-01
We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.
Oettel, M
2004-04-01
We analyze the depletion interaction between two hard colloids in a hard-sphere solvent and pay special attention to the limit of large size ratio between colloids and solvent particles which is governed by the well-known Derjaguin approximation. For separations between the colloids of less than the diameter of the solvent particles (defining the depletion region), the solvent structure between the colloids can be analyzed in terms of an effective two-dimensional gas. Thereby we find that the Derjaguin limit is approached more slowly than previously thought. This analysis is in good agreement with simulation data which are available for a moderate size ratio of 10. Small discrepancies in results from density functional theory (DFT) at this size ratio become amplified for larger size ratios. Therefore we have improved upon previous DFT techniques by imposing test-particle consistency which connects DFT to integral equations. However, the improved results show no convergence towards the Derjaguin limit and thus we conclude that this implementation of DFT together with previous ones which rely on test-particle insertion become unreliable in predicting the force in the depletion region for size ratios larger than 10.
Study of the effect of temperature on the optical properties of Latin skins
NASA Astrophysics Data System (ADS)
Quistián-Vázquez, Brenda; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G.
2017-02-01
Photodynamic therapy (PDT) is a very effective technique for treatment of certain types of cancer, among the most common, skin cancer. PDT requires the presence of three elements: the photosensitizer, light and oxygen. Penetration depth of light into the tumor depends on both the characteristics of the tissue to be treated and the wavelength. As the light dose to be delivered in each lesion depends on the optical properties of the tissue, all the effects that change these properties should be considered in order to choose suitable doses. There are some studies that have determined the maximum dose of radiation tolerated for certain types of skin, but the influence of the temperature on the optical properties, especially for darker skin types, remains unknown. In this study, we analyzed the optical properties of skin in vivo of different Latin volunteers in order to study the influence of the temperature on the optical properties and thereby to define more precisely the dose of light to be received by each patient in a personalized way. The optical properties of skin in vivo were investigated using an optical system that included an integrating sphere, a tungsten lamp and a spectrophotometer. Such experimental set up-allowed to obtain spectra reflectance of various volunteers and from this measurement, the absorption coefficient was recovered by Inverse Adding Doubling (IAD) program.
NASA Astrophysics Data System (ADS)
Qiao, Yu; Liu, Xuejiao; Chen, Minxin; Lu, Benzhuo
2016-04-01
The hard sphere repulsion among ions can be considered in the Poisson-Nernst-Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst-Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435-438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475-2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It's observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both LHSPNP and SMPNP models the stratification of one counterion species can be observed under certain bulk concentrations.
Solvent dynamics and electron transfer reactions
NASA Astrophysics Data System (ADS)
Rasaiah, Jayendran C.; Zhu, Jianjun
1994-02-01
Recent experimental and theoretical studies of the influence of solvent dynamics on electron transfer (ET) reactions are discussed. It is seen that the survival probabilities of the reactants and products can be obtained as the solution to an integral equation using experimental or simulation data on the solvation dynamics. The theory developed for ET between thermally equilibrated reactants in solution, in which the ligand vibrations were treated classically, is extended to include quantum effects on the inner-shell ligand vibration and electron transfer from a nonequilibrium initial state prepared, for example, by laser excitation. This leads to a slight modification of the integral equation which is easily solved on a personal computer to provide results that can be directly compared with experiment. Analytic approximations to the solutions of the integral equation, ranging from a single exponential to multiexponential time dependence of the survival probabilities are discussed. The rate constant for the single exponential decay of the reactants interpolates between the thermal equilibrium rate constant kie (that is independent of solvent dynamics) and a diffusion controlled rate constant kid (determined by solvent dynamics) and also between the wide (A=0) and narrow (A=1) window limits dominated by inner-sphere ligand vibration and outer-sphere solvent reorganization respectively. The explicit dependence of the integral equation solutions on solvation dynamics S(t), the free energy of reaction ΔG0, the total reorganization energy λ and its partitioning between ligand vibration λq and solvent polarization fluctuations λ0, and the nature of the initial state should be useful in the analysis and design of ET experiments in different solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu
Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22,more » and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.« less
Phosphor Scanner For Imaging X-Ray Diffraction
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.
1992-01-01
Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.
Socio-Politico--Pedagogical Problems of Language Teaching in Nigeria
ERIC Educational Resources Information Center
Omoniyi, Ayeomoni Moses
2012-01-01
The languages spoken in Nigeria do not only play significant roles in the socio-political life of the country, but also help in no small measure to unify or integrate the country that is so much diverse in all spheres of life. In realizing these multiplicity of roles the languages play in the country, the Government instituted and enacted a policy…
ERIC Educational Resources Information Center
Noula, Ioanna; Govaris, Christos
2018-01-01
In this article, we present insights from an ethnographic research that investigated the concept of citizenship in primary schools in Greece. We explored children's experiences of citizenship in school approaching citizenship as a set of habits that prescribe what is considered 'legitimate' in the public sphere. We focused on structures and agents…
Achieving control and interoperability through unified model-based systems and software engineering
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel
2005-01-01
Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.
USDA-ARS?s Scientific Manuscript database
A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...
Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.; Douglas, Jack F.; Garboczi, Edward J.
2001-12-01
The problem of calculating the electric polarizability tensor αe of objects of arbitrary shape has been reformulated in terms of path integration and implemented computationally. The method simultaneously yields the electrostatic capacity C and the equilibrium charge density. These functionals of particle shape are important in many materials science applications, including the conductivity and viscosity of filled materials and suspensions. The method has been validated through comparison with exact results (for the sphere, the circular disk, touching spheres, and tori), it has been found that 106 trajectories yield an accuracy of about four and three significant figures for C and αe, respectively. The method is fast: For simple objects, 106 trajectories require about 1 min on a PC. It is also versatile: Switching from one object to another is easy. Predictions have also been made for regular polygons, polyhedra, and right circular cylinders, since these shapes are important in applications and since numerical calculations of high stated accuracy are available. Finally, the path-integration method has been applied to estimate transport properties of both linear flexible polymers (random walk chains of spheres) and lattice model dendrimer molecules. This requires probing of an ensemble of objects. For linear chains, the distribution function of C and of the trace (αe), are found to be universal in a size coordinate reduced by the chain radius of gyration. For dendrimers, these distribution functions become increasingly sharp with generation number. It has been found that C and αe provide important information about the distribution of molecular size and shape and that they are important for estimating the Stokes friction and intrinsic viscosity of macromolecules.
NASA Astrophysics Data System (ADS)
Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu
2014-12-01
Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr05931j
BOREAS TE-12 Leaf Optical Data for SSA Species
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Walter-Shea, Elizabeth A.; Mesarch, Mark A.; Chen, L.
2000-01-01
The BOREAS TE-12 team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, and gas exchange of boreal vegetation. This data set contains measurements of hemispherical spectral reflectance and transmittance factors of individual leaves, needles (ages: current and past 2 years' growth, i.e., for 1993, the growing seasons of 1993, 1992, and 1991 were measured; in 1994, the growing seasons of 1994, 1993, and 1992 were measured), twigs (reflectance only), and substrate at near-normal incidence measured using a LI-COR LI-1800-12 integrating sphere attached to a Spectron Engineering SE590 spectroradiometer. Procedures of Daughtry et a]. (1989) were followed. These procedures permitted measurement of samples that: (1) filled the entire integrating sphere sample port; and (2) were narrow with a length greater than the sample port diameter. Optical properties were measured in 1993 and 1994 at the SSA Fen, YJP, YA, and OBS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
Notes on integral identities for 3d supersymmetric dualities
NASA Astrophysics Data System (ADS)
Aghaei, Nezhla; Amariti, Antonio; Sekiguchi, Yuta
2018-04-01
Four dimensional N=2 Argyres-Douglas theories have been recently conjectured to be described by N=1 Lagrangian theories. Such models, once reduced to 3d, should be mirror dual to Lagrangian N=4 theories. This has been numerically checked through the matching of the partition functions on the three sphere. In this article, we provide an analytic derivation for this result in the A 2 n-1 case via hyperbolic hypergeometric integrals. We study the D 4 case as well, commenting on some open questions and possible resolutions. In the second part of the paper we discuss other integral identities leading to the matching of the partition functions in 3d dual pairs involving higher monopole superpotentials.
NASA Astrophysics Data System (ADS)
Varekamp, J. C.
2010-12-01
The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given experiment. For each time increment the radiative heat loss of the sphere is calculated from the Stefan Boltzman expression using the observed temperature at that time. The heating of the ‘earth sphere’ is accounted for in the energy balance equation by applying the temperature increase per time increment with the specific heat of bronze. The remaining energy term is the sum of the convective cooling and greenhouse effect. The heat budgets of the cooling trajectories were calculated analogous, with radiative and convective cooling causing the temperature drop per time increment. The greenhouse component again is lumped with the convective term. Equilibrium temperatures of 50-70 C were reached, with ambient temperature at 22 C. Somewhat surprising, experiments with radiatively neutral pure Argon gas yielded the highest equilibrium temperatures. Argon had the lowest specific heat of the gases used, and the observed equilibrium temperatures for different cell gases broadly scaled inversely with the heat capacity of those gases. Apparently, the efficiency of the free convective cooling strongly impacts the equilibrium temperatures. The greenhouse effects possibly have only a minor impact on final temperature as a result of the short cell pathlength. Experiments at higher cell filling pressures may provide more insight in this.
Method of Fabricating Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2017-01-01
One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.
Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)
2016-01-01
One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.
NASA Astrophysics Data System (ADS)
Kowalewski, M. G.; Janz, S. J.
2015-02-01
Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.
Equilibrium location for spherical DNA and toroidal cyclodextrin
NASA Astrophysics Data System (ADS)
Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.
2018-05-01
Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).
NASA Astrophysics Data System (ADS)
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
NASA Astrophysics Data System (ADS)
Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.
2016-12-01
NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP
NASA Astrophysics Data System (ADS)
Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao
2016-09-01
Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.
A new aerodynamic integral equation based on an acoustic formula in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.
1984-01-01
An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.
NASA Technical Reports Server (NTRS)
Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.
2014-01-01
NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.
[Polar and non polar notations of refraction].
Touzeau, O; Gaujoux, T; Costantini, E; Borderie, V; Laroche, L
2010-01-01
Refraction can be expressed by four polar notations which correspond to four different combinations of spherical or cylindrical lenses. Conventional expressions of refraction (plus and minus cylinder notation) are described by sphere, cylinder, and axis. In the plus cylinder notation, the axis visualizes the most powerful meridian. The axis usually corresponds to the bow tie axis in curvature maps. Plus cylinder notation is also valuable for all relaxing procedures (i.e., selective suture ablation, arcuate keratotomy, etc.). In the cross-cylinder notation, two orthogonal cylinders can describe (without the sphere component) the actual refraction of both the principal meridians. This notation must be made before performing the vertex calculation. Using an association of a Jackson cross-cylinder and a spherical equivalent, refraction can be broken down into two pure components: astigmatism and sphere. All polar notations of refraction may perfectly characterize a single refraction but are not suitable for statistical analysis, which requires nonpolar expression. After doubling the axis, a rectangular projection breaks down the Jackson cross-cylinder, which has a polar axis, into two Jackson cross-cylinders on the 0 degrees /90 degrees and 45 degrees /135 degrees axis. This procedure results in the loss of the directional nature of the data. Refraction can be written in a nonpolar notation by three rectangular coordinates (x,y,z), which can also represent the spherocylinder by one point in a dioptric space. These three independent (orthogonal) variables have a concrete optical significance: a spherical component, a direct/inverse (WTR/ATR) component, and an oblique component of the astigmatism. Finally, nonpolar notations are useful for statistical analysis and graphical representation of refraction. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
A Parameter Study on the Effect of Impactor Size for NASA’s DART Mission
NASA Astrophysics Data System (ADS)
Truitt, Amanda; Weaver, Robert; Gisler, Galen
2018-06-01
We have modeled the impact of the Double Asteroid Redirection Test (DART) spacecraft into the binary near-Earth asteroid (65803) Didymos. While the primary object is approximately 800 meters across, its secondary body (“moonlet” Didymoon) has a diameter of 150 meters, which is thought to be a much more typical size for the kind of asteroid that would pose a hazard to Earth. DART will be the first demonstration of the kinetic impact technique to change the motion of an asteroid in space, an important consideration for understanding our capabilities in planetary defense of Near-Earth Asteroids. Recent modeling of this impact has used full-density solid aluminum spheres with a mass of approximately 500 kg. Many of the published scaling laws for crater size and diameter as well as ejecta modeling assume this type of impactor, although the actual spacecraft shape being considered for the DART Mission impact is not solid and does not contain a solid dedicated kinetic impactor – rather, the spacecraft itself is considered the impactor. Since the 500 kg hollow spacecraft is significantly larger (~100 x 100 x 200 cm) in size than a solid aluminum sphere (radius ~ 36 cm) the resulting impact dynamics are quite different. Here we have modeled both types of impacts and compare the results of the simulations for crater size, depth, and ejecta for a solid sphere (R = 36 cm) and cylindrical spacecraft (R = 20, 50, and 100 cm), while maintaining a constant mass and material density. This work will allow for a more robust comparison of the momentum enhancement β-factor, which describes the gain in a momentum transfer exerted by the impacting spacecraft on a Near-Earth Object due to ejecta momentum escape. (LA-UR-18-21571)
Cao, Zhiji; Balasubramanian, K
2009-10-28
Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.
Pauly, Stephan; Gerhardt, Christian; Chen, Jianhai; Scheibel, Markus
2010-12-01
Several techniques for arthroscopic repair of rotator cuff defects have been introduced over the past years. Besides established techniques such as single-row repairs, new techniques such as double-row reconstructions have gained increasing interest. The present article therefore provides an overview of the currently available literature on both repair techniques with respect to several anatomical, biomechanical, clinical and structural endpoints. Systematic literature review of biomechanical, clinical and radiographic studies investigating or comparing single- and double-row techniques. These results were evaluated and compared to provide an overview on benefits and drawbacks of the respective repair type. Reconstructions of the tendon-to-bone unit for full-thickness tears in either single- or double-row technique differ with respect to several endpoints. Double-row repair techniques provide more anatomical reconstructions of the footprint and superior initial biomechanical characteristics when compared to single-row repair. With regard to clinical results, no significant differences were found while radiological data suggest a better structural tendon integrity following double-row fixation. Presently published clinical studies cannot emphasize a clearly superior technique at this time. Available biomechanical studies are in favour of double-row repair. Radiographic studies suggest a beneficial effect of double-row reconstruction on structural integrity of the reattached tendon or reduced recurrent defect rates, respectively.
Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade
NASA Astrophysics Data System (ADS)
Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian
2018-02-01
The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.
Integrated crop management practices for maximizing grain yield of double-season rice crop.
Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing
2017-01-12
Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.
Archaeal viruses--novel, diverse and enigmatic.
Peng, Xu; Garrett, Roger A; She, QunXin
2012-05-01
Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.
The Nature of Double-peaked [O III] Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.
2012-01-01
Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Zanchin, Vilson T.
2018-05-01
We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.
Escobedo, Fernando A
2014-03-07
In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.
Anomalous optical scattering from intersecting fine particles
NASA Astrophysics Data System (ADS)
Paley, Alina V.; Radchik, Alex V.; Smith, Geoffrey B.
1995-09-01
There are many areas of science and technology where the scattering of electromagnetic waves by clusters or merging particles are of interest. The merging particles under study might be inclusions in high-density composites, liquid drops, biological cells, macroscopic ceramic particles, etc. As intersecting particles are bounded by a complex physical surface, the problem of scattering from these particles valid for any degree of merging, including touching, and for arbitrary materials of the constituents, has received limited attention. Here we present solutions which are valid and exact in the long wavelength limit compared with the size of intersecting spherical particles and cardioidal particles of similar dimensions. Both shapes are almost coincident everywhere except in the region of intersection. We treat the case when the waves are polarized along the common axis (longitudinal field). The solutions of Laplace's equation are integrals (spheres) or sums (cardioids) over continuous or discrete eigenvalue spectra respectively. The spectral dependencies of the resulting extinction coefficients and the scattering for the spherical and cardioidal particles are quite distinct. There is an enormous difference in the magnitude of absorption responses. Overall the cardioidal particle behaves as if it is almost invisible in terms of effects on the external field for a very broad band of optical frequencies. THe latter result was checked for a number of dielectric permittivities and seems to be universal. It scatters far more weakly than the isolated sphere. In constrast the intersecting sphere has an extinction band which is broad and is much enhanced at longer wavelegnths relative to the simple sphere. This result has significant implications for the design of surfaces with minimum scattering.
Directional MTF measurement using sphere phantoms for a digital breast tomosynthesis system
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Baek, Jongduk
2015-03-01
The digital breast tomosynthesis (DBT) has been widely used as a diagnosis imaging modality of breast cancer because of potential for structure noise reduction, better detectability, and less breast compression. Since 3D modulation transfer function (MTF) is one of the quantitative metrics to assess the spatial resolution of medical imaging systems, it is very important to measure 3D MTF of the DBT system to evaluate the resolution performance. In order to do that, Samei et al. used sphere phantoms and applied Thornton's method to the DBT system. However, due to the limitation of Thornton's method, the low frequency drop, caused by the limited data acquisition angle and reconstruction filters, was not measured correctly. To overcome this limitation, we propose a Richardson-Lucy (RL) deconvolution based estimation method to measure the directional MTF. We reconstructed point and sphere objects using FDK algorithm within a 40⁰ data acquisition angle. The ideal 3D MTF is obtained by taking Fourier transform of the reconstructed point object, and three directions (i.e., fx-direction, fy-direction, and fxy-direction) of the ideal 3D MTF are used as a reference. To estimate the directional MTF, the plane integrals of the reconstructed and ideal sphere object were calculated and used to estimate the directional PSF using RL deconvolution technique. Finally, the directional MTF was calculated by taking Fourier transform of the estimated PSF. Compared to the previous method, the proposed method showed a good agreement with the ideal directional MTF, especially at low frequency regions.
Hybrid integration of III-V and silicon materials and devices
NASA Astrophysics Data System (ADS)
Luo, Zhongsheng
Laser liftoff (LLO) based hybrid integration techniques including the double-transfer process and the pixel-to-point transfer process have been developed to integrate III-V photonics with silicon materials and circuitry. No degradation in the device performance has been observed using the LLO based transfer techniques. On the contrary, performance improvements in both electrical characteristics and electroluminescence (EL) output have been found for the (In,Ga)N light emitting diodes (LEDs) transferred onto Si substrate. Based on computer simulation, it is found that as much as 70% enhancement in EL output could be expected by optimizing the metal layering on the backside of the transferred LEDs. In order to understand the existing experimental data and improve controllability and damage-free transfer yield of the LLO process, a novel, comprehensive LLO model based on thermal-mechanical analysis has been proposed and developed. The LLO model has been validated in the well-studied GaN/sapphire system. By employing the LLO based transfer technique, two optoelectronic systems have been designed and demonstrated. The first one is an integrated fluorescence microsystem, which involved the integration of Cd(S,Se) bandgap filters, (In,Ga)N LEDs, Poly(dimethylsiloxane) (PDMS) microfluidic channels with a pre-fabricated Si PIN photodiode chip. Prototypes with both one color (blue LED) excitation and two-color (blue and green LED) excitation have consistently demonstrated a detection capability of as low as 1 nM fluosphere beads using Molecular Probes FluoSpheresRTM dye. Furthermore, the feasibility of multi-wavelength design has been verified using the bi-wavelength prototype. To optimize signal-to-noise ratio and detection sensitivity of the microsystem via system design, an in-depth mathematic analysis has also been performed. The second application is a zero-footprint optical metrology wafer, which relies on the reflection at the optical detection window, through which important parameters such as thickness, refractive index and density of the film on top of the detecting window can be probed in a real-time and location-specific manner. A novel methodology has been developed to ensure accurate and precise measurement across the wafer. A prototype wafer with 3x3 metrology cells has been prototyped and calibrated using a SF6 plasma etching process of silicon oxide.
Generation of colloidal granules and capsules from double emulsion drops
NASA Astrophysics Data System (ADS)
Hess, Kathryn S.
Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals, and agricultural applications, among others.
ERIC Educational Resources Information Center
English, Claire
2013-01-01
Online social media have become integral to individuals' media and communication repertoires globally. They provide spaces to meet with friends, reconnect with old acquaintances and gather around shared topics of interest. This chapter presents findings from a qualitative study into the role of online social media in the lives of 25 to 30 year…
Changes in Estonian General Education from the Collapse of the Soviet Union to EU Entry
ERIC Educational Resources Information Center
Krull, Edgar; Trasberg, Karmen
2006-01-01
This article introduces and discusses the nature and development of Estonian system of general education in the period of last thirty years. The main focus is paid on the changes resulting from the collapse of the Soviet Union and the period of integration leading up to EU entry. Also changes in other spheres of education and social life are…
Factorization approach to superintegrable systems: Formalism and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Á., E-mail: angelb@ubu.es; Herranz, F. J., E-mail: fjherranz@ubu.es; Kuru, Ş., E-mail: kuru@science.ankara.edu.tr
2017-03-15
The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (super) integrable anisotropic oscillators on the sphere are constructed. The Tremblay–Turbiner–Winternitz system on the Euclidean plane is also studied from this viewpoint.
ERIC Educational Resources Information Center
Mayer, Andreas; Motsch, Hans-Joachim
2015-01-01
This study analysed the effects of a classroom intervention focusing on phonological awareness and/or automatized word recognition in children with a deficit in the domains of phonological awareness and rapid automatized naming ("double deficit"). According to the double-deficit hypothesis (Wolf & Bowers, 1999), these children belong…
Method for double-sided processing of thin film transistors
Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang
2008-04-08
This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István
2018-01-01
An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.
The Vector Electric Field Instrument on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.;
2008-01-01
We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart
Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen
1992-01-01
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.
Canonical formulation and conserved charges of double field theory
Naseer, Usman
2015-10-26
We provide the canonical formulation of double field theory. It is shown that this dynamics is subject to primary and secondary constraints. The Poisson bracket algebra of secondary constraints is shown to close on-shell according to the C-bracket. We also give a systematic way of writing boundary integrals in doubled geometry. Finally, by including appropriate boundary terms in the double field theory Hamiltonian, expressions for conserved energy and momentum of an asymptotically flat doubled space-time are obtained and applied to a number of solutions.
Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei
2017-06-01
Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-06-01
We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.
Development of an Integrated Data Acquisition System for a Small Flight Probe
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Empey, Daniel M.; Skokova, Kristina A.; Venkatapathy, Ethiraj
2012-01-01
In support of the SPRITE concept, an integrated data acquisition system has been developed and fabricated for preliminary testing. The data acquisition system has been designed to condition traditional thermal protection system sensors, store their data to an on-board memory card, and in parallel, telemeter to an external system. In the fall of 2010, this system was integrated into a 14 in. diameter, 45 degree sphere cone probe instrumented with thermal protection system sensors. This system was then tested at the NASA Ames Research Center Aerodynamic Heating Facility's arc jet at approximately 170 W/sq. cm. The first test in December 2010 highlighted hardware design issues that were redesigned and implemented leading to a successful test in February 2011.
A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)
NASA Astrophysics Data System (ADS)
Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael
2014-07-01
Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesé, Luis M., E-mail: msese@ccia.uned.es
2016-03-07
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) thatmore » can be useful to characterize freezing.« less
Cölfen, H; Qi, L
2001-01-05
In this paper, a systematic study of the influence of various experimental parameters on the morphology and size of CaCO3 crystals after room-temperature crystallization from water in the presence of poly(ethylene glycol)-block-poly(methacrylic acid) (PEG-b-PMAA) is presented. The pH of the solution, the block copolymer concentration, and the ratio [polymer]/[CaCO3] turned out to be important parameters for the morphogenesis of CaCO3, whereas a moderate increase of the ionic strength (0.016 M) had no influence. Depending on the experimental conditions, the crystal morphologies can be tuned from calcite rhombohedra via rods, ellipsoids or dumbbells to spheres. A morphology map is presented which allows the prediction of the crystal morphology from a combination of pH, and CaCO3 and polymer concentration. Morphologies reported in literature for the same system but under different crystallization conditions agree well with the predictions from the morphology map. A closer examination of the growth of polycrystalline macroscopic CaCO3 spheres by TEM and time-resolved dynamic light scattering showed that CaCO3 macrocrystals are formed from strings of aggregated amorphous nanoparticles and then recrystallize as dumbbell-shaped or spherical calcite macrocrystal.
Homogenization Issues in the Combustion of Heterogeneous Solid Propellants
NASA Technical Reports Server (NTRS)
Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.
2002-01-01
We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.
A Lagrangian particle method with remeshing for tracer transport on the sphere
Bosler, Peter Andrew; Kent, James; Krasny, Robert; ...
2017-03-30
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
A Lagrangian particle method with remeshing for tracer transport on the sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosler, Peter Andrew; Kent, James; Krasny, Robert
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less
Water Surface Impact and Ricochet of Deformable Elastomeric Spheres
NASA Astrophysics Data System (ADS)
Hurd, Randy C.
Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Scalable Metropolis Monte Carlo for simulation of hard shapes
NASA Astrophysics Data System (ADS)
Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
2016-07-01
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.
GaN-based integrated photonics chip with suspended LED and waveguide
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang
2018-05-01
We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).
Collinear swimmer propelling a cargo sphere at low Reynolds number.
Felderhof, B U
2014-11-01
The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes equations in the presence of a sphere with a no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl
2014-01-01
Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.
Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan
2009-06-01
Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.
Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra
2015-01-01
We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.
Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao
2016-09-01
Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.
Proximity functions for electrons up to 10 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chmelevsky, D.; Kellerer, A.M.; Terrissol, M.
1980-11-01
Proximity functions for electrons up to 10 keV in water are computed from simulated particle tracks. Numerical results are given for the differential functions t(x) and the integral functions T(x). Basic characteristics of these functions and their connections to other microdosimetric quantities are considered. As an example of the applicability of the proximity functions, the quantity y/sub D/ for spheres is derived from t(x).
Strategies of Young People's Self-Determination in Life in the Sphere of Work
ERIC Educational Resources Information Center
Skutneva, S. V.
2007-01-01
The labor market for young people can be seen as an independent, integral segment of the overall labor market, one that can be singled out on the basis of the way that young people function in society as a special social and demographic group characterized by the needs and interests that are typical of it, a group that occupies a specific place in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim M; Dooraghi, Michael R; Sengupta, Manajit
Presenting results of five comparisons between ACPs and IRISs and the difference between the longwave irradiance measured by the ACPs and IRISs versus the average irradiance measured by the WISG. The process of CIMO recommendation to establish the world reference for measuring the atmospheric longwave irradiance with traceability to the International System of Units (SI) is also presented.
Light-emitting device test systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCord, Mark; Brodie, Alan; George, James
Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.
Vidovic, Luka; Majaron, Boris
2014-02-01
Diffuse reflectance spectra (DRS) of biological samples are commonly measured using an integrating sphere (IS). To account for the incident light spectrum, measurement begins by placing a highly reflective white standard against the IS sample opening and collecting the reflected light. After replacing the white standard with the test sample of interest, DRS of the latter is determined as the ratio of the two values at each involved wavelength. However, such a substitution may alter the fluence rate inside the IS. This leads to distortion of measured DRS, which is known as single-beam substitution error (SBSE). Barring the use of more complex experimental setups, the literature states that only approximate corrections of the SBSE are possible, e.g., by using look-up tables generated with calibrated low-reflectivity standards. We present a practical method for elimination of SBSE when using IS equipped with an additional reference port. Two additional measurements performed at this port enable a rigorous elimination of SBSE. Our experimental characterization of SBSE is replicated by theoretical derivation. This offers an alternative possibility of computational removal of SBSE based on advance characterization of a specific DRS setup. The influence of SBSE on quantitative analysis of DRS is illustrated in one application example.
[Determination of Bloodstain Age by UV Visible Integrating Sphere Reflection Spectrum].
Yan, L Q; Gao, Y
2016-10-01
To establish a method for rapid identification of bloodstain age. Under laboratory conditions (20 ℃, 25 ℃ and 30 ℃), an integrating sphere ISR-240A was used as a reflection accessory on an UV-2450 UV-vis spectrophotometer, and a standard white board of BaSO₄ was used as reference, the reflection spectrums of bloodstain from human ears' venous blood were measured at regular intervals. The reflection radios R ₅₄₁ and R ₅₇₇ at a specific wavelength were collected and the value of R ₅₄₁/ R ₅₇₇ was calculated. The linear fitting and regression analysis were done by SPSS 17.0. The results of regression analysis showed that R ² of the ratios of bloodstain age to UV visible reflectivity in specific wavelengths were larger than 0.8 within 8 hours and under certain circumstances. The regression equation was established. The bloodstain age had significant correlation with the value of R ₅₄₁/ R ₅₇₇. The method of inspection is simple, rapid and nondestructive with a good reliability, and can be used to identify the bloodstain age within 8 hours elapsed-time standards under laboratory conditions. Copyright© by the Editorial Department of Journal of Forensic Medicine
A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
NASA Astrophysics Data System (ADS)
Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.
2009-09-01
Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.
Simple and Double Alfven Waves: Hamiltonian Aspects
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.
2011-12-01
We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.
Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas
2014-09-30
A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.
GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations.
Zhang, Luyan; Meng, Lei; Wu, Wencheng; Wang, Jiankang
2015-01-01
Clonal species are common among plants. Clonal F1 progenies are derived from the hybridization between 2 heterozygous clones. In self- and cross-pollinated species, double crosses can be made from 4 inbred lines. A clonal F1 population can be viewed as a double cross population when the linkage phase is determined. The software package GACD (Genetic Analysis of Clonal F1 and Double cross) is freely available public software, capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in clonal F1 and double cross populations. Three functionalities are integrated in GACD version 1.0: binning of redundant markers (BIN); linkage map construction (CDM); and QTL mapping (CDQ). Output of BIN can be directly used as input of CDM. After adding the phenotypic data, the output of CDM can be used as input of CDQ. Thus, GACD acts as a pipeline for genetic analysis. GACD and example datasets are freely available from www.isbreeding.net. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Measurement of the Casimir Force between Two Spheres
NASA Astrophysics Data System (ADS)
Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.
2018-01-01
Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.
Critique of Coleman's Theory of the Vanishing Cosmological Constant
NASA Astrophysics Data System (ADS)
Susskind, Leonard
In these lectures I would like to review some of the criticisms to the Coleman worm-hole theory of the vanishing cosmological constant. In particular, I would like to focus on the most fundamental assumption that the path integral over topologies defines a probability for the cosmological constant which has the form EXP(A) with A being the Baum-Hawking-Coleman saddle point. Coleman argues that the euclideam path integral over all geometries may be dominated by special configurations which consist of large smooth "spheres" connected by any number of narrow wormholes. Formally summing up such configurations gives a very divergent expression for the path integral…
Sub-Grid Modeling of Electrokinetic Effects in Micro Flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
2005-01-01
Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this approach, the numeric grid size can be much larger than the thickness of double layer. Presented in this report are a description of the approach, methodology for implementation and several validation simulations for micro flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiaowei; Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084; Tan Qiaofeng
2011-06-20
We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPsmore » into different ports in an integrated plasmonic chip.« less
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
Viscous constraints on predator:food size ratios in microscale feeding
NASA Astrophysics Data System (ADS)
Jabbarzadeh, Mehdi; Fu, Henry
2014-11-01
Small organisms such as protists or copepods may try to capture food by manipulating food with cilia, limbs, or feeding appendages. At these small scales, viscous flow may complicate the ability of a feeding appendage to closely approach a food particle. As a simplified but tractable model of such feeding approach, we consider the problem of two spheres approaching in a Stokes fluid. The first ``feeding'' sphere, which represents a body part or feeding appendage, is pushed with a constant force towards a force-free ``food'' sphere. When the feeding sphere reaches within a cutoff distance of the food sphere we assume that nonhydrodynamic interactions lead to capture. We examine approach for a range of size ratios between the feeding and food sphere. To investigate the approach efficiency, we examine the time required for the feeding sphere to capture the food sphere, as well as how far the feeding sphere must move before it captures the food sphere. We also examine the effect of varying the cutoff distance for capture. We find that hydrodynamic interactions strongly affect the results when the size of the spheres is comparable. We describe what relative sizes between feeding sphere and food particles may be most effective for food capture.
Double Shell Tank AY-102 Radioactive Waste Leak Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, Dennis J.
2014-04-10
PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2001-01-01
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2000-01-01
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2004-01-13
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
Aernouts, Ben; Sharma, Sandeep; Gellynck, Karolien; Vlaminck, Lieven; Cornelissen, Maria; Saeys, Wouter
2016-10-01
Near-infrared (NIR) spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. Moreover, these measurements could be performed in vivo with an implantable single-chip based optical sensor. However, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues are highly scattering, they only allow a small fraction of the collimated light to pass, significantly reducing the light throughput. To quantify the effect of a thin tissue layer in the optical path, the bulk optical properties of serum and tissue samples grown on implanted dummy sensors were characterized using double integrating sphere and unscattered transmittance measurements. The estimated bulk optical properties were then used to calculate the light attenuation through a thin tissue layer. The combination band of glucose was found to be the better option, relative to the first overtone band, as the absorptivity of glucose molecules is higher, while the reduction in unscattered transmittance due to tissue growth is less. Additionally, as the wound tissue was found to be highly scattering, the unscattered transmittance of the tissue layer is expected to be very low. Therefore, a sensor configuration which measures the diffuse transmittance and/or reflectance instead was recommended. (a) Dummy sensor; (b) explanted dummy sensor in tissue lump; (c) removal of dummy sensor from tissue lump; and (d) 900 µm slices of tissue lump. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Guangli; Wu, Qiang; Shen, Shuwei; Zhao, Gang; Dong, Erbao; Xu, Ronald X.
2017-03-01
We describe a combination of liquid-jet microencapsulation and molding techniques to fabricate tissue-simulating phantoms that mimick functional characteristics of tissue oxygen saturation (StO2). Chicken hemoglobin (Hb) was encapsulated inside a photocurable resin by a coaxial flow focusing process. The microdroplets were cured by ultraviolet (UV) illumination to form Hb loaded polymersome microdroplets. The microdroplets were further freeze-dried to form semipermeable solid microcapules with an outer transparent polymeric shell and an inner core of Hb. The diameter of the microcapsules ranged from 50 to100 μm. The absorption spectrum of the microcapsules was measured by a UV/VIS spectrophotometer over a wavelength range from 400 nm to 1100 nm. To fabricate the tissue-simulating phantom, the Hb loaded microcapsules were dispersed in transparent polydimethylsiloxane (PDMS). The optical properties of the phantom were determined by an vertical double integrating sphere with a reconstruction algorithm. The experimental results showed that the tissue-simulating phantom exhibited the spectral characteristics closely resembling that of oxy-hemoglobin. The phantom had a long-term optical stability when stored in 4 ℃, indicating that microencapsulation effectively protected Hb and improved its shelf time. With the Hb loaded microcapsules, we will produce skin-simulating phantoms for quantitative validation of multispectral imaging techniques. To the best of the authors' knowledge, no solid phantom is able to mimick living tissue oxygenation with good agreement. Therefore, our work provided an engineering platform for validating and calibrating spectral optical devices in biomedical applications.
NASA Astrophysics Data System (ADS)
Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua
2017-03-01
Recent years have seen rapid development of hybrid optical-acoustic imaging modalities with broad applications in research and clinical imaging, including photoacoustic tomography (PAT), photoacoustic microscopy, and ultrasound-modulated optical tomography. Tissue-mimicking phantoms are an important tool for objectively and quantitatively simulating in vivo imaging system performance. However, no standard tissue phantoms exist for such systems. One major challenge is the development of tissue-mimicking materials (TMMs) that are both highly stable and possess biologically realistic properties. To address this need, we have explored the use of various formulations of PVC plastisol (PVCP) based on varying mixtures of several liquid plasticizers. We developed a custom PVCP formulation with optical absorption and scattering coefficients, speed of sound, and acoustic attenuation that are tunable and tissue-relevant. This TMM can simulate different tissue compositions and offers greater mechanical strength than hydrogels. Optical properties of PVCP samples with varying composition were characterized using integrating sphere spectrophotometry and the inverse adding-doubling method. Acoustic properties were determined using a broadband pulse-transmission technique. To demonstrate the utility of this bimodal TMM, we constructed an image quality phantom designed to enable quantitative evaluation of PAT spatial resolution. The phantom was imaged using a custom combined PAT-ultrasound imaging system. Results indicated that this more biologically realistic TMM produced performance trends not captured in simpler liquid phantoms. In the future, this TMM may be broadly utilized for performance evaluation of optical, acoustic, and hybrid optical-acoustic imaging systems.
1998-03-01
A manual recently published by Mexico¿s National System for Integral Development of the Family, ¿The gender perspective: a tool for constructing equity between men and women¿, is intended to put into practice the Cairo accords. The gender perspective has been applied in recent years to interpretation of the situation of women in past and present societies. Gender is not sex; it is the manner in which societies have symbolized and understood relations between men and women. The manual concludes that the main difference between the sexes beyond the obvious genital differences is in the greater musculature and strength of males. In contemporary societies, these attributes are less needed than technical knowledge and skills, which may be obtained by either sex. Economic evolution has led increasing numbers of women to work outside their homes. The gender roles assigned for millennia, and accepted as the natural order, are no longer adequate. The power of men has been preserved by attributing the gigantic cultural differences resulting from specialization into male and female roles to the small physical differences between the sexes. Governments have slowly established legal equity, but discrimination against women has not disappeared in the workplace, public offices, or any other social sphere, and their incorporation into the work force has left them with the double workday as they continue to perform the great bulk of domestic work. It is therefore necessary to seek equity as well as equality, understood as the creation of equivalent opportunities for men and women.
Prapavat, V; Runge, W; Mans, J; Krause, A; Beuthan, J; Müller, G
1997-11-01
In the field of rheumatology, conventional diagnostic methods permit the detection only of advanced stages of the disease, which is at odds with the current clinical demand for the early diagnosis of inflammatory rheumatic diseases. Prompted by current needs, we developed a finger joint phantom that enables the optical and geometrical simulation of an early stage of rheumatoid arthritis (RA). The results presented here form the experimental basis for an evaluation of new RA diagnostic systems based on near infrared light. The early stage of RA is characterised mainly by a vigorous proliferation of the synovial membrane and clouding of the synovial fluid. Using a double-integrating-sphere technique, the absorption and scattering coefficients (mua, mus') are experimentally determined for healthy and pathologically altered synovial fluid and capsule tissue. Using a variable mixture of Intralipid Indian ink and water as a scattering/absorption medium, the optical properties of skin, synovial fluid or capsule can be selected individually. Since the optical and geometrical properties of bone tissue remain constant in early-stage RA, a solid material is used for its simulation. Using the finger joint phantom described herein, the optical properties of joint regions can be adjusted specifically, enabling an evaluation of their effects on an optical signal--for example, during fluorography--and the investigation of these effects for diagnostically useful information. The experimental foundation for the development of a new optical system for the early diagnosis of RA has now been laid.
Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning
2018-02-01
Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.
Electromagnetic Energy Localization and Characterization of Composites
2013-01-01
polyhedrons ), and [39] (spheres and a complex yet symmetric structure). With time-domain EM analysis, regular shapes, such as cubes, spheres, and regular...spheres), [40] (spheres, crosses, cylinders, and polyhedrons ), and [41] (spheres and cylinders); and 3-D random mixtures using a frequency-domain finite...element method [42] ( polyhedrons ), and [43], [44] (spheres). Such steady-state analyses are limited as they, for example, do not capture temporal
Movements of a Sphere Moving Over Smooth and Rough Inclines
NASA Astrophysics Data System (ADS)
Jan, Chyan-Deng
1992-01-01
The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free fall. The relative magnitudes of the shear stresses due to drag, collision, and friction were also determined in terms of the Reynolds number.
Phase diagram of heteronuclear Janus dumbbells
NASA Astrophysics Data System (ADS)
O'Toole, Patrick; Giacometti, Achille; Hudson, Toby
Using Aggregation-Volume-Bias Monte Carlo simulations along with Successive Umbrella Sampling and Histogram Re-weighting, we study the phase diagram of a system of dumbbells formed by two touching spheres having variable sizes, as well as different interaction properties. The first sphere ($h$) interacts with all other spheres belonging to different dumbbells with a hard-sphere potential. The second sphere ($s$) interacts via a square-well interaction with other $s$ spheres belonging to different dumbbells and with a hard-sphere potential with all remaining $h$ spheres. We focus on the region where the $s$ sphere is larger than the $h$ sphere, as measured by a parameter $1\\le \\alpha\\le 2 $ controlling the relative size of the two spheres. As $\\alpha \\to 2$ a simple fluid of square-well spheres is recovered, whereas $\\alpha \\to 1$ corresponds to the Janus dumbbell limit, where the $h$ and $s$ spheres have equal sizes. Many phase diagrams falling into three classes are observed, depending on the value of $\\alpha$. The $1.8 \\le \\alpha \\le 2$ is dominated by a gas-liquid phase separation very similar to that of a pure square-well fluid with varied critical temperature and density. When $1.3 \\le \\alpha \\le 1.8$ we find a progressive destabilization of the gas-liquid phase diagram by the onset of self-assembled structures, that eventually lead to a metastability of the gas-liquid transition below $\\alpha=1.2$.
Kim, Hanna; Hau, Nguyen Trung; Chae, Yu-Gyeong; Lee, Byeong-Il; Kang, Hyun Wook
2016-04-01
Artificial skin phantoms have been developed as an alternative tissue for human skin experiments due to convenient use and easy storage. However, fabricating both thin (∼100 μm) epidermis and relatively thick dermis is often cumbersome, and most developed phantoms have hardly reflected specific human skin types. The objective of this study was to fabricate skin phantoms with 3D printing technique to emulate various human skin types (I-VI) along with the corresponding optical and mechanical properties for laser tattoo removal. Both gelatin and agar powders were mixed with coffee and TiO2 particles to fabricate skin phantoms with materials properties for various skin types (I-VI). A 3D printer was employed to precisely control the thickness of each phantom for epidermis and dermis layers. A number of concentrations of the coffee and TiO2 particles were used to determine the degree of absorption and scattering effects in various skin types. The optical properties between 500 and 1,000 nm for the fabricated phantoms were measured by double-integrating spheres with an inverse adding-doubling (IAD) algorithm. Optical coherence tomography (OCT) and rheometer were also utilized to evaluate optical (absorption and reduced scattering coefficients) and mechanical properties (compression modulus) of the fabricated phantoms, respectively. Visible color inspections presented that the skin phantoms for types I, III, and VI similarly emulated the color space of the human skin types. The optical property measurements demonstrated that the absorption (μa) and reduced scattering (μ(s')) coefficients decreased with wavelengths. Compared to the human skin type VI, a dermis phantom represented quite equivalent values of μa and μ(s') whereas an epidermis phantom showed up to 30% lower μa but almost identical μ(s') over the wavelengths. The OCT measurements confirmed that the thicknesses of the epidermis and the dermis phantoms were measured to be 138.50 ± 0.01 μm and 0.81 ± 0.04 mm, respectively. The mechanical properties of the phantoms mixed with the agar volume of 40% yielded a compression modulus of 83.7 ± 14.8 kPa, which well corresponded to that of human forearm skin (50-95 kPa). The 3D printing technique was able to reliably fabricate the double-layered phantoms emulating a variety of skin types (I-VI) along with the comparable optical and mechanical properties. Further investigations will incorporate artificial chromophores into the fabricated skin phantoms to reliably evaluate the new therapeutic wavelengths for laser tattoo removal. © 2016 Wiley Periodicals, Inc.
Terminal energy distribution of blast waves from bursting spheres
NASA Technical Reports Server (NTRS)
Adamczyk, A. A.; Strehlow, R. A.
1977-01-01
The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.
Servo-integrated patterned media by hybrid directed self-assembly.
Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David
2014-11-25
A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Burlandy, Luciene
2009-01-01
This article analyzes institutional strategies of the Brazilian federal government that aim at promoting intersectorality in the field of Food and Nutrition Security (FNS), based on bibliographic review and document analysis. It is assumed that, although formal institutionality in this government level is not enough to promote intersectorality, it is important in process induction. It follows that the combination of different institutional mechanisms favors intersectorality, such as: the existence and location of councils integrated by government sectors and civil society in the presidency; political support by the presidency and inclusion of the issue as being strategic in the governmental agenda; assembly of institutional spaces that articulate the highest government spheres and that integrate technical levels; programs that integrate food production, commercialization, and consumption. Challenges concern interrelation with economic policy and the construction of budget agreed among sectors, integrated to policy management and monitoring.
Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J
2017-02-01
This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.
Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.
2014-01-01
Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.