DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander; ...
2017-02-17
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
Near-K -edge single, double, and triple photoionization of C+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A. L. D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; Schippers, S.
2018-01-01
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K -shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV, corresponding to a resolving power of 24 000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multielectron Auger decay rates, and other transition parameters of the main K -shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only five electrons. This paper is a followup to a previous Letter [A. Müller et al., Phys. Rev. Lett. 114, 013002 (2015), 10.1103/PhysRevLett.114.013002].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J.; Richard, P.; Gray, T.J.
The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.
2015-04-01
Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.
Autoionizing resonances in electron-impact ionization of O5+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.
2000-12-01
We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Aryya; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. Wemore » have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.« less
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
Use of the Bethe equation for inner-shell ionization by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-14
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less
Physical parameters for proton induced K-, L-, and M-shell ionization processes
NASA Astrophysics Data System (ADS)
Shehla; Puri, Sanjiv
2016-10-01
The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-09-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-03-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
Inner-shell radiation from wire array implosions on the Zebra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.
2014-03-15
Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport ismore » used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.« less
Structure of Multiply Ionized Heavy Ions and Associated Collision Phenomena.
1978-10-01
Charge-State Dependence in K-Shell Ionization of Neon, Silicon , and Argon Gases by Lithium Proj ectiles ,” Physics Lett. 60A, 292 (1977). • “Charge...Projectile Charge-State Dependence in K-shell Ionization of Neon, Silicon , and Argon Gases by Lithium Projectiles,” Bull.Am. Phys. Soc. 22, 655 (1977...Probabilities , I . Martinson , ed. (Lunds Univeristet , Lund) , p. 8 (1977) . “Der 252S_2p 2 P° Doublettübergan g in Li-~hnlichem Schwefel , ” Verhandi
Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions
NASA Astrophysics Data System (ADS)
Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu
2017-07-01
X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.
Absolute cross-section measurements of inner-shell ionization
NASA Astrophysics Data System (ADS)
Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer
1994-12-01
Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.
Electron Impact K-shell Ionization of Atomic Targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.; Patoary, A. A. R.
2008-05-01
In spite of considerable progress -both theoretically and experimentally- recently in evaluating accurate K-shell ionization cross sections that play a decisive role for quantitative analyses using (i) electron probe microanalysis, (ii) Auger electron spectroscopy and (iii) electron energy loss spectra, attempts are still continuing to search for a model that can easily generate reliable cross sections for a wide range of energies and for various targets needed for plasma modeling code We report few modifications of the widely used binary encounter approximation (BEA) [1,2] and have tested by evaluating the electron impact K-shell ionization of few neutral targets at various projectile energies. Details will be presented at the meeting. [1] M. Gryziniski, Phys. Rev. A 138, 336 (1965); [2] L. Vriens, Proc. Phys. Soc. (London) 89, 13, (1966). [3M. A. Uddin , A. K. F. Haque, M. M. Billah, A. K. Basak, K, R, Karim and B. C. Saha, ,Phys. Rev. A 71,032715 (2005); [4] M. A. Uddin, A. K. Basak, and B. C. Saha, Int. J. Quan. Chem 100, 184 (2004).
Raman-Scattering Line Profiles of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2017-06-01
The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.
NASA Astrophysics Data System (ADS)
Ratkevich, S. S.; Gangapshev, A. M.; Gavrilyuk, Yu. M.; Karpeshin, F. F.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Trzhaskovskaya, M. B.; Yakimenko, S. P.
2017-12-01
Background: A double-K -electron capture is a rare nuclear-atomic process in which two K electrons are captured simultaneously from the atomic shell. A "hollow atom" is created as a result of this process. In single-K -shell electron-capture decays, there is a small probability that the second electron in the K shell is excited to an unoccupied level or can (mostly) be ejected to the continuum. In either case, a double vacancy is created in the K shell. The relaxation of the double-K -shell vacancy, accompanied by the emission of two K -fluorescence photons, makes it possible to perform experimental studies of such rare processes with the large-volume proportional gas chamber. Purpose: The purpose of the present analysis is to estimate a double-K -shell vacancy creation probability per K -shell electron capture PK K of 81Kr, as well as to measure the half-life of 78Kr relative to 2 ν 2 K capture. Method: Time-resolving current pulse from the large low-background proportional counter (LPC), filled with the krypton sample, was applied to detect triple coincidences of "shaked" electrons and two fluorescence photons. Results: The number of K -shell vacancies per the K -electron capture, produced as a result of the shake-off process, has been measured for the decay of 81Kr. The probability for this decay was found to be PK K=(5.7 ±0.8 ) ×10-5 with a systematic error of (ΔPKK) syst=±0.4 ×10-5 . For the 78Kr(2 ν 2 K ) decay, the comparative study of single- and double-capture decays allowed us to obtain the signal-to-background ratio up to 15/1. The half-life T1/2 2 ν 2 K(g .s .→g .s .) =[1 .9-0.7+1.3(stat) ±0.3 (syst) ] ×1022 y is determined from the analysis of data that have been accumulated over 782 days of live measurements in the experiment that used samples consisted of 170.6 g of 78Kr. Conclusions: The data collected during low background measurements using the LPC were analyzed to search the rare atomic and nuclear processes. We have determined PKK exp for the E C decay of 81Kr, which are in satisfactory agreement with Z-2 dependence of PK K predicted by Primakoff and Porter. This made possible to more accurately determine the background contribution in the energy region of our interest for the search for the 2 K capture in 78Kr. The general procedure of data analysis allowed us to determine the half-life of 78Kr relative to 2 ν 2 K transition with a greater statistical accuracy than in our previous works.
Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.
Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...
2016-10-20
Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.
Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation
NASA Astrophysics Data System (ADS)
Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.
2014-10-01
Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, C. S.; Picón, A.; Bostedt, C.
The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and anmore » x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.« less
M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less
Electron Impact K-shell Ionization Cross Sections at high energies
NASA Astrophysics Data System (ADS)
Haque, A. K. F.; Sarker, M. S. I.; Patoary, M. A. R.; Shahjahan, M.; Ismail Hossain, M.; Alfaz Uddin, M.; Basak, A. K.; Saha, Bidhan
2008-10-01
A simple modification of the empirical model of Deutsh et. al. [1] by incorporating both the ionic [2] and relativistic corrections [3] is proposed for evaluating the electron impact K -shell ionization cross sections of neutral atomic targets. Present results for 30 atomic targets with atomic number Z=1 -- 92 for incident energies up to E=2 GeV, agree well with available experimental cross sections. Comparisons with other theoretical findings will also be presented at the conference. [1] H. Deutsh, K. Becker, T. D. Mark, Int. J. Mass Spect. 177, 47 (1998). [2] M. A. Uddin, A. K. F. Haque, M. M. Billah, A. K. Basak, K. R. Karim, B. C. Saha, Phys. Rev. A 71, 032715 (2005).; Phys. Rev. A 73, 012708 (2006). [3] M. Gryzinski, Phys. Rev 138, 336 (1965).
H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-04-01
The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.
Ultrafast electronic dynamics driven by nuclear motion
NASA Astrophysics Data System (ADS)
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.; Pradhan, Anil K.
2015-04-01
The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.
NASA Astrophysics Data System (ADS)
López, S. D.; Otranto, S.; Garibotti, C. R.
2015-01-01
In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.
Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity
NASA Astrophysics Data System (ADS)
Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio
2016-10-01
The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion
NASA Astrophysics Data System (ADS)
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-01
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-02
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Demonstration of high coupling efficiency to Al capsule in rugby hohlraum on NIF
NASA Astrophysics Data System (ADS)
Ping, Y.; Smalyuk, V.; Amendt, P.; Bennett, D.; Chen, H.; Dewald, E.; Goyon, C.; Graziani, F.; Johnson, S.; Khan, S.; Landen, O.; Nikroo, A.; Pino, J.; Ralph, J.; Seugling, R.; Strozzi, D.; Tipton, R.; Tommasini, R.; Wang, M.; Loomis, E.; Merritt, E.; Montgomery, D.
2017-10-01
A new design of the double-shell approach predicts a high coupling efficiency from the hohlraum to the capsule, with 700 kJ in the capsule instead of 200kJ in the conventional low-Z single-shell scheme, improving prospects of double-shell performance. A recent experiment on NIF has evaluated a first step toward this goal of energy coupling using 0.7x subscale Al capsule, Au rugby hohlraum and 1MJ drive. A shell velocity of 150 μm/ns was measured, DANTE peak temperature of 255 eV was measured, and shell kinetic energy of 36 kJ was inferred using a rocket model, all close to predictions and consistent with 330kJ of total energy coupled to the capsule. Data analysis and more results from subsequent experiments will be presented. In the next step, an additional 2x increase of total coupled energy up to 700 kJ is projected for full-scale 2-MJ drive in U Rugby hohlraum. This work was performed under DOE contract DE-AC52-07NA27344.
Processes of energy deposition by heavy-particle and electron impact. Final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salop, A.; Smith, F.T.
1978-04-18
Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given.
Ghostly Remnant of an Explosive Past
2007-03-07
This enhanced image from the far-ultraviolet detector on NASA Galaxy Evolution shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star.
Electron Impact Inner-shell Ionization including relativistic corrections.
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Alfaz Uddin, M.; Basak, Arun K.
2007-04-01
We report a simple method to evaluate the electron impact inner-shell ionization cross sections at ultra high energy regime; there still remains a sparse cross sections due to lack of reliable method. To extend the validity domains of the siBED model [1] in terms of targets and incident energies in this work we modified the RQIBED model [2], and denoted it as MUIBED. It is examined for the description of the experimental EIICS data of various target atoms up to E=250MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).
IUE observations of the atmospheric eclipsing binary system Zeta Aurigae
NASA Technical Reports Server (NTRS)
Champman, R. D.
1980-01-01
IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.
Kβ/ Kα intensity ratios for X-ray production in 3d metals by gamma-rays and protons
NASA Astrophysics Data System (ADS)
Bhuinya, C. R.; Padhi, H. C.
1994-04-01
Systematic measurements of Kβ/ Kα intensity ratios for X-ray production in 3d metals have been carried out using γ-ray and fast proton ionization methods. The measured ratios from proton ionization experiments indicate production of multivacancies in the L shell giving rise to higher Kβ/ Kα ratios compared to the present γRF results and 2 MeV proton ionization results of Perujo et al. [Perujo A., Maxwell J. A., Teesdale W. J. and Cambell J. L. (1987) J. Phys. B: Atom. Molec. Phys.20, 4973]. This is consistent with the SCA model calculation which gives increased simultaneous K- and L-shell ionization at 4 MeV. The present results from γRF experiments are in close agreement with the 2 MeV proton ionization results of Perujo et al. (1987) and also with the theoretical calculation of jankowski and Polasik [Jankowski K. and Polasik M. (1989) J. Phys. B: Atom. Molec. Optic. Phys. 22, 2369] but the theoretical results of Scofield [Scofield J. H. (1974a) Atom. Data Nucl. Data Tables14, 12] are somewhat higher.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-12-16
Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...
2016-02-15
Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.
Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhifan; Hu, Shu; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less
Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle
NASA Astrophysics Data System (ADS)
Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.
2004-05-01
Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.
Inner-shell Ionization With Relativistic Corrections By Electron Impact
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Patoary, M. A. R.; Alfaz Uddin, M.; Haque, A. K. F.; Basak, Arun K.
2007-06-01
A simple method is proposed and tested by evaluating the electron impact inner-shell ionization cross sections of various targets up to ultra high energy region. In this energy region there are not many calculations due to lack of reliable method. In this work we extend the validity of the siBED model [1] in terms of targets and incident energies. The extension of our earlier RQIBED model [2] is also reported here and we examined its findings for the description of the experimental EIICS data of various targets up to E=1000 MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).
Suzaku spectra of a Type-II supernova remnant, Kes 79
NASA Astrophysics Data System (ADS)
Sato, Tamotsu; Koyama, Katsuji; Lee, Shiu-Hang; Takahashi, Tadayuki
2016-06-01
This paper reports on results of a Suzaku observation of the supernova remnant (SNR) Kes 79 (G33.6+0.1). The X-ray spectrum is best fitted by a two-temperature model: a non-equilibrium ionization (NEI) plasma and a collisional ionization equilibrium (CIE) plasma. The NEI plasma is spatially confined within the inner radio shell with kT ˜ 0.8 keV, while the CIE plasma is found in more spatially extended regions associated with the outer radio shell with kT ˜0.2 keV and solar abundance. Therefore, the NEI plasma is attributable to the SN ejecta, and the CIE plasma is the forward shocked interstellar medium. In the NEI plasma, we discovered K-shell lines of Al, Ar, and Ca for the first time. The abundance pattern and estimated mass of the ejecta are consistent with a core-collapse supernova explosion of a ˜30-40M⊙ progenitor star. An Fe line with a center energy of ˜6.4 keV is also found in the southeast (SE) portion of the SNR, a close peripheral region around dense molecular clouds. One possibility is that the line is associated with the ejecta. However, the centroid energy of ˜6.4 keV and the spatial distribution of enhancement near the SE peripheral do not favor this scenario. Since the ˜6.4 keV emitting region coincides with the molecular clouds, we propose another possibility, that the Fe line is due to K-shell ionization of neutral Fe by the interaction of locally accelerated protons (LECRp) with the surrounding molecular cloud. Both of these possibilities, heated ejecta or LECRp origin, are discussed based on the observational facts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, M.; Novotny, O.; Savin, D. W.
2013-04-10
We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less
Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie
2011-10-01
High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Dasgupta, Arati
2015-11-01
Designing high fluence photon sources above 10 keV are a challenge for High Energy Density plasmas. This has motivated radiation source development investigations of Kr with K-shell energies around 13 keV. Recent pulsed power driven gas-puff experiments on the refurbished Z machine at Sandia have produced intense X-rays in the multi-keV photon energy range. K-shell radiative yields and efficiencies are very high for Ar, but rapidly decrease for higher atomic number (ZA) elements such as Kr. It has been suggested that an optimum exists corresponding to a trade-off between the increase of photon energy for higher ZA elements and the corresponding fall off in radiative power. However the conversion efficiency on NIF, where the drive, energy deposition process, and target dynamics are different, does not fall off with higher ZA as rapidly as on Z. We have developed detailed atomic structure and collisional data for the full K-, L- and partial M-shell of Kr using the Flexible Atomic Code (FAC). Our non-LTE atomic model includes all collisional and recombination processes, including state-specific dielectronic recombination (DR), that significantly affect ionization balance and spectra of Kr plasmas at the temperatures and densities of concern. The model couples ionization physics, radiation production and transport, and magnetohydrodynamics. In this talk, I will give a detailed description of the model and discuss 1D Kr simulations employing a multifrequency radiation transport scheme. Synthetic K- and L-shell spectra will be compared with available experimental data. This talk will analyze experimental data indicative of the differences between Z and NIF experimental data and discuss how they affect the K-shell radiative output of Kr plasma. Work supported by DOE/NNSA.
Simulation of K-α Emission from Highly Charged Cu ions for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, A.; Giuliani, J. L.; Clark, R. W.; Ouart, N. D.; Jones, B.; Ampleford, D. J.
2012-10-01
Recent spectral data of Cu shots Z1975 and Z2122 from Sandia's ZR machine are believed to show strong K-α emissions. As these K-α lines provide good diagnostics, a detailed spectral model will be developed to investigate these line emissions for analyzing the data. In a Z pinch plasma, K-α emission can occur due to e-beams, hot electrons at the tail of a Maxwellian and also pumping from hot photons emitted near the axis. K-α emission that originates from collisional processes involving hot electrons in the final phase of the pinching plasmas are associated with radiationless electron capture, inner-shell electron collisional excitation and ionization. K-α lines from various ionization stages of various materials such as Fe, Cr, Ni, and Mn were also observed in the ZR data. Contributions from ions with strong K-α transitions will be included for this study which is a preliminary attempt to investigate Cu K-α lines due to hot electrons and photons. Photo-pumped K-α emission from an outer shell is spatially distinguishable from that produced by e-beam on axis.
X-ray two-photon absorption with high fluence XFEL pulses
Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...
2015-09-07
Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.
X-Ray Laser Program Report for FY 1989
1990-05-24
theoretical photopumped x-ray laser program also involves the use of a neon lasant plasma. However, that is the only similarity to the Na/Ne scheme described...K-shell neon Z pinch photons of energy hv > 900 eV, photoionize inner K-shell electrons from the neutral neon, leading to Auger decay from Ne II to...is generated by electrons which are produced in the photoionization of Ne I. For example, ionization by the Ly-a line produces 150-eV photoelectrons
NASA Astrophysics Data System (ADS)
Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun
2017-09-01
By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.
Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.
Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe
2017-07-07
We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.
Two-photon decay of K-shell vacancies in silver atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokler, P.H.; University of Giessen, Giessen; Schaeffer, H.W.
2004-09-01
The spectral distributions for the two-photon decay modes of singly K-shell ionized silver atoms are determined by x-ray-x-ray coincidence measurements. Ag K-shell vacancies were induced by nuclear electron capture decay of radioactive cadmium isotopes {sup 109}Cd and two-photon coincidences were taken back to back (180 deg.) and at a 90 deg. opening angle for the emission. Each of the two-photon transitions from the 2s, 3s, and 3d states exhibits unique angular and spectral distributions. The measurements agree nicely with relativistic self-consistent field calculations of Tong et al. Our results also confirm and extend the earlier experimental data of Ilakovac andmore » co-workers with improved accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioannou, J.G.
1977-12-01
The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less
Equation of state and shock compression of warm dense sodium—A first-principles study
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-02-21
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
Relativistic effects in electron impact ionization from the p-orbital
NASA Astrophysics Data System (ADS)
Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Karim, K. R.; Saha, B. C.; Malik, F. B.
2006-06-01
The parameters of our recent modification of BELI formula (MBELL) [A.K.F. Haque, M.A. Uddin, A.K. Basak, K.R. Karim, B.C. Saha, Phys. Rev. A 73 (2006) 012708] are generalized in terms of the orbital quantum numbers nl to evaluate the electron impact ionization (EII) cross sections of a wide range of isoelectronic targets (H to Ne series) and incident energies. For both the open and closed p-shell targets, the present MBELL results with a single parameter set, agree nicely with the experimental cross sections. The relativistic effect of ionization in the 2p subshell of U82+ for incident energies up to 250 MeV is well accounted for by the prescribed parameters of the model.
A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com
Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocur, P.; Duggan, J.L.; McDaniel, F.D.
1983-04-01
In a recent series of studies of M-shell ionization induced by protons, alpha particles, and fluorine ions, an unmanageable background of low energy contaminant x rays was observed. These K-shell x rays were primarily from Ca, K, Cl, S, P, Si and Na. The energy range of these contaminants is from 3.691 to 1.041 keV. The M-shell x rays being studied were for various elements from U ( about 3.5 keV) down to Eu (1.5 keV). In order to evaluate and reduce the problem, the contaminants for carbon foils from a number of different manufacturers and a wide variety ofmore » foil float-off procedures have been studied. Carbon foils have been produced in our laboratory using carbon rods from several different manufacturers. In this paper, techniques will be described that are most appropriate to reduce the above contaminants to a reasonable level. These techniques should be useful in trace element analysis (PIXE) studies and fundamental ionization measurements for low x-ray energies.« less
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
NASA Astrophysics Data System (ADS)
Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.
2016-10-01
Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.
X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations
NASA Technical Reports Server (NTRS)
Garcia, J.; Kallman, T. R.; Mushotzky, R. F.
2011-01-01
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.
NASA Astrophysics Data System (ADS)
Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.
2016-10-01
Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.
Ultrafast isomerization initiated by X-ray core ionization
NASA Astrophysics Data System (ADS)
Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur; Sanchez-Gonzalez, Alvaro; Berrah, Nora; Boll, Rebecca; Bomme, Cedric; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Coffee, Ryan; Devin, Julien; Erk, Benjamin; Ferguson, Ken R.; Field, Robert W.; Foucar, Lutz; Frasinski, Leszek J.; Glownia, James M.; Gühr, Markus; Kamalov, Andrei; Krzywinski, Jacek; Li, Heng; Marangos, Jonathan P.; Martinez, Todd J.; McFarland, Brian K.; Miyabe, Shungo; Murphy, Brendan; Natan, Adi; Rolles, Daniel; Rudenko, Artem; Siano, Marco; Simpson, Emma R.; Spector, Limor; Swiggers, Michele; Walke, Daniel; Wang, Song; Weber, Thorsten; Bucksbaum, Philip H.; Petrovic, Vladimir S.
2015-09-01
Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a `molecular movie' of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy.
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.
2018-02-01
Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.
A Massive X-ray Outflow From The Quasar PDS 456
NASA Technical Reports Server (NTRS)
Reeves, J. N.; O'Brien, P. T.; Ward, M. J.
2003-01-01
We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-07-10
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard
2017-07-01
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Double Photoionization of excited Lithium and Beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.
2010-05-20
We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.
NASA Astrophysics Data System (ADS)
Poškus, A.
2016-09-01
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more accurate than the corresponding ENDF/B cross sections when energy of incident electrons is of the order of the binding energy.
The equation-of-motion coupled cluster method for triple electron attached states
NASA Astrophysics Data System (ADS)
Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.
2012-11-01
The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.
Electron impact ionization from p-orbital targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.
2006-05-01
Electron impact ionization cross sections are evaluated using a modified version [1] of the BELL formula [2] for a wide range of isoelectronic targets, ranging from Li to Ne targets with both the open and closed shell configurations. In this report the MBELL parameters are generalized for treating the orbital quantum numbers nl dependency; its accuracy has been tested by evaluating cross sections for a wider range of species and energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 012708 (2005). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
Dasgupta, A.; Clark, R. W.; Ouart, N.; ...
2016-10-20
We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, A.; Clark, R. W.; Ouart, N.
We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less
Optimization of K-shell emission in aluminum z-pinch implosions: Theory versus experiment
NASA Astrophysics Data System (ADS)
Whitney, K. G.; Thornhill, J. W.; Giuliani, J. L.; Davis, J.; Miles, L. A.; Nolting, E. E.; Kenyon, V. L.; Speicer, W. A.; Draper, J. A.; Parsons, C. R.; Dang, P.; Spielman, R. B.; Nash, T. J.; McGurn, J. S.; Ruggles, L. E.; Deeney, C.; Prasad, R. R.; Warren, L.
1994-09-01
Two sets of z-pinch experiments were recently completed at the Saturn and Phoenix facilities of Sandia National Laboratories and the Naval Surface Warfare Center, respectively, using aluminum wire arrays of different wire and array diameters. Measurements of the total x-ray yield from the K shell of aluminum were made. In this paper, a comparison of these measurements is made to both theoretical predictions and to a similar set of earlier measurements that were made at the Double Eagle facility of Physics International Company. These three sets of yield measurements have points of agreement with predicted yields and with each other, but they also show points of mutual disagreement, whose significance is discussed. The data are analyzed using a slightly revised version of a previously published K-shell yield scaling law, and they support the existence of a reasonably well defined region in (load mass)-(implosion velocity) space in which plasma kinetic energy is efficiently converted into K-shell x rays. Furthermore, a correlation is observed between the inferred conversion efficiencies and the times in which the implosions occur relative to the times when each generator's short-circuit current reaches its peak value. Finally, unlike the Double Eagle experiments, the largest measured yields in the new experiments were observed to occur at the upper velocity boundary of the efficient emission region. Moreover, the observed yields are in fairly good quantitative agreement with an earlier scaling law prediction of the maximum K-shell x-ray yield from aluminum as a function of load mass assuming kinetic energy conversion alone.
Observation of ionization fronts in low density foam targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Observation of Transonic Ionization Fronts in Low-Density Foam Targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.
1999-04-01
Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Three holes bound to a double acceptor - Be(+) in germanium
NASA Technical Reports Server (NTRS)
Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.
1983-01-01
A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monfredini, T.; Boechat-Roberty, H. M.; Fantuzzi, F.
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives mainly occurs in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μm, observed in infrared emission spectra of several objects, are attributed C–H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μm is more intense than that at 3.4 μm. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge using time-of-flight mass spectrometry. Partial ion yields of a large numbermore » of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. Ab initio calculations based on density functional theory were performed in order to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.« less
NASA Astrophysics Data System (ADS)
Monfredini, T.; Fantuzzi, F.; Nascimento, M. A. C.; Wolff, W.; Boechat-Roberty, H. M.
2016-04-01
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives mainly occurs in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μm, observed in infrared emission spectra of several objects, are attributed C-H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μm is more intense than that at 3.4 μm. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge using time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. Ab initio calculations based on density functional theory were performed in order to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shellsmore » and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.« less
Opacity Variations in the Ionized Absorption in NGC 3783: A Compact Absorber
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Brickhouse, N. S.; Elvis, M.; Mathur, S.
2005-04-01
We show that the Fe VII-Fe XII M-shell unresolved transition array (UTA) in the Chandra HETGS observation of NGC 3783 (900 ks) clearly changes in opacity on a timescale of 31 days, responding to a factor of ~2 change in the ionizing continuum. The opacity variation is observed at a level >10 σ. There is also evidence for variability in the O VI K edge (at ~3 σ). The observed changes are consistent with the gas producing these absorption features (i.e., the low-ionization component) being close to photoionization equilibrium. The gas responsible for the Fe XVII-Fe XXII L-shell absorption (i.e., the high-ionization component) does not seem to be responding as expected in photoionization equilibrium. The observed change in opacity for the UTA implies a density >1×104 cm-3, thus locating the gas within 6 pc of the X-ray source. The scenario in which the gas is composed of a continuous radial range of ionization structures is ruled out, as in such scenario, no opacity variations are expected. Rather, the structure of the absorber is likely composed of heavily clumped gas.
Ionization competition effects on population distribution and radiative opacity of mixture plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Gao, Cheng; Tian, Qinyun
2015-11-15
Ionization competition arising from the electronic shell structures of various atomic species in the mixture plasmas was investigated, taking SiO{sub 2} as an example. Using a detailed-level-accounting approximation, we studied the competition effects on the charge state population distribution and spectrally resolved and Planck and Rosseland mean radiative opacities of mixture plasmas. A set of coupled equations for ionization equilibria that include all components of the mixture plasmas are solved to determine the population distributions. For a given plasma density, competition effects are found at three distinct temperature ranges, corresponding to the ionization of M-, L-, and K-shell electrons ofmore » Si. Taking the effects into account, the spectrally resolved and Planck and Rosseland mean opacities are systematically investigated over a wide range of plasma densities and temperatures. For a given mass density, the Rosseland mean decreases monotonically with plasma temperature, whereas Planck mean does not. Although the overall trend is a decrease, the Planck mean increases over a finite intermediate temperature regime. A comparison with the available experimental and theoretical results is made.« less
Togun, R.A.; Balogun, R. O.; Adeyemi, D.O.; Esan, T.A.; Oyatogun, G.M; Oziegbe, E.O; Okonji, R. E.; Kuku, A.
2017-01-01
Background: Biomaterials are non-drug substances used to treat, enhance or replace functions of body tissues or organs. Natural sources of biomaterials have recently become the focus of several research activities. Cowry shell constitutes one of the most promising natural sources of biomaterials because of its chemical stability, biodegradability and biocompatibility in the body. However, its applications may be limited due to immunogenic and toxic responses that may occur following implantation, hence this study. Materials and Methods: Crude fibrous protein extracted with citrate buffer from pulverised cowry shells (Cypraea moneta (L)), was resolved into two components (CSP1 and CSP2) by gel filtration. Immunological studies were performed with antisera obtained from rabbits by double immunodiffusion and immunoelectrophoresis techniques. Mice treated with the proteins were observed for signs of toxicity and their liver, kidney, lungs and spleen were processed histologically. Results: The native molecular weight of CSP1 and CSP2 determined by gel filtration were 91kDa and 33kDa respectively. CSP1 and CSP2 displayed single bands on SDS-PAGE with subunit molecular weight values of 19kDa and 19.5kDa respectively. Antisera obtained from rabbits immunised with the crude citrate buffer extracts precipitated the antigen in double immunodiffusion tests. Histopathological examinations revealed a dose-dependent damaging effect of the shell proteins on liver, kidney, lung and spleen tissues of the treated mice. Conclusion: This study showed that cowry shells contain fibrous proteins which are immunogenic and toxic in mice at relatively high concentrations, causing visible organ damage without concurrent physical manifestations. PMID:28480388
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Reading, J.F.; Becker, R.L.
Theoretical methods used previously for H/sup +/, He/sup 2 +/, and C/sup 6 +/ collisions with neutral argon atoms have been applied to collisions of H/sup +/, He/sup 2 +/, and Li/sup 3 +/ projectiles with neon, and to collisions of H/sup +/ with carbon targets. The energy range covered by the calculations is 0.4 to 4.0 MeV/amu for the neon target, and 0.2 to 2.0 MeV/amu for carbon. We calculate single-electron amplitudes for target K-shell ionization and target K- and L-shell, to projectile K-shell, charge transfer. These single-electron amplitudes are used, in an independent-particle model that allows for multielectronmore » processes, to compute K-shell vacancy production cross sections sigma/sup IPM//sub V/K, and cross sections sigma/sup IPM//sub C/,VK for producing a charge-transfer state of the projectile in the coincidence with a K-shell vacancy in the target. These cross sections are in reasonable agreement with the recent experiments of Rodbro et al. at Aarhus. In particular, the calculated, as well as the experimental, sigma/sub C/,VK scale with projectile nuclear charge Z/sub p/ less strongly than the Z/sup 5//sub p/ of the Oppenheimer-Brinkman-Kramers (OBK) approximation. For He/sup 2 +/ and Li/sup 3 +/ projectiles at collision energies below where experimental data are available, our calculated multielectron corrections to the single-electron approximation for sigma/sub C/,VK are large.« less
Vortices for K-shell ionization of carbon by electron impact
NASA Astrophysics Data System (ADS)
Ward, S. J.; Macek, J. H.
2014-05-01
Using the Coulomb-Born approximation, we obtained a deep minimum in the TDCS for K-shell ionization of carbon by electron impact. The minimum is due to a vortex in the velocity field. We considered the electron to be ejected in the scattering plane, which we took to be the xz -plane. The minimum was obtained for the kinematics of an incident energy Ei = 1801 . 2 eV , scattering angle θf =4° , energy of ejected electron Ek = 5 . 5 eV , and angle of the ejected electron θk =239° . We analyzed the importance of various multipole components in an expansion of the Coulomb-Born T-matrix. We also considered the electron ejected out of the scattering plane for Ei = 1801 . 2 eV and θf =4° and located the positions of vortices for small but nonzero values of ky, the y - component of the momentum of the ejected electron. We constructed the vortex line for the kinematics of Ei = 1801 . 2 eV and θf =4° . S. J. W. and J. H. M. acknowledge support from NSF under grant no. PHYS- 0968638 and from D.O.E. under grant number DE-FG02-02ER15283, respectively.
Maeda, Munetoshi; Kobayashi, Katsumi; Hieda, Kotaro
2004-01-01
This paper aims at determining and comparing the cross sections and quantum yields for DNA strand break induction by the Auger effect at the K-shell of phosphorus and at the LIII-shell of platinum. Using synchrotron radiation, free and Pt-bound pBR322 plasmid DNA were irradiated in solution with monochromatic X-rays, the energies of which were 2.153 and 2.147 keV, corresponding to "on" and "below" the phosphorus K-shell photoabsorption, and 11.566 and 11.542 keV for "above" and "below" the L(III)-shell photoabsorption of platinum, respectively. To suppress indirect effects by hydroxyl radicals, DMSO (1M) was used as a scavenger. The inner-shell photoabsorption of phosphorus and of platinum significantly increased the induction of DNA double strand breaks (DSB), whereas it had little effect on single strand break (SSB) induction. The quantum yields for the induction of DSB were calculated to be 0.017 and 1.13, in the case of phosphorus and platinum, respectively. CONCLSIONS: The value of the quantum yield for the DSB induction of platinum was about 66-fold larger than that for the phosphorus. These results clearly demonstrate that the quantum yield of DSB depends upon the magnitude of the Auger cascade.
The Fe K Line Region Of η Carinae Around The X-ray Minima
NASA Astrophysics Data System (ADS)
Leyder, Jean-Christophe; Corcoran, M. F.; Henley, D. B.; Hamaguchi, K.; Ishibashi, K.; Pittard, J.
2011-09-01
We studied the Fe K line region of η Carinae with high-resolution X-ray Chandra grating spectra, using observations covering key phases around the last two X-ray minima (i.e. in 2003.5 and 2009). The line centroids are slightly redshifted, as opposed to the blueshifted lines observed at lower X-ray energies. This is the first observational evidence that the plasma producing the iron line emission is dynamically distinct from the plasma responsible for K-shell emission at lower energies, and is in agreement with the general colliding wind shock model. Gaussian modeling of the Fe XXV K-shell triplet blend shows apparent variations in centroid velocity, which are difficult to interpret as orbital motion of the companion star. Significant variability in the doppler broadening of the Fe K fluorescence emission line at 6.4 keV suggests that the formation of this line occurs in the wind of η Carinae at some particular phases. Of particular interest is the presence of a red wing in the profile of the Fe XXV triplet. This emission probably arises from iron in ionization states below Fe XXIV. Different mechanisms that might explain this emission will be discussed, e.g. an extremely bright, relatively cool, and heavily absorbed equilibrium plasma; emission from unshocked photoionized wind material; or assuming a fraction of the thermal plasma is not in ionization equilibrium.
Wind-embedded shocks in FASTWIND: X-ray emission and K-shell absorption
NASA Astrophysics Data System (ADS)
Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.
2017-11-01
EUV and X-ray radiation emitted from wind-embedded shocks can affect the ionization balance in the outer atmospheres of massive stars, and can also be the mechanism responsible for producing highly ionized atoms detected in the wind UV spectra. To investigate these processes, we implemented the emission from wind-embedded shocks and related physics into our atmosphere/spectrum synthesis code FASTWIND. We also account for the high energy absorption of the cool wind, by adding important K-shell opacities. Various tests justfying our approach have been described by Carneiro+(2016, A&A 590, A88). In particular, we studied the impact of X-ray emission on the ionization balance of important elements. In almost all the cases, the lower ionization stages (O iv, N iv, P v) are depleted and the higher stages (N v, O v, O vi) become enhanced. Moreover, also He lines (in particular He ii 1640 and He ii 4686) can be affected as well. Finally, we carried out an extensive discussion of the high-energy mass absorption coefficient, κν, regarding its spatial variation and dependence on T eff. We found that (i) the approximation of a radially constant κν can be justified for r >= 1.2R * and λ <= 18 Å, and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quantity, however, the He ii background needs to be considered from detailed modeling.
Heat transfer and thermal management of electric vehicle batteries with phase change materials
NASA Astrophysics Data System (ADS)
Ramandi, M. Y.; Dincer, I.; Naterer, G. F.
2011-07-01
This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
NASA Technical Reports Server (NTRS)
Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi;
2007-01-01
We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.
The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-06-01
Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
Effects of stellar evolution and ionizing radiation on the environments of massive stars
NASA Astrophysics Data System (ADS)
Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.
2014-09-01
We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Himadri, E-mail: hmdrpthk@gmail.com; Sasmal, Sudip, E-mail: sudipsasmal.chem@gmail.com; Vaval, Nayana
2016-08-21
The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximationsmore » in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hai L., E-mail: Hai.Feng@cpfs.mpg.de; Yamaura, Kazunari; Tjeng, Liu Hao
Polycrystalline samples of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are −590 K for Ba{sub 2}ScOsO{sub 6}, −571 K for Ba{sub 2}YOsO{sub 6}, and −155 K for Ba{sub 2}InOsO{sub 6}. Sc{sup 3+} and Y{sup 3+} have the open-shell d{sup 0} electronic configuration, while In{sup 3+} has the closed-shell d{sup 10}. This indicates that a d{sup 0} B-typemore » cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. Comparison of Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions. - Graphical abstract: Magnetic properties of osmium double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. Comparison of Ba{sub 2}BOsO{sub 6}indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. - Highlights: • Magnetic properties of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. • A d{sup 0}B-type cation induces stronger magnetic interactions than a d{sup 10}. • Structural distortions weaken the overall Os{sup 5+}-Os{sup 5+} magnetic interactions.« less
Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand
2011-04-28
Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding.
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
NASA Astrophysics Data System (ADS)
Terebey, S.; Fich, M.; Taylor, R.
1999-12-01
A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
NASA Technical Reports Server (NTRS)
Terebey, S.; Fich, M.; Taylor, R.
1999-01-01
A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
From Cool to Hot F-stars: The Influence of Two Ionization Regions in the Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Brito, Ana; Lopes, Ilídio
2018-02-01
The high-precision data available from the Kepler satellite allows us to study the complex outer convective envelopes of solar-type stars. We use a seismic diagnostic, specialized for investigating the outer layers of solar-type stars, to infer the impact of the ionization processes on the oscillation spectrum, for a sample of Kepler stars. These stars, of spectral type F, cover all of the observational seismic domain of the acoustic oscillation spectrum in solar-type stars. They also cover the range between a cool F-dwarf (∼6000 K) and a hotter F-star (∼6400 K). Our study reveals the existence of two relevant ionization regions. One of these regions, which is located closer to the surface of the star, is commonly associated with the second ionization of helium, although other chemical species also contribute to ionization. The second region, located deeper in the envelope, is linked with the ionization of heavy elements. Specifically, in this study, we analyze the elements carbon, nitrogen, oxygen, neon, and iron. Both regions can be related to the K electronic shell. We show that, while for cooler stars like the Sun, the influence of this second region on the oscillation frequencies is small; in hotter stars, its influence becomes comparable to the influence of the region of the second ionization of helium. This can guide us in the study of the outer layers of F-stars, specifically with the understanding of phenomena related to rotation and magnetic activity in these stars.
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
NASA Astrophysics Data System (ADS)
Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.
2004-03-01
Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiendlocha, Bartlomiej; Kim, SunPhil; Lee, Yeseul
The Eu atoms in Pb 1-xEu xSe have long been assumed to be divalent. We show that p-type doping of this magnetic semiconductor alloy with Na can modify the effective Eu valence: a mixed, Eu 2+–Eu 3+ state appears in Pb 1-x-yEu xNa ySe at particular values of y. Magnetization, carrier concentration, resistivity, and thermopower of Pb 1-x-yEu xNa ySe are reported for a number of samples with different x and y. A pronounced increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the holemore » concentration is observed in Pb1-yNaySe when Eu is added to the system, which we attribute to a Eu 2+–Eu 3+ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of Pb 1-xEu xSe upon alloying with Na. Further, a deviation of magnetization from a purely paramagnetic state, described by a Brillouin function, identifies antiferromagnetic interactions between the nearest-neighbor Eu atoms: a value of J ex/k B = -0.35 K was found for the exchange coupling parameter. The conclusion of a Eu 2+–Eu 3+ self-ionization process being in effect is supported further by the electronic structure calculations, which show that an instability of the 4f 7 configuration of the Eu 2+ ion appears with Na doping. In conclusion, schematically, it was found that the Eu 4f levels form states near enough to the Fermi energy that hole doping can lower the Fermi energy and trigger a reconfiguration of a 4f electronic shell.« less
Wiendlocha, Bartlomiej; Kim, SunPhil; Lee, Yeseul; ...
2017-03-27
The Eu atoms in Pb 1-xEu xSe have long been assumed to be divalent. We show that p-type doping of this magnetic semiconductor alloy with Na can modify the effective Eu valence: a mixed, Eu 2+–Eu 3+ state appears in Pb 1-x-yEu xNa ySe at particular values of y. Magnetization, carrier concentration, resistivity, and thermopower of Pb 1-x-yEu xNa ySe are reported for a number of samples with different x and y. A pronounced increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the holemore » concentration is observed in Pb1-yNaySe when Eu is added to the system, which we attribute to a Eu 2+–Eu 3+ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of Pb 1-xEu xSe upon alloying with Na. Further, a deviation of magnetization from a purely paramagnetic state, described by a Brillouin function, identifies antiferromagnetic interactions between the nearest-neighbor Eu atoms: a value of J ex/k B = -0.35 K was found for the exchange coupling parameter. The conclusion of a Eu 2+–Eu 3+ self-ionization process being in effect is supported further by the electronic structure calculations, which show that an instability of the 4f 7 configuration of the Eu 2+ ion appears with Na doping. In conclusion, schematically, it was found that the Eu 4f levels form states near enough to the Fermi energy that hole doping can lower the Fermi energy and trigger a reconfiguration of a 4f electronic shell.« less
Ionization impact on molecular clouds and star formation. Numerical simulations and observations
NASA Astrophysics Data System (ADS)
Tremblin, P.
2012-11-01
At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of the molecular cloud, the velocity spectrum of these globules is shifted at different velocities than the velocity of the shell, pillars and clumps that follow the global expansion of the H ii region. An other diagnostic is the impact of the compression on the probability density function (PDF) of the cold gas. The distribution is double peaked when the turbulent ram pressure is low compared to the ionized-gas pressure. This is the signature of the compression caused by the expansion of the ionized bubble. When the turbulence is high, the two peaks merge and the compression can still be identified although the signature is less clear. We have used Herschel column density maps and molecular-line data to characterize the density and velocity structures of the interface between the ionized and the cold gas in several regions: RCW 120, RCW 36, Cygnus X, the Rosette and Eagle Nebulae. In addition to the diagnostics derived from the simulations, analytical predictions of the shell and pillar parameters was tested and confronted to the observations. In all the regions, we have seen that there is a good agreement with the analytical models and with the simulation diagnostics. The velocity structure of a nascent pillar in the Rosette Nebula suggests that it has been formed by the collapse of the shell on itself and the bulk velocity of cometary globules in Cygnus X and in the Rosette Nebula tends to confirm their turbulent origin. The compression caused by the ionized gas can be seen on the PDF of the cold gas in most of the regions studied. This result is important for the link between the IMF and the global prop! erties of the cloud. If the IMF can be derived from the PDF of a cloud, the impact of the massive stars on the PDF has to be taken in account. Furthermore, we present dedicated simulations of RCW 36 that suggest that the dense clumps at the edge of the ionized gas are not pre-existing, it is likely that their formation was triggered by the compression caused by the ionization. Therefore the ionization from the massive stars is a key process that has to be taken into account for the understanding of the IMF. We also present in appendix other works that have been done in parallel of this thesis: the charge exchange in colliding planetary and stellar winds in collaboration with Prof. E. Chiang during the ISIMA summer school 2011 in Beijing; and the sub-millimeter site testing at the Concordia station in Antarctica with the CAMISTIC team.
NIF Double Shell outer/inner shell collision experiments
NASA Astrophysics Data System (ADS)
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gronke, M.; Dijkstra, M., E-mail: maxbg@astro.uio.no
We perform Lyman- α (Ly α ) Monte-Carlo radiative transfer calculations on a suite of 2500 models of multiphase, outflowing media, which are characterized by 14 parameters. We focus on the Ly α spectra emerging from these media and investigate which properties are dominant in shaping the emerging Ly α profile. Multiphase models give rise to a wide variety of emerging spectra, including single-, double-, and triple-peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, f {sub c} , which is in agreement with earlier studies, and (ii) the temperature andmore » number density of residual H i in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with “shell models” which are commonly used to fit observed Ly α spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parameters controlling Ly α radiative transfer. Because Ly α spectra emerging from multiphase media depend much less on the neutral hydrogen content of the clumps, the shell-model parameters such as H i column density (but also shell velocity and dust content) are generally not well matched to the associated physical parameters of the clumpy media.« less
A vortex line for K-shell ionization of a carbon atom by electron impact
NASA Astrophysics Data System (ADS)
Ward, S. J.; Macek, J. H.
2014-10-01
We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.
2017-12-01
Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.
X-ray spectra of supernova remnants
NASA Technical Reports Server (NTRS)
Szymkowiak, A. E.
1985-01-01
X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.
Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.
2016-10-01
A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Measurements of ionization states in warm dense aluminum with betatron radiation
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.
2017-05-01
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.
Search for two-neutrino double electron capture of
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Duchovni, E.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Levy, C.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C. D.; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.; Xenon Collaboration
2017-02-01
Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For
Radiative one- and two-electron transitions into the empty K shell of He-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadrekar, Riddhi; Natarajan, L.
2011-12-15
The branching ratios between the single and double electron radiative transitions to empty K shell in He-like ions with 2s2p configuration are evaluated for 15 ions with 4{<=}Z{<=}26 using fully relativistic multiconfiguration Dirac-Fock wavefunctions in the active space approximation. The effects of configuration interaction and Breit contributions on the transition parameters have been analyzed in detail. Though the influence of Breit interaction on the electric dipole allowed one-electron radiative transitions is negligible, it substantially changes the spin-forbidden rates and the two-electron one-photon transition probabilities. Also, while the single electron transition rates are gauge independent, the correlated double-electron probabilities are foundmore » to be gauge sensitive. The probable uncertainties in the computed transition rates have been evaluated by considering the line strengths and the differences between the calculated and experimental transition energies as accuracy indicators. The present results are compared with other available experimental and theoretical data.« less
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
Time-resolved x-ray spectra from laser-generated high-density plasmas
NASA Astrophysics Data System (ADS)
Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen
2001-04-01
We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
NASA Astrophysics Data System (ADS)
Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel
2016-11-01
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.
NASA Astrophysics Data System (ADS)
Zhu, Kairuo; Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli; Chen, Changlun
2017-02-01
Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.
Detailed non-LTE calculations of the iron emission from NGC 1068
NASA Technical Reports Server (NTRS)
Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.
1989-01-01
The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.
Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun
2014-10-21
Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd(2+) ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.
First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver
NASA Astrophysics Data System (ADS)
Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.
2009-01-01
Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.
NASA Astrophysics Data System (ADS)
Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun
2014-09-01
Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions. Electronic supplementary information (ESI) available: Synthetic schemes, TEM, SEM, XRD, FTIR, UV-DRS spectra, TPR, and catalytic data. See DOI: 10.1039/c4nr02692f
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...
2018-01-25
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
Neon in ultrashort and intense x-rays from free electron lasers
NASA Astrophysics Data System (ADS)
Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan
2018-03-01
We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.
NASA Astrophysics Data System (ADS)
Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent
2016-10-01
In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs
NASA Astrophysics Data System (ADS)
Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David
2015-11-01
From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
The 3-D ionization structure of NGC 6818: A Planetary Nebula threatened by recombination
NASA Astrophysics Data System (ADS)
Benetti, S.; Cappellaro, E.; Ragazzoni, R.; Sabbadin, F.; Turatto, M.
2003-03-01
Long-slit NTT+EMMI echellograms of NGC 6818 (the Little Gem) at nine equally spaced position angles, reduced according to the 3-D methodology introduced by Sabbadin et al. (\\cite{Sabbadin00}a,b), allowed us to derive: the expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model, the 3-D reconstruction in He II, [O III] and [N II], the multicolor projection and a series of movies. The Little Gem results to be a young (3500 years), optically thin (quasi-thin in some directions) double shell (Mion =~ 0.13 Msun) at a distance of 1.7 kpc, seen almost equatorial on: a tenuous and patchy spherical envelope (r =~ 0.090 pc) encircles a dense and inhomogeneous tri-axial ellipsoid (a/2 =~ 0.077 pc, a/b =~ 1.25, b/c =~ 1.15) characterized by a hole along the major axis and a pair of equatorial, thick moustaches. NGC 6818 is at the start of the recombination phase following the luminosity decline of the 0.625 Msun central star, which has recently exhausted the hydrogen shell nuclear burning and is rapidly moving toward the white dwarf domain (log T* =~ 5.22 K; log L*/Lsun =~ 3.1). The nebula is destined to become thicker and thicker, with an increasing fraction of neutral, dusty gas in the outermost layers. Only over some hundreds of years the plasma rarefaction due to the expansion will prevail against the slower and slower stellar decline, leading to a gradual re-growing of the ionization front. The exciting star of NGC 6818 (mV =~ 17.06) is a visual binary: a faint, red companion (mV =~ 17.73) appears at 0.09 arcsec in PA =190degr , corresponding to a separation ge 150 AU and to an orbital period ge 1500 years. Based on observations made with ESO Telescopes at the La Silla Observatories, under programme ID 65.I-0524, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute (observing programs GO 7501 and GO 8773; P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We have applied the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University.
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-11-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.
Measurements of ionization states in warm dense aluminum with betatron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, M. Z.; Chen, Z.; Fourmaux, S.
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
Measurements of ionization states in warm dense aluminum with betatron radiation
Mo, M. Z.; Chen, Z.; Fourmaux, S.; ...
2017-05-19
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules
Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...
2013-05-24
Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less
Electron molecular ion recombination: product excitation and fragmentation.
Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M
2006-01-01
Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.
X-Ray Emission from the Wolf-Rayet Bubble S 308
NASA Technical Reports Server (NTRS)
Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.
2012-01-01
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.
Kinematic Study of Ionized and Molecular Gases in Ultracompact HII Region in Monoceros R2
NASA Astrophysics Data System (ADS)
Kim, Hwihyun; Lacy, John H.; Jaffe, Daniel Thomas
2017-06-01
Monoceros R2 (Mon R2) is an UltraCompact HII region (UCHII) surrounded by several PhotoDissociation Regions (PDRs). It is an excellent example to investigate the chemistry and physics of early stage of massive star formation due to its proximity (830pc) and brightness. Previous studies suggest that the wind from the star holds the ionized gas up against the dense molecular core and the higher pressure at the head drives the ionized gas along the shell. In order for the model to work, there should be evidence for dense molecular gas along the shell walls, irradiated by the UCHII region and perhaps entrained into the flow along the walls.We obtained the Immersion Grating INfrared Spectrograph (IGRINS) spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the high resolution (R~45,000) H- and K-band (1.4-2.5μm) IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines; Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv ≈ 10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMTProject of KASI.
X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...
2016-07-21
In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Observation of the Double Beta Decay of ^48Ca^*
NASA Astrophysics Data System (ADS)
Piepke, Andreas
1996-10-01
Neutrino-less double beta decay is at present the most sensitive kinematic test for finite neutrino mass. The unfolding of a neutrino mass (or a mass limit) from measured decay rates, however, relies on complicated nuclear structure calculations. In the absence of any rigorous test for these calculations the investigation of the very rare two-neutrino double beta decay (β β 2ν) decay serves to verify the validity of the nuclear models. Among all candidate nuclei the double beta decay ^48Caarrow ^48Ti is unique, since it is the only one which can be treated ``exactly'' in the nuclear shell model. Taking advantage of this special situation, isotopically enriched ^48Ca (enrichment 73% ), in form of finely powdered CaCO_3, was exposed in the Irvine time projection chamber located at the Hoover dam, 72 m below ground. The ongoing data analysis shows strong evidence for the presence of a β β 2ν signal i.e. a two electron spectrum with the expected endpoint of 4.3 MeV. The experimental half life appears to agree with most shell model calculations. A detailed discussion of the results will be presented.(Work in collaboration with A. Balysh, V.I. Lebedev, A. Pronsky, KIAE Moscow, A. De Silva, M.K. Moe, M.A. Nelson, M.A. Vient, UC Irvine and K. Lou, P. Vogel, Caltech.) ^* Supported by U.S. Department of Energy. A.P. acknowledges support of the Alexander von Humboldt Foundation.
X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43more » keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.« less
Microstructure and microchemistry of flash sintered K 0.5Na 0.5NbO 3
Corapcioglu, Gulcan; Gulgun, Mehmet Ali; Kisslinger, Kim; ...
2016-04-30
In this paper, flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990°C. These conditions are ~100°C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core–shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution ofmore » Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000°C for 4 h. Finally, the compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled.« less
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
Hu, S. X.
2017-08-10
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires
NASA Astrophysics Data System (ADS)
Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong
2016-05-01
Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k
Cpmmw Spectroscopy of Rydberg States of Nitric Oxide
NASA Astrophysics Data System (ADS)
Barnum, Timothy J.; Saladrigas, Catherine A.; Grimes, David; Coy, Stephen; Eyler, Edward E.; Field, Robert W.
2016-06-01
The spectroscopy of Rydberg states of NO has a long history [1], stimulating both experimental and theoretical advances in our understanding of Rydberg structure and dynamics. The closed-shell ion-core (1Σ+) and small NO+ dipole moment result in regular patterns of Rydberg series in the Hund's case (d) limit, which are well-described by long-range electrostatic models (e.g., [2]). We will present preliminary data on the core-nonpenetrating Rydberg states of NO (orbital angular momentum, ℓ ≥ 3) collected by chirped-pulse millimeter-wave (CPmmW) spectroscopy. Our technique directly detects electronic free induction decay (FID) between Rydberg states with Δn* ≈ 1 in the region of n* ˜ 40-50, providing a large quantity (12 GHz bandwidth in a single shot) of high quality (resolution ˜ 350 kHz) spectra. Transitions between high-ℓ, core-nonpenetrating Rydberg states act as reporters on the subtle details of the ion-core electric structure. * * [1] Huber KP. Die Rydberg-Serien im Absorptions-spektrum des NO-Molekuuls. Helv. Phys. Acta 3, 929 (1961). * * [2] Biernacki DT, Colson SD, Eyler EE. Rotationally resolved double resonance spectra of NO Rydberg states near the first ionization limit. J. Chem. Phys. 88, 2099 (1988).
K-shell Photoabsorption of Oxygen Ions
NASA Technical Reports Server (NTRS)
Garcia, J.; Mendoza, C.; Bautista, M. A.; Gorczyca, T. W.; Kallman, T. R.; Palmeri, P.
2005-01-01
The high spectral resolutions of the Chandra and XMM-Newton X-ray observatories have unveiled the useful diagnostic possibilities of oxygen K absorption. To mention a few, strong O VII and O VIII edges are almost ubiquitous in the spectra of Seyfert 1 galaxies which have been used by Lee et al. (2001) to predict of a warm dust absorber along the line of sight; although this conclusion has been criticized in the light of a data reanalysis (SA0 et al. 2003), Steenbrugge et al. (2003) have detected inner-shell transitions of O III-O VI in the spectrum of NGC 5548 that point to a warm absorber that spans three orders of magnitude in ionization parameter. Moreover, Behar et al. (2003) have stressed that, in the case of both Seyfert 1 and Seyfert 2 galaxies, a broad range of oxygen charge states are usually observed along the line of sight that must be fitted simultaneously, and may imply strong density gradients of 2-4 orders of magnitude over short distances.
Sanitation of chicken eggs by ionizing radiation: HACCP and inactivation studies
NASA Astrophysics Data System (ADS)
Verde, S. Cabo; Tenreiro, R.; Botelho, M. L.
2004-09-01
The aim of this study is to develop the application of irradiation technology to chicken eggs in order to get a product free of pathogenic microorganisms. Bioburden values of eggs from chickens of different ages ( n=150) were found to not be significantly different ( p<0.05) and an average value of (2.0±0.3). 10 5 cfu/egg was obtained for the shell. Two major microbial groups were characterized in the egg's natural microbiota, no Salmonella or Campylobacter were detected. HACCP studies indicated the feed as a critical point. Dosimetry studies were carried out in a γ facility to find the best geometry and dose rate for irradiation. Whole eggs were artificially contaminated with reference strains of Salmonella typhimurium, Salmonella enteritidis, Campylobacter coli and Campylobacter jejuni and irradiated in the γ facility at sub-lethal doses (0.2-1 kGy) with a dose rate of 1.0 kGy/h. Dvalue varied between 0.31-0.26 kGy and 0.20-0.19 kGy in S. typhimurium and S. enteritidis, and between 0.21-0.18 kGy and 0.07-0.09 in C. coli and C. jejuni, for shell and yolk+white. Using sub-lethal doses up to 5 kGy, the Dvalue of natural microbiota in whole eggs was 1.29 kGy. Results show that low irradiation doses could guarantee egg sanitation.
NASA Astrophysics Data System (ADS)
Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando
2018-03-01
Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.
Indirect double photoionization of water
NASA Astrophysics Data System (ADS)
Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.
2011-05-01
The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.
Multiple outer-shell ionization effect in inner-shell x-ray production by light ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapicki, G.; Mehta, R.; Duggan, J.L.
1986-11-01
L-shell x-ray production cross sections by 0.25--2.5-MeV /sub 2//sup 4/He/sup +/ ions in /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd are reported. The data are compared to the first Born approximation and the ECPSSR theory that accounts for the projectile energy loss (E) and Coulomb deflection (C) as well as the perturbed-stationary-state (PSS) and relativistic (R) effects in the treatment of the target L-shell electron. Surprisingly, the first Born approximation appears to converge to the data while the ECPSSR predictions underestimate them in the low-velocity limit. This ismore » explained as the result of improper use of single-hole fluorescence yields. A heuristic formula is proposed to account for multiple ionizations in terms of a classical probability for these phenomena and, after it is applied, the ECPSSR theory of L-shell ionization is found to be in good agreement with the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY, T.C.
2006-03-17
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.
Review of high convergence implosion experiments with single and double shell targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamater, N. D.; Watt, R. G.; Varnum, W. S.
2002-01-01
Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.
Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?
NASA Astrophysics Data System (ADS)
Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.
2016-12-01
Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon
2013-09-21
SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Observations of the Gum Nebula with a Fabry-Perot spectrometer
NASA Technical Reports Server (NTRS)
Reynolds, R. J.
1976-01-01
Scans have been made of H-alpha, 6584-A forbidden N II, 5007-A forbidden O III, and 5876-A He I emissions in selected directions in the Gum Nebula. Analyses of the line profiles and line intensities indicate that much of the emitting gas in the Gum Nebula is confined to an expanding shell which has a radius of about 125 pc, an expansion velocity of approximately 20 km/s, an emission measure which ranges from about 15 units to about 500 units, and a temperature near 11,000 K. The ultraviolet flux from zeta Pup and gamma-2 Vel appears to be capable of producing most of the observed ionization, although the origin of the shell structure and high expansion velocity is not certain.-
NASA Astrophysics Data System (ADS)
Zhang, Bin; Jiang, Yujie; Han, Jian
2017-12-01
The core-double-shell microcapsules flame retardant has been regarded as a promising additive for improving the fire safety of PVC. In this article, melamine-formaldehyde resin (MF)/silicon dioxide (SiO2)/zinc hydroxystannate (ZHS) microcapsule was prepared. The effect of synthetic parameters (such as pH, agitation speed, reaction time and reaction temperature) on the morphologies and sizes of the SiO2/ZHS microcapsules were investigated in details. MF/SiO2/ZHS microcapsule was introduced into PVC to prepare biofunctional composites with excellent fire resistance and smoke suppression. The flammability of PVC composites was characterized by limiting oxygen index (LOI), smoke density (SDR), cone calorimeter test. The results showed that the sample containing 16.4% MF/SiO2/ZHS microcapsule (the mass ratio of MF:SiO2:ZHS = 2.5:2:8) achieved the maximal LOI value of 35.6%, minimal SDR value of 21.2%, and significantly decreased the peak heat release rate from 179.7 kW/m2 of neat PVC to 108.3 kW/m2. The thermal behaviors of PVC composites and the morphologies of residues were characterized.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
The Binary Central Star of the Planetary Nebula A35
NASA Astrophysics Data System (ADS)
Herald, J. E.; Bianchi, L.
2002-11-01
Using new Far Ultraviolet Spectroscopic Explorer (FUSE) observations in conjunction with Space Telescope Imaging Spectrograph (STIS) and International Ultraviolet Explorer archive data, we have modeled both components of the binary central star of the planetary nebula A35. The white dwarf (the ionizing star) was modeled using the non-LTE, plane-parallel code TLUSTY. We find its parameters to be Teff=80+/-3 kK, logg=7.70+0.13-0.18 cm s-2, and [He/H]=-4+/-1 and C, N, O, Si, and Fe to be underabundant by 2 orders of magnitude with respect to their solar values. This confirms its classification as a DAO white dwarf, and using the Hipparcos distance D=163 pc, we derive a radius of RWD~=1.65×10-2 Rsolar and a mass of M~=0.5 Msolar. The modeling of the far-ultraviolet spectra also constrains the extinction value; EB-V=0.04+/-0.01. Furthermore, the FUSE and STIS data allow us to measure the molecular hydrogen (H2) and neutral hydrogen (H I) column densities along the sight line, the majority of which we believe is associated with the circumstellar material. The FUSE spectrum is best fitted with a two-component model for H2, consisting of a cool component (T=200 K) with logN(H2,cool)=19.6+0.1-0.2 cm-2 and a hot component (T~=1250 K) with logN(H2,hot)=17.4+0.3-0.4 cm-2. The H I column density is logN(HI)=20.9+/-0.1 cm-2. Assuming a typical gas/dust ratio for the interstellar medium, our value of EB-V implies that logN(HI)=20.8 cm-2 of this is circumstellar. Our low extinction value and the measured column densities imply that there is essentially no dust in the nebula. Assuming that the neutral and molecular hydrogen is contained in a sphere of comparable dimensions to the ionized shell, we derive the combined mass of the circumstellar H I and H2 to be ~2.7 Msolar. Other geometries, such as a shell surrounding the ionized region, can be excluded. The mass of the ionized hydrogen is <~1% that of the neutral material. From comparison with evolutionary calculations, we estimate the progenitor mass to be ~3.2 Msolar. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilchen, M.; Hartmann, G.; Rupprecht, P.
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less
NASA Astrophysics Data System (ADS)
Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Shlyaptseva, V. V.; Childers, R.; Shrestha, I.; Beiersdorfer, P.; Hell, H.; Brown, G. V.
2017-10-01
Dielectronic recombination (DR) is an important process for astrophysical and laboratory high energy density (HED) plasmas and the associated satellite lines are frequently used for plasma diagnostics. In particular, K-shell DR satellite lines were studied in detail in low-Z plasmas. L-shell Na-like spectral features from Mo X-pinches considered here represent the blend of DR and inner shell satellites and motivated the detailed study of DR at the EBIT-1 electron beam ion trap at LLNL. In these experiments the beam energy was swept between 0.6 - 2.4 keV to produce resonances at certain electron beam energies. The advantages of using an electron beam ion trap to better understand atomic processes with highly ionized ions in HED Mo plasma are highlighted. This work was supported by NNSA under DOE Grant DE-NA0002954. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344.
Coulomb-repulsion-assisted double ionization from doubly excited states of argon
NASA Astrophysics Data System (ADS)
Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen
2017-08-01
We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
NASA Astrophysics Data System (ADS)
Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen
2017-07-01
Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Manoel; Diaz, Marcos
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less
Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David
2017-06-12
Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
NASA Astrophysics Data System (ADS)
Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Zhou, Xin; Sun, Ming; Zhang, Zhi-Yu; Zhang, Gao-Yuan
2016-11-01
Kes 79 (G33.6+0.1) is an aspherical thermal composite supernova remnant (SNR) observed across the electromagnetic spectrum and showing an unusual highly structured morphology, in addition to harboring a central compact object (CCO). Using the CO J = 1-0, J = 2-1, and J = 3-2 data, we provide the first direct evidence and new morphological evidence to support the physical interaction between the SNR and the molecular cloud in the local standard of rest velocity ˜ 105 {km} {{{s}}}-1. We revisit the 380 ks XMM-Newton observations and perform a dedicated spatially resolved X-ray spectroscopic study with careful background subtraction. The overall X-ray-emitting gas is characterized by an under-ionized ({τ }{{c}}˜ 6× {10}11 {{cm}}-3) cool ({{kT}}{{c}}≈ 0.20 keV) plasma with solar abundances, plus an under-ionized ({τ }{{h}}˜ 8× {10}10 {{cm}}-3) hot ({{kT}}{{h}}≈ 0.80 keV) plasma with elevated Ne, Mg, Si, S, and Ar abundances. The X-ray filaments, spatially correlated with the 24 μ {{m}} IR filaments, are suggested to be due to the SNR shock interaction with dense gas, while the halo forms from SNR breaking out into a tenuous medium. Kes 79 appears to have a double-hemisphere morphology viewed along the symmetric axis. Projection effect can explain the multiple-shell structures and the thermal composite morphology. The high-velocity, hot ({{kT}}{{h}}˜ 1.4{--}1.6 keV) ejecta patch with high metal abundances, together with the non-uniform metal distribution across the SNR, indicate an asymmetric SN explosion of Kes 79. We refine the Sedov age to 4.4-6.7 kyr and the mean shock velocity to 730 {km} {{{s}}}-1. Our multi-wavelength study suggests a progenitor mass of ˜15-20 solar masses for the core-collapse explosion that formed Kes 79 and its CCO, PSR J1852+0040.
Amini, Kasra; Boll, Rebecca; Lauer, Alexandra; Burt, Michael; Lee, Jason W L; Christensen, Lauge; Brauβe, Felix; Mullins, Terence; Savelyev, Evgeny; Ablikim, Utuq; Berrah, Nora; Bomme, Cédric; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Johnsson, Per; Kierspel, Thomas; Krecinic, Faruk; Küpper, Jochen; Müller, Maria; Müller, Erland; Redlin, Harald; Rouzée, Arnaud; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Wiese, Joss; Vallance, Claire; Rudenko, Artem; Stapelfeldt, Henrik; Brouard, Mark; Rolles, Daniel
2017-07-07
Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C 6 H 3 F 2 I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.
Vacancy cascades in small molecules following x-ray inner shell photoionization
NASA Astrophysics Data System (ADS)
Ray, D.; Dunford, R. W.; Southworth, S. H.; Kanter, E. P.; Doumy, G.; Gao, Y.; Ho, P. J.; Picon, A.
2014-05-01
We are investigating molecular effects in vacancy cascades of small molecules containing heavy atoms - IBr, Br2 and CH2BrI - following K-shell ionization. In addition to fundamental interest in the physics of such decay processes, there are practical applications such as medical treatments that use energetic fragmentation of iodinated compounds with high energy x-rays to selectively treat tumorous cells. Other biological applications are also promising. We utilize the tunable monochromatic x-ray beam at the Advanced Photon Source to trigger K-shell photoionization of Br and I, and measure charge distributions and the kinetic energies released to the fragment ions. A newly designed detection device allows us to do multi-fold coincidence measurements involving momentum imaging of all the ion fragments with very high detection efficiency in coincidence with x-ray fluorescence detection. By comparing the molecular fragmentation probabilities and the kinetic energies released in Br2, IBr and CH2BrI we aim to gain understanding of the fragmentation mechanism as a function of the bond distance between I and Br. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corapcioglu, Gulcan; Gulgun, Mehmet Ali; Kisslinger, Kim
In this paper, flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990°C. These conditions are ~100°C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core–shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution ofmore » Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000°C for 4 h. Finally, the compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled.« less
Double ionization in R -matrix theory using a two-electron outer region
NASA Astrophysics Data System (ADS)
Wragg, Jack; Parker, J. S.; van der Hart, H. W.
2015-08-01
We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .
NASA Astrophysics Data System (ADS)
La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John
2016-05-01
Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.
From double-slit interference to structural information in simple hydrocarbons
Kushawaha, Rajesh Kumar; Patanen, Minna; Guillemin, Renaud; Journel, Loic; Miron, Catalin; Simon, Marc; Piancastelli, Maria Novella; Skates, C.; Decleva, Piero
2013-01-01
Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young’s double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70–700 eV. A strong dependence of the oscillation period on the C–C distance is observed, which can be used to determine bond lengths between selected pairs of equivalent atoms with an accuracy of at least 0.01 Å. Furthermore, we show that the observed oscillations are directly informative of the nature and atomic composition of the inner-valence molecular orbitals and that observed ratios are quantitative measures of elusive many-body effects. The technique and analysis can be immediately extended to a large class of compounds. PMID:24003155
NASA Technical Reports Server (NTRS)
Omidvar, K.
1976-01-01
Electron capture by protons from H, He, and the K-shell of Ar, and alpha particles from He are considered. It is shown that when a certain function of the experimental cross sections is plotted versus the inverse of the collision energy, at high energies the function falls on a straight line. At lower energies the function concaves up or down, depending on the charge of the projectile, the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High energy scaling formulas for K-electron capture by low-charge projectiles are given.
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J
2009-10-02
High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].
Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan
2016-12-01
In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.
Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho
2018-02-22
Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P; Robey, H F; Park, H-S
2003-08-22
An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28
NASA Astrophysics Data System (ADS)
Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go
2018-03-01
Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.
The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28
NASA Astrophysics Data System (ADS)
Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go
2018-06-01
Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.
NASA Astrophysics Data System (ADS)
Brüggemann, Martin; Hoffmann, Thorsten
2014-05-01
Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a separate analysis of the particles' shells and cores is feasible by adjusting flow rates and temperatures in the ionization region. References: IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press. A. Virtanen; J. Joutsensaari; T. Koop; J. Kannosto; P. Yli-Pirila; J. Leskinen; J. M. Makela; J. K. Holopainen; U. Pöschl; M. Kulmala; D. R. Worsnop; A. Laaksonen, "An amorphous solid state of biogenic secondary organic aerosol particles", Nature 7317, 824-827 [2010]. M. Shiraiwa; M. Ammann; T. Koop; U. Pöschl, "Gas uptake and chemical aging of semisolid organic aerosol particles", P. Natl. Acad. Sci. USA 27, 11003-11008 [2011].
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
Double-shell CuS nanocages as advanced supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao
2017-07-01
Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.
Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.
2013-12-02
The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will bemore » updated annually with summaries of the past year's DST inspection activities.« less
The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Elvis, M.; Brickhouse, N. S.; Mathur, S.; Zezas, A.
2005-02-01
We investigate the ionized environment of the Seyfert 1 galaxy NGC 985 with a new Chandra HETGS observation and an archival BeppoSAX observation. Both spectra exhibit strong residuals to a single-power-law model, indicating the presence of an ionized absorber and a soft excess. A detailed model over the Chandra data shows that the 0.6-8 keV intrinsic continuum can be well represented by a power law (Γ~1.6) plus a blackbody component (kT=0.1 keV). Two absorption components are clearly required to fit the absorption features observed in the Chandra spectrum. The components have a difference of 29 in ionization parameter and 3 in column density. The presence of the low-ionization component is evidenced by an Fe M-shell unresolved transition array produced by charge states VII-XIII. The high-ionization phase is required by the presence of broad absorption features arising from several blends of Fe L-shell transitions (Fe XVII-XXII). A third highly ionized component might also be present, but the data do not allow us to constrain its properties. Although poorly constrained, the outflow velocities of the components (581+/-206 km s-1 for the high-ionization phase and 197+/-184 km s-1 for the low-ionization one) are consistent with each other and with the outflow velocities of the absorption components observed in the UV. In addition, the low-ionization component produces significant amounts of O VI, N V, and C IV, which suggests that a single outflow produces the UV and X-ray features. The broadband (0.1-100 keV) continuum in the BeppoSAX data can be parameterized by a power law (Γ~1.4), a blackbody (kT=0.1 keV), and a high-energy cutoff (Ec~70 keV). An X-ray luminosity variation by a factor of 2.3 is observed between the BeppoSAX and Chandra observations (separated by almost 3 yr). Variability in the opacity of the absorbers is detected in response to the continuum variation, but while the colder component is consistent with a simple picture of photoionization equilibrium, the ionization state of the hotter component seems to increase, while the continuum flux drops. The most striking result in our analysis is that during both the Chandra and the BeppoSAX observations, the two absorbing components appear to have the same pressure. Thus, we suggest that the absorption arises from a multiphase wind. Such a scenario can explain the change in the opacity of both absorption components during the observations, but it requires that a third, hotter component be pressure-confining the two phases. Hence, our analysis points to a three-phase medium similar to the wind found in NGC 3783, and it further suggests that such a wind might be a common characteristic in active galactic nuclei. The pressure-confining scenario requires fragmentation of the confined phases into a large number of clouds.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.
2007-06-01
We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callens, M; Verboven, E; Van Den Abeele, K
2015-06-15
Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are polymerizable under influence of ionizing radiation and are a promising design concept within the development of a novel non-invasive in-vivo radiation dosimeter for external beam radiation therapy. This work was funded by the Research Foundation - Flanders (FWO)« less
Visualizing and Steering Dissociative Frustrated Double Ionization of Hydrogen Molecules
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Yu, Zuqing; Gong, Xiaochun; Wang, Junping; Lu, Peifen; Li, Hui; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Zeng, Heping; He, Feng; Wu, Jian
2017-12-01
We experimentally visualize the dissociative frustrated double ionization of hydrogen molecules by using few-cycle laser pulses in a pump-probe scheme, in which process the tunneling ionized electron is recaptured by one of the outgoing nuclei of the breaking molecule. Three internuclear distances are recognized to enhance the dissociative frustrated double ionization of molecules at different instants after the first ionization step. The recapture of the electron can be further steered to one of the outgoing nuclei as desired by using phase-controlled two-color laser pulses. Both the experimental measurements and numerical simulations suggest that the Rydberg atom is favored to emit to the direction of the maximum of the asymmetric optical field. Our results on the one hand intuitively visualize the dissociative frustrated double ionization of molecules, and on the other hand open the possibility to selectively excite the heavy fragment ejected from a molecule.
Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali
2018-07-15
Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast Ionized X-ray Absorbers in AGNs
NASA Astrophysics Data System (ADS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2015-07-01
We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.
Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku
NASA Astrophysics Data System (ADS)
Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto
2016-02-01
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ˜ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ˜ 3.4 keV) component with a very low ionization timescale (˜2.7 × 109 cm-3 s), or a hard nonthermal component with a photon index Γ ˜ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10-3-10-2 cm-3, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
ARES Simulations of a Double Shell Surrogate Target
NASA Astrophysics Data System (ADS)
Sacks, Ryan; Tipton, Robert; Graziani, Frank
2015-11-01
Double shell targets provide an alternative path to ignition that allows for a less robust laser profile and non-cryogenic initial temperatures. The target designs call for a high-Z material to abut the gas/liquid DT fuel which is cause for concern due to possible mix of the inner shell with the fuel. This research concentrates on developing a surrogate target for a double shell capsule that can be fielded in a current NIF two-shock hohlraum. Through pressure-density scaling the hydrodynamic behavior of the high-Z pusher of a double shell can be approximated allowing for studies of performance and mix. Use of the ARES code allows for investigation of mix in one and two dimensions and analysis of instabilities in two dimensions. Development of a shell material that will allow for experiments similar to CD Mix is also discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. Information Management release number LLNL-ABS-675098.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2009-09-01
New version program summaryProgram title: ISICS2008 Catalogue identifier: ADDS_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5420 No. of bytes in distributed program, including test data, etc.: 107 669 Distribution format: tar.gz Programming language: C Computer: 80 486 or higher level PCs Operating system: Windows XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v3_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 616 Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: Addition of relativistic treatment of both projectile and K-shell electrons. Summary of revisions: A new addition to ISICS is the option (R) to calculate ECPSSR cross sections that account for the relativistic treatment of both projectile and K-shell electron, as proposed recently by Lapicki [1], accordingly as σKRECPSSR=Cṡ(1+0.07(()ṡσ(√{(mKRυ1R)}/Z,ςθ), where υ1R is the relativistic projectile velocity. The option can also be invoked in calculating ECPSShsR, where hsR stands for the Hartree-Slater description of the K-shell electron, which was already incorporated into ISICS2006 [2,3], and is now expressed in this option as, σKRECPSShsR=CṡhsR((2υ1R)/(Zςθ),Z/137)ṡ(1+0.07(()ṡσ(υ1R/Z,ςθ) using the function hsR that is already incorporated into ISICS2006. It should be noted that these expressions are corrected versions [4] from the ones published in Ref. [1]. In this new version, ISICS2008, the option line in the main menu that read "Use Relativistic Proj. velocity" has been replaced by "R option for K-shell … Uses Rel. Proj. vel.". As before, various combinations of options can be utilized and each is denoted in the output. Restrictions: The consumed CPU time increases with the atomic shell (K,L,M), but execution is still very fast. Additional comments: A revised User Manual is included in the distribution file. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version. As before, to calculate K-shell cross sections for protons striking carbon for 19 different proton energies it took less than 10 s; to calculate M-shell cross sections for protons on gold for 21 proton energies it took 4.2 min. References:G. Lapicki, J. Phys. B: At. Mol. Op. Phys. 41 (2008) 115201. S. Cipolla, Comput. Phys. Comm. 176 (2007) 157. S. Cipolla, Nucl. Instrum. Methods Phys. Res. B 261 (2007) 142. G. Lapicki, private communication.
Shakeoff Ionization near the Coulomb Barrier Energy.
Sharma, Prashant; Nandi, T
2017-11-17
We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (∼10^{-21} sec) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.
Shakeoff Ionization near the Coulomb Barrier Energy
NASA Astrophysics Data System (ADS)
Sharma, Prashant; Nandi, T.
2017-11-01
We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.
Ultralow energy calibration of LUX detector using Xe 127 electron capture
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-12-01
We report an absolute calibration of the ionization yields(more » $$\\textit{Q$$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $$^{127}$$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $$^{127}$$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $$\\textit{in situ}$$ measurements that have been explored in liquid xenon.« less
Ultralow energy calibration of LUX detector using Xe 127 electron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
We report an absolute calibration of the ionization yields (Q y) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with 127I deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV),more » and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. In conclusion, the N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.« less
Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane
Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...
2017-05-30
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less
Ultralow energy calibration of LUX detector using
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.
2017-12-01
We report an absolute calibration of the ionization yields (Qy ) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V /cm . The data are obtained using low energy
Ultralow energy calibration of LUX detector using Xe 127 electron capture
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-12-28
We report an absolute calibration of the ionization yields (Q y) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with 127I deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV),more » and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. In conclusion, the N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.« less
NASA Astrophysics Data System (ADS)
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.
Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cheng, E-mail: huangcheng@swu.edu.cn; Zhong, Mingmin; Wu, Zhengmao
2016-07-28
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2–1.5 × 10{sup 14} W/cm{sup 2} using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10{sup 14} W/cm{sup 2}) is also observed in the correlated electron momentum spectra for 1.2–1.4 × 10{sup 14} W/cm{sup 2}. However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI ismore » not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.« less
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com
L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}
NASA Astrophysics Data System (ADS)
Drzewicz, Przemyslaw; Trojanowicz, Marek; Zona, Robert; Solar, Sonja; Gehringer, Peter
2004-03-01
Electron beam (EB), ozone (O 3) and the combination EB/O 3 were used to study the oxidative decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) in local tap water. Using an EB treatment, a dose of 10 kGy was required for complete 2,4-D degradation, and a 90% conversion of organic chlorine into chloride ions. Using additionally 1.33 mmol dm -3 O 3 during irradiation, the same result was achieved with a dose of 2.7 kGy. The yields of products acetate and formate were almost doubled by the combined EB/O 3 treatment, compared to those obtained with the same dose by EB irradiation. Gamma radiolysis showed that the degradation dose was proportional to the initial concentration of 2,4-D in the range of 50-2260 μmol dm -3.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei
2015-07-01
In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
A new ejecta shell surrounding a Wolf-Rayet star in the LMC
NASA Technical Reports Server (NTRS)
Garnett, Donald R.; Chu, You-Hua
1994-01-01
We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.
NASA Astrophysics Data System (ADS)
Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried
2006-10-01
X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.
Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.
2017-10-01
We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Melo-Bernal, W; Chernov, V; Chernov, G; Barboza-Flores, M
2018-08-01
In this study, an analytical model for the assessment of the modification of cell culture survival under ionizing radiation assisted with nanoparticles (NPs) is presented. The model starts from the radial dose deposition around a single NP, which is used to describe the dose deposition in a cell structure with embedded NPs and, in turn, to evaluate the number of lesions formed by ionizing radiation. The model is applied to the calculation of relative biological effectiveness values for cells exposed to 0.5mg/g of uniformly dispersed NPs with a radius of 10nm made of Fe, I, Gd, Hf, Pt and Au and irradiated with X-rays of energies 20keV higher than the element K-shell binding energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.
2007-03-01
Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.
Synchrotron-based valence shell photoionization of CH radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.
2016-05-28
We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less
Influence of functional groups on the C α-C β chain of L-phenylalanine and its derivatives
NASA Astrophysics Data System (ADS)
Ganesan, Aravindhan; Brunger, Michael; Wang, Feng
2010-07-01
L-phenylalanine ( L-phe) consists of three different functional groups, i.e., phenyl, carboxyl (-COOH) and amino (-NH 2), joining through the C α-C β bridge. Substitution of these groups produces 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA). Electronic structures of L-phe, PEA and PPA together with smaller "fragments" L-alanine and benzene were determined using density functional theory (DFT), from which core and valence shell ionization spectra were simulated. Comparison of the spectra reveals that core shell ionization energies clearly indicate that the carbon bridge is significantly affected by their functional group substitutions particularly at the C α site. In the valence space, quite unexpectedly, the frontier orbitals are concentrated on the benzene group although some energy splitting is observed. The orbitals which significantly affect the C α-C β carbon backbone are from the inner valence shell in the ionization energy region of 20-26 eV of the molecules.
A remarkable solvent effect on the nuclearity of neutral titanium(IV)-based helicate assemblies.
Weekes, David Michael; Diebold, Carine; Mobian, Pierre; Huguenard, Clarisse; Allouche, Lionel; Henry, Marc
2014-04-22
The spontaneous self-assembly of a neutral circular trinuclear Ti(IV) -based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n-pentane into a solution with dichloromethane. The circular helicate has been characterized by using single-crystal X-ray diffraction study, (13) C CP-MAS NMR and (1) H NMR DOSY solution spectroscopic, and positive electrospray ionization mass-spectrometric analysis. These analytical data were compared with those obtained from a previously reported double-stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double-stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double-stranded helicates was characterized by ΔH(toluene)=-30 kJ mol(-1) and ΔS(toluene)=+357 J K(-1) mol(-1) , whereas these values were ΔH(CH2 Cl2 )=-75 kJ mol(-1) and ΔS(CH2 Cl2 )=-37 J K(-1) mol(-1) for the ring helicate. The transformation of the ring helicate into the double-stranded helicate was a strongly endothermic process characterized by ΔH(CH2 Cl2 )=+127 kJ mol(-1) and ΔH(n-pentane)=+644 kJ mol(-1) associated with a large positive entropy change ΔS=+1115 J K(-1) ⋅mol(-1) . Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n-pentane. Suggestions for increasing the stability of the ring helicate are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Double-frequency microwave ionization of Na
NASA Astrophysics Data System (ADS)
Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.
1990-11-01
We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.
Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...
2016-09-14
We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
NASA Astrophysics Data System (ADS)
Nguyen-Luong, Q.; Anderson, L. D.; Motte, F.; Kim, Kee-Tae; Schilke, P.; Carlhoff, P.; Beuther, H.; Schneider, N.; Didelon, P.; Kramer, C.; Louvet, F.; Nony, T.; Bihr, S.; Rugel, M.; Soler, J.; Wang, Y.; Bronfman, L.; Simon, R.; Menten, K. M.; Wyrowski, F.; Walmsley, C. M.
2017-08-01
We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky Very Large Array and HCO+ 1-0 line emission data from the IRAM 30 m. The mm-RRLs reveal an expanding wind-blown ionized gas shell with an electron density ˜70-1500 cm-3 driven by the WR/OB cluster, which produces a total Lyα photon flux of 1.5× {10}50 s-1. This shell is interacting with the dense neutral molecular gas in the W43-Main dense cloud. Combining the high spectral and angular resolution mm-RRL and cm-RRL cubes, we derive the two-dimensional relative distributions of dynamical and pressure broadening of the ionized gas emission and find that the RRL line shapes are dominated by pressure broadening (4-55 {km} {{{s}}}-1) near the YMC and by dynamical broadening (8-36 {km} {{{s}}}-1) near the shell’s edge. Ionized gas clumps hosting ultra-compact H II regions found at the edge of the shell suggest that large-scale ionized gas motion triggers the formation of new star generation near the periphery of the shell.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils
2009-03-01
We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within ±3'' (±12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its ~55'' shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within ±5'' (±40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding. Based on observations obtained at the Gemini Observatory.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation
Inhester, Ludger; Oostenrijk, Bart; Patanen, Minna; ...
2018-02-14
In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. In this paper, we investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron–photoion–photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapidmore » dissociation into three fragments, followed by further fragmentation steps. Finally, the lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.« less
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-04-03
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
NASA Astrophysics Data System (ADS)
Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.
2016-02-01
The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale. Electronic supplementary information (ESI) available: Characterization, structural and morphological characterization of nanocrystals, the measurement setup. See DOI: 10.1039/c5nr08223d
NASA Astrophysics Data System (ADS)
Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.
2018-06-01
Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between
Observation of two-center interference effects for electron impact ionization of N2
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don
2015-08-01
In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.
NASA Astrophysics Data System (ADS)
Flagey, N.; Boulanger, F.; Noriega-Crespo, A.; Paladini, R.; Montmerle, T.; Carey, S. J.; Gagné, M.; Shenoy, S.
2011-07-01
Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR) with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M 16), one of the best known star-forming regions. Aims: We present MIPSGAL observations of M 16 at 24 and 70 μm and combine them with previous IR data. The mid-IR image shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 μm. The morphologies at 24 and 70 μm are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 μm that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions. Methods: We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs). We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (χ/χ0). Results: Within the PDRs, the inferred dust temperature (~35 K), the dust-size distribution, and the radiation field intensity (χ/χ0 < 1) are consistent with expectations. Within the inner shell, the dust is hotter (~70 K). Moreover, the radiation field required to fit the SED is larger than that provided by NGC 6611 (χ/χ0 > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated very small grains. (2) The dust emission arises from a hot (~106 K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k ~ 5 × 107 K cm-3. Conclusions: We suggest two interpretations for the M 16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M 16 have a major impact on the carbon dust-size distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission.
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
Double Shell Tank AY-102 Radioactive Waste Leak Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, Dennis J.
2014-04-10
PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delage, M; Cloutier, E; Lecavalier, M
2016-06-15
Purpose: This study intends to characterize the energy dependence of the effect of radiation damage on CdSe multi-shell (MS) (CdS/CdZnS/ZnS) and CdSe core/shell (CS)(ZnS) cQDs. It also aims to investigate irregularities resulting of pauses between subsequent irradiations. Methods: Radioluminescence (RL) measurements were performed with a CCD camera as dose was cumulated by the cQDs (up to 10 kGy), for beam energies 120 kVp, 220 kVp and 6 MV. Repeated expositions of 1999 MU were cumulated. Pauses between subsequent irradiations were varied from 2 to 50 minutes. cQDs photoluminescence (PL) and RL spectral stability was tracked by quantifying the position andmore » FWHM of the luminescence peak. Results: Both types of cQDs showed a clear energy dependence of the RL signal decrease between the kV and the MV beams. For 1.2 kGy of dose cumulated, MS cQDs had 92% of the initial signal left at 6 MV compared to 98% at 120 kVp. The same was observed for CS cQDs: 87% at 6 MV vs 94% at 120 kVp. MS cQDs were found to have a systematic (though small, ∼1%) RL intensity recovery for pauses of 15 minutes or more, while CS cQDs maintain a stable loss regardless of the pause duration. PL and RL spectral measurements revealed a good stability (< 1% variation of the peak position and FWHM) for both types of cQDs. Conclusion: In all, both MS and CS cQDs have a sufficient resistance to large doses of radiation for standard radiation therapy and imaging. Since this resistance is better for lower energy, the utilization of cQDs could be optimized for low energy applications (e.g. theragnostic applications for small animal studies and others). Finally, the ionizing radiation damage mechanisms for this new type of nano-scintillator still have to be identified properly.« less
Attosecond Spectroscopy Probing Electron Correlation Dynamics
NASA Astrophysics Data System (ADS)
Winney, Alexander H.
Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.
Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B
2013-05-01
Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
The Variable Fast Soft X-Ray Wind in PG 1211+143
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Lobban, A.; Pounds, K. A.
2018-02-01
The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by ‑0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2{M}ȯ yr‑1, close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.
Ba, Zhaojing; Hu, Min; Zhao, Yiming; Wang, Yiqing; Wang, Jing; Zhang, Zhenxi
2018-08-31
Non-contact thermal sensors are important devices to study cellular processes and monitor temperature in vivo. Herein, a novel highly sensitive nanothermometer based on NaYF 4 :Yb,Er@ NaYF 4 @NaYF 4 :Yb,Tm@ NaYF 4 :Nd (denoted as Er@Y@Tm@Nd) was prepared by a facile solvothermal method. When excited by the near-infrared (NIR) light of 808 and 980 nm, the as-prepared Er@Y@Tm@Nd nanoparticles could emit both blue and green light, respectively, since the lanthanide cations responsible for these emissions are gathered inside this nanostructure. The green and blue light intensity ratio exhibits obvious temperature dependence in the range of the physiological temperature. Additionally, the fluorescence intensity of Er 3+ and Tm 3+ are also greatly enhanced due to the multilayer structure that implies avoiding the Er 3+ and Tm 3+ energy cross-relaxation by introduction of a NaYF 4 wall between them. The as-prepared core-shell-shell-shell structure with Er 3+ and Tm 3+ in different layers improves dozens of times of the thermal sensitivity based on the non-thermal coupling levels of the probe: the maximum values for the sensitivity are 2.95% K -1 (I Er-521 /I Tm-450 ) and 6.30% K -1 (I Tm-474 /I Er-541 ) when excited by 980 and 808 nm laser sources, respectively. These values are well above those previously reported (<0.7% K -1 ), indicating that the prepared nanostructures are temperature sensors with excellent thermal sensitivity and sensitive to NIR wavelength excitation that makes them highly preferred for thermal detection.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
NASA Technical Reports Server (NTRS)
Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-01-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Kinetic Energy Transfer Process in a Double Shell Leading to Robust Burn
NASA Astrophysics Data System (ADS)
Montgomery, D. S.; Daughton, W. S.; Albright, B. J.; Wilson, D. C.; Loomis, E. N.; Merritt, E. C.; Dodd, E. S.; Kirkpatrick, R. C.; Watt, R. G.; Rosen, M. D.
2017-10-01
A goal of double shell capsule implosions is to impart sufficient internal energy to the D-T fuel at stagnation in order to obtain robust α-heating and burn with low hot spot convergence, C.R. < 10. A simple description of the kinetic energy transfer from the outer shell to the inner shell is found using shock physics and adiabatic compression, and compares well with 1D modeling. An isobaric model for the stagnation phase of the inner shell is used to determine the ideal partition of internal energy in the D-T fuel. Robust burn of the fuel requires, at minimum, that α-heating exceeds the rate of cooling by expansion of the hot spot so that the yield occurs before the hot spot disassembles, which is then used to define a minimum requirement for robust burn. One potential advantage of a double shell capsule compared to single shell capsules is the use of a heavy metal pusher, which may lead to a longer hot spot disassembly time. We present these analytic results and compare them to 1D and 2D radiation-hydrodynamic simulations. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Li, Jie; Tan, Li; Wang, Ge; Yang, Mu
2015-03-01
Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.
Simulation of Double-Seaming in a Two-piece Aluminum Can
NASA Astrophysics Data System (ADS)
Romanko, Anne; Berry, Dale; Fox, David
2004-06-01
The aluminum can industry in the United States and Canada manufactures over 100 billion cans per year. Two-piece aluminum cans are commonly used to seal and deliver foodstuffs such as soft drinks, beer, pet food, and other perishable items. In order to ensure product safety and performance, the double seam between the can body and lid is a critical component of the package. Double-seaming is a method by which the flange of the can body and the curl of the end are folded over together such that the final joint is composed of five metal thicknesses. There are a number of design challenges involved with the art of double seaming, especially with the push to lightweight. Although the requirements vary by product, the typical beer package must be able to hold pressures in excess of 90psi. In addition, in production, double seaming is a high-speed operation with speeds as high as 3000 cans/minute on an 18-spindle seamer. For this high volume, low cost industry, understanding and optimizing the seaming process can advance the industry as well as help prevent various manufacturing problems that produce a poor seal between the two pieces of the can. To aid in understanding the mechanics of the can parts during double-seaming, a simulation procedure was developed and carried out on a 202 diameter beverage can and lid. Simulations were run with the explicit dynamics solver ABAQUS/Explicit using the continuum shell element technology available in the ABAQUS general purpose FEA program. The continuum shell is a shear-deformable shell element with the topology of an eight node brick. The element's formulation allows continuously varying, solution-dependent shell thickness and through-thickness pinching stress. One important advantage of using the continuum shell as opposed to a traditional shell element is that true contact interactions at the top and bottom surfaces of the can body and lid can be accurately modeled. With a conventional shell element, contact is performed at the shell mid-surface or at an offset point representing where the top or bottom surface is expected to be. This paper discusses this new simulation technique and provides an example of its use.
NASA Astrophysics Data System (ADS)
El Ghazi, Haddou; John Peter, A.
2017-04-01
Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.
Collective relaxation processes in atoms, molecules and clusters
NASA Astrophysics Data System (ADS)
Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John
2016-04-01
Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.
Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton
2001-06-29
Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.
DOE Zero Energy Ready Home Case Study: Transformations, Inc., Custom House, Devens, Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-09-01
This single-family home features a superinsulated shell with 12-inch double walls filled with open cell spray foam, as well as R-5 triple-pane windows. The 18.33 kW photovoltaic system can produce all the electricity the home can use in a year with enough left over to power an electric car for 30,000 miles.These features helped the builder to win a 2013 Housing Innovation Award in the custom home category.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Usami, N.; Sasaki, I.; Frohlich, H.; Le Sech, C.
2003-01-01
Complexes made of DNA and Cyclo-Pt bound to plasmid DNA, were placed in aqueous solution and irradiated with monochromatic X-rays in the range E=8.5-13 keV, including the resonant photoabsorption energy of the L III shell of the platinum atom. The number of single- and double-strand breaks (ssb and dsb) induced by irradiation on a supercoiled DNA plasmid was measured by the production of circular-nicked and linear forms. In order to disentangle the contribution of the direct effects imparted to ionization, and the indirect effects due to a free radical attack, experiments have been performed in the presence of a small concentration (64 mmol l -1) of hydroxyl free radical scavenger dimethyl sulfoxide (DMSO). An enhancement of the number of ssb and dsb is observed when the plasmids contain the Pt intercalating molecules. Even when off-resonant X-rays are used, the strand break efficiency remains higher than expected based upon the absorption cross-section, as if the Pt bound to DNA is increasing the yield of strand breaks. A mechanism is suggested, involving photoelectrons generated from the ionization of water which efficiently ionize Pt atoms. This observation may provide an insight to understanding the effects of new radiotherapy protocols, associated chemotherapeutic agents such as cisplatin and ordinary radiotherapy for tumoral treatments.
Sequential Double lonization: The Timing of Release
NASA Astrophysics Data System (ADS)
Pfeiffer, A.
2011-05-01
The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.
Collapse dynamics of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
King, Daniel Alan
Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.
Device for calibrating a radiation detector system
McFee, M.C.; Kirkham, T.J.; Johnson, T.H.
1994-12-27
A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.
Device for calibrating a radiation detector system
Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.
1994-01-01
A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.
Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions
Neville, Frances; Moreno-Atanasio, Roberto
2018-01-01
We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m2, could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process. PMID:29922646
Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.
Neville, Frances; Moreno-Atanasio, Roberto
2018-01-01
We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.
Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li
2014-09-10
To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.
NASA Astrophysics Data System (ADS)
Fernández-Martín, A.; Martín-Gordón, D.; Vílchez, J. M.; Pérez Montero, E.; Riera, A.; Sánchez, S. F.
2012-05-01
Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a slight underabundance in O/H; ii) an outer shell very intense in [OIII]λ5007 Å corresponding to the main sequence bubble broken up as a consequence of the collision between supergiant and WR shells. Nitrogen and oxygen do not appear enhanced here, but helium appears enriched; iii) and finally it includes an external and faint shell that surrounds the whole nebula like a thin skin representing the early interaction between the winds from the main sequence star with the ISM for which typical circumstellar abundances are derived. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Table 3 is available in electronic form at http://www.aanda.org
Feeding and Feedback in the Powerful Radio Galaxy 3C 120
NASA Technical Reports Server (NTRS)
Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.;
2017-01-01
We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.
High Power Light Gas Helicon Plasma Source For VASMIR
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.
2004-01-01
The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we discuss modeling of these configurations using ORNL's EMIR code.
Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi
1993-01-01
Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new results from detailed balance calculations, new critical densities for collisional de-excitation, intrinsic photon rates, branching ratios, and excitation temperatures for the majority of the compiled transitions. The temperature and density parameter space for dominant cooling via infrared coronal lines is presented, and the relationship of infrared to optical coronal lines is discussed.
Energetics of short hydrogen bonds in photoactive yellow protein.
Saito, Keisuke; Ishikita, Hiroshi
2012-01-03
Recent neutron diffraction studies of photoactive yellow protein (PYP) proposed that the H bond between protonated Glu46 and the chromophore [ionized p-coumaric acid (pCA)] was a low-barrier H bond (LBHB). Using the atomic coordinates of the high-resolution crystal structure, we analyzed the energetics of the short H bond by two independent methods: electrostatic pK(a) calculations and a quantum mechanical/molecular mechanical (QM/MM) approach. (i) In the QM/MM optimized geometry, we reproduced the two short H-bond distances of the crystal structure: Tyr42-pCA (2.50 Å) and Glu46-pCA (2.57 Å). However, the H atoms obviously belonged to the Tyr or Glu moieties, and were not near the midpoint of the donor and acceptor atoms. (ii) The potential-energy curves of the two H bonds resembled those of standard asymmetric double-well potentials, which differ from those of LBHB. (iii) The calculated pK(a) values for Glu46 and pCA were 8.6 and 5.4, respectively. The pK(a) difference was unlikely to satisfy the prerequisite for LBHB. (iv) The LBHB in PYP was originally proposed to stabilize the ionized pCA because deprotonated Arg52 cannot stabilize it. However, the calculated pK(a) of Arg52 and QM/MM optimized geometry suggested that Arg52 was protonated on the protein surface. The short H bond between Glu46 and ionized pCA in the PYP ground state could be simply explained by electrostatic stabilization without invoking LBHB.
Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2003-05-01
Symmetric Lamb waves on plates exhibit anomalies for certain regions of frequency. The phase velocity appears to be double-valued [M. F. Werby and H. Überall, J. Acoust. Soc. Am. 111, 2686-2691 (2002)] with one of the branches having a negative group velocity relative to the corresponding phase velocity. The classification of the symmetric plate modes for frequencies appearing to have a double-valued phase velocity is reviewed here. The complication of a double-valued velocity is avoided by examining mode orthogonality and the complex wave-number spectra. Various authors have noted an enhancement in the backscattering of sound by elastic shells in water that occurs for frequencies where symmetric leaky Lamb waves (generalized to case of a shell) have contra-directed group and phase velocities. The ray diagram for negative group velocity contributions to the scattering by shells [G. Kaduchak, D. H. Hughes, and P. L. Marston, J. Acoust. Soc. Am. 96, 3704-3714 (1994)] is unusual since for this type of mode the energy on the shell flows in the opposite direction of the wave vector. Circumnavigation of the shell is not required for the leaky ray to be backward directed.
Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan
2013-12-15
In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.
Walpita, P; Darougar, S
1989-07-01
The development and application of a double-label immunofluorescence method which has the potential to screen for single or dual infections from any site, in single shell vial cultures, is described. In this study, a total of 1,141 ocular specimens were inoculated in shell vials, centrifuged at 15,000 X g for 1 h, incubated at 37 degrees C for 48 h, and fixed in methanol at room temperature for 15 min. The virus inclusions were detected by staining with a double-label indirect immunofluorescence procedure using mixtures of appropriate first antibodies, followed by fluorescein- and rhodamine-conjugated second antibodies. Each specimen was also inoculated in parallel by the conventional virus isolation method. The sensitivity and specificity of the double-label shell vial procedure were comparable to those with the conventional method, and the former test took only 48 h to complete. The test offers a rapid and simple single-vial procedure which allows for individual or simultaneous detection of multiple pathogens. It results in savings in time and cost over the conventional virus isolation method and other shell vial procedures.
NASA Astrophysics Data System (ADS)
Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun
2018-03-01
In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.
Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.
Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala
2017-11-01
We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: experiment and theory.
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-22
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory
NASA Astrophysics Data System (ADS)
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-01
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288eV photon energy, due to absorption to π* virtual orbitals, and broader structures at higher energy, involving σ* virtual orbitals. The sharp absorption structures to the π* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of π* symmetry, from the six chemically shifted C 1s core orbitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
NASA Astrophysics Data System (ADS)
Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.
2017-03-01
Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration
2017-10-01
We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S
2014-11-01
This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®
Photoionization of the Fe lons: Structure of the K-Edge
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)
2002-01-01
X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.
Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G
2016-01-02
Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...
2015-06-03
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Electromagnetic diagnostic system for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2017-09-01
A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.
NASA Astrophysics Data System (ADS)
Anand, L. F. M.; Gudennavar, S. B.; Bubbly, S. G.; Kerur, B. R.
2015-12-01
The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K β to K α intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak 137Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others' work, establishing a good agreement.
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY TC; ABBOTT FG; CARPENTER BG
2007-02-16
The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.
X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse
NASA Astrophysics Data System (ADS)
Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.
2007-05-01
Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.
NASA Technical Reports Server (NTRS)
Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.
2010-01-01
We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.
Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehla,; Kaur, Rajnish; Kumar, Anil
The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
A coupled-cluster study of photodetachment cross sections of closed-shell anions
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-01
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
A coupled-cluster study of photodetachment cross sections of closed-shell anions.
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-07
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
Anomalous photo-ionization of 4d shell in medium-Z ionized atoms
NASA Astrophysics Data System (ADS)
Klapisch, M.; Busquet, M.
2013-09-01
Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.
HST STIS Observations of the Mixing Layer in the Cat’s Eye Nebula
NASA Astrophysics Data System (ADS)
Fang, Xuan; Guerrero, Martín A.; Toalá, Jesús A.; Chu, You-Hua; Gruendl, Robert A.
2016-05-01
Planetary nebulae (PNe) are expected to have a ˜105 K interface layer between the ≥slant 106 K inner hot bubble and the ˜104 K optical nebular shell. The PN structure and evolution, and the X-ray emission, depend critically on the efficiency of the mixing of material at this interface layer. However, neither its location nor its spatial extent have ever been determined. Using high-spatial resolution HST STIS spectroscopic observations of the N v λ λ 1239,1243 lines in the Cat’s Eye Nebula (NGC 6543), we have detected this interface layer and determined its location, extent, and physical properties for the first time in a PN. We confirm that this interface layer, as revealed by the spatial distribution of the N v λ1239 line emission, is located between the hot bubble and the optical nebular shell. We estimate a thickness of 1.5× {10}16 cm and an electron density of ˜200 cm-3 for the mixing layer. With a thermal pressure of ˜2 × 10-8 dyn cm-2, the mixing layer is in pressure equilibrium with the hot bubble and ionized nebular rim of NGC 6543. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The observations are associated with program #12509.
Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields
NASA Astrophysics Data System (ADS)
Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-04-01
Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.
Enhanced one-photon double ionization of atoms and molecules in an environment of different species.
Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S
2014-05-16
The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.
Structural Concepts Study of Non-circular Fuselage Configurations
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivel
1996-01-01
A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.
The Oscillations of Coronal Loops Including the Shell
NASA Astrophysics Data System (ADS)
Mikhalyaev, B. B.; Solov'ev, A. A.
2005-04-01
We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.
Inner-shell chemical shift of DNA/RNA bases and inheritance from their parent purine and pyrimidine.
Wang, Feng; Zhu, Quan; Ivanova, Elena
2008-11-01
Inner-shell electronic structures, properties and ionization spectra of DNA/RNA bases are studied with respect to their parent pyrimidine and purine species. Density functional theory B3LYP/aug-cc-pVTZ has been employed to produce the geometries of the bases, whereas LB94/et-pVQZ//B3LYP/aug-cc-pVTZ is used to calculate site-related Hirshfeld charges and core (vertical) ionization energies, as well as inner-shell spectra of C1s, N1s and O1s for DNA/RNA bases and their parent pyrimidine and purine species. The site-dependent variations of properties indicate the changes and inheritance of chemical environment when pyrimidine and purine become substituted. In general, although the changes are site-dependent, they are also ring-dependent. Pyrimidine bases change less significantly with respect to their parent pyrimidine than the purine bases with respect to their parent purine. Pyrimidine bases such as uracil, thymine and cytosine inherit certain properties from their parent pyrimidine, such as the Hirshfeld charge distributions and the order of core ionization energy level etc. No particular sites in the pyrimidine derivatives are engaged with a dramatic chemical shift nor with energy crossings to other sites. For the core shell spectra, the purine bases inherit very little from their parent purine, and guanine exhibits the least similarities to the parent among all the DNA/RNA bases.
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.
2017-03-01
High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; MacGregor, J. A.; Sander-Olhoeft, M.; Brown, J.
2016-12-01
The numerous chaos regions, lenticulae and double layer ridges on Europa's surface suggest that pockets of liquid currently exist or did exist. Here we investigate the sensitivity of ice-penetrating radar (IPR) and magnetotelluric (MT) methods to the putative electrical properties of Europa's ice shell, based on a set of plausible ice-shell scenarios and a synthesis of laboratory dielectric spectroscopy measurements of hundreds of ice samples. We evaluate models of the electrical conductivity of the ice shell as a function of impurity content, temperature and liquid vein network tortuosity. Europa's ice shell is estimated to be 5-30 km thick. If its thickness exceeds 10 km, the shell likely convects within its bottom 70%, while the upper part is thermally conductive. These convective downwellings and upwellings are estimated to have core temperatures of 235 K and 253 K, respectively. Downwellings are so cold that they are below of eutectic temperature of most Europa-relevant salts, but not below that of Europa-relevant acids. Given the low temperature of downwelling ice, IPR is expected to penetrate through it. Warmer upwellings may possess significant amounts of unfrozen water if the shell is acid- or salt-rich. The injection of liquid or the melting of acid- or salt-rich ice will eventually lead to refreezing, as the shell conducts away this excess heat. As liquid freezes, impurities are rejected and concentrated in a liquid vein network surrounding relatively pure ice crystals. These vein networks remain liquid as long as the temperature is greater than that of the eutectic of the bulk impurities. Therefore, in upwellings, vein networks should be briny and hence more electrically conductive. The electrical conductivity of these vein networks depends on the initial impurity concentration of the liquid, impurity type, temperature and the tortuosity of any vein networks. The latter property decreases with increasing ice recrystallization. We conclude that IPR will likely be able to map the top of the unfrozen zone, assuming typical marine ice salt concentrations, but not penetrate through it. MT measurements could complement IPR effectively, because they could measure a conductivity depth profile within the unfrozen part of the ice shell, where the electrical conductivity exceeds 0.1 mS/m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, L. F. M.; Gudennavar, S. B., E-mail: shivappa.b.gudennavar@christuniversity.in; Bubbly, S. G.
The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K{sub β} to K{sub α} intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak {sup 137}Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others’ work, establishing a good agreement.
Shell effect on the electron and hole reorganization energy of core-shell II-VI nanoclusters
NASA Astrophysics Data System (ADS)
Cui, Xianhui; Wang, Xinqin; Yang, Fang; Cui, Yingqi; Yang, Mingli
2017-09-01
Density functional theory calculations were performed to study the effect of shell encapsulation on the geometrical and electronic properties of pure and hybrid core-shell CdSe nanoclusters. The CdSe cores are distorted by the shells, and the shells exhibit distinct surface activity from the cores, which leads to remarkable changes in their electron transition behaviors. Although the electron and hole reorganization energies, which are related to the formation and recombination of electron-hole pairs, vary in a complicated way, their itemized contributions, potentials of electron extraction, ionization and affinity, and hole extraction (HEP), are dependent on the cluster size, shell composition and/or solvent. Our calculations suggest that the behaviors of charge carriers, free electrons and holes, in the semiconductor core-shell nanoclusters can be modulated by selecting appropriate cluster size and controlling the chemical composition of the shells.
ToF diagnostic of Tin resonant laser photoionization in SPES laser offline laboratory
NASA Astrophysics Data System (ADS)
Scarpa, D.; Fedorov, D.; Andrighetto, A.; Mariotti, E.; Nicolosi, P.; Sottili, L.; Tomaselli, A.; Cecchi, R.; Stiaccini, L.
2016-09-01
Tin is the principal element of interest in the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. Atomic nuclei have a shell structure in which nuclei with \\textquoteleft magic numbers\\textquoteright of protons and neutrons are analogous to the noble gasses in atomic physics. In particular, recent theoretical studies, reveal double-magic nature of radioactive 132Sn. For this reason the nuclear physics community demonstrated, in the last years, a huge interest to produce and study this radioactive neutron rich isotope. Experiments on Tin laser resonant ionization have been performed in the offline SPES laser laboratory to investigate the capability of the new home-made Time of Flight (ToF) mass spectrometer. Several three-step, two color ionization schemes have been tested by comparing fast and slow optogalvanic signals from a Tin Hollow Cathode Lamp (HCL) and Time of Flight signals from the spectrometer. By scanning the wavelength of one of the two dye lasers across the specific resonance, comparisons of ionization signals from both the ToF and the HCL have been made, finding perfect agreement. Furthermore, with the mass spectrometer, resolved peaks of all the natural Tin isotopes have been detected. The natural abundances extracted from these measurements are in agreement with the table values for Tin isotopes. This work, with comparison of OGE and ToF signals, confirm the fully functional SPES offline laser laboratory capability in order to develop scheme studies also for the other possible Radioactive Ion Beam (RIB) elements.
Architecture of optical sensor for recognition of multiple toxic metal ions from water.
Shenashen, M A; El-Safty, S A; Elshehy, E A
2013-09-15
Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Electron-Impact Ionization and Dissociative Ionization of Biomolecules
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.
2006-01-01
It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.
Nonsequential double ionization with mid-infrared laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Nonsequential double ionization with mid-infrared laser fields
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...
2016-11-18
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2015-05-01
We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.
NASA Astrophysics Data System (ADS)
Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im
2015-11-01
We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.
2016-05-28
Mutual neutralization (MN) rate coefficients k{sub MN} for He{sup +} with the anions Cl{sup −}, Br{sup −}, I{sup −}, and SF{sub 6}{sup −} are reported from 300 to 500 K. The measured rate coefficients may contain a contribution from transfer ionization, i.e., double ionization of the anion. The large rate coefficient for He{sup +} + SF{sub 6}{sup −} (2.4 × 10{sup −7} cm{sup 3} s{sup −1} at 300 K) is consistent with earlier polyatomic MN results found to have a reduced mass dependence of μ{sup −1/2}. Neutralization of He{sup +} by the atomic halides follows the trend observed earlier for Ne{sup +},more » Ar{sup +}, Kr{sup +}, and Xe{sup +} neutralized by atomic halides, k{sub MN} (Cl{sup −}) < k{sub MN} (Br{sup −}) < k{sub MN} (I{sup −}). Only an upper limit could be measured for the neutralization of He{sup +} by Cl{sup −}. Predictions of the rate coefficients from a previously proposed simple model of atomic–atomic MN results are consistent with the present He{sup +}–halide rate coefficients. The temperature dependences are modestly negative for Br{sup −} and I{sup −}, while that for SF{sub 6}{sup −} is small or negligible.« less
A MULTIWAVELENGTH STUDY OF STAR FORMATION IN THE VICINITY OF GALACTIC H II REGION Sh 2-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, M. R.; Pandey, A. K.; Sagar, R.
We present multiwavelength investigation of morphology, physical-environment, stellar contents, and star formation activity in the vicinity of star-forming region Sh 2-100. It is found that the Sh 2-100 region contains seven H II regions of ultracompact and compact nature. The present estimation of distance for three H II regions, along with the kinematic distance for others, suggests that all of them belong to the same molecular cloud complex. Using near-infrared photometry, we identified the most probable ionizing sources of six H II regions. Their approximate photometric spectral type estimates suggest that they are massive early-B to mid-O zero-age-main-sequence stars andmore » agree well with radio continuum observations at 1280 MHz, for sources whose emissions are optically thin at this frequency. The morphology of the complex shows a non-uniform distribution of warm and hot dust, well mixed with the ionized gas, which correlates well with the variation of average visual extinction ({approx}4.2-97 mag) across the region. We estimated the physical parameters of ionized gas with the help of radio continuum observations. We detected an optically visible compact nebula located to the south of the 850 {mu}m emission associated with one of the H II regions and the diagnostic of the optical emission line ratios gives electron density and electron temperature of {approx}0.67 x 10{sup 3} cm{sup -3} and {approx}10{sup 4} K, respectively. The physical parameters suggest that all the H II regions are in different stages of evolution, which correlate well with the probable ages in the range {approx}0.01-2 Myr of the ionizing sources. The spatial distribution of infrared excess stars, selected from near-infrared and Infrared Array Camera color-color diagrams, correlates well with the association of gas and dust. The positions of infrared excess stars, ultracompact and compact H II regions at the periphery of an H I shell, possibly created by a WR star, indicate that star formation in Sh 2-100 region might have been induced by an expanding H I shell.« less
Singlet-paired coupled cluster theory for open shells
NASA Astrophysics Data System (ADS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548
NASA Astrophysics Data System (ADS)
Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena
2010-03-01
We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that different outflow velocity systems have been modeled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other WAs: two or three discrete phases in pressure equilibrium. There are no remaining cases of a well-studied WA in which a model consisting of a multi-phase medium is not viable.
Dral, Pavlo O
2014-03-01
The local electron affinity (EA(L)) and the local ionization energy (IE(L)) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree-Fock variants of EA(L) and IE(L), i.e., the unrestricted local electron affinity (UHF-EA(L)) and ionization energy (UHF-IE(L)), have been shown to be useful for predicting properties of open-shell species. UHF-EA(L) and UHF-IE(L) have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF-EA(L) is useful for predicting and better understanding reactivity of radicals related to alkanes activation.
NASA Astrophysics Data System (ADS)
Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma
2015-02-01
The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell
NASA Astrophysics Data System (ADS)
Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.
2017-10-01
Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.
Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.
2010-09-30
This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.
Drawz, Sarah M; Bethel, Christopher R; Hujer, Kristine M; Hurless, Kelly N; Distler, Anne M; Caselli, Emilia; Prati, Fabio; Bonomo, Robert A
2009-06-02
Inhibitor-resistant class A beta-lactamases of the TEM and SHV families that arise by single amino acid substitutions are a significant threat to the efficacy of beta-lactam/beta-lactamase inhibitor combinations. To better understand the basis of the inhibitor-resistant phenotype in SHV, we performed mutagenesis to examine the role of a second-shell residue, Asn276. Of the 19 variants expressed in Escherichia coli, only the Asn276Asp enzyme demonstrated reduced susceptibility to ampicillin/clavulanate (MIC increased from 50/2 --> 50/8 microg/mL) while maintaining high-level resistance to ampicillin (MIC = 8192 microg/mL). Steady-state kinetic analyses of Asn276Asp revealed slightly diminished k(cat)/K(m) for all substrates tested. In contrast, we observed a 5-fold increase in K(i) for clavulanate (7.4 +/- 0.9 microM for Asn276Asp vs 1.4 +/- 0.2 microM for SHV-1) and a 40% reduction in k(inact)/K(I) (0.013 +/- 0.002 microM(-1 )s(-1) for Asn276Asp vs 0.021 +/- 0.004 microM(-1) s(-1) for SHV-1). Timed electrospray ionization mass spectrometry of clavulanate-inhibited SHV-1 and SHV Asn276Asp showed nearly identical mass adducts, arguing for a similar pathway of inactivation. Molecular modeling shows that novel electrostatic interactions are formed between Arg244Neta2 and both 276AspOdelta1 and Odelta2; these new forces restrict the spatial position of Arg244, a residue important in the recognition of the C(3)/C(4) carboxylate of beta-lactam substrates and inhibitors. Testing the functional consequences of this interaction, we noted considerable free energy costs (+DeltaDeltaG) for substrates and inhibitors. A rigid carbapenem (meropenem) was most affected by the Asn276Asp substitution (46-fold increase in K(i) vs SHV-1). We conclude that residue 276 is an important second-shell residue in class A beta-lactamase-mediated resistance to substrates and inhibitors, and only Asn is able to precisely modulate the conformational flexibility of Arg244 required for successful evolution in nature.
TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of material. Although the central star is visible in both pictures, it is more prominent on the inset image. Another clear feature on the inset image is a very interesting red, arrowhead-shaped protrusion emanating from a hole (seen nearly edge-on) at 4 o'clock. On the main image, the 'arrowhead' is colored a subtle magenta. The 'arrowhead' appears to be driving an outward swelling of material at the 4 o'clock border. This too appears to have a counterpart in the opposite direction. Some evidence is visible at the 10 o'clock position (inset). These features suggest a more recent shaping of the nebula by the fast stellar wind, because the material does not appear to be as far away from the central star as the outlying jets. The column at 6 o'clock in the main image, which appears to be a series of vertebrae-shaped structures, suggests that the jets occur episodically. The broadest, most prominent of these are near the bottom and are curved upward, facing the central star. This column seems well aligned with the opening in the bottom of the nautilus shell seen in both the main and inset images. The main picture is a composite of images taken with three filters which are used to make a representative picture of the true colors of the object. Red represents hydrogen, which constitutes most of the nebula; blue, oxygen that is singly ionized; and green, oxygen at even higher ionization (doubly ionized). The ionization, in this case, is caused by ultraviolet light from the dying star stripping electrons from atoms. The inset picture is a composite of the inner nautilus shell generated by combining the Hubble telescope images in a different way. This picture enhances some of the inner structure that is not as clear in the main photo due to color blending. The inset is a two-color composite with red and green now depicting the radiation from singly ionized and doubly ionized oxygen, respectively. (This combination is useful for separating the less highly ionized gas from more highly ionized gas.) NGC 6210 is about 6,600 light-years away in the constellation Hercules. The nebula measures 1.6 light-years from the very top of the turtle-shaped form to the tip of the bottom. The inner nautilus shell is about 0.5 light-years in diameter. Credits: Robert Rubin and Christopher Ortiz (NASA Ames Research Center), Patrick Harrington and Nancy Jo Lame (University of Maryland), Reginald Dufour (Rice University), and NASA
The Hydrodynamical Models of the Cometary Compact HII Region
NASA Astrophysics Data System (ADS)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi
2015-10-01
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M⊙ star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm-3) molecular material with a stellar velocity of 15 km s-1. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H2 S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577
The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less
Structure and evolution of fossil H II regions
NASA Technical Reports Server (NTRS)
Mccray, R.; Schwarz, J.
1971-01-01
The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.
Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-04-29
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
Ionization of pyridine: Interplay of orbital relaxation and electron correlation.
Trofimov, A B; Holland, D M P; Powis, I; Menzies, R C; Potts, A W; Karlsson, L; Gromov, E V; Badsyuk, I L; Schirmer, J
2017-06-28
The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2 A 2 (1a 2 -1 ), 2 A 1 (7a 1 -1 ), 2 B 1 (2b 1 -1 ), and 2 B 2 (5b 2 -1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a 1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a 1 (nσ) -1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2011-11-01
In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for projectile energies in the output has been expanded from two to four decimal places in order to distinguish between closely spaced energy values. There were a few entries in the executable binding energy file that needed correcting; K shell of Eu, M shells of Zn, M1 shell of Kr. The corrected values were also entered in the ENERGY.DAT file. In addition, an alternate data file of binding energies is included, called ENERGY_GW.DAT, which is more up-to-date [2]. Likewise, an alternate atomic parameters data file is now included, called FLOURE_JC.DAT, which is more up-to-date [3] fluorescence yields for the K and L shells and Coster-Kronig parameters for the L shell. Both data files can be read in using the -f usage option. To do this, the original energy file should be renamed and saved (e.g., ENERGY_BB.DAT) and the new file (ENERGY_GW.DAT ) should be duplicated as ENERGY.DAT to be read in using the -f option. Similarly for reading in an alternate FLOURE.DAT file. As with previous versions, the user can also simply input different values of any input quantity by invoking the "specify your own parameters" option from the main menu. You can also use this option to simply check the values of the built-in values of the parameters. If it still happens that a zero binding energy for a particular sub-shell is read in, the program will not completely abort, but will calculate results for the other sub-shells while setting the affected sub-shell output to zero. In calculating the Coulomb deflection factor, if the quantity inside the radical sign of the parameter z z=√{(1} becomes zero or negative, to prevent the program from aborting, the PWBA cross sections are still calculated while the ECPSSR cross sections are set to zero. This situation can happen for very low energy collisions, such as were noticed for helium ions on copper at energies of E⩽11.2 keV. It was observed during the engineering of ISICSoo [1] that erroneous calculations could result for the L- and M-shell cases when restricted K-shell R or HSR scaling options were inappropriately chosen. The program has now been fixed so that these inappropriate options are ignored for the L and M shells. In the previous versions, the usage for inputting a batch data file was incorrectly stated in the Users Manual as -Bxxx; the correct designation is -Fxxx, or alternatively, -Ixxx, as indicated on the usage screen in running the program. A revised Users Manual is also available. Restrictions: The consumed CPU time increases with the atomic shell (K, L, M), but execution is still very fast. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version.
Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1
NASA Astrophysics Data System (ADS)
Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji
2014-02-01
We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
Ejecta of Eta Carinae: What We Learn about N-Rich Chemistry
NASA Technical Reports Server (NTRS)
Gull, Theodore
2006-01-01
At least one member of the binary system, Eta Carinae, is in the late stages of CNO-cycle. At least ten solar masses of ejecta make up the Homunculus, a neutral bi-polar shell ejected in the 1840s and the Little Homunculus, an internal, ionized bi-polar shell ejected in the 1890s. HST/STIS and VLTAJVES high dispersion spectroscopy revealed absorptions of multiple elements and diatomic molecules in these shells, some, such as V II and Sr II have not been seen previously in the ISM. The skirt region between the bi-lobes includes the very bright Weigelt blobs, within 0.1 to 0.3" of the central source, and the more distant, unusual Strontium Filament, a neutral emission nebula photoexcited by Balmer continuum, but shielded by Fe II from Lyman radiation. The 600+ emission lines are due to metals usually tied up in dust, but underabundances of C and O prevent precipitation as oxides onto the dust grains. Indications are that Ti/Ni is 100X solar, likely due not to nuclear processing, but the very different photo-excitation environments coupled with N-rich, C-, O-poor chemistry. In the Homunculus, level populations of the molecules indicate 60K gas; the metal absorption lines, 760K; that of the Little Homunculus 6400K during the broad spectroscopic maximum, relaxing to 5000K for the few month long minimum. Lyman radiation, including both continuum and Lyman lines, is trapped across periastron. leading to temporary relaxation of the ejecta. These ejecta are a treasure trove of information on material thrown out of massive stars in the CNO-cycle, well before the helium burning phase. Curiously, spectra of three very recent SWIFT GRBs indicate the presence of warm, photoexcited ejecta in the vicinity of the protoGRBs, but obviously of very different abundances. However, the ejecta of Eta Carinae promise to be a nearby example of massive ejecta, the study of which should lead to increased insight of earlier, very distant massive stars.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.
2008-05-01
We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.
Rochette, Christophe N; Crassous, Jérôme J; Drechsler, Markus; Gaboriaud, Fabien; Eloy, Marie; de Gaudemaris, Benoît; Duval, Jérôme F L
2013-11-26
The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp; Mischke, Miriam; Fischer, Peter
2012-11-09
Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to earlymore » somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.« less
NASA Astrophysics Data System (ADS)
Xmass Collaboration; Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sato, K.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kanzawa, K.; Kegasa, R.; Masuda, K.; Takiya, H.; Fushimi, K.; Kanzaki, G.; Martens, K.; Suzuki, Y.; Xu, B. D.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Takeuchi, Y.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Miyasaka, M.; Nishijima, K.; Nakamura, S.
2018-05-01
We conducted an improved search for the simultaneous capture of two K-shell electrons on the ^{124}Xe and ^{126}Xe nuclei with emission of two neutrinos using 800.0 days of data from the XMASS-I detector. A novel method to discriminate γ-ray/X-ray or double electron capture signals from β-ray background using scintillation time profiles was developed for this search. No significant signal was found when fitting the observed energy spectra with the expected signal and background. Therefore, we set the most stringent lower limits on the half-lives at 2.1 × 10^{22} and 1.9 × 10^{22} years for ^{124}Xe and ^{126}Xe, respectively, with 90% confidence level. These limits improve upon previously reported values by a factor of 4.5.
NASA Technical Reports Server (NTRS)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert;
2015-01-01
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios - (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.
Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENSEN, C.E.
2000-01-10
This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.
NASA Astrophysics Data System (ADS)
Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin
2018-01-01
In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.
Neutron-Impact Ionization of H and He
NASA Astrophysics Data System (ADS)
Lee, T.-G.; Ciappina, M. F.; Robicheaux, F.; Pindzola, M. S.
2014-05-01
Perturbative distorted-wave and non-perturbative close-coupling methods are used to study neutron-impact ionization of H and He. For single ionization of H, we find excellent agreement between the distorted-wave and close-coupling results at all incident energies. For double ionization of He, we find poor agreement between the distorted-wave and close-coupling results, except at the highest incident energies. We present the ratio of double to single ionization for He as a guide to experimental checks of theory at low energies and experimental confirmation of the rapid rise of the ratio at high energies. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.
Ionizing radiation, ion transports, and radioresistance of cancer cells
Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska
2013-01-01
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Douglas Carl; Loomis, Eric Nicholas
2017-08-17
We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 10 10 to a few 10 11 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 10 14 neutrons). It also pertains to fills of gasmore » diluted with hydrogen, helium ( 3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.« less
Atomic Processes in X-ray Photoioinzed Gas
NASA Technical Reports Server (NTRS)
Kallman, Timothy
2005-01-01
It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for accurate atomic cross sections for photoionization and absorption, notably for processes involving inner shells. The xstar code can be used for calculating the heating, ionization and reprocessing of X-rays by gas in a range of ionization states and temperatures. It has recently been updated to include an improved treatment of inner shell transitions in iron. I will review the capabilities of xstar, the atomic data, and illustrate some applications to recent X-ray spectral observations.
Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi
2015-01-01
Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Rapidly Moving Shell in the Orion Nebula
NASA Technical Reports Server (NTRS)
Walter, Donald K.; O'Dell, C. R.; Hu, Xihai; Dufour, Reginald J.
1995-01-01
A well-resolved elliptical shell in the inner Orion Nebula has been investigated by monochromatic imaging plus high- and low-resolution spectroscopy. We find that it is of low ionization and the two bright ends are moving at -39 and -49 km/s with respect to OMC-1. There is no central object, even in the infrared J bandpass although H2 emission indicates a possible association with the nearby very young pre-main-sequence star J&W 352, which is one of the youngest pre-main-sequence stars in the inner Orion Nebula. Many of the characteristics of this object (low ionization, blue shift) are like those of the Herbig-Haro objects, although the symmetric form would make it an unusual member of that class.
A double-cusp type electrostatic analyzer for high-cadence ring current ion measurements
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Allegrini, F.; Burch, J. L.; Desai, M. I.; Ebert, R. W.; Goldstein, J.; John, J. M.; Livi, S. A.; McComas, D. J.
2015-12-01
Detailed observations of a variety of ion species at a sufficiently high temporal resolution are essential to understanding the loss and acceleration processes of ring current ions. For example, CRESS/MICS observations indicated that the energy density of suprathermal O+ exceeds that of H+ in large magnetic storms (Daglis et al., 1997), while the H+ energy density dominates under quiet conditions. However, the primary ion loss processes during the storm recovery phase are still incompletely understood. The mechanisms to accelerate upflowing ions, regularly observed with energies of a few keV at ~1000 km altitude, up to the 100s-keV range in the geospace are also not fully understood. Our novel electrostatic analyzer (ESA) employs a toroidal double-shell structure to cover the entire ring current ion range of ~3-250 keV/Q with high temporal resolution (<1 minute with a necessary counting statistics for the quiet time), while saving significant resources in mass and size. In this presentation, we discuss the operation principle and the proof of concept study of the ESA in terms of numerical calculations and ion beam calibration activities. This presentation comprehensively covers the expected sensor performance important for the in-flight capabilities, such as sensor parameters (G-factor, K-factor, and energy resolution), cross-shell contaminations, and UV background counts.
Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku
NASA Technical Reports Server (NTRS)
Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto
2016-01-01
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereoscopic System), together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
NASA Astrophysics Data System (ADS)
Kaya, N.; Tıraşoğlu, E.; Apaydın, G.
2008-04-01
The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of: SHC Corp. (f/k/a Victormaxx Technologies, Inc.), Shells Seafood Restaurants, Inc., SI Restructuring, Inc. (f/k/a Schlotzsky's, Inc.), SLS... a lack of current and accurate information concerning the securities of Shells Seafood Restaurants...
L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions
NASA Astrophysics Data System (ADS)
Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.
2005-08-01
Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.
241-AY Double Shell Tanks (DST) Integrity Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENSEN, C.E.
1999-09-21
This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.
Flammable gas double shell tank expert elicitation presentations (Part A and Part B)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratzel, D.R.
1998-04-17
This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yako, K.; Sasano, M.; Miki, K.
2009-07-03
The double-differential cross sections for the {sup 48}Ca(p,n) and {sup 48}Ti(n,p) reactions were measured at 300 MeV. A multipole decomposition technique was applied to the spectra to extract the Gamow-Teller (GT) components. The integrated GT strengths up to an excitation energy of 30 MeV in {sup 48}Sc are 15.3+-2.2 and 2.8+-0.3 in the (p,n) and (n,p) spectra, respectively. In the (n,p) spectra additional GT strengths were found above 8 MeV where shell models within the fp shell-model space predict almost no GT strengths, suggesting that the present shell-model description of the nuclear matrix element of the two-neutrino double-beta decay ismore » incomplete.« less
NASA Astrophysics Data System (ADS)
Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.
2016-05-01
Context. Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mechanism responsible for producing highly ionized atomic species detected in stellar wind UV spectra. Aims: To allow for these processes in the context of spectral analysis, we have implemented the emission from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum synthesis code FASTWIND. Methods: The shock structure and corresponding emission is calculated as a function of user-supplied parameters (volume filling factor, radial stratification of shock strength, and radial onset of emission). We account for a temperature and density stratification inside the postshock cooling zones, calculated for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorption of the cool wind is considered by adding important K-shell opacities, and corresponding Auger ionization rates have been included in the NLTE network. To test our implementation and to check the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission parameters. Results: We tested and verified our implementation carefully against corresponding results from various alternative model atmosphere codes, and studied the effects from shock emission for important ions from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential role for the ionization balance of O iv/O v (particularly in dwarfs with Teff~ 45 000 K). Finally, we investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r), which is important in the context of X-ray line formation in massive star winds. Conclusions: In almost all of the cases considered, direct ionization is of major influence because of the enhanced EUV radiation field, and Auger ionization only affects N vi and O vi significantly. The approximation of a radially constant κν is justified for r ≳ 1.2 R∗ and λ ≲ 18 Å and also for many models at longer wavelengths. To estimate the actual value of this quantity, however, the He II opacities need to be calculated from detailed NLTE modeling, at least for wavelengths longer than 18 to 20 Å, and information on the individual CNO abundances has to be present.
Waltzing route toward double-helix formation in cholesteric shells
NASA Astrophysics Data System (ADS)
Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa
2016-08-01
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.
Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R
1999-09-29
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.
The crack problem in a specially orthotropic shell with double curvature
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1983-01-01
The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip. Previously announced in STAR as N83-16782
The crack problem in a specially orthotropic shell with double curvature
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip.
Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B
2015-10-14
The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, M.; Wormit, M.; Dreuw, A.
2015-10-14
The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less
Ultrafast Molecular Three-Electron Auger Decay.
Feifel, Raimund; Eland, John H D; Squibb, Richard J; Mucke, Melanie; Zagorodskikh, Sergey; Linusson, Per; Tarantelli, Francesco; Kolorenč, Přemysl; Averbukh, Vitali
2016-02-19
Three-electron Auger decay is an exotic and elusive process, in which two outer-shell electrons simultaneously refill an inner-shell double vacancy with emission of a single Auger electron. Such transitions are forbidden by the many-electron selection rules, normally making their decay lifetimes orders of magnitude longer than the few-femtosecond lifetimes of normal (two-electron) Auger decay. Here we present theoretical predictions and direct experimental evidence for a few-femtosecond three-electron Auger decay of a double inner-valence-hole state in CH_{3}F. Our analysis shows that in contrast to double core holes, double inner-valence vacancies in molecules can decay exclusively by this ultrafast three-electron Auger process, and we predict that this phenomenon occurs widely.
Development of Solid Xenon Bolometers
NASA Astrophysics Data System (ADS)
Dolinski, Michelle; Hansen, Erin
2016-09-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.
Double-shell target fabrication workshop-2016 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Oertel, John; Farrell, Michael
On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less
Genetic parameters of egg defects and egg quality in layer chickens.
Wolc, A; Arango, J; Settar, P; O'Sullivan, N P; Olori, V E; White, I M S; Hill, W G; Dekkers, J C M
2012-06-01
Genetic parameters were estimated for egg defects, egg production, and egg quality traits. Eggs from 11,738 purebred brown-egg laying hens were classified as salable or as having one of the following defects: bloody, broken, calcium deposit, dirty, double yolk, misshapen, pee-wee, shell-less, and soft shelled. Egg quality included albumen height, egg weight, yolk weight, and puncture score. Body weight, age at sexual maturity, and egg production were also recorded. Heritability estimates of liability to defects using a threshold animal model were less than 0.1 for bloody and dirty; between 0.1 and 0.2 for pee-wee, broken, misshapen, soft shelled, and shell-less; and above 0.2 for calcium deposit and double yolk. Quality and production traits were more heritable, with estimates ranging from 0.29 (puncture score) to 0.74 (egg weight). High-producing hens had a lower frequency of egg defects. High egg weight and BW were associated with an increased frequency of double yolks, and to a lesser extent, with more shell quality defects. Estimates of genetic correlations among defect traits that were related to shell quality were positive and moderate to strong (0.24-0.73), suggesting that these could be grouped into one category or selection could be based on the trait with the highest heritability or that is easiest to measure. Selection against defective eggs would be more efficient by including egg defect traits in the selection criterion, along with egg production rate of salable eggs and egg quality traits.
THE HYDRODYNAMICAL MODELS OF THE COMETARY COMPACT H ii REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan
2015-10-10
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M{sub ⊙} star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm{sup −3}) molecular material with a stellar velocity of 15 km s{sup −1}. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H{sub 2} S(2) lines from the ionized regionsmore » and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.« less
FAST, LOW-IONIZATION EMISSION REGIONS OF THE PLANETARY NEBULA M2-42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danehkar, A.; Parker, Q. A.; Steffen, W., E-mail: ashkbiz.danehkar@cfa.harvard.edu
Spatially resolved observations of the planetary nebula M2-42 (PN G008.2−04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N ii] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s{sup −1} is measured from the spectrum integrated over the main shell. However,more » the deprojected velocities of the jets are found to be in the range of 80–160 km s{sup −1} with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm{sup −3}, is five times lower than that of the main shell, 3150 cm{sup −3}, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.« less
Alloy nanoparticle synthesis using ionizing radiation
Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC
2011-08-16
A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.
Spectrophotometry of the shell around AG Carinae
NASA Technical Reports Server (NTRS)
Mitra, P. Mila; Dufour, Reginald J.
1990-01-01
Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.
The role of Upper Hybrid Turbulence on HF Artificial Ionization
NASA Astrophysics Data System (ADS)
Papadopoulos, Konstantinos Dennis; Najmi, Amir; Eliasson, Bengt; Milikh, Gennady
2016-07-01
One of the most fascinating and scientifically interesting phenomena of active space experiments is the discovery of artificial ionization by Todd Pedersen when the HAARP ERP reached the GW level. The phenomenon has been well documented experimentally. A theoretical model based on ionization by energetic electrons accelerated by 50-100 V/m localized electric fields due to Strong Langmuir Turbulence (SLT) near the reflection surface of the HF pump wave, reproduced the observed dynamics of the descending plasma layer quite accurately. A major defect of the model was that the electron temperature in the SLT region was a free parameter. When taken as the 2000 K representing the ambient electron temperature the SLT driven electron flux was insufficient to produce ionization. An equivalent electron temperature of 5000 K or higher was necessary to reproduce the observations. The needed electron heating was attributed to the interaction of the HF at the Upper Hybrid (UH) resonant layer, approximately 5 Km below the reflection region where the HF electric field is perpendicular to the ambient magnetic field. The heated electrons expanded upwards along the magnetic field line and interacted with SLT fields near the resonance region. A consequence of this defect was that the theory could not explain the puzzling double resonance effect. Namely the observation that the ionization level was much stronger when the HF frequency and the UH resonance were a multiple of the electron cyclotron frequency. To remedy this we used a series of Vlasov simulations to explore the HF-plasma interaction in the vicinity of the UH resonance. The simulations followed the evolution of the spectral density of the electric field over a 7.5 MHz frequency band and cm scale lengths and of the electron distribution function over one millisecond for both double resonant and non-resonant cases. Many new features were revealed by the analysis of the simulations such as: 1. Broadening of the wave-number spectral region at the at the UH frequency 2. Excitation of all Bernstein modes associated with cyclotron frequency harmonics both below and above the UH frequency for both the resonant and non0resonant cases. 3. Moderate electron heating, in the form of bulk heating caused by first Bernstein mode, although its wave intensity is more than 20 dB lower than the intensity of the UH branch for all non-resonant cases. 4. Strong generation of non-thermal tails for the resonant cases, by the UH waves downshifted by the lower hybrid frequency when the downshifted frequency was equal to an harmonic of the electron gyro-frequency. The new UH turbulence resolves several f the mysteries associated with artificial ionization and suggests several new observations. Acknowledgment:Work supported by AFOSR MURI grant FA95501410019.
Global molecular identification from graphs. Neutral and ionized main-group diatomic molecules.
James, Bryan; Caviness, Ken; Geach, Jonathan; Walters, Chris; Hefferlin, Ray
2002-01-01
Diophantine equations and inequalities are presented for main-group closed-shell diatomic molecules. Specifying various bond types (covalent, dative, ionic, van der Waals) and multiplicities, it becomes possible to identify all possible molecules. While many of the identified species are probably unstable under normal conditions, they are interesting and present a challenge for computational or experimental analysis. Ionized molecules with net charges of -1, 1, and 2 are also identified. The analysis applies to molecules with atoms from periods 2 and 3 but can be generalized by substituting isovalent atoms. When closed-shell neutral diatomics are positioned in the chemical space (with axes enumerating the numbers of valence electrons of the free atoms), it is seen that they lie on a few parallel isoelectronic series.
Werner Brandt legacy to PIXE: Past and present perspectives
NASA Astrophysics Data System (ADS)
Lapicki, Gregory
2014-01-01
Inner-shell ionization cross sections used in Particle-Induced X-ray Elemental (PIXE) analyses are routinely calculated in the ECPSSR [W. Brandt, G. Lapicki, Phys. Rev. A 23 (1981) 1717-1729] theory and/or semiempirical formulas scaled to that theory. Thirty years after the passing of Werner Brandt, with recognition of his seminal contributions to other research on positron physics and stopping power problems, the work and articles that progressed into the ECPSSR theory for inner-shell ionization by protons and heavier ions are recalled as Brandt's past legacy to the PIXE community. Applications of the ECPSSR and its evolution into the ECUSAR [G. Lapicki, Nucl. Instr. Meth. B 189 (2002) 8-20] theory over the last three decades are reviewed with perspectives on Brandt's present legacy.
Double β-decay nuclear matrix elements for the A=48 and A=58 systems
NASA Astrophysics Data System (ADS)
Skouras, L. D.; Vergados, J. D.
1983-11-01
The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.
Electron-Impact Total Ionization Cross Sections of Fluorine Compounds
NASA Astrophysics Data System (ADS)
Kim, Y.-K.; Ali, M. A.; Rudd, M. E.
1997-10-01
A theoretical method called the Binary-Encounter-Bethe (BEB) model(M. A. Ali, Y.-K. Kim, H. Hwang, N. M. Weinberger, and M. E. Rudd, J. Chem. Phys. 106), 9602 (1997), and references therein. that combines the Mott cross section at low incident energies T and the Bethe cross section at high T was applied to fluorine compounds of interest to plasma processing of semiconductors (CF_4, CHF_3, C_2F_6, C_4F_8, etc.). The theory provides total ioniztion cross sections in an analytic form from the threshold to a few keV in T, making it convenient to use the theory for modeling. The theory is particularly effective for closed-shell molecules. The theoretical cross sections are compared to available experimental data.
Shells, holes, worms, high-velocity gas and the z-distribution of gas in galaxies.
NASA Astrophysics Data System (ADS)
Rand, R. J.
The author gives an overview of the current observational understanding of vertically extended gas components in spiral galaxies and the various phenomena which come under such names as shells, holes, worms, and high-velocity gas. For the most part, the focus is on recent high-resolution interferometric studies. The author concentrates on cold gas, and briefly on warm ionized gas, in the Milky Way and a few nearby spirals. Along the way, it is seen how phenomena such as worms and shells may be related to the formation and maintenance of the vertically extended components.
NASA Astrophysics Data System (ADS)
Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.
2018-04-01
The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
NASA Astrophysics Data System (ADS)
Chauhan, Manvendra Singh; Chauhan, R. K.
2018-04-01
This paper demonstrates a Junction-less Double Gate n-p-n Impact ionization MOS transistor (JLDG n-IMOS) on a very light doped p-type silicon body. Device structure proposed in the paper is based on charge plasma concept. There is no metallurgical junctions in the proposed device and does not need any impurity doping to create the drain and source regions. Due to doping-less nature, the fabrication process is simple for JLDG n-IMOS. The double gate engineering in proposed device leads to reduction in avalanche breakdown via impact ionization, generating large number of carriers in drain-body junction, resulting high ION current, small IOFF current and great improvement in ION/IOFF ratio. The simulation and examination of the proposed device have been performed on ATLAS device simulatorsoftware.
NASA Astrophysics Data System (ADS)
Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.
2017-03-01
Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.
Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E
2015-08-28
Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.; Schulz, M.
2010-04-01
We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.
Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF
NASA Astrophysics Data System (ADS)
May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.
2015-11-01
High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Perturbative calculation of two-photon double electron ionization of helium
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2008-05-01
We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad
2013-09-01
The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.
NASA Astrophysics Data System (ADS)
Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan
2017-12-01
We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.
NASA Astrophysics Data System (ADS)
Aydinol, Mahmut
2017-02-01
L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELi
NASA Astrophysics Data System (ADS)
Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang
2018-03-01
Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.
K-shell auger decay of atomic oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolte, W.C.; Lu, Y.; Samson, J.A.R.
1997-04-01
The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydbergmore » analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.« less
The role of MOF in the ionizing radiation response is conserved in Drosophila melanogaster
Bhadra, Manika P.; Horikoshi, Nobuo; Pushpavallipvalli, Sreerangam NCVL; Sarkar, Arpita; Bag, Indira; Krishnan, Anita; Lucchesi, John C.; Kumar, Rakesh; Yang, Qin; Pandita, Raj K.; Singh, Mayank; Bhadra, Utpal; Eissenberg, Joel C.; Pandita, Tej K.
2014-01-01
In Drosophila, males absent on the first (MOF) acetylates histone H4 at lysine 16 (H4K16ac). This acetylation mark is highly enriched on the male X chromosome and is required for dosage compensation in Drosophila but not utilized for such in mammals. Recently, we and others reported that mammalian MOF, through H4K16ac, has a critical role at multiple stages in the DNA damage response (DDR) and double-strand break repair pathways. The goal of this study was to test whether mof is similarly required for the response to ionizing radiation (IR) in Drosophila. We report that Drosophila mof mutations in males and females, as well as mof knockdown in SL-2 cells, reduce post-irradiation survival. MOF depletion in SL-2 cells also results in an elevated frequency of metaphases with chromosomal aberrations, suggesting that MOF is involved in DDR. Mutation in Drosophila mof also results in a defective mitotic checkpoint, enhanced apoptosis, and a defective p53 response post-irradiation. In addition, IR exposure enhanced H4K16ac levels in Drosophila as it also does in mammals. These results are the first to demonstrate a requirement for MOF in the whole animal IR response and suggest that the role of MOF in the response to IR is conserved between Drosophila and mammals. PMID:22072291
Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom
NASA Astrophysics Data System (ADS)
Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel
2018-04-01
Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.
Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress
Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina
2014-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666
Plasma Radiation Source Development Program
2006-03-01
shell mass distributions perform belter than thin shells. The dual plenum, double shell load has unique diagnostic features that enhance our...as implosion time increases. 13. SUBJECT TERMS Zpinch x-ray diagnostics Rayleigh-Taylor instability pulsed-power x-ray spectroscopy supersonic...feature permits some very useful diagnostics that shed light on critical details of the implosion process. See Section 3 for details. We have
Molecular environment and an X-ray study of the double-shell supernova remnant Kes 79
NASA Astrophysics Data System (ADS)
Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Ming, Sun
Kes 79 is a remarkable middle-age supernova remnant (SNR) with double shells in radio band and many structures in X-rays, harbouring a CCO and with a transient magnetar to the south. We have performed new 12CO J=1-0, 13CO J=1-0, 12CO J=2-1 observations towards this remnant to investigate its molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-115 km/s, which deformed the SNR's shell in the east. The inner radio shell appears to be well confined by a molecular shell at V_{LSR}˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveal many bright filamentary structures well coincident with infrared features and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also studied the spatial distribution of the overabundant metal species that may be related to the asymmetric ejecta. Finally, we will discuss the evolution of Kes 79 combining the molecular line and X-ray properties.
Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16
NASA Technical Reports Server (NTRS)
Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.;
2007-01-01
We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.
HIGH RESOLUTION H{alpha} IMAGES OF THE BINARY LOW-MASS PROPLYD LV 1 WITH THE MAGELLAN AO SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.-L.; Close, L. M.; Males, J. R.
2013-09-01
We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H{alpha}. This is among the first AO results in visible wavelengths. The H{alpha} image clearly shows the ionization fronts, the interproplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over {approx}18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostar's photosphere in the continuum. Converting the H magnitudes to mass, we show thatmore » the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H{alpha}.« less
NASA Astrophysics Data System (ADS)
McCreary, Meghan; Chakraborty, Himadri
2013-05-01
The ground state structure of the simplest two-fullerene onion system, the C60@C240 molecule, is solved in the Kohn-Sham framework of local density approximation (LDA). Calculations are carried out with delocalized carbon valence electrons after modeling the onion ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 in a smeared out jellium-type double-shell structure. Ionization cross sections of all the levels are then calculated in both independent particle LDA and many-particle time dependent LDA approaches at photon energies above the plasmon resonances. These high-energy results exhibit rich structures of energy dependent oscillations from the quantum interference of electron waves produced at the edges of the fullerene layers. A detailed scrutiny of these structures is conducted by Fourier transforming the spectra to the configuration space that relates the oscillations to the onion geometry. Supported by NSF and DOE.
Sugrue, Elena; Carr, Paul D; Scott, Colin; Jackson, Colin J
2016-11-15
The desolvation of ionizable residues in the active sites of enzymes and the subsequent effects on catalysis and thermostability have been studied in model systems, yet little about how enzymes can naturally evolve to include active sites with highly reactive and desolvated charges is known. Variants of triazine hydrolase (TrzN) with significant differences in their active sites have been isolated from different bacterial strains: TrzN from Nocardioides sp. strain MTD22 contains a catalytic glutamate residue (Glu241) that is surrounded by hydrophobic and aromatic second-shell residues (Pro214 and Tyr215), whereas TrzN from Nocardioides sp. strain AN3 has a noncatalytic glutamine residue (Gln241) at an equivalent position, surrounded by hydrophilic residues (Thr214 and His215). To understand how and why these variants have evolved, a series of TrzN mutants were generated and characterized. These results show that desolvation by second-shell residues increases the pK a of Glu241, allowing it to act as a general acid at neutral pH. However, significant thermostability trade-offs are required to incorporate the ionizable Glu241 in the active site and to then enclose it in a hydrophobic microenvironment. Analysis of high-resolution crystal structures shows that there are almost no structural changes to the overall configuration of the active site due to these mutations, suggesting that the changes in activity and thermostability are purely based on the altered electrostatics. The natural evolution of these enzyme isoforms provides a unique system in which to study the fundamental process of charged residue desolvation in enzyme catalysis and its relative contribution to the creation and evolution of an enzyme active site.
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; ...
2015-03-12
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles
Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng
2016-01-01
Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200
NASA Astrophysics Data System (ADS)
Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama
2018-03-01
The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.
2013-01-01
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com
L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li}more » values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.« less
Relative L-shell X-ray intensities of Pt, Pb and Bi following ionization by 59.54 keV γ-rays
NASA Astrophysics Data System (ADS)
Dhal, B. B.; Padhi, H. C.
1994-12-01
Relative L-shell X-ray intensities of Pt, Pb and Bi have been measured following ionization by 59.54 keV photons from an 241 Am point source. The measured ratios have been compared with the theoretical ratios estimated using the photoionization cross-sections of Scofield and different decay yield data. The comparison shows good agreement for Pb and Bi with the decay yield data of Krause, but the decay yield data of Xu and Xu overestimates the ratios, particularly for the {I γ}/{I α} ratio. Our results for Pb and Bi with improved error limits also agree with the previous experimental results of Shatendra et al. For Pt our present results are found to lie between the two theoretical results obtained by using different sets of decay yield data.
NASA Astrophysics Data System (ADS)
Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek
2012-03-01
We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.
Huycke, Mark M.; Naguib, M. Tarek; Stroemmel, Mathias M.; Blick, Kenneth; Monti, Katherine; Martin-Munley, Sarah; Kaufman, Chris
2000-01-01
Foscarnet (trisodium phosphonoformate hexahydrate) is an antiviral agent used to treat cytomegalovirus disease in immunocompromised patients. One common side effect is acute ionized hypocalcemia and hypomagnesemia following intravenous administration. Foscarnet-induced ionized hypomagnesemia might contribute to ionized hypocalcemia by impairing excretion of preformed parathyroid hormone (PTH) or by producing target organ resistance. Prevention of ionized hypomagnesemia following foscarnet administration could blunt the development of ionized hypocalcemia. To determine whether intravenous magnesium ameliorates the decline in ionized calcium and/or magnesium following foscarnet infusions, MgSO4 at doses of 1, 2, and 3 g was administered in a double-blind, placebo-controlled, randomized, crossover trial to 12 patients with AIDS and cytomegalovirus disease. Overall, increasing doses of MgSO4 reduced or eliminated foscarnet-induced acute ionized hypomagnesemia. Supplementation, however, had no discernible effect on foscarnet-induced ionized hypocalcemia despite significant increases in serum PTH levels. No dose-related, clinically significant adverse events were found, suggesting that intravenous supplementation with up to 3 g of MgSO4 was safe in this chronically ill population. Since parenteral MgSO4 did not alter foscarnet-induced ionized hypocalcemia or symptoms associated with foscarnet, routine intravenous supplementation for patients with normal serum magnesium levels is not recommended during treatment with foscarnet. PMID:10898688
Viza, N. D.; Harding, D. R.
2017-12-20
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viza, N. D.; Harding, D. R.
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred
2017-10-01
To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Fournier, K. B.; Colvin, J. D.
2015-06-15
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
May, M. J.; Fournier, K. B.; Colvin, J. D.; ...
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.
Identifying the most influential spreaders in complex networks by an Extended Local K-Shell Sum
NASA Astrophysics Data System (ADS)
Yang, Fan; Zhang, Ruisheng; Yang, Zhao; Hu, Rongjing; Li, Mengtian; Yuan, Yongna; Li, Keqin
Identifying influential spreaders is crucial for developing strategies to control the spreading process on complex networks. Following the well-known K-Shell (KS) decomposition, several improved measures are proposed. However, these measures cannot identify the most influential spreaders accurately. In this paper, we define a Local K-Shell Sum (LKSS) by calculating the sum of the K-Shell indices of the neighbors within 2-hops of a given node. Based on the LKSS, we propose an Extended Local K-Shell Sum (ELKSS) centrality to rank spreaders. The ELKSS is defined as the sum of the LKSS of the nearest neighbors of a given node. By assuming that the spreading process on networks follows the Susceptible-Infectious-Recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performance between the ELKSS centrality and other six measures. The results show that the ELKSS centrality has a better performance than the six measures to distinguish the spreading ability of nodes and to identify the most influential spreaders accurately.
Universal empirical fit to L-shell X-ray production cross sections in ionization by protons
NASA Astrophysics Data System (ADS)
Lapicki, G.; Miranda, J.
2018-01-01
A compilation published in 2014, with a recent 2017 update, contains 5730 experimental total L-shell X-ray production cross sections (XRPCS). The database covers an energy range from 10 keV to 1 GeV, and targets from 18Ar to 95Am. With only two adjustable parameters, universal fit to these data normalized to XRPCS calculated at proton velocity v1 equal to the electron velocity in the L-shell v2L, is obtained in terms of a single ratio of v1/v2L. This fit reproduces 97% of the compiled XRPCS to within a factor of 2.
Dong, Shihua; Li, Caixia; Ge, Xiaoli; Li, Zhaoqiang; Miao, Xianguang; Yin, Longwei
2017-06-27
Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb 2 S 3 @C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn 2+ dissociated from ZIF-8 and S 2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn 2+ and Sb 3+ , in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb 2 S 3 /C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb 2 S 3 /C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I
2003-02-01
This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.
Measurements of K shell absorption jump factors and jump ratios using EDXRF technique
NASA Astrophysics Data System (ADS)
Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi
2015-04-01
In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.
Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
BUSSELL, J.H.
1999-08-24
This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less
Decomposition reaction of the veterinary antibiotic ciprofloxacin using electron ionizing energy.
Cho, Jae Young; Chung, Byung Yeoup; Lee, Kyeong-Bo; Lee, Geon-Hwi; Hwang, Seon Ah
2014-12-01
The application of electron ionizing energy for degrading veterinary antibiotic ciprofloxacin (CFX) in aqueous solution was elucidated. The degradation efficiency of CFX after irradiation with electron ionizing energy was 38% at 1 kGy, 80% at 5kGy, and 97% at 10 kGy. Total organic carbon of CFX in aqueous solution after irradiation with electron ionizing energy decreased 2% at 1 kGy, 18% at 5 kGy, and 53% at 10 kGy. The CFX degradation products after irradiation with electron ionizing energy were CFX1 ([M+H] m/z 330), CFX2 ([M+H] m/z 314), and CFX3 ([M+H] m/z 263). CFX1 had an F atom substituted with OH and CFX2 was expected to originate from CFX via loss of F or H2O. CFX3 was expected to originate from CFX via loss of the piperazynilic ring. Among the several radicals, hydrate electron (eaq(-)) is expected to play an important role in degradation of veterinary antibiotic during irradiation with electron ionizing energy. The toxicity of the degraded products formed during irradiation with electron ionizing energy was evaluated using microbes such as Escherichia coli, Pseudomonas putida, and Bacillus subtilis, and the results revealed that the toxicity decreased with irradiation. These results demonstrate that irradiation technology using electron ionizing energy is an effective was to remove veterinary antibiotics from an aquatic ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan
2017-02-01
The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Zulema; Beaklini, Pedro P. B.; Falceta-Gonçalves, Diego, E-mail: zulema.abraham@iag.usp.br
We report observations of η Carinae obtained with ALMA in the continuum of 100, 230, 280, and 660 GHz in 2012 November, with a resolution that varied from 2.''88 to 0.''45 for the lower and higher frequencies, respectively. The source is not resolved, even at the highest frequency; its spectrum is characteristic of thermal bremsstrahlung of a compact source, but different from the spectrum of optically thin wind. The recombination lines H42α, He42α, H40α, He40α, H50β, H28α, He28α, H21α, and He21α were also detected, and their intensities reveal non-local thermodynamic equilibrium effects. We found that the line profiles could onlymore » be fit by an expanding shell of dense and ionized gas, which produces a slow shock in the surroundings of η Carinae. Combined with fittings to the continuum, we were able to constrain the shell size, radius, density, temperature, and velocity. The detection of the He recombination lines is compatible with the high-temperature gas and requires a high-energy ionizing photon flux, which must be provided by the companion star. The mass-loss rate and wind velocity, necessary to explain the formation of the shell, are compatible with an luminous blue variable eruption. The position, velocity, and physical parameters of the shell coincide with those of the Weigelt blobs. The dynamics found for the expanding shell correspond to matter ejected by η Carinae in 1941 in an event similar to that which formed the Little Homunculus; for that reason, we called the new ejecta the 'Baby Homunculus'.« less
Signature of charge migration in modulations of double ionization
NASA Astrophysics Data System (ADS)
Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.
2018-04-01
We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.
NASA Astrophysics Data System (ADS)
Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen
2017-07-01
We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).
1987-11-01
SHELL DREDGING IN. LAKES PONTCHARTRAIN AND’ MAUREPAS, LOUISIANAD lc . - . . - ~ K’. .. E.LEC .-- *- pas .- K - E ---.Ms---- g * ~ ,~VAUREPAS ~ ~ K...cause significant impacts due to the gradual decline and ultimate cessation of the shell dredging industry (see Sections 3.6 and 3.7). g . Long-term...process and the lakes i.1 the area expanded rapidly to their general present configurit ion. .IS - O .,* g Lake Pontchartrain is the focal point of the
Bi, Lei; Pan, Gang
2017-11-13
Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous bio-hydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO 2 core-mesoporous shell-CaO 2 shell microspheres (OCRMs). The CaO 2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO 2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO 2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO 2 . More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO 2 due to the OH - controlled-release effect of OCRMs. The distinct core-double-shell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms.
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.
2010-10-01
Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations even on time-scales as short as a few days, possibly suggesting somewhat compact absorbers. Moreover, we find no significant correlation between the cosmological red-shifts of the sources and the lines blue-shifted velocities, ruling out any systematic contamination by local absorption. If we define ultra-fast outflows (UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s-1, then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least ~35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of the absorbers is consequently estimated to be in the range C ˜ 0.4-0.6, thereby implying large opening angles. Conclusions: From our systematic X-ray spectral analysis on a large sample of radio-quiet AGNs we have been able to clearly assess the global veracity of the blue-shifted Fe K absorption lines at E > 7 keV and to overcome their publication bias. These lines indicate that UFOs are a rather common phenomenon observable in the central regions of these sources and they are probably the direct signature of AGN accretion disk winds/ejecta. The detailed photo-ionization modeling of these absorbers is presented in a companion paper. Appendices are only available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwayama, H.; Shigemasa, E.; SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585
An Auger-electron–photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N{sub 2}{sup ++} ions and dissociative states leading to N{sub 2}{sup ++} → N{sup +} + N{sup +} and N{sup ++} + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energymore » release. These correlations have been used to determine the dissociation limits of individual Auger final states.« less
Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W
NASA Astrophysics Data System (ADS)
Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv
2015-08-01
The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.
X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres
NASA Technical Reports Server (NTRS)
Garcia, Javier; Kallman, Timothy R.
2009-01-01
We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
Electronic structures of elements according to ionization energies.
Zadeh, Dariush H
2017-11-28
The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zexing; Wang, Jie; Han, Lili
2016-01-19
Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less
Structure of faustovirus, a large dsDNA virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
Structure of faustovirus, a large dsDNA virus
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia; ...
2016-05-16
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.
Here, a search for Pauli-exclusion-principle-violating K α electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 10 30 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 10 30 s at 90% C.L. Itmore » is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.« less
Higher-order equation-of-motion coupled-cluster methods for ionization processes.
Kamiya, Muneaki; Hirata, So
2006-08-21
Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).
NASA Astrophysics Data System (ADS)
Miranda, J.; Lapicki, G.
2018-01-01
A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.
The size and shape of Gum's nebula
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1971-01-01
The ionizing light of the supernova which produced the Gum nebula is now fossilized in the still live, though failing, H II region. The main body of the nebula suggests a hollow center or shell form, with a characteristic radius of about half the distance to the outlying fragments. The edges of the main body patches are typically sharp and often bright. The structure of the Gum nebula appears to be dependent on the event of ionization and possibly on the details of heating. It is not now an unstructured ambient medium, as it may have been before the recent ionization. Several hypotheses are presented for a structured ambient medium.
Effect of ionization on the oxidation kinetics of aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong
2018-03-01
Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru
2018-03-01
We suggest tidal double detonation as a new mechanism for the thermonuclear explosion of a white dwarf (WD) induced by a tidal disruption event (TDE). Tidal detonation is also a WD explosion induced by a TDE. In this case, helium (He) and carbon-oxygen (CO) detonation waves incinerate He WDs and CO WDs, respectively. On the other hand, for tidal double detonation, He detonation is first excited in the He shell of a CO WD, which then drives CO detonation in the CO core. We name this mechanism after the double detonation scenario in the context of type Ia supernovae. In this paper, by performing numerical simulations for CO WDs of mass 0.60 M⊙ with and without a He shell, we show that tidal double detonation occurs in the shallower encounter of a CO WD with an intermediate-mass black hole (IMBH) compared to simple tidal detonation. We expect tidal double detonation will increase the possibility of the occurrence of WD TDEs, which can help us to understand IMBHs.
Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.
2005-01-01
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612
Formation of structures around HII regions: ionization feedback from massive stars
NASA Astrophysics Data System (ADS)
Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.
2015-03-01
We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.
Multi-photon ionization of atoms in intense short-wavelength radiation fields
NASA Astrophysics Data System (ADS)
Meyer, Michael
2015-05-01
The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.
Simulation of double stage hall thruster with double-peaked magnetic field
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren
2017-07-01
This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, M; Ahmad, M; Fahrig, R
Purpose: To evaluate x-ray fluorescence computed tomography induced with proton beams (pXFCT) for imaging of gold contrast agent. Methods: Proton-induced x-ray fluorescence was studied by means of Monte Carlo (MC) simulations using TOPAS, a MC code based on GEANT4. First, proton-induced K-shell and L-shell fluorescence was studied as a function of proton beam energy and 1) depth in water and 2) size of contrast object. Second, pXFCT images of a 2-cm diameter cylindrical phantom with four 5- mm diameter contrast vials and of a 20-cm diameter phantom with 1-cm diameter vials were simulated. Contrast vials were filled with water andmore » water solutions with 1-5% gold per weight. Proton beam energies were varied from 70-250MeV. pXFCT sinograms were generated based on the net number of gold K-shell or L-shell x-rays determined by interpolations from the neighboring 0.5keV energy bins of spectra collected with an idealized 4π detector. pXFCT images were reconstructed with filtered-back projection, and no attenuation correction was applied. Results: Proton induced x-ray fluorescence spectra showed very low background compared to x-ray induced fluorescence. Proton induced L-shell fluorescence had a higher cross-section compared to K-shell fluorescence. Excitation of L-shell fluorescence was most efficient for low-energy protons, i.e. at the Bragg peak. K-shell fluorescence increased with increasing proton beam energy and object size. The 2% and 5% gold contrast vials were accurately reconstructed in K-shell pXFCT images of both the 2-cm and 20-cm diameter phantoms. Small phantom L-shell pXFCT image required attenuation correction and had a higher sensitivity for 70MeV protons compared to 250MeV protons. With attenuation correction, L-shell pXFCT might be a feasible option for imaging of small size (∼2cm) objects. Imaging doses for all simulations were 5-30cGy. Conclusion: Proton induced x-ray fluorescence CT promises to be an alternative quantitative imaging technique to the commonly considered XFCT imaging with x-ray beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less
NASA Astrophysics Data System (ADS)
Mann, J. L.; Kelly, W. R.
2006-05-01
A new analytical technique for the determination of δ34S will be described. The technique is based on the production of singularly charged arsenic sulfide molecular ions (AsS+) by thermal ionization using silica gel as an emitter and combines multiple-collector thermal ionization mass spectrometry (MC-TIMS) with a 33S/36S double spike to correct instrumental fractionation. Because the double spike is added to the sample before chemical processing, both the isotopic composition and sulfur concentration are measured simultaneously. The accuracy and precision of the double spike technique is comparable to or better than modern gas source mass spectrometry, but requires about a factor of 10 less sample. Δ33S effects can be determined directly in an unspiked sample without any assumptions about the value of k (mass dependent fractionation factor) which is currently required by gas source mass spectrometry. Three international sulfur standards (IAEA-S-1, IAEA-S-2, and IAEA-S-3) were measured to evaluate the precision and accuracy of the new technique and to evaluate the consensus values for these standards. Two different double spike preparations were used. The δ34S values (reported relative to Vienna Canyon Diablo Troilite (VCDT), (δ34S (‰) = 34S/32S)sample/(34S/32S)VCDT - 1) x 1000]), 34S/32SVCDT = 0.0441626) determined were -0.32‰ ± 0.04‰ (1σ, n=4) and -0.31‰ ± 0.13‰ (1σ, n=8) for IAEA-S-1, 22.65‰ ± 0.04‰ (1σ, n=7) and 22.60‰ ± 0.06‰ (1σ, n=5) for IAEA- S-2, and -32.47‰ ± 0.07‰ (1σ, n=8) for IAEA-S-3. The amount of natural sample used for these analyses ranged from 0.40 μmoles to 2.35 μmoles. Each standard showed less than 0.5‰ variability (IAEA-S-1 < 0.4‰, IAEA-S-2 < 0.2‰, and IAEA-S-3 < 0.2‰). Our values for S-1 and S-2 are in excellent agreement with the consensus values and the values reported by other laboratories using both SF6 and SO2. Our value for S-3 differs statistically from the Institute for Reference Materials and Measurement (IRMM) value and is slightly lower than the currently accepted consensus value (-32.3). Because the technique is based on thermal ionization of AsS+, and As is mononuclidic, corrections for interferences or for scale contraction/expansion are not required. The availability of MC-TIMS instruments in laboratories around the world makes this technique immediately available to a much larger scientific community who require highly accurate and precise measurements of sulfur.
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.
1994-01-01
High-resolution near-infrared images and moderate resolution spectra were obtained of the bipolar nebulae M2-9 and AFGL 2688. The ability to spatially and spectrally resolve the various components of the nebulae has proved to be important in determining their physical structure and characteristics. In M2-9, the lobes are found to have a double-shell structure. The inner shell is dominated by emission from hydrogen recombination lines, and the outer shell is primarily emission from H2 lines in teh 2-2.5 micron region. Analysis of H2 line ratios indicates that the H2 emission is radiatively excited. A well-resolved photodissociation region is observed in the lobes. The spectrum of the central source is dominated by H recombination lines and a strong continuum rising toward longer wavelengths consistent with a T = 795 K blackbody. Also present are lines of He I and Fe II. In contrast, the N knot and E lobe of M2-9 show little continuum emission. The N knot spectrum consists of lines of (Fe II) and hydrogen recombination lines. In AGFL 2688, the emission from the bright lobes is mainly continuum reflected from the central star. Several molecular features from C2 and CN are present. In the extreme end of the N lobe and in the E equatorial region, the emission is dominated by lines of H2 in the 2-2.5 region. The observed H2 line ratios indicate that the emission is collisionally excited, with an excitation temperature T(sub ex) approixmately = 1600 +/- 100 K.
Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge
NASA Astrophysics Data System (ADS)
Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.
2018-05-01
The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.
Separation of cis and trans geometric isomers by Coulomb explosion imaging
NASA Astrophysics Data System (ADS)
Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Rudenko, A.; Rolles, D.; Bomme, C.; Savelyev, E.; Xiong, H.; Berrah, N.; Kilcoyne, D.
2016-05-01
Isomers, i.e. molecules with the same chemical formula but different chemical structure, play an important role in many biological processes. Recently, it was shown that it is possible to identify different isomers of a chiral molecule by Coulomb explosion imaging. Here, we show that by imaging the Coulomb explosion of C2 H2 Br2 molecules after inner-shell photoionization, we are able to separate a mixture of cis and trans structures using the momentum correlation between ionic fragments measured in coincidence. Furthermore, we used this capability to investigate the isomer-selective photoionization and fragmentation dynamics of C2 H2 Br2 after Br (3d) ionization. Coulomb explosion simulation results for momentum correlation as well as kinetic energies match closely the experimental results. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).
Ultrafast multiphoton ionization dynamics and control of NaK molecules
NASA Astrophysics Data System (ADS)
Davidsson, Jan; Hansson, Tony; Mukhtar, Emad
1998-12-01
The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.
Calculation of K-shell fluorescence yields for low-Z elements
NASA Astrophysics Data System (ADS)
Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.
2015-03-01
The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.
Observations of emission lines in M supergiants
NASA Technical Reports Server (NTRS)
Lambert, D. L.
1979-01-01
Copernicus observations of Mg 2 h and k emission lines from M giants and supergiants are described. Supergiants with extensive circumstellar gas shells show an asymmetric k line. The asymmetry is ascribed to superimposed lines of Fe 1 and Mn 1. The Mg 2 line width fit the Wilson-Bappu relation derived from observations of G and K Stars. Results of correlated ground-based observations include (1) the discovery of K 1 fluorescent emission from the Betelgeuse shell; (2) extimates of the mass-loss rates; and (3) the proposal that silicate dust grains must account for the major fraction of the Si atoms in the Betelgeuse shell.
Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.
Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning
2017-10-01
A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Chlebowski, T.; Seward, F. D.; Swank, J.; Szymkowiak, A.
1984-01-01
X-ray observations of Eta Car obtained with the high-resolution imager and solid-state spectrometer of the Einstein observatory are reported and interpreted in terms of a two-shell model. A soft component with temperature 5 million K is located in the expanding outer shell, and the hard core component with temperature 80 million K is attributed to the interaction of a high-velocity stellar wind from the massive central object with the inner edge of a dust shell. Model calculations based on comparison with optical and IR data permit estimation of the mass of the outer shell (0.004 solar mass), the mass of the dust shell (3 solar mass), and the total shell expansion energy (less than 2 x 10 to the 49th ergs).
El medio interestelar en los alrededores de la region HII Sh2-183
NASA Astrophysics Data System (ADS)
Cichowolski, S.; Cappa, C. E.; Blanco, A.; Eppens, L.; Ertini, K.; Leiva, M. M.
2017-10-01
We present a multiwavelength study of the HII region Sh2-183, located at (,) = (123.3,+3.0) at a distance of 7.0 1.5 kpc from the Sun. Based on the radio continuum data we estimated the amount of ionized gas, the electronic density, and the number of ionizing photons needed to keep the region ionized, which is important since the star/s responsible of the region was/were not detected yet. On the other hand, based on IRAS data we have analyzed the dust temperature and distribution. The Hi line data allowed the detection of a shell-like structure surrounding the ionized gas and the CO data revealed the presence of 6 molecular clouds probably related to Sh2-183, which harbor several young stellar object candidates.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.
2013-12-01
Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
K-shell X-ray transition energies of multi-electron ions of silicon and sulfur
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.
2017-10-01
Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.
K-shell X-ray transition energies of multi-electron ions of silicon and sulfur
Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...
2017-04-20
Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less
Stigmatellin Probes the Electrostatic Potential in the QB Site of the Photosynthetic Reaction Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerencsér, László; Boros, Bogáta; Derrien, Valerie
2015-01-01
The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to themore » QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp/Ala, or double mutations, L213Asp-L212Glu/Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (DpK > 3.5) decreased dramatically to (DpK > 0.75) in the RC of the compensatory mutant (AAþM44Asn/AAþM44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.« less
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
Spectral content of buried Ag foils at 10{sup 16} W/cm{sup 2} laser illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntington, C. M., E-mail: huntington4@llnl.gov; Maddox, B. R.; Park, H.-S.
2014-11-15
Sources of 5–12 keV thermal Heα x-rays are readily generated by laser irradiation of mid-Z foils at intensities >10{sup 14} W/cm{sup 2}, and are widely used as probes for inertial confinement fusion and high-energy-density experiments. Higher energy 17–50 keV x-ray sources are efficiently produced from “cold” Kα emission using short pulse, petawatt lasers at intensities >10{sup 18} W/cm{sup 2} [H.-S. Park, B. R. Maddox et al., “High-resolution 17–75 keV backlighters for high energy density experiments,” Phys. Plasmas 15(7), 072705 (2008); B. R. Maddox, H. S. Park, B. A. Remington et al., “Absolute measurements of x-ray backlighter sources at energies abovemore » 10 keV,” Phys. Plasmas 18(5), 056709 (2011)]. However, when long pulse (>1 ns) lasers are used with Z > 30 elements, the spectrum contains contributions from both K shell transitions and from ionized atomic states. Here we show that by sandwiching a silver foil between layers of high-density carbon, the ratio of Kα:Heα in the x-ray spectrum is significant increased over directly illuminated Ag foils, with narrower lines from K-shell transitions. Additionally, the emission volume is more localized for the sandwiched target, producing a more planar x-ray sheet. This technique may be useful for generating probes requiring spectral purity and a limited spatial extent, for example, in incoherent x-ray Thomson scattering experiments.« less
NASA Astrophysics Data System (ADS)
Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.
2018-03-01
This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela
2017-05-01
We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.
Periodicity and Some Graphical Insights on the Tendency toward Empty, Half-full, and Full Subshells.
ERIC Educational Resources Information Center
Rich, Ronald L.; Suter, Robert W.
1988-01-01
Investigates ground state electron configurations for some common elements using graphical methods. Bases observed tendencies on following ideas: "occupancy of differing shells, occupancy of differing subshells within a given shell, double occupancy vs. single occupancy of an orbital, and quantum-mechanical exchange." (ML)
Oster, L; Horowitz, Y S; Biderman, S; Haddad, J
2003-12-01
We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.
Schalk, Oliver; Josefsson, Ida; Geng, Ting; Richter, Robert; Sa'adeh, Hanan; Thomas, Richard D; Mucke, Melanie
2018-02-28
In this article, we study the photoinduced dissociation pathways of a metallocarbonyl, Os 3 (CO) 12 , in particular the consecutive loss of CO groups. To do so, we performed photoelectron-photoion coincidence (PEPICO) measurements in the single ionization binding energy region from 7 to 35 eV using 45-eV photons. Zero-energy ion appearance energies for the dissociation steps were extracted by modeling the PEPICO data using the statistical adiabatic channel model. Upon ionization to the excited ionic states above 13 eV binding energy, non-statistical behavior was observed and assigned to prompt CO loss. Double ionization was found to be dominated by the knockout process with an onset of 20.9 ± 0.4 eV. The oscillator strength is significantly larger for energies above 26.6 ± 0.4 eV, corresponding to one electron being ejected from the Os 3 center and one from the CO ligands. The cross section for double ionization was found to increase linearly up to 35 eV ionization energy, at which 40% of the generated ions are doubly charged.
Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment
ERIC Educational Resources Information Center
Nayak, S. V.; Badiger, N. M.
2007-01-01
We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…
Updated database for K-shell fluorescence yields
NASA Astrophysics Data System (ADS)
Akdemir, Fatma; Araz, Aslı; Akman, Ferdi; Kaçal, Mustafa Recep; Durak, Rıdvan
2017-04-01
This study presents a summary of experimental data of K-shell fluorescence yields (ωK) published in the period of time between 2010 to february-2017. The fluorescence yields (ωK) of elements in the range 23≤Z≤60 taken directly from different sources were reviewed and presented in a table form. Finally, the experimental and empirical values in the literature have been reported and commented.
K-shell photoionization of O4 + and O5 + ions: experiment and theory
NASA Astrophysics Data System (ADS)
McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.
2017-03-01
Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, Adam M.; Welz, Oliver; Sasaki, Darryl Y.
The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550–650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that inmore » a Dowd–Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol–1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation.« less
Mitri, F G; Fellah, Z E A
2006-07-01
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Z.; Shakeshaft, R.
1994-05-01
We have calculated the energy and angular distributions for double ionization of He(1[ital s][sup 2]) and He(1[ital s]2[ital s] [sup 3][ital S]) by one photon, over a range of photon energies up to a few keV. The calculations were based on using a fairly accurate initial-state wave function, determined so as to exactly satisfy the Kato cusp conditions, and a final-state wave function which is a product of three Coulomb wave functions modified by a short-range correction term. There are at least three different mechanisms for double ionization, and each one leaves a mark on the angular distribution. When themore » energies of the two electrons are equal, the contribution of each mechanism to the angular asymmetry parameter can be estimated on theoretical grounds; we compare these estimates with the calculated results to give a further indication of the roles of the various mechanisms. Concerning the shapes of the energy and angular distributions, we find significant differences between double ionization of singlet and triplet helium; in particular, the probability for one high-energy photon to eject two equal-energy electrons from triplet helium nearly vanishes owing to the Pauli exclusion principle and to interference effects resulting from antisymmetrization. In two appendixes we present some details of the integration involved in the calculations.« less
Developing one-dimensional implosions for inertial confinement fusion science
Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...
2016-12-12
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less
Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan
2017-08-01
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing a double AGN hypothesis for Mrk 273
NASA Astrophysics Data System (ADS)
Iwasawa, K.; U, V.; Mazzarella, J. M.; Medling, A. M.; Sanders, D. B.; Evans, A. S.
2018-04-01
The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH 4 × 1023 cm-2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of 109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7-0.4 × 1024 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3 × 1043 erg s-1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.
NASA Astrophysics Data System (ADS)
Michaud, M.; Bazin, M.; Sanche, L.
2013-03-01
Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single 125I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by 125I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm3, is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Sharmistha; Cheng, Shouqiang; Sung, Yea Won
2014-06-01
Bacterial microcompartments (MCPs) are the simplest organelles known. They function to enhance metabolic pathways by confining several related enzymes inside an all-protein envelope called the shell. In this study, we investigated the factors that govern MCP assembly by performing scanning mutagenesis on the surface residues of PduA, a major shell protein of the MCP used for 1,2-propanediol degradation. Biochemical, genetic, and structural analysis of 20 mutants allowed us to determine that PduA K26, N29, and R79 are crucial residues that stabilize the shell of the 1,2-propanediol MCP. In addition, we identify two PduA mutants (K37A and K55A) that impair MCPmore » function most likely by altering the permeability of its protein shell. These are the first studies to examine the phenotypic effects of shell protein structural mutations in an MCP system. The findings reported here may be applicable to engineering protein containers with improved stability for biotechnology applications.« less
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.