Science.gov

Sample records for double layer porous

  1. Discharge rates of porous carbon double layer capacitors

    SciTech Connect

    Eisenmann, E.T.

    1995-10-01

    Double layer capacitors with porous carbon electrodes have very low frequency response limits and correspondingly low charge-discharge rates. Impedance measurements of various commercial double layer capacitors and of carbon electrodes prepared from selected precursor materials were found to yield similar, yet subtly different characteristics. Through modeling with the traditional transmission line equivalent circuit for porous electrodes, a resistive layer can be identified, which forms on carbon films during carbonization and survives the activation procedure. A method for determining the power-to-energy ratio of electrochemical capacitors has been developed. These findings help define new ways for optimizing the properties of double layer capacitors.

  2. Structural design of a double-layered porous hydrogel for effective mass transport.

    PubMed

    Kim, Hyejeong; Kim, Hyeon Jeong; Huh, Hyung Kyu; Hwang, Hyung Ju; Lee, Sang Joon

    2015-03-01

    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport.

  3. Double layer capacitance of porous platinum electrodes in zirconia electrochemical cells

    SciTech Connect

    Robertson, N.L.; Michaels, J.N. )

    1991-05-01

    This paper reports on the capacitance of the double layer at the interface between porous platinum electrodes and yttria-stabilized zirconia measured by potential step chronoampermetry. The capacitance is independent of oxygen partial pressure and electrode potential and increases from 0.2 {mu}F/cm{sup 2} at 555{degrees}C to 1.3 {mu}F/cm{sup 2} at 695{degrees}C. These value are at least an order of magnitude smaller than capacitances extracted from the low-frequency portion of ac impedance spectra. This indicates that the capacitive behavior of platinum electrodes in zirconia cells is dominated by time-dependent faradaic processes.

  4. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  5. One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Zhang, Lei; Chen, Jun; Su, Hai; Liu, Fangyan; Yang, Weiqing

    2016-05-01

    With plenty of unique porous structure at micro-/nano scale, hierarchically porous carbons (HPCs) are promising for usage in advanced electric double layer supercapacitors (EDLCs) as the electrode materials. However, wide-range adoption of HPC for practical application is largely shadowed by its extremely complex synthesis process with considerably low production efficiency. Herein we reported a simple template-free, one-step sintering method, to massively produce the HPCs for high-performance EDLCs. Resorting to the 3D structure modification of the wide pore size distribution, high surface area of HPCs (up to 3000 m2 g-1) was achieved. By using 1 M Na2SO4 as electrolyte, the as-fabricated HPCs based EDLCs can be operated reversibly over a wide voltage window of 1.6 V with superior specific capacitance of 240 F g-1 under a current density of 0.5 A g-1. In the meanwhile, the EDLCs exhibit excellent rate capability (high power density of 16 kW kg-1 at 10.2 Wh kg-1) and long-term cycling stability with 9% loss of its initial capacitance after 2000 cycles. This output performance distinguished itself among most of the carbon-based EDLCs with neutral aqueous electrolyte. Thus, the template-free one-step sintering method produced HPCs for EDLCs represents a new approach for high-performance energy storage.

  6. FTRIFS biosensor based on double layer porous silicon as a LC detector for target molecule screening from complex samples.

    PubMed

    Shang, Yunling; Zhao, Weijie; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2010-01-15

    Post-column identification of target compounds in complex samples is one of the major tasks in drug screening and discovery. In this work, we demonstrated that double layer porous silicon (PSi) attached with affinity ligand could serve as a sensing element for post-column detection of target molecule by Fourier transformed reflectometric interference spectroscopy (FTRIFS), in which trypsin and its inhibitor were used as the model probe-target system. The double layer porous silicon was prepared by electrical etching with a current density of 500 mA/cm(2), followed by 167 mA/cm(2). Optical measurements indicated that trypsin could infiltrate into the outer porous layer (porosity 83.6%), but was excluded by the bottom layer (porosity 52%). The outer layer, attached with trypsin by standard amino-silane and glutaraldehyde chemistry, could specifically bind with the trypsin inhibitor, acting as a sample channel, while the bottom layer served as a reference signal channel. The binding event between the attached trypsin and trypsin inhibitor samples could be detected by FTRIFS in real-time through monitoring the optical thickness change of the porous silicon layer. The baseline drift caused by sample matrix variation could be effectively eliminated by a signal correction method. Optical signals had a linear relationship with the concentration of trypsin inhibitor in the range of 10-200 ng mL(-1). The FTRIFS biosensor based on double layer porous silicon could be combined with a UV detector for screening the target molecule from complex component mixtures separated by a LC column. Using an LC-UV-FTRIFS system, a fraction containing a trypsin inhibitor could be separated from a soybean extract sample and identified in real-time.

  7. Double diffusive convection in a porous medium layer saturated with an Oldroyd nanofluid

    NASA Astrophysics Data System (ADS)

    Umavathi, J. C.; Sasso, Maurizio

    2017-01-01

    The onset of double diffusive convection in a horizontal layer of a porous medium saturated with an Oldroyd nanofluid is studied using linear and non-linear stability analysis. The modified Darcy-Oldroyd model is used for the momentum equation. The model used for the Oldroyd nanofluid incorporates the effects of Brownian motion and thermophoresis. The thermal energy equations include the diffusion and cross diffusion terms. The linear theory depends on normal mode technique and the onset criterion for stationary and oscillatory convection is derived analytically. The effects of various governing parameters viz., concentration Rayleigh number, nanofluid Lewis number, modified diffusivity ratio, Soret and Dufour parameters, Solutal Rayleigh number, Vadasz number, Lewis number, relaxation, and retardation parameters, viscosity ratio and conductivity ratio on the stationary and oscillatory convections are presented graphically. The non-linear theory based on the representation of Fourier series method is used to find the heat and mass transport. The effect of various parameters on transient heat and mass transfer is also brought out and nonlinear analysis depends on a minimal representation of double Fourier series. We also study the effect of time on transient Nusselt numbers which is found to be oscillatory when time is small. However, when time becomes very large all the three transient Nusselt values approaches to their steady state values.

  8. Validity of the "thin" and "thick" double-layer assumptions to model streaming currents in porous media

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M.

    2012-12-01

    Measurements of the streaming potential component of the spontaneous potential have been used to characterize groundwater flow and subsurface hydraulic properties in numerous studies. Streaming potentials in porous media arise from the electrical double layer which forms at solid-fluid interfaces. The solid surfaces typically become electrically charged, in which case an excess of counter-charge accumulates in the adjacent fluid. If the fluid is induced to flow by an external pressure gradient, then some of the excess charge within the diffuse part of the double layer is transported with the flow, giving rise to a streaming current. Divergence of the streaming current density establishes an electrical potential, termed the streaming potential. Within the diffuse layer, the Poisson-Boltzmann equation is typically used to describe the variation in electrical potential with distance from the solid surface. In many subsurface settings, it is reasonable to assume that the thickness of the diffuse layer is small compared to the pore radius. This is the so-called 'thin double layer assumption', which has been invoked by numerous authors to model streaming potentials in porous media. However, a number of recent papers have proposed a different approach, in which the thickness of the diffuse layer is assumed to be large compared to the pore radius. This is the so-called 'thick double layer assumption' in which the excess charge density within the pore is assumed to be constant and independent of distance from the solid surface. The advantage of both the 'thin' and 'thick' double layer assumptions is that calculation of the streaming current is greatly simplified. However, perhaps surprisingly, the conditions for which these assumptions are valid have not been determined quantitatively, yet they have a significant impact on the interpretation of streaming potential measurements in natural systems. We use a simple capillary tubes to model investigate the validity of the thin

  9. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  10. Vibroacoustic Response of a Double-Walled Cylindrical FGM Shell with a Porous Sandwiched Layer

    NASA Astrophysics Data System (ADS)

    Ramezani, H.; Talebitooti, R.

    2015-11-01

    The transmission loss of sound through a cylindrical structure whose walls sandwich a layer of porous material is predicted on the basis of the classical shell theory for shells made of functionally graded materials (FGMs). FGM shells composed of metal and ceramic, with three different distributions (power-law, sigmoid, or exponential) of their volume fractions across the wall thickness, are considered. The porous layer is modeled as a fluid with equivalent properties. The transmission loss through the multilayered structure is obtained analytically in a broad frequency band. To validate the results found, they are compared with some known ones. The effects of variation in the volume fractions of materials are also studied.

  11. Prevention of blood cell adhesion in porous inner wall of double-layered tube by saline perfusion.

    PubMed

    Kim, S S; Park, J B

    1993-01-01

    A double-layered tube consisting of a porous inner tube and a solid outer tube was used to perfuse isotonic saline solution into blood to prevent blood cell adhesion. Polystyrene/poly(styrene-co-butadiene) (PS-SBR) porous tubes were made using a dipping method. Citrated canine blood was circulated for 30 min with the flow rate of 100 ml/min using an in vitro blood circulation setup which makes nonpulsatile blood flow. Blood cell adhesion in the PS/SBR porous tubes decreased with increased saline perfusion rate regardless of changes in variables such as tube porosities, tube materials, and perfusion materials. The relationship between blood cell adhesion and perfusion rate was semi-logarithmic. Blood cell adhesion was relatively high in the more porous tube (65% sugar tube), compared to the less porous tube (55% sugar tube) for an identical saline perfusion rate. The blood cell adhesion in the sulfonated PS/SBR porous tube was less than that in the nonsulfonated (control) PS/SBR porous tube. The blood cell adhesion was also decreased by citrate perfusion. The results of this study indicates that the saline perfusion method can be used to prevent blood cell adhesion in the blood lines of extracorporeal circulation systems (such as hemodialysis and heart-lung machines) if certain technical problems involving the surface roughness can be resolved.

  12. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    PubMed

    Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong

    2013-01-01

    The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  13. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    PubMed Central

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-01-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334

  14. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  15. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  16. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    NASA Astrophysics Data System (ADS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-10-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al2O3) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  17. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  18. Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model.

    PubMed

    Badar, Muhammad; Rahim, Muhammad Imran; Kieke, Marc; Ebel, Thomas; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Mueller, Peter P

    2015-06-01

    As an alternative to degradable organic coatings the possibility of using layered double hydroxides (LDHs) to generate implant coatings for controlled drug delivery was evaluated in vivo and in vitro. Coatings prepared from LDH suspensions dissolved slowly and appeared compatible with cultured cells. LDH coatings loaded with an antibiotic resulted in antibacterial effects in vitro. The LDH coating prolonged the drug release period and improved the proliferation of adherent cells in comparison to pure drug coatings. However, during incubation in physiological solutions the LDH coatings became brittle and pieces occasionally detached from the surface. For stress protection porous titanium implants were investigated as a substrate for the coatings. The pores prevented premature detachment of the coatings. To evaluate the coated porous implants in vivo a mouse model was established. To monitor bacterial infection of implants noninvasive in vivo imaging was used to monitor luminescently labeled Pseudomonas aeruginosa. In this model porous implants with antibiotic-loaded LDH coatings could antagonize bacterial infections for over 1 week. The findings provide evidence that delayed drug delivery from LDH coatings could be feasible in combination with structured implant surfaces.

  19. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  20. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    SciTech Connect

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo Li, Jian-Rong

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.

  1. A novel porous anionic metal-organic framework with pillared double-layer structure for selective adsorption of dyes

    NASA Astrophysics Data System (ADS)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo; Li, Jian-Rong

    2016-01-01

    A novel porous anionic metal-organic framework, (Me2NH2)2[Zn2L1.5bpy]·2DMF (BUT-201; H4L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO3)2·6H2O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH3)2NH2+, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO3.

  2. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  3. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    PubMed

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%.

  4. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    PubMed

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe2 O4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe(2+) , Co(2+) , and Fe(3+) during co-precipitation, a mixture of LDH, (Fe(II) Co(II) )2/3 Fe(III)1/3 (OH)2 (CO3 )1/6 ⋅m H2 O, and the target spinel CoFe2 O4 can be obtained in the precursor. During calcination, the remaining Fe(II) fraction of the LDH is oxidized to Fe(III) leading to an overall Co(2+) :Fe(3+) ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111]Spinel ∥[001]LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Double-diffusive mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled by a nanofluid

    NASA Astrophysics Data System (ADS)

    Yasin, Mohd Hafizi Mat; Ishak, Anuar

    2016-11-01

    The objective of this study is to investigate the effects of mass suction on double diffusive mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled by a nanofluid using Buongiorno's model. The appropriate similarity transformation is used to reduce the partial differential equations into a system of ordinary differential equation, which is then solved numerically using a shooting method. The effects of mass suction parameter on the flow field and heat transfer characteristics are presented and discussed.

  6. A POROUS, LAYERED HELIOPAUSE

    SciTech Connect

    Swisdak, M.; Drake, J. F.; Opher, M. E-mail: drake@umd.edu

    2013-09-01

    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  7. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  8. Evaporation from layered porous media

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Lehmann, P.; Or, D.

    2010-06-01

    Evaporation rates from porous media may vary considerably due to changes in internal transport mechanisms and potential interruption of hydraulic continuity; both are influenced by media pore space properties. Evaporation behavior in layered porous media is affected by thickness and sequence of layering and capillary characteristics of each layer. We propose a composite characteristic length for predicting drying front depth at the end of a period with a high and constant drying rate (stage 1 evaporation) from layered porous media. The model was tested in laboratory experiments using Hele-Shaw cells filled with alternating layers of coarse and fine sands considering different combinations of thicknesses and positions. The presence of textural interfaces affects drying rate, modifies liquid phase configuration, and affects the dynamics of the receding drying front. Neutron radiography measurements were used to delineate dynamics of liquid phase distribution with high temporal and spatial resolution. Results show that air invading an interface between fine and coarse sand layers results in a capillary pressure jump and subsequent relaxation that significantly modify liquid phase distribution compared with evaporation from homogeneous porous media. Insights are potentially useful for designing mulching strategies and capillary barriers aimed at reducing evaporative losses.

  9. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  10. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  11. A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility.

    PubMed

    He, Jin; He, Feng-Li; Li, Da-Wei; Liu, Ya-Li; Yin, Da-Chuan

    2016-06-01

    A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton was prepared for the first time by electrodeposition. The microstructure of the scaffold was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. Mechanical property, in vitro degradability and biocompatibility were tested by tensile test, immersion and a cytotoxicity test. The results showed that the scaffolds exhibited a cellular structure that is similar to that of cancellous bone and had a considerably large specific surface area. The skeleton of the scaffolds showed a double-layer structure that was composed of a hollow Fe skeleton wrapped in a thin layer of Fe-W alloy. The tensile strength and the apparent density are close to that of cancellous bone. It was also found that the different surface microstructures showed different effects on in vitro degradability and biocompatibility. In the immersion test, the corrosion rate decreased gradually as the immersion time increased. In the cytotoxicity test, the extraction medium of the pure Fe scaffold showed the lowest cell viability, followed by that of 1.5FeW as a close second. The extraction media of FeW, Fe1.5W and Fe2W were similar, and their cell viability was far above that of the Fe and 1.5FeW scaffolds. The structural style of the scaffolds presented in this paper is potentially useful and applicable to developing degradable scaffolds with a tailored corrosion rate.

  12. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  13. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  14. Reactivity and applications of layered silicates and layered double hydroxides.

    PubMed

    Selvam, Thangaraj; Inayat, Alexandra; Schwieger, Wilhelm

    2014-07-21

    Layered materials, such as layered sodium silicates and layered double hydroxides (LDHs), are well-known for their remarkable adsorption, intercalation and swelling properties. Their tunable interlayers offer an interesting avenue for the fabrication of pillared nanoporous materials, organic-inorganic hybrid materials and catalysts or catalyst supports. This perspective article provides a summary of the reactivity and applications of layered materials including aluminium-free layered sodium silicates (kanemite, ilerite (RUB-18 or octosilicate) and magadiite) and layered double hydroxides (LDHs). Recent developments in the use of layered sodium silicates as precursors for the preparation of various porous, functional and catalytic materials including zeolites, mesoporous materials, pillared layered silicates, organic-inorganic nanocomposites and synthesis of highly dispersed nanoparticles supported on silica are reviewed in detail. Along this perspective, we have attempted to illustrate the reactivity and transformational potential of LDHs in order to deduce the main differences and similarities between these two types of layered materials.

  15. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    SciTech Connect

    Fazeli, R.; Mahdieh, M. H.

    2015-11-15

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5–13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  16. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  17. Theory of nonmonotonic double layers

    SciTech Connect

    Kim, K.Y.

    1987-12-01

    A simple graphic method of solving the Vlasov--Poisson system associated with nonlinear eigenvalue conditions for arbitrary potential structures is presented. A general analytic formulation for nonmonotonic double layers is presented and illustrated with some particular closed form solutions. This class of double layers satisfies the time stationary Vlasov--Poisson system while requiring a Sagdeev potential, which is a double-valued function of the physical potential. It follows that any distribution function having a density representation as any integer or noninteger power series of potential can never satisfy the nonmonotonic double-layer boundary conditions. A Korteweg--de Vries-like equation is found showing a relationship among the speed of the nonmonotonic double layer, its scale length, and its degree of asymmetry.

  18. Scaling percolation in thin porous layers

    NASA Astrophysics Data System (ADS)

    Médici, E. F.; Allen, J. S.

    2011-12-01

    Percolation in porous media is a complex process that depends on the flow rate, material, and fluids properties as well as the boundary conditions. Traditional methods of characterizing percolation rely upon visual observation of a flow pattern or a pressure-saturation relation valid only in the limit of no flow. In this paper, the dynamics of fluid percolation in thin porous media is approached through a new scaling. This new scaling in conjunction with the capillary number and the viscosity ratio has resulted in a linear non-dimensional correlation of the percolation pressure and wetted area in time unique to each porous media. The effect of different percolation flow patterns on the dynamic pressure-saturation relation can be condensed into a linear correlation using this scaling. The general trend and implications of the scaling have been analyzed using an analytical model of a fluid percolating between two parallel plates and by experimental testing on thin porous media. Cathode porous transport layers (PTLs), also known as gas diffusion layers, of a proton exchange membrane (PEM) fuel cell having different morphological and wetting properties were tested under drainage conditions. Images of the fluid percolation evolution and the percolation pressure in the PTLs were simultaneously recorded. A unique linear correlation is obtained for each type of PTL samples using the new scaling. The correlation derived from this new scaling can be used to quantitatively characterize porous media with respect to percolation. While the characterization method discussed herein was developed for the study of porous materials used in PEM fuel cells, the method and scaling are applicable to any porous media.

  19. Transient nonlinear optically-thick radiative-convective double-diffusive boundary layers in a Darcian porous medium adjacent to an impulsively started surface: Network simulation solutions

    NASA Astrophysics Data System (ADS)

    Anwar Bég, O.; Zueco, J.; Takhar, H. S.; Bég, T. A.; Sajid, A.

    2009-11-01

    A boundary-layer model is described for the two-dimensional nonlinear transient thermal convection heat and mass transfer in an optically-thick fluid in a Darcian porous medium adjacent to an impulsively started vertical surface, in the presence of significant thermal radiation and buoyancy forces in an (X∗,Y∗,t∗) coordinate system. An algebraic approximation is employed to simplify the integro-differential equation of radiative transfer for unidirectional flux normal to the plate into the boundary-layer regime, by incorporating this flux term in the energy conservation equation. The conservation equations are non-dimensionalized into an (X,Y,T) coordinate system and solved using the Network Simulation Method (NSM), a robust numerical technique which demonstrates high efficiency and accuracy. The transient variation of non-dimensional streamwise velocity component (u) and temperature (T) and concentration (C) functions is computed for various selected values of Stark number (radiation-conduction interaction parameter) and Darcy number. Transient velocity (u) and steady-state local skin friction (τX) are also studied for various thermal Grashof number (Gr), species Grashof number (Gm), Schmidt number (Sc) and Stark number (N) values. These computations for the infinite permeability case (Da → ∞) are compared with previous finite difference solutions [Prasad et al. Int J Therm Sci 2007;46(12):1251-8] and shown to be in excellent agreement. An increase in Darcy number is seen to accelerate the flow and boost velocity. A decrease in Stark number (corresponding to an increase in thermal radiation heat transfer contribution) is shown to increase the velocity values. Temperature function is observed to fall in value with a rise in Da and increase with decrease in N (corresponding to an increase in thermal radiation heat transfer contribution). Applications of the study include rocket combustion chambers, astrophysical flows, spacecraft thermal fluid dynamics in

  20. Current driven weak double layers

    NASA Technical Reports Server (NTRS)

    Chanteur, Gerard

    1987-01-01

    Double layers in plasmas can be created by different means. For example, a potential difference forms between two plasmas with different temperatures, in a plasma jet flowing along a converging magnetic field, in a quiescent plasma submitted to an external difference of potential, or in a turbulent plasma carrying an electric charge. The first three cases can be current-free, but not necessarily, although the numerical simulations were made under such conditions for the first two points. Apart from the third case, which is mainly of interest for laboratory experiments, these double layers are good candidates for accelerating the auroral electrons to the few kiloelectron volts observed.

  1. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  2. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable, and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam, and the beam plasma discharge is ignited.

  3. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam and the 'beam plasma discharge' is ignited.

  4. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam and the 'beam plasma discharge' is ignited.

  5. Double-diffusive layer formation

    NASA Astrophysics Data System (ADS)

    Zaussinger, Florian; Kupka, Friedrich; Hücker, Sebastian; Egbers, Christoph

    2015-04-01

    Double-diffusive convection plays an important role in geo- and astrophysical applications. The special case, where a destabilising temperature gradient counteracts a stabilising solute gradient leads to layering phenomena under certain conditions. Convectively mixed layers sandwiched in diffusive interfaces form a so-called stack. Well-known double-diffusive systems are observed in rift lakes in Africa and even from the coffee drink Latte Macciatto. Stacks of layers are also predicted to occur inside massive stars and inside giant planets. Their dynamics depend on the thermal, the solute and the momentum diffusivities, as well on the ratio of the gradients of the opposing stratifications. Since the layering process cannot be derived from linear stability analysis, the full nonlinear set of equations has to be investigated. Numerical simulations have become feasible for this task, despite the physical processes operate on a vast range of length and time scales, which is challenging for numerical hydrodynamical modelling. The oceanographically relevant case of fresh and salty water is investigated here in further details. The heat and mass transfer is compared with theoretical results and experimental measurements. Additionally, the initial dynamic of layering, the transient behaviour of a stack and the long time evolution are presented using the example of Lake Kivu and the interior of a giant planet.

  6. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.

    PubMed

    Senthilkumar, S T; Selvan, R Kalai; Melo, J S; Sanjeeviraja, C

    2013-11-13

    The activated carbon was derived from tamarind fruit shell and utilized as electrodes in a solid state electrochemical double layer capacitor (SSEDLC). The fabricated SSEDLC with PVA (polyvinyl alcohol)/H2SO4 gel electrolyte delivered high specific capacitance and energy density of 412 F g(-1) and 9.166 W h kg(-1), respectively, at 1.56 A g(-1). Subsequently, Na2MoO4 (sodium molybdate) added PVA/H2SO4 gel electrolyte was also prepared and applied for SSEDLC, to improve the performance. Surprisingly, 57.2% of specific capacitance (648 F g(-1)) and of energy density (14.4 Wh kg(-1)) was increased while introducing Na2MoO4 as the redox mediator in PVA/H2SO4 gel electrolyte. This improved performance is owed to the redox reaction between Mo(VI)/Mo(V) and Mo(VI)/Mo(IV) redox couples in Na2MoO4/PVA/H2SO4 gel electrolyte. Similarly, the fabricated device shows the excellent capacitance retention of 93% for over 3000 cycles. The present work suggests that the Na2MoO4 added PVA/H2SO4 gel is a potential electrolyte to improve the performance instead of pristine PVA/H2SO4 gel electrolyte. Based on the overall performance, it is strongly believed that the combination of tamarind fruit shell derived activated carbon and Na2MoO4/PVA/H2SO4 gel electrolyte is more attractive in the near future for high performance SSEDLCs.

  7. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  8. Heat generation in double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schiffer, Julia; Linzen, Dirk; Sauer, Dirk Uwe

    Thermal management is a key issue concerning lifetime and performance of double layer capacitors and battery technologies. Double layer capacitor modules for hybrid vehicles are subject to heavy duty cycling conditions and therefore significant heat generation occurs. High temperature causes accelerated aging of the double layer capacitors and hence reduced lifetime. To investigate the thermal behavior of double layer capacitors, thermal measurements during charge/discharge cycles were performed. These measurements show that heat generation in double layer capacitors is the superposition of an irreversible Joule heat generation and a reversible heat generation caused by a change in entropy. A mathematical representation of both parts is provided.

  9. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  10. Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Cai, Yijin; Luo, Ying; Dong, Hanwu; Zhao, Xiao; Xiao, Yong; Liang, Yeru; Hu, Hang; Liu, Yingliang; Zheng, Mingtao

    2017-06-01

    A facile one-step pyrolysis route for the synthesis of hierarchically porous carbon nanosheets (PCNSs) derived from Moringa oleifera stems (MOSs) is reported, in which no post-activation-process in needed. The as-prepared PCNSs possesses unique porous nanosheet morphology with high specific surface area of ca. 2250 m2 g-1, large pore volume of ca. 2.3 cm3 g-1, appropriate porosity as well as heteroatom doping (N and O), endowing outstanding electrochemical properties as electrode material for high-performance supercapacitors. The PCNS-based electrodes are investigated in various aqueous electrolytes including 1.0 M Na2SO4, 1.0 M H2SO4, and 6.0 M KOH. The PCNSs exhibit a maximum specific capacitance of ca. 283 F g-1 (0.5 A g-1), excellent rate capability (ca. 72% of capacitance retention even at an ultrahigh current density of 50 A g-1), and a tremendous long-term cycling stability in the three-electrode system. Moreover, the as-assembled PCNS-based symmetric supercapacitor shows a high energy density of ca. 25.8 Wh kg-1 (in 1.0 M Na2SO4 electrolyte) and remarkable long-term cycling stability (almost no capacitance fade in aqueous electrolytes), indicating the promising of the as-prepared PCNSs for electrochemical energy storage and conversion.

  11. Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation.

    PubMed

    Hou, Yang; Wen, Zhenhai; Cui, Shumao; Feng, Xinliang; Chen, Junhong

    2016-04-13

    Developing photoanodes with efficient sunlight harvesting, excellent charge separation and transfer, and fast surface reaction kinetics remains a key challenge in photoelectrochemical water splitting devices. Here we report a new strongly coupled ternary hybrid aerogel that is designed and constructed by in situ assembly of N-deficient porous carbon nitride nanosheets and NiFe-layered double hydroxide into a 3D N-doped graphene framework architecture using a facile hydrothermal method. Such a 3D hierarchical structure combines several advantageous features, including effective light-trapping, multidimensional electron transport pathways, short charge transport time and distance, strong coupling effect, and improved surface reaction kinetics. Benefiting from the desirable nanostructure, the ternary hybrid aerogels exhibited remarkable photoelectrochemical performance for water oxidation. Results included a record-high photocurrent density that reached 162.3 μA cm(-2) at 1.4 V versus the reversible hydrogen electrode with a maximum incident photon-to-current efficiency of 2.5% at 350 nm under AM 1.5G irradiation, and remarkable photostability. The work represents a significant step toward the development of novel 3D aerogel-based photoanodes for solar water splitting.

  12. Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures

    NASA Astrophysics Data System (ADS)

    Agarwal, V.; Mora-Ramos, Miguel E.; Alvarado-Tenorio, B.

    2009-05-01

    To investigate the optical properties in quasi-regular porous-silicon-based dielectric Period-Doubling and Rudin-Shapiro multilayer systems, we study here the reflection of light from these structures. The Period-Doubling and Rudin-Shapiro structures are fabricated in such a way that the optical thickness of each layer is one quarter of 600 and 640 nm respectively. We find that porous silicon Period-Doubling dielectric multilayers could demonstrate the optical properties similar to the classical periodic Febry-Perot interference filters with one or multiple resonant peaks, but with an advantage of having total optical thickness much lesser than the periodic structures. Additionally, light propagation in porous silicon Rudin-Shapiro structures is investigated for the first time, both theoretically and experimentally. The reflectance spectra of the structures exhibit photonic band gaps centered at predetermined wavelengths. In both cases, numerical simulation of light transmission is performed using transfer matrix method.

  13. Nano-porous layer on steel surface as lubricant carrier.

    PubMed

    Utsunomiya, Hiroshi; Kawajiri, Shogo; Takahira, Nobuyuki; Sakai, Tetsuo; Tanaka, Toshihiro

    2011-02-01

    In cold forging of steels, metal soap on zinc-phosphate coating is excellent lubrication system. However, the system is not only less productive, but produces hazardous wastes. In this study, an alternative lubrication system using surface porous layer is proposed. Surface oxide on low carbon steel turns into porous layer by chemical reduction using hydrogen. It is found that liquid lubricant decreases the friction coefficient in compression greatly. The porous surface enhances the decrease, especially in the cases of heavy deformation.

  14. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.

  15. Double diffusion in arbitrary porous cavity: Part I

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Soudagar, Manzoor Elahi M.; Badruddin, Irfan Anjum

    2017-07-01

    Double diffusion refers to the heat and mass transfer that takes place simultaneously. The current work highlights the double diffusion when a solid block is placed at the bottom of a square porous cavity. The whole cavity is filed with saturated porous medium except the small block placed at the bottom left corner of the domain. The left vertical surface of porous cavity is maintained at concentration Ch and right vertical surface possesses lowest concentration Cc in the porous domain. The results are discussed in terms of isotherms, iso-concentration and streamlines inside the domain for various physical parameters. It is seen that the mass transfer is substantially different in present case as compared to the case of natural convection.

  16. A review of molecular modelling of electric double layer capacitors.

    PubMed

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  17. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  18. Capacitance of carbon-based electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H.; Ruoff, Rodney S.

    2014-02-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  19. Thermal stability of horizontally superposed porous and fluid layers

    SciTech Connect

    Taslim, M.E.; Narusawa, U. )

    1989-05-01

    The results of stability analyses for the onset of convective motion are reported for the following three horizontally superposed systems of porous and fluid layers: (a) a porous layer sandwiched between two fluid layers with rigid top and bottom boundaries, (b) a fluid layer overlying a layer of porous medium, and (c) a fluid layer sandwiched between two porous layers. By changing the depth radio d from zero to infinity, a set of stability criteria (i.e., the critical Rayleigh number Ra{sub c} and the critical wave number a{sub c}) is obtained, ranging from the case of a fluid layer between two rigid boundaries to the case of a porous layer between two impermeable boundaries. The effects of k/k{sub m} (the thermal conductivity ratio), {delta} (the square root of the Darcy number), and {alpha} (the nondimensional proportionality constant in the slip condition) on Ra{sub c} and a{sub c} are also examined in detail. The results in this paper combined with those reported previously for Case (a) (Pillatsis et al., 1987), will provide a comprehensive picture of the interaction between a porous and a fluid layer.

  20. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  1. Instability limits for spontaneous double layer formation

    SciTech Connect

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-11-15

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  2. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  3. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  4. Hypersonic boundary layer instabilities affected by various porous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Zhong, Xiaolin

    2010-11-01

    Hypersonic boundary layer instabilities of a Mach 5.92 flow over a flat plate affected by various porous surfaces are studied by numerical simulations. Steady base flow is obtained by solving compressible Navier-Stokes equations with a fifth-order shock-fitting method and a second-order TVD scheme. Stability simulations consist of two steps: (1) disturbances corresponding to a single boundary layer wave (mode F or mode S) are superimposed at a cross-section of the boundary layer near the leading edge to show spatial development of the wave; (2) porous coatings are used downstream of the superimposed wave to investigate its effect on boundary-layer instabilities. The results show that porous coating only has local effects on the instabilities of mode S and mode F. In porous region, Mack's first mode is destabilized whereas Mack's second mode and Mode F are stabilized. For felt-metal porous coating, destabilization of Mack's first mode is so significant that disturbances are slightly destabilized when porous coating are put on the whole flat plate. At approximately the same porosity, regular structure porous coating is weaker in first mode destabilization and second mode stabilization than felt-metal porous coating.

  5. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  6. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  7. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  8. Microstructural investigations of light-emitting porous Si layers

    NASA Technical Reports Server (NTRS)

    George, T.; Anderson, M. S.; Pike, W. T.; Lin, T. L.; Fathauer, R. W.; Jung, K. H.; Kwong, D. L.

    1992-01-01

    The structural and morphological characteristics of visible-light-emitting porous Si layers produced by anodic and stain etching of single-crystal Si substrates are compared using transmission electron microscopy and atomic force microscopy (AFM). AFM of conventionally anodized, laterally anodized and stain-etched Si layers show that the layers have a fractal-type surface morphology. The anodized layers are rougher than the stain-etched films. At higher magnification 10 nm sized hillocks are visible on the surface. Transmission electron diffraction patterns indicate an amorphous structure with no evidence for the presence of crystalline Si in the near-surface regions of the porous Si layers.

  9. Double layers on auroral field lines

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Lotko, W.; Witt, E.

    1982-01-01

    Time-stationary solutions to the Vlasov-Poisson equation for ion holes and double layers were examined along with particle simulations which pertain to recent observations of small amplitude (e phi)/t sub e approx. 1 electric field structures on auroral field lines. Both the time-stationary analysis and the simulations suggest that double layers evolve from holes in ion phase space when their amplitude reaches (e phi)/t sub e approx. 1. Multiple small amplitude double layers which are seen in long simulation systems and are seen to propagate past spacecraft may account for the acceleration of plasma sheet electrons to produce the discrete aurora.

  10. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  11. Absorption of Microdrops: Effect of Multi-Layer Porous Media Structure Parameters

    NASA Astrophysics Data System (ADS)

    D., Y.; P., Y.; R., M.

    This paper presents the numerical investigation of the absorption of two microdrops deposited sequentially on the surface of single- and double-layer porous media at a different location of the centers of droplets deposition. A numerical solution of the Euler equations taking into account surface tension forces and the unsteady filtration equation was used to model the fluid flow from a droplet into a porous media. The layers of porous media were characterized by effective permeability coefficients dependent on porosity and pore size. The change of the droplet shape during absorption, the coordinates of absorption front propagation in a porous media and the field of velocities and pressure are the output data of a problem. The effect of the structural parameters of the multilayer porous media and the relative location of deposited droplets on the rate of absorption and distribution of absorbed fluid is analyzed using the numerical experiment. It is shown that the presence of the second layer can have a significant effect on the duration and result of droplet absorption. The relative size of pore in layers is found to be the main parameter that governs the effect of the second layer.

  12. Numerical simulations on ion acoustic double layers

    SciTech Connect

    Sato, T.; Okuda, H.

    1980-07-01

    A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length.

  13. Selective porous silicon formation in buried p + layers

    NASA Astrophysics Data System (ADS)

    Tsao, S. S.; Myers, D. R.; Guilinger, T. R.; Kelly, M. J.; Datye, A. K.

    1987-11-01

    We report a systematic microstructural study of enhanced lateral porous silicon formation in the buried p+ layers of n/p+/p- and p-/p+/p- structures. We find, surprisingly, extremely selective porous silicon formation due to the thin p+ layer in both structures, despite the absence of a p-n junction in the p-/p+/p- structure. The interface between the isolated island and the buried porous silicon layer was always located at the depth where the net p-type dopant concentration was 1-8×1015/cm3. The observed microstructure can largely be understood in terms of a recent model for porous Si formation in uniformly doped Si, proposed by Beale et al. [J. Cryst. Growth 73, 622 (1985)]. However, we also observe, for the first time, important effects unique to a nonuniform dopant concentration.

  14. Organic doping of rotated double layer graphene

    SciTech Connect

    George, Lijin; Jaiswal, Manu

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with different rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.

  15. Electron acceleration in stochastic double layers

    NASA Technical Reports Server (NTRS)

    Lotko, William

    1987-01-01

    Transversely localized double layers evolve randomly in turbulent regions of strongly magnetized plasma carrying current along the magnetic field. Results from numerical simulations and spacecraft observations in the auroral plasma indicate that the parallel electric field in such regions is microscopically intermittent or stochastic. The implications of stochastic double layer fields on electron acceleration will be discussed in terms of a statistical process involving ensemble averages over test particle motion. A Fokker-Planck equation can be derived for the electron phase space density, which depends on the mean and rms amplitudes of the double layers, the mean double layer density, and the initial electron velocity distribution. It is shown that the resulting electron acceleration is very sensitive to the ratio of the initial electron energy to the rms double layer amplitude. When this ratio is large, the acceleration process differs little from that expected in a dc electric field. When it is small, stochastic heating competes with directed acceleration. Evidence for both cases can be found in the auroral ionosphere in association with so-called inverted-V precipitation and collimated edge precipitation.

  16. Free-standing luminescent layers of porous silicon

    SciTech Connect

    Goryachev, D. N. Belyakov, L. V.; Sreseli, O. M.

    2010-12-15

    Free-standing layers of porous silicon with a thickness ranging from 50 to 200 {mu}m have been fabricated using an electrolyte composed of HF and acetic acid. Chemical aspects of the etching process associated with the evolution of gases that favor detachment of layers from substrates are considered. The layers exhibit stable photoluminescence in the visible spectral region observed from both of their sides.

  17. Effect of the properties of a porous coating on boundary layer stability. [considering porous slates

    NASA Technical Reports Server (NTRS)

    Gaponov, S. A.

    1978-01-01

    Drawing off gas from the boundary layer is a well-known method for increasing the stability of boundary layers. The increase in stability is primarily connected with a change in the velocity profile form in the case of suction. On the basis of the assumption that the velocity perturbations on a porous slate do not equal zero, the influence of the properties of a permeable surface upon the boundary layer stability were studied.

  18. Influence of localised double suction on a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2007-07-01

    The effects of localised suction applied through a pair of porous wall strips on a turbulent boundary layer have been quantified through the measurements of mean velocity and Reynolds stresses. The results indicate that the use of second strip extends the pseudo-relaminarisation zone but also reduces the overshoot in the longitudinal and normal r.m.s. velocities. While the minimum r.m.s. occurs at x/δo=3.0 (one strip) and x/δo=12 (two strips), the reduction observed for the latter case is larger. Relative to no suction, the turbulence level is modified by suction and the effect is enhanced with double suction. This increased effectiveness reflects the fact that the second strip acts on a boundary layer whose near-wall active motion has been seriously weakened by the first strip.

  19. Propagating double layers in electronegative plasmas

    SciTech Connect

    Meige, A.; Plihon, N.; Hagelaar, G. J. M.; Boeuf, J.-P.; Chabert, P.; Boswell, R. W.

    2007-05-15

    Double layers have been observed to propagate from the source region to the diffusion chamber of a helicon-type reactor filled up with a low-pressure mixture of Ar/SF{sub 6} [N. Plihon et al., J. Appl. Phys. 98, 023306 (2005)]. In the present paper the most significant and new experimental results are reported. A fully self-consistent hybrid model in which the electron energy distribution function, the electron temperature, and the various source terms are calculated is developed to investigate these propagating double layers. The spontaneous formation of propagating double layers is only observed in the simulation for system in which the localized inductive heating is combined with small diameter chambers. The conditions of formation and the properties of the propagating double layers observed in the simulation are in good agreement with that of the experiment. By correlating the results of the experiment and the simulation, a formation mechanism compatible with ion two-stream instability is proposed.

  20. Ultrasonic wave's interaction at fluid-porous piezoelectric layered interface.

    PubMed

    Vashishth, Anil K; Gupta, Vishakha

    2013-02-01

    The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications such as non-destructive evaluation and acoustic design and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The reflection and transmission of ultrasonic waves from a fluid loaded porous piezoelectric layered structure is studied analytically. The layered structure is considered to be consisting of n number of layers of porous piezoelectric materials. Transfer matrix technique is used to study the layered materials. The analytical expressions for the reflected, transmitted, interaction energy ratios and surface impedance are obtained. The effects of frequency, porosity, angle of incidence, layer thickness and number of layers on the energy ratios and surface impedance are studied for different configurations of the layered materials. The results obtained are deduced for the poro-elastic and fluid loaded porous piezoelectric half space case, which are in agreement with earlier established results. A comparison of the results, obtained by alternate numerical techniques, is made.

  1. Double-diffusive fingering convection in a porous medium

    NASA Technical Reports Server (NTRS)

    Chen, Falin; Chen, C. F.

    1993-01-01

    The characteristics of nonlinear two-dimensional horizontally periodic double-diffusive fingering convection in a saturated porous medium is investigated, using the Darcy equation including Brinkman and Forchheimer terms for the momentum equation. To solve the equations and the corresponding initial and boundary conditions, a Galerkin method is applied in the horizontal direction, and a hybrid finite difference method is used in the vertical direction. The developed computer code was used to compute the thermal convection case, and the results were found to be in good agreement with existing results.

  2. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  3. Inhomogeneous Waves in Anisotropic Porous Layer Overlying Solid Bedrock

    NASA Astrophysics Data System (ADS)

    Vashishth, A. K.; Khurana, P.

    2002-12-01

    The problem of propagation of inhomogeneous waves in anisotropic porous layered medium is studied using transfer matrix. Firstly, transfer matrix for an anisotropic porous layer is derived. Biot's poro-elastic theory is incorporated to model the acoustics of anisotropic porous layer. The interface between porous layer and elastic half-space is considered as imperfect and modified boundary conditions are applied for this more realistic situation. The theory of transfer matrix is used to derive the analytical expression for the surface impedance. Numerical computation of results is done for different degrees of bonding in the low as well as high-frequency range. In the first case, which is relevant to geophysical studies, the surface impedance is predicted for low-frequency range and surface impedance for second model is computed in high-frequency range. It is observed that loose bondedness is accompanied by the loss of energy at the interface. The technique of transfer matrix is utilized to compute the surface impedance in both cases. The role of surface impedance in seismological studies and in the study of composites is discussed.

  4. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst.

  5. Interaction Effects in Double Layer Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Lian

    A number of properties of two dimensional electron systems are investigated in this thesis. In the absence of a magnetic field, interaction effects for a double layer system are studied by employing the self-consistent STLS approximation. Results from using the RPA and the STLS are contrasted. An attempt to use standard finite-temperature perturbation theory to study the strongly-correlated system of electrons in a partially filled Landau level is discussed. The perturbative calculation for the grand potential of up to the third order is obtained. We also evaluate the sum of particle-particle ladder diagrams and show that, at zero temperature, it leads to a ground state energy with a cusp at v = 1/2. We study effects of disorder and the correlation of disorder potentials on the tunneling features of a double layer system and suggest that the electron lifetimes can be determined from the tunneling experiment. We derive an expression for the interlayer frictional drag in a double layer system, which can incorporate the effects of disorder and magnetic field. The disorder enhancement to the interlayer scattering is studied. We discuss the possibility of using the drag experiment to probe the properties of a single layer FQHE system.

  6. Modeling Flow in Porous Media with Double Porosity/Permeability.

    NASA Astrophysics Data System (ADS)

    Seyed Joodat, S. H.; Nakshatrala, K. B.; Ballarini, R.

    2016-12-01

    Although several continuum models are available to study the flow of fluids in porous media with two pore-networks [1], they lack a firm theoretical basis. In this poster presentation, we will present a mathematical model with firm thermodynamic basis and a robust computational framework for studying flow in porous media that exhibit double porosity/permeability. The mathematical model will be derived by appealing to the maximization of rate of dissipation hypothesis, which ensures that the model is in accord with the second law of thermodynamics. We will also present important properties that the solutions under the model satisfy, along with an analytical solution procedure based on the Green's function method. On the computational front, a stabilized mixed finite element formulation will be derived based on the variational multi-scale formalism. The equal-order interpolation, which is computationally the most convenient, is stable under this formulation. The performance of this formulation will be demonstrated using patch tests, numerical convergence study, and representative problems. It will be shown that the pressure and velocity profiles under the double porosity/permeability model are qualitatively and quantitatively different from the corresponding ones under the classical Darcy equations. Finally, it will be illustrated that the surface pore-structure is not sufficient in characterizing the flow through a complex porous medium, which pitches a case for using advanced characterization tools like micro-CT. References [1] G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]," Journal of Applied Mathematics and Mechanics, vol. 24, pp. 1286-1303, 1960.

  7. Saturated porous layers squeezed between parallel disks in enclosed cells

    NASA Astrophysics Data System (ADS)

    Melciu, I. C.; Cicone, T.; Pascovici, M. D.

    2017-02-01

    Theoretical and experimental evidences show that high lift forces can be generated when a porous layer imbibed with a fluid is subjected to compression by a rigid and impermeable component in normal (approaching) relative motion. If the porous layer is soft enough to neglect its solid structure reaction to compression then the pressure increase can be entirely attributed to the flow resistance of the porous structure when the fluid is squeezed out. The mechanism is highly dependent on the variation of permeability with porosity at its turn variable with the rate of compression. Such a mechanism can be used for impact damping but realistic applications need to consider an enclosed system which keeps the squeezed fluid inside and allows for re-imbibition. The paper presents a simple analytical model for the effects produced in highly compressible porous layers imbibed with Newtonian liquids, during compression between two parallel rigid disks placed in enclosed cells with variable volume buffer, similar to a hydro-pneumatic accumulator.

  8. Double sodium layers observation over Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Jihong; Yang, Yong; Cheng, Xuewu; Yang, Guotao; Song, Shalei; Gong, Shunsheng

    2012-08-01

    The altitude of the sodium layer in the mesosphere and lower thermosphere is usually from 80 km to 105 km. In this paper, we report a set of double sodium layer (DSL) events observed by sodium lidar over Beijing, China. In these DSL events, the normal sodium layer and secondary sodium layer (SeSL) present separately. There were about 17 DSL events occurred in 319 observation nights during 2009˜2011. All DSL events were observed in spring and summer. The SeSL appeared independently within the altitude range from 105 km to 130 km. The density of the SeSL is very high. The maximum ratio of peak density and the ratio of column density for the SeSL to the normal sodium layer are up to ˜60% and ˜47%, respectively. The SeSL lasted several hours, and then merged into the normal sodium layer. After the SeSL, a sporadic sodium layer occurred in the normal sodium layer.

  9. Double layered tailorable advanced blanket insulation

    NASA Technical Reports Server (NTRS)

    Falstrup, D.

    1983-01-01

    An advanced flexible reusable surface insulation material for future space shuttle flights was investigated. A conventional fly shuttle loom with special modifications to weave an integral double layer triangular core fabric from quartz yarn was used. Two types of insulating material were inserted into the cells of the fabric, and a procedure to accomplish this was developed. The program is follow up of a program in which single layer rectangular cell core fabrics are woven and a single type of insulating material was inserted into the cells.

  10. Reversible Heating in Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Janssen, Mathijs; van Roij, René

    2017-03-01

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014), 10.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014), 10.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006), 10.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  11. Double layer capacitance of carbon foam electrodes

    SciTech Connect

    Delnick, F.M.; Ingersoll, D.; Firsich, D.

    1993-11-01

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  12. Double layer capacitance of carbon foam electrodes

    NASA Astrophysics Data System (ADS)

    Delnick, F. M.; Ingersoll, D.; Firsich, D.

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14), and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  13. Reversible Heating in Electric Double Layer Capacitors.

    PubMed

    Janssen, Mathijs; van Roij, René

    2017-03-03

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014)JPSODZ0378-775310.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)JPSODZ0378-775310.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  14. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  15. Double layers and double wells in arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-06-01

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  16. Double layers and double wells in arbitrary degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2016-06-15

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  17. Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Wu, Nanshi; Low, Jingxiang; Liu, Tao; Yu, Jiaguo; Cao, Shaowen

    2017-08-01

    Hierarchical hollow cages of Mn-Co layered double hydroxide (LDH) are fabricated for the application of supercapacitors. The hollow cages are sized in ∼300 nm with a unique porous structure assembled by nanosheets and a high specific surface area of 83 m2 g-1. As a pseudocapacitor, the as-obtained Mn-Co layered double hydroxide electrode exhibits enhanced specific capacitance, as compared to the commonly prepared Mn-Co layered double hydroxide. Moreover, the hierarchical hollow cages of Mn-Co layered double hydroxide show a good stability, with a specific capacity retention of 91.6% at the current density of 2 A g-1 for over 2000 charge-discharge cycles. Such performance enhancement is mainly attributed to the enlarged specific surface area, improved charge transportation and ion diffusion.

  18. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Mackinnon, I. D. R.

    1985-01-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  19. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; MacKinnon, I. D. R.

    1985-11-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  20. Investigation of Interface between Ge Electrodes and Ionic Liquid Electrolytes for Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Abeysinghe, R. M.; Oguchi, H.; Kuwano, H.

    2016-11-01

    This study discusses novel way of use of ionic liquids to develop Ge-based electrodes for electric double layer capacitors (EDLC). We found that ionic liquids change their electrochemical properties depending on the amount of the absorbed water. Wet ionic liquids work as solvents to dissolve Ge and make porous structures, whereas dry ones work as electrolytes of the EDLCs. The former property was used to increase surface area of the electrodes which is desired to increase the capacity of EDLCs. This method showed another advantage in contrast to the dry ionic liquids; wet ones could fill the complex Ge pores in parallel to porous structure formation. Finally, after porous formation, we dried the ionic liquid at 100 °C and prepared the EDLCs composed of Ge porous electrodes. Cyclic voltammetry and impedance measurements indicated that the obtained devices can work as EDLCs.

  1. Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall

    SciTech Connect

    Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.

    1997-12-01

    Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.

  2. Formation of the seed layers for layer-transfer process silicon solar cells by zone-heating recrystallization of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Lukianov, A.; Murakami, K.; Takazawa, C.; Ihara, M.

    2016-05-01

    Thin-film crystalline silicon is promising for photovoltaic application to reduce the cost of photovoltaic energy. Porous silicon structures have been intensively studied as a seed layer for epitaxial growth of thin Si film and layer-transfer process (LTP). In this article, another approach for LTP has been proposed. The seed layers for epitaxial silicon growth have been formed by zone-heating recrystallization of double-layer por-Si structures. The influence of annealing parameters on porous silicon structures was studied. The transformation of por-Si layer to crystalline Si was observed with the formation of smooth continuous surface with the roughness 0.3 nm, peak-to-valley distance around 3.5 nm, and reduced density of pores. The mechanism of the transformation of por-Si surface due to the action of hydrogen in the passivated pores with preventing surface oxidation was proposed.

  3. Double-Diffusive Layers and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Dude, Sabine; Hansen, Ulrich

    2015-04-01

    Researching the thermal evolution of the Earth's mantle on numerical base is very challenging. During the last decade different approaches are put forward in oder to understand the picture of the today's Earth's mantle. One way is to incorporate all the known features and physics (plate tectonics, phase transitions, CMB-topography, ...) into numerical models and make them as complex (or 'complete') as possible to capture Earth's mantle processes and surface signals. Another way is, to take a step back and look at less complex models which account for single processes and their interaction and evolution. With these 'simpler' models one is able look in detail into the physical processes and dependencies on certain parameters. Since the knowledge of slab stagnation in the transitions zone of the Earth's mantle the question whether the mantle is or at least has been layered to some degree is still under debate. On this basis we address two important features that lead to layered mantle convection and may affect each other and with this the thermal evolution of the mantle. It is commonly known the main mantle mineral olivine pass through various phase changes with depth [1]. Detailed numerical studies had been carried out to ascertain the influence on convective motion and planetary evolution [2]. It is still heavily discussed whether the endothermic phase change at 660km depth can lead an isolated lower mantle. Most of the numerical studies favour a model which has phases of layering that are disrupted by catastrophic events. In the last years double-diffusive convection has also been intensively studied with regard to planetary mantle evolution such as pile formation and core-mantle boundary topography [3]. However, another striking feature still posing open questions are evolving layers self-organised from a previous non layered state. Considering a chemical component that influences the density of a fluid in addition to the temperature leads to dynamical phenomena

  4. Influence of experimental parameters on physical properties of porous silicon and oxidized porous silicon layers

    NASA Astrophysics Data System (ADS)

    Charrier, J.; Alaiwan, V.; Pirasteh, P.; Najar, A.; Gadonna, M.

    2007-08-01

    This paper reports physical properties of porous silicon and oxidized porous silicon, manufactured by anodisation from heavily p-type doped silicon wafers as a function of experimental parameters. The growth rate and refractive index of the layers were studied at different applied current densities and glycerol concentrations in electrolyte. When the current density varied from 5 to 100 mA/cm 2, the refractive index was between 1.2 and 2.4 which corresponded to a porosity range from 42 to 85%. After oxidation, the porosity decreased and was between 2 and 45% for a refractive index range from 1.22 to 1.46. The thermal processing also induced an increase in thickness which was dependent on the initial porosity. This increase in thickness was more important for the lowest porosities. Lastly, the roughness of the porous layer/silicon substrate interface was studied at different applied current densities and glycerol concentrations in solution. Roughness decreased when the current density or glycerol concentration increased. Moreover, roughness was also reduced by thermal oxidation.

  5. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  6. Micro-porous layer stochastic reconstruction and transport parameter determination

    NASA Astrophysics Data System (ADS)

    El Hannach, Mohamed; Singh, Randhir; Djilali, Ned; Kjeang, Erik

    2015-05-01

    The Micro-Porous Layer (MPL) is a porous, thin layer commonly used in fuel cells at the interfaces between the catalyst layers and gas diffusion media. It is generally made from spherical carbon nanoparticles and PTFE acting as hydrophobic agent. The scale and brittle nature of the MPL structure makes it challenging to study experimentally. In the present work, a 3D stochastic model is developed to virtually reconstruct the MPL structure. The carbon nanoparticle and PTFE phases are fully distinguished by the algorithm. The model is shown to capture the actual structural morphology of the MPL and is validated by comparing the results to available experimental data. The model shows a good capability in generating a realistic MPL successfully using a set of parameters introduced to capture specific morphological features of the MPL. A numerical model that resolves diffusive transport at the pore scale is used to compute the effective transport properties of the reconstructed MPLs. A parametric study is conducted to illustrate the capability of the model as an MPL design tool that can be used to guide and optimize the functionality of the material.

  7. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Astrophysics Data System (ADS)

    Lambert, R. F.; Tesar, J. S.

    1984-06-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  8. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Astrophysics Data System (ADS)

    Lambert, R. F.; Tesar, J. S.

    1984-10-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  9. Free-standing porous supramolecular assemblies of nanoparticles made using a double-templating strategy.

    PubMed

    Ling, Xing Yi; Phang, In Yee; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan

    2009-01-01

    The formation of stable and ordered free-standing porous supramolecular assemblies of nanoparticles with sizes and geometries controlled at different length scales is demonstrated by a double-templating strategy. Our technique combines the directed assembly of particles, templating using nanoimprint lithography (NIL), and supramolecular layer-by-layer (LbL) assembly. First, 500-nm beta-cyclodextrin (CD)-functionalized polystyrene (PS) particles were assembled by convective assembly onto a sacrificial polymer template patterned with a predefined geometry and size using NIL, forming a 3D crystal architecture of particles. LbL assembly of alternating supramolecular host- and guest-functionalized glues of CD-functionalized Au (Au-CD) nanoparticles and adamantyl (Ad) dendrimers, sized between 3-5 nm, within the preformed PS-particle crystal effectively bound the particles together into a particle composite. These particle composites were released from the substrate together with the polymer template, and transferred onto a target substrate. The particle crystal integrity, order and functionality were preserved. Rinsing the structure with dichloromethane removed the PS core material together with the polymer template, resulting in interconnected porous capsules, the sizes and shapes of which are fully determined by the PS core size and the polymer template definition. Again, integrity and shape were preserved in the rinsing step. These capsules were capable of storing organic fluorescent molecules using specific interactions.

  10. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  11. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  12. Controllable synthesis of few-layered and hierarchically porous boron nitride nanosheets.

    PubMed

    Xiao, Feng; Chen, Zhixin; Casillas, Gilberto; Richardson, Christopher; Li, Huijun; Huang, Zhenguo

    2016-03-11

    Few-layered porous boron nitride nanosheets (BNNS) have been prepared using a dynamic magnesium diboride (MgB2) template and ammonium chloride (NH4Cl) etchant. Magnesium-based intermediates serve as layer separators in the synthesis and prevent extensive aggregation, resulting in few-layered BNNS. The resultant BNNS are hierarchically porous and show good CO2/N2 adsorption selectivity.

  13. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    PubMed

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  14. The stabilization of a hypersonic boundary layer using local sections of porous coating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Zhong, Xiaolin

    2012-03-01

    The stabilization effect of porous coating on the hypersonic boundary layers over flat plates and cones has been studied by theoretical analyses, experiments, and numerical simulations. It was found that porous coating slightly destabilizes Mack's first mode whereas it significantly stabilizes Mack's second mode. In previous studies, porous coating covers either the entire flat plate or the surface around half the cone circumference. The effect of porous coating location on boundary-layer stabilization has not been considered. Furthermore, the destabilization of Mack's first mode has not been studied in detail. In this paper, the stabilization of a Mach 5.92 flat-plate boundary layer using local sections of porous coating is studied with the emphasis on the effect of porous coating location and the first-mode destabilization. Artificial disturbances corresponding to a single boundary-layer wave are introduced near the leading edge. A series of stability simulations are carried out by locally putting felt-metal porous coatings along the flat plate. It is found that disturbances are destabilized or stabilized when porous coating is located upstream or downstream of the synchronization point. For felt-metal porous coating, the destabilization of Mack's first mode is significant. The results suggest that an efficient way to stabilize hypersonic boundary-layer flows is to put porous coating downstream of the synchronization point. Finally, porous coating is used to stabilize the boundary layer disturbed by one blowing-suction actuator.

  15. Retention in porous layer pillar array planar separation platforms

    SciTech Connect

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; Sepaniak, Michael J.

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thickness of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.

  16. The pressure drop in a porous material layer during combustion

    SciTech Connect

    Kondrikov, B.N.

    1995-07-01

    During the combustion of a porous material layer, a manometer, which is attached to the cold end of the charge, records at the bottom of the layer a pressure reduction, which was discovered more than 20 years ago but which remains essentially unexplained up to the present. It is experimentally shown that this effect is similar to the pressure change in the cavities when a light gas (helium, hydrogen) diffuses from (or to) them under isothermal conditions and that it increases during the combustion mainly due to the accompanying Stefan type flow, and probably also as a result of the thermal diffusion. A pressure drop in the cavities is evidently made possible also by the pressure reduction in the flame which follows from the Hugoniot adiabatic theory.

  17. Retention in porous layer pillar array planar separation platforms

    SciTech Connect

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; Sepaniak, Michael J.

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thickness of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.

  18. Tuning of strain and surface roughness of porous silicon layers for higher-quality seeds for epitaxial growth.

    PubMed

    Karim, Marwa; Martini, Roberto; Radhakrishnan, Hariharsudan Sivaramakrishnan; van Nieuwenhuysen, Kris; Depauw, Valerie; Ramadan, Wedgan; Gordon, Ivan; Poortmans, Jef

    2014-01-01

    Sintered porous silicon is a well-known seed for homo-epitaxy that enables fabricating transferrable monocrystalline foils. The crystalline quality of these foils depends on the surface roughness and the strain of this porous seed, which should both be minimized. In order to provide guidelines for an optimum foil growth, we present a systematic investigation of the impact of the thickness of this seed and of its sintering time prior to epitaxial growth on strain and surface roughness. Strain and surface roughness were monitored in monolayers and double layers with different porosities as a function of seed thickness and of sintering time by high-resolution X-ray diffraction and profilometry, respectively. Unexpectedly, we found that strain in double and monolayers evolves in opposite ways with respect to layer thickness. This suggests that an interaction between layers in multiple stacks is to be considered. We also found that if higher seed thickness and longer annealing time are to be preferred to minimize the strain in double layers, the opposite is required to achieve smoother layers. The impact of these two parameters may be explained by considering the morphological evolution of the pores upon sintering and, in particular, the disappearance of interconnections between the porous seed and the bulk as well as the enlargement of pores near the surface. An optimum epitaxial growth hence calls for a trade-off in seed thickness and annealing time, between minimum-strained layers and rougher surfaces. 81.40.-z Treatment of materials and its effects on microstructure, nanostructure, and properties; 81.05.Rm Porous materials; granular materials; 82.80.Ej X-ray, Mössbauer and other γ-ray spectroscopic analysis methods.

  19. Tuning of strain and surface roughness of porous silicon layers for higher-quality seeds for epitaxial growth

    PubMed Central

    2014-01-01

    Sintered porous silicon is a well-known seed for homo-epitaxy that enables fabricating transferrable monocrystalline foils. The crystalline quality of these foils depends on the surface roughness and the strain of this porous seed, which should both be minimized. In order to provide guidelines for an optimum foil growth, we present a systematic investigation of the impact of the thickness of this seed and of its sintering time prior to epitaxial growth on strain and surface roughness. Strain and surface roughness were monitored in monolayers and double layers with different porosities as a function of seed thickness and of sintering time by high-resolution X-ray diffraction and profilometry, respectively. Unexpectedly, we found that strain in double and monolayers evolves in opposite ways with respect to layer thickness. This suggests that an interaction between layers in multiple stacks is to be considered. We also found that if higher seed thickness and longer annealing time are to be preferred to minimize the strain in double layers, the opposite is required to achieve smoother layers. The impact of these two parameters may be explained by considering the morphological evolution of the pores upon sintering and, in particular, the disappearance of interconnections between the porous seed and the bulk as well as the enlargement of pores near the surface. An optimum epitaxial growth hence calls for a trade-off in seed thickness and annealing time, between minimum-strained layers and rougher surfaces. PACS codes 81.40.-z Treatment of materials and its effects on microstructure, nanostructure, and properties; 81.05.Rm Porous materials; granular materials; 82.80.Ej X-ray, Mössbauer and other γ-ray spectroscopic analysis methods PMID:25136277

  20. Pd/Ni-WO3 anodic double layer gasochromic device

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  1. Capattery double layer capacitor life performance

    NASA Astrophysics Data System (ADS)

    Evans, David A.; Clark, Nancy H.; Baca, W. E.; Miller, John R.; Barker, Thomas B.

    Double layer capacitors (DLCs) have received increased use in computer memory backup applications for consumer products during the past ten years. Their extraordinarily high capacitance density along with their maintenance-free operation makes them particularly suited for these products. These same features also make DLCs very attractive in military type applications. Unfortunately, lifetime performance data has not been reported in the literature for any DLC component. Our objective in this study was to investigate the effects that voltage and temperature have on the properties and performance of single and series-connected DLCs as a function of time. Evans model RE110474, 0.47-farad, 11.0-volt Capatteries were evaluated. These components have a tantalum package, use welded construction, and contain a glass-to-metal seal, all incorporated to circumvent the typical DLC failure modes of electrolyte loss and container corrosion. A five-level, two-factor Central Composite Design was used in the study. Single and series-connected Capatteries rated at 85 C, 11.0-volts operation were subjected to test temperatures between 25 and 95 C, and voltages between 0 and 12.9 volts (9 test conditions). Measured responses included capacitance, equivalent series resistance, and discharge time. Data were analyzed using a regression analysis to obtain response functions relating DLC properties to their voltage, temperature, and test time history. These results are described and should aid system and component engineers in using DLCs in critical applications.

  2. Coronal electron confinement by double layers

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  3. Facilitating mass transport in gas diffusion layer of PEMFC by fabricating micro-porous layer with dry layer preparation

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Haifeng; Zhang, Huamin; Yi, Baolian

    For a proton exchange membrane fuel cell (PEMFC), dry layer preparation was optimized and applied to fabricate a micro-porous layer (MPL) for a gas diffusion layer (GDL). The MPLs fabricated by dry layer preparation and the conventional wet layer preparation were compared by physical and electrochemical methods. The PEMFC using dry layer MPLs showed better performance than that using wet layer MPLs, especially when the cells were operated under conditions of high oxygen utilization rate and high humidification temperature of air. The mass transport properties of the GDLs with the dry layer MPLs were also better than with the wet layer MPLs, and were found to be related to the pore size distribution in GDLs. The differences in surface morphology and pore size distribution for the GDLs with the dry layer and wet layer MPLs were investigated and analyzed. The dry layer preparation for MPLs was found to be more beneficial for forming meso-pores (pore size in the range of 0.5-15 μm), which are important and advantageous for facilitating gas transport in the GDLs. Moreover, the GDLs with the dry layer MPLs exhibited better electronic conductivity and more stable hydrophobicity than those with the wet layer MPLs. The reproducibility of the dry layer preparation for MPLs was also satisfying.

  4. Laboratory evidence for ion-acoustic-type double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Cho, M. H.; Hershkowitz, N.; Intrator, T.

    1984-01-01

    The formation of an ion-acoustic-type double layer was observed in the laboratory for the first time. The rarefactive part of a long-wavelength ion-acoustic wave grew in amplitude because of the presence of drifting electrons. The corresponding current limitation led to the formation of the double layer.

  5. Anomalous dc resistivity and double layers in the auroral ionosphere

    SciTech Connect

    Kindel, J.M.; Barnes, C.; Forslund, D.W.

    1980-01-01

    There are at least four candidate instabilities which might account for anomalous dc rereresistivity in the auroral ionosphere. These are: the ion-acoustic instability, the Buneman instability, the ion-cyclotron instability and double layers. Results are reported of computer simulations of these four instabilities which suggest that double layers are most likely to be responsible for sistivity in the auroral zone.

  6. Double layer capacitance of anode/solid-electrolyte interfaces.

    PubMed

    Ge, Xiaoming; Fu, Changjing; Chan, Siew Hwa

    2011-09-07

    The double layer of electrode/electrolyte interfaces plays a fundamental role in determining the performance of solid state electrochemical cells. The double layer capacitance is one of the most-studied descriptors of the double layer. This work examines a case study on lanthanum strontium vanadate (LSV)/yttria-stabilized zirconia (YSZ) interfaces exposed in solid oxide fuel cell anode environment. The apparent double layer capacitance is obtained from impedance spectroscopy. The intrinsic double layer capacitance is evaluated based on Stern's method in conjunction with the Volta potential analysis across LSV/YSZ interfaces. Both the apparent and the intrinsic double layer capacitances exhibit right-skewed volcano patterns, when the interfaces are subjected to anodic biases from 0 to 150 mV. The apparent double layer capacitance is about one order of magnitude larger than the intrinsic double layer capacitance. This discrepancy roots in the inconsistent surface areas that are involved. This analysis of capacitance would provide a more realistic TPB estimate of a working solid-state electrochemical device. This journal is © the Owner Societies 2011

  7. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    PubMed

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  8. Catalyzed double layer cathodes for high performance and long life molten carbonate fuel cells

    SciTech Connect

    Bischoff, M.; Jantsch, U.; Rohland, B.

    1996-12-31

    NiO/LiCoO{sub 2} double layer cathodes (DLCs) were prepared with a thin highly active LiCoO{sub 2}-layer by a new double layer tape casting/sintering procedure. The resulting metallic porous precursor plates were mounted into the MCFC and heated up by a special procedure to form LiCoO{sub 2} from air, Co and Li{sub 2}CO{sub 3} in a solid/gas reaction. MCFCs with highly active NiO/LiCoO{sub 2}-DLCs can operate over prolonged periods of time with a Ni-precipitation which is 10% lower than one finds with state of the art NiO cathodes. According to LiCoO{sub 2}-cathodes have theoretical life times of more than 100 000 hours at nonpressurized conditions. MCFCs with new NiO/LiCoO{sub 2} double layer cathodes (DLC) were investigated with regard to variable parameters of their microstructure. From the agglomerate model of the porous MCFC cathode, the dependence of the polarization resistance from the radius of the agglomerates and the inner agglomerate surface area was calculated.

  9. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    PubMed

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

  10. Development of high energy density electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction

  11. Optimization of a Composite Double-Walled Cylindrical Shell Lined with Porous Materials for Higher Sound Transmission Loss by using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ramezani, H.; Saghafi, A.

    2014-03-01

    A study on the optimization of sound transmission loss (TL) across a double-walled cylindrical laminated composite shell whose walls sandwich a layer of porous material is investigated using a genetic algorithm. First, an exact relation is presented by considering the effective wave component in the porous layer within the framework of the classic theory for laminated composite shells. The TL of the structure is estimated in a broadband frequency. Then, an acoustic optimization is considered for the sandwich structure with respect to the constraints of geometric properties.

  12. Internal quantum efficiency improvement in polysilicon solar cells with porous silicon layer on the rear side

    NASA Astrophysics Data System (ADS)

    Trabelsi, Abdessalem; Zouari, Abdelaziz

    2016-01-01

    The present paper reports on a simulation study carried out to determine and optimize the effect of porous silicon (PS) layer at the rear side on the performance of thin polysilicon solar cells. It analytically solved the complete set of equations necessary to determine the contribution that this material has with regard to the internal quantum efficiency (IQE) of the cell when acting as a backside reflector. The contribution of the different regions of the cell, the increase in IQE, and the effects of high porosity and number of PS layers were derived and compared to conventional BSF solar cells. The findings revealed that the IQE of the solar cell with a PS layer at the backside was higher than that of conventional BSF, particularly in terms of medium and long wavelength range λ > 0.5 μm. This improvement was more significant with thin cells, large grain widths, and well-passivated grain boundaries. Furthermore, while the use of the PS layer had a significant effect on the contribution of the base, it exerted no effect on the contribution of the emitter and depletion regions. Overall, the maximum level of IQE improvement was recorded with three double-porosity structures in the PS layer, reaching a high porosity value of about 80 %.

  13. Cathodes for secondary electrochemical power-producing cells. [layers of porous substrates impregnated with S alternate with layers containing electrolyte

    DOEpatents

    Cairns, E.J.; Kyle, M.; Shimotake, H.

    1973-02-13

    A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.

  14. Retention in porous layer pillar array planar separation platforms

    DOE PAGES

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  15. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.

    PubMed

    Dai, Pengcheng; Zhang, Guan; Chen, Yuncheng; Jiang, Hechun; Feng, Zhenyu; Lin, Zhaojun; Zhan, Jinhua

    2012-03-21

    Porous copper zinc tin sulfide (CZTS) thin film was prepared via a solvothermal approach. Compared with conventional dye-sensitized solar cells (DSSCs), double junction photoelectrochemical cells using dye-sensitized n-type TiO(2) (DS-TiO(2)) as the photoanode and porous p-type CZTS film as the photocathode shows an increased short circuit current, external quantum efficiency and power conversion efficiency.

  16. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis.

    PubMed

    Song, Fang; Hu, Xile

    2014-07-17

    The oxygen evolution reaction is a key reaction in water splitting. The common approach in the development of oxygen evolution catalysts is to search for catalytic materials with new and optimized chemical compositions and structures. Here we report an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures. Specifically, liquid phase exfoliation is applied to enhance the oxygen evolution activity of layered double hydroxides. The exfoliated single-layer nanosheets exhibit significantly higher oxygen evolution activity than the corresponding bulk layered double hydroxides in alkaline conditions. The nanosheets from nickel iron and nickel cobalt layered double hydroxides outperform a commercial iridium dioxide catalyst in both activity and stability. The exfoliation creates more active sites and improves the electronic conductivity. This work demonstrates the promising catalytic activity of single-layered double hydroxides for the oxygen evolution reaction.

  17. Double diffusion in arbitrary porous cavity: Part II

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Kamangar, Sarfaraz; Salman Ahmed N., J.; Soudagar, Manzoor Elahi M.; Khan, T. M. Yunus

    2017-07-01

    Heat and mass transfer in porous medium is one of the fundamental topics of interest. The present article is dedicated to study the effect of a small block placed at center of left vertical surface of the cavity. The block is maintained at isothermal temperature That three of its edges attached with porous medium. The left surface of cavity is maintained at highest concentration and right surface at lowest concentration. The right surface of cavity is at cold isothermal temperature Tc. Governing equations are converted into matrix form of equations with the help of finite element method and solved iteratively by using a computer code generated in MATLAB.

  18. Pure double-layer bubbles in quadratic F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda; Senovilla, José M. M.

    2017-06-01

    We present a class of spherically symmetric spacetimes corresponding to bubbles separating two regions with constant values of the scalar curvature, or equivalently with two different cosmological constants, in quadratic F (R ) theory. The bubbles are obtained by means of the junction formalism, and the matching hypersurface supports in general a thin shell and a gravitational double layer. In particular, we find that pure double layers are possible for appropriate values of the parameters of the model whenever the quadratic coefficient is negative. This is the first example of a pure double layer in a gravitational theory.

  19. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

  20. Double-peaked sodium layers at high latitudes

    NASA Technical Reports Server (NTRS)

    Von Zahn, U.; Goldberg, R. A.; Stegman, J.; Witt, G.

    1989-01-01

    Na lidar observations indicate that at high latitudes in summer the neutral Na layer frequently attains a double-peaked structure. The main layer with a maximum near 90 km altitude is supplemented by a secondary, narrow layer near 95 km altitude. Results are presented concerning secondary sodium layers. It appears likely that the formation of secondary Na layers observed frequently above the lidar site is not solely a 'sodium phenomenon', but part of a more comprehensive layering process for metal atoms and ions. Na(+)/Na density ratios close to 0.5 near the peaks of both the main and secondary layers are derived.

  1. Double-peaked sodium layers at high latitudes

    NASA Technical Reports Server (NTRS)

    Von Zahn, U.; Goldberg, R. A.; Stegman, J.; Witt, G.

    1989-01-01

    Na lidar observations indicate that at high latitudes in summer the neutral Na layer frequently attains a double-peaked structure. The main layer with a maximum near 90 km altitude is supplemented by a secondary, narrow layer near 95 km altitude. Results are presented concerning secondary sodium layers. It appears likely that the formation of secondary Na layers observed frequently above the lidar site is not solely a 'sodium phenomenon', but part of a more comprehensive layering process for metal atoms and ions. Na(+)/Na density ratios close to 0.5 near the peaks of both the main and secondary layers are derived.

  2. Layer-by-layer assembly of charged nanoparticles on porous substrates: molecular dynamics simulations.

    PubMed

    Carrillo, Jan-Michael Y; Dobrynin, Andrey V

    2011-04-26

    We performed molecular dynamics simulations of a multilayer assembly of oppositely charged nanoparticles on porous substrates with cylindrical pores. The film was constructed by sequential adsorption of oppositely charged nanoparticles in layer-by-layer fashion from dilute solutions. The multilayer assembly proceeds through surface overcharging after completion of each deposition step. There is almost linear growth in the surface coverage and film thickness during the deposition process. The multilayer assembly also occurs inside cylindrical pores. The adsorption of nanoparticles inside pores is hindered by the electrostatic interactions of newly adsorbing nanoparticles with the multilayer film forming inside the pores and on the substrate. This is manifested in the saturation of the average thickness of the nanoparticle layers formed on the pore walls with an increasing number of deposition steps. The distribution of nanoparticles inside the cylindrical pore was nonuniform with a significant excess of nanoparticles at the pore entrance.

  3. Double sodium layer observation over Beijing, China by lidar

    NASA Astrophysics Data System (ADS)

    Wang, Jihong; Yang, Guotao; Yong, Yang; Song, Shalei; Gong, Shunsheng; Cheng, Xuewu

    2012-07-01

    The sodium layer is usually located between 80-105 km. The double sodium layer (DSL) event observed by sodium lidar (light detection and radar) over Wuhan extend the altitude to about 125km. A secondary sodium layer appeared above the normal sodium layer. However, the exact mechanism responsible for the DSL formation is still unclear, due to lack of DSL events observed. In this paper, we reports a series of double sodium layer events observed by sodium lidar over Beijing, China. About ten DSL events occurred during 2010 and 2011. All DSL events were observed in summer. The SeSL last about several hours and joined the normal sodium layer, which seems its loss mechanism. When the SeSL disappeared, the sporadic sodium layer occurred in the normal sodium layer.

  4. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

    SciTech Connect

    Beckermann, C.; Ramadhyani, S.; Viskanta, R. )

    1987-05-01

    A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra {times} Da, the flow takes place primarily in the fluid layers, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.

  5. Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Chen, Zhongshan; Yao, Wen; Ai, Yuejie; Liu, Yunhai; Hayat, Tasawar; Alsaedi, Ahmed; Alharbi, Njud S; Wang, Xiangke

    2016-12-01

    With the development and application of graphene oxides (GO), the potential toxicity and environmental behavior of GO has become one of the most forefront environmental problems. Herein, a novel nanoscale layered double hydroxides (glycerinum-modified nanocrystallined Mg/Al layered double hydroxides, LDH-Gl), layered double oxides (calcined LDH-Gl, LDO-Gl) and metallic oxide (TiO2) were synthesized and applied as superior coagulants for the efficient removal of GO from aqueous solutions. Coagulation of GO as a function of coagulant contents, pH, ionic strength, GO contents, temperature and co-existing ions were studied and compared, and the results showed that the maximum coagulation capacities of GO were LDO-Gl (448.3 mg g(-1)) > TiO2 (365.7 mg g(-1)) > LDH-Gl (339.1 mg g(-1)) at pH 5.5, which were significantly higher than those of bentonite, Al2O3, CaCl2 or other natural materials due to their stronger reaction active and interfacial effect. The presence of SO3(2-) and HCO3(-) inhibited the coagulation of GO on LDH-Gl and LDO-Gl significantly, while other cations (K(+), Mg(2+), Ca(2+), Ni(2+), Al(3+)) or anion (Cl(-)) had slightly effect on GO coagulation. The interaction mechanism of GO coagulation on LDO-Gl and TiO2 might due to the electrostatic interactions and strong surface complexation, while the main driving force of GO coagulation on LDH-Gl might be attributed to electrostatic interaction and hydrogen bond, which were further evidenced by TEM, SEM, FT-IR and XRD analysis. The results of natural environmental simulation showed that LDO-Gl, TiO2 or other kinds of natural metallic oxides could be superior coagulants for the efficient elimination of GO or other toxic nanomaterials from aqueous solutions in real environmental pollution cleanup.

  6. Enhanced intervalley scattering in artificially stacked double-layer graphene

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Z.; Kelekçi, Özgür; Iqbal, M. W.; Jin, Xiaozhan; Hwang, Chanyong; Eom, Jonghwa

    2014-08-01

    We fabricated artificially stacked double-layer graphene by sequentially transferring graphene grown by chemical vapor deposition. The double-layer graphene was characterized by Raman spectroscopy and transport measurements. A weak localization effect was observed for different charge carrier densities and temperatures. The obtained intervalley scattering rate was unusually high compared to normal Bernal-stacked bilayer or single-layer graphene. The sharp point defects, local deformation, or bending of graphene plane required for intervalley scattering from one Dirac cone to another seemed to be enhanced by the artificially stacked graphene layers.

  7. A fluid description of plasma double-layers

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1979-01-01

    The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.

  8. Quantum electron-acoustic double layers in a magnetoplasma

    SciTech Connect

    Misra, A. P.; Samanta, S.

    2008-12-15

    Using a quantum magnetohydrodynamic (QMHD) model, the existence of small but finite amplitude quantum electron-acoustic double layers (QEADLs) is reported in a magnetized collisionless dense quantum plasma whose constituents are two distinct groups of cold and hot electrons, and the stationary ions forming only the neutralizing background. It is shown that the existence of steady state solutions of these double layers obtained from an extended Korteweg-de Vries (KdV) equation depends parametrically on the ratio of the cold to hot electron unperturbed number density ({delta}), the quantum diffraction parameter (H), the obliqueness parameter (l{sub z}), and the external magnetic field via the normalized electron-cyclotron frequency ({omega}). It is found that the system supports both compressive and rarefactive double layers depending on the parameters {delta} and l{sub z}. The effects of all these parameters on the profiles of the double layers are also examined numerically.

  9. Dust-acoustic double layers - Ion inertial effects

    NASA Technical Reports Server (NTRS)

    Mace, Richard L.; Hellberg, Manfred A.

    1993-01-01

    Space and astrophysical plasmas often comprise a number of massive ion components in addition to a tenuous, negatively charged dust component and an electron component. Stationary electrostatic double layers in a dusty plasma are investigated in a model treating the ion components as Boltzmann-distributed (inertialess) fluids. On comparison with the inertialess theory, one finds considerably reduced double layer existence parameter regimes. Significantly, highly nonlinear double layers are ruled out when ion inertia is incorporated. However, in the restricted parameter regimes in which the inertial theory predicts double layers for small ion/dust mass ratios (about 10 exp -15-10 exp -8) there is good qualitative agreement with inertialess theory. The reasons for these, and other discrepancies and similarities, are discussed.

  10. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    PubMed

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  11. Loading properties of porous layered capillary columns with sorbents of different natures

    NASA Astrophysics Data System (ADS)

    Patrushev, Y. V.; Nikolaeva, O. A.; Sidelnikov, V. N.

    2017-04-01

    Loading properties are studied for the commercial porous layered capillary columns GASPRO, Rt-Q-BOND, and for columns with porous layers based on the divinylbenzene-vinylimidazole copolymer (DVB-VIm), poly(trimethylsilyl)propyn (PTMSP) and ordered silica of the MCM-41 type. It is shown that the loading capacity of a column based on MCM-41 is 5-10 times higher than in the other considered columns. The loading properties of porous layered columns and columns for gas-liquid chromatography are compared.

  12. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-04-01

    We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.

  13. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  14. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  15. On The Chaotic Dynamics Of Multiple Double Layers In Plasma

    SciTech Connect

    Ivan, L. M.; Chiriac, S. A.; Aflori, M.; Dimitriu, D. G.

    2007-04-23

    When a multiple double layers structure in plasma is driven far from equilibrium, it passes into a chaotic state, characterized by uncorrelated oscillations of the plasma parameters. Two scenarios of transition to chaos were identified: the Feigenbaum scenario (cascade of period doubling bifurcations) and the intermittency scenario.

  16. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGES

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  17. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    SciTech Connect

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; Anderson, Ross D.; Anderson, Iver E.

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface, morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.

  18. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    SciTech Connect

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; Anderson, Ross D.; Anderson, Iver E.

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface, morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.

  19. Mixed layer development in a double-diffusive, thermohaline system

    SciTech Connect

    Poplawsky, C.J.; Incropera, F.P.; Viskanta, R.

    1981-11-01

    A double-diffusive, thermohaline system has been studied under laboratory conditions involving uniform heating from below. Shadowgraph visualization has been used with temperature and salt concentration measurements to investigate mixing layer development and the onset of diffusion layer instabilities. Such instabilities were observed to occur in two of the experiments and were approximately predicted by an existing stability criterion. 17 refs.

  20. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  1. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang

    2017-06-01

    A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.

  2. Fabrication of double layer optical tissue phantom by spin coating method: mimicking epidermal and dermal layer

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Bae, Yunjin; Bae, Youngwoo; Kang, Heesung; Lee, Kyoung-Joung; Jung, Byungjo

    2013-02-01

    Methodologies to fabricate a solid optical tissue phantom (OTP) mimicking epidermal thin-layer have been developed for in vitro human skin experiment. However, there are cumbersome and time-consuming efforts in fabrication process such as a custom-made casting and calculation of solvent volume before curing process. In a previous study, we introduced a new methodology based on spin coating method (SCM) which is utilized to fabricate a thin-layer OTP analogous to epidermal thickness. In this study, a double layer solid OTP which has epidermal and dermal layers was fabricated to mimic the morphological and optical similarity of human tissue. The structural characteristic and optical properties of fabricated double layer OTP were measured using optical coherence tomography and inverse adding doubling algorithms, respectively. It is expected that the new methodology based on the SCM may be usefully used in the fabrication of double layer OTP.

  3. Surface-plasmons lasing in double-graphene-layer structures

    SciTech Connect

    Dubinov, A. A.; Aleshkin, V. Ya.; Ryzhii, V.; Shur, M. S.; Otsuji, T.

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  4. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  5. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  6. Numerical investigation on active isolation of ground shock by soft porous layers

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Sun, W.; Anand, S.

    2009-04-01

    The mitigation and reduction of blast-induced ground shock in near field is an interesting topic worth considering for the protection of buried structures. Soft porous materials are usually used to form an isolation layer around the buried structures. However, the interaction of soft porous layer and surrounding geomedia as well as buried structures is not well understood. In this paper, the effects of soft porous layer barriers on the reduction of buried blast-induced ground shock are numerically studied. Based on the prototype dimensions of a centrifuge test, a numerical model is set up with two steel boxes symmetrically buried at two sides of the charge. One box is directly located in soil mass without protection (unprotected) and the other is located behind a soft porous layer barrier (protected). The soft porous layer barriers studied here include an open trench, an inundated water trench, three in-filled geofoam walls with different densities, and a concrete wall. The numerical responses of the two boxes are evaluated when subjected to the protection of different soft porous layer barriers. These numerical simulations show that both open trench and geofoam barriers can effectively reduce blast-induced stress waves. However, inundated water trench and concrete wall have almost no effect on the reduction of ground shock. Therefore, a geofoam barrier is more practicable in soil mass.

  7. Stability of Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous layer

    NASA Astrophysics Data System (ADS)

    Deepu, P.; Anand, Prateek; Basu, Saptarshi

    2015-08-01

    We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail. It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous layer provides an effective means for passive control of the flow stability.

  8. Subcritical flow past a circular cylinder surrounded by a porous layer

    NASA Astrophysics Data System (ADS)

    Sobera, M. P.; Kleijn, C. R.; Van den Akker, H. E. A.

    2006-03-01

    A study of the flow at subcritical Re =3900 around a circular cylinder, surrounded at some fixed small distance by a porous layer with a hydraulic resistance typical for that of textile materials, has been performed by means of direct numerical simulations. The flow in the space between the porous layer and the solid cylinder was found to be laminar and periodic, with a frequency locked to that of the vortex shedding in the wake behind the cylinder. Time averaged flow velocities underneath the porous material were in good agreement with experimental data from laser Doppler anemometry.

  9. Multilabel Image Annotation Based on Double-Layer PLSA Model

    PubMed Central

    Zhang, Jing; Li, Da; Hu, Weiwei; Chen, Zhihua; Yuan, Yubo

    2014-01-01

    Due to the semantic gap between visual features and semantic concepts, automatic image annotation has become a difficult issue in computer vision recently. We propose a new image multilabel annotation method based on double-layer probabilistic latent semantic analysis (PLSA) in this paper. The new double-layer PLSA model is constructed to bridge the low-level visual features and high-level semantic concepts of images for effective image understanding. The low-level features of images are represented as visual words by Bag-of-Words model; latent semantic topics are obtained by the first layer PLSA from two aspects of visual and texture, respectively. Furthermore, we adopt the second layer PLSA to fuse the visual and texture latent semantic topics and achieve a top-layer latent semantic topic. By the double-layer PLSA, the relationships between visual features and semantic concepts of images are established, and we can predict the labels of new images by their low-level features. Experimental results demonstrate that our automatic image annotation model based on double-layer PLSA can achieve promising performance for labeling and outperform previous methods on standard Corel dataset. PMID:24999490

  10. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials

    NASA Astrophysics Data System (ADS)

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-05-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  11. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials.

    PubMed

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-01-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  12. Flame-made ultra-porous TiO2 layers for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Osorio Mayon, Yahuitl; Duong, The; Nasiri, Noushin; White, Thomas P.; Tricoli, Antonio; Catchpole, Kylie R.

    2016-12-01

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  13. Flame-made ultra-porous TiO2 layers for perovskite solar cells.

    PubMed

    Mayon, Yahuitl Osorio; Duong, The; Nasiri, Noushin; White, Thomas P; Tricoli, Antonio; Catchpole, Kylie R

    2016-12-16

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  14. Gas flows through double-layer membrane of thermomolecular pump

    NASA Astrophysics Data System (ADS)

    Oscar, Friedlander; Yuriy, Nikolskiy; Ivan, Voronich

    2014-12-01

    The results of numerical and experimental modeling of the flows in double-layer permeable membranes are presented. One of the layers, the thick one, is the supporting layer in which the perforation diameter is larger than that in the thin layer. Across one or both layers the temperature differences were created. The calculations of the flows inside the perforated channels and additional drag of the channels in the membrane thick layer were carried out with the Stokes equations and with the kinetic boundary conditions across the membrane thin layer. In the experimental research of the thermomolecular pressure difference the thermoelectric effect (the Peltier effect) was used for creating the temperature difference between the membrane layer surfaces.

  15. Double diffusion in arbitrary porous cavity: Part III

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Salman Ahmed N., J.; Kamangar, Sarfaraz; Khan, T. M. Yunus; Soudagar, Manzoor Elahi M.

    2017-07-01

    Investigation of heat and mass transfer in a porous cavity is carried out with respect to a small block placed at top corner of cavity along its left vertical surface. The block is heated isothermally to temperature Th and right vertical surface is maintained at isothermal temperature Tc. The left vertical surface is maintained at constant concentration Ch and right vertical surface at Cc such that Ch>Cc. The governing equations are non-dimensionalised and converted into simpler form of algebraic equations to facilitate its solution. It is found that the heat and mass transfer behaviour is substantially different from the case of block placed at bottom or at the center of left vertical surface.

  16. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.

  17. Topological phases in double layers of bismuthene and antimonene

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiong; Bian, Guang; Xu, Caizhi; Wang, Peng; Hu, Huanzhi; Zhou, Weiping; Brown, S. A.; Chiang, T.-C.

    2017-09-01

    Two-dimensional topological insulators show great promise for spintronic applications. Much attention has been placed on single atomic or molecular layers, such as bismuthene. The selections of such materials are, however, limited. To broaden the base of candidate materials with desirable properties for applications, we report herein an exploration of the physics of double layers of bismuthene and antimonene. The electronic structure of a film depends on the number of layers, and it can be modified by epitaxial strain, by changing the effective spin–orbit coupling strength, and by the manner in which the layers are geometrically stacked. First-principles calculations for the double layers reveal a number of phases, including topological insulators, topological semimetals, Dirac semimetals, trivial semimetals, and trivial insulators. Their phase boundaries and the stability of the phases are investigated. The results illustrate a rich pattern of phases that can be realized by tuning lattice strain and effective spin–orbit coupling.

  18. Nonlinear Stability of Convection in a Porous Layer with Solid Partitions

    NASA Astrophysics Data System (ADS)

    Straughan, B.

    2014-07-01

    We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.

  19. Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers

    SciTech Connect

    Pillatsis, G.; Taslim, M.E.; Narusawa, U. )

    1987-08-01

    A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2d{sub m} sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers-Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four dimensional parameters: {cflx d} (= d{sub m}/d, the depth ratio), {delta} (= {radical}K/d{sub m} with K being the permeability of the porous medium) {alpha} (the proportionality constant in the Beavers-Joseph condition), and k/k{sub m} (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.

  20. New openings for porous systems research from intermolecular double-quantum NMR.

    PubMed

    Capuani, S; Alesiani, M; Branca, R T; Maraviglia, B

    2004-01-01

    It has been recently recognized that residual intermolecular double-quantum coherences (iDQcs) provide a novel contrast mechanism to study heterogeneity in liquid systems. This is of much interest in the field of the physics of matter and biomedicine. Nowadays, literature concerning the behaviour of the iDQc signal originated by highly heterogeneous systems such as fluids in porous media is scarce. In this paper, we report and discuss our principal results about iDQc signal behaviour in confined liquid systems (trabecular bone, travertine, porous standard systems) and also some new results obtained on doped water in glass capillary pipes.

  1. A Potential Role of Double Layers on Solar Wind Acceleration

    NASA Astrophysics Data System (ADS)

    Parks, G. K.; McCarthy, M.; Lee, E.; Hong, J.

    2012-12-01

    The distribution function of solar wind (SW) is non-Maxwellian and often includes field-aligned beams. Recently, electrostatic solitary waves (ESW) have been observed in the SW and they have been interpreted as double layers. Taking a cue from Earth's auroral observations that large-scale electric field parallel to magnetic field may be due to many double layers distributed along the geomagnetic field, we have looked at the potential role double layers could play in SW acceleration. This picture would suggest that the halo component of the SW represents a beam that has been accelerated by parallel electric field. The core electrons come from secondaries produced by the beam going through the solar coronal atmosphere. The source of the super-halo component is not known and we speculate that it could represent the field-aligned non-thermal high-energy halo electrons that have been accelerated to ``runaway" energies.

  2. Effects of image charges on double layer structure and forces.

    PubMed

    Wang, Rui; Wang, Zhen-Gang

    2013-09-28

    The study of the electrical double layer lies at the heart of soft matter physics and biophysics. Here, we address the effects of the image charges on the double layer structure and forces. For electrolyte solutions between two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. In comparison to a 1:1 electrolyte solution, both the attractive and the repulsive parts of the interaction are stronger for the 2:1 electrolyte solution. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like-charge attraction and charge inversion. These results are in stark contrast with predictions from the Poisson-Boltzmann theory.

  3. Active chimney effect using heated porous layers: optimum heat transfer

    NASA Astrophysics Data System (ADS)

    Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid

    2017-05-01

    The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  4. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  5. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  6. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  7. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  8. Insights from theory and simulation on the electrical double layer.

    PubMed

    Henderson, Douglas; Boda, Dezso

    2009-05-28

    Despite the fact that our conceptual understanding of the electrical double layer has advanced during the past few decades, the interpretation of experimental and applied work is still largely based on the venerable Poisson-Boltzmann theory of Gouy, Chapman and Stern. This is understandable since this theory is simple and analytic. However, it is not very accurate because the atomic/molecular nature of the ions/solvent and their correlations are ignored. Simulation and some theoretical studies by ourselves and others that have advanced our understanding are discussed. These studies show that the GCS theory predicts a narrow double layer with monotonic profiles. This is not correct. The double layer is wider, and there can be substantial layering that would be even more pronounced if explicit solvent molecules are considered. For many years, experimental studies of the double layer have been directed to the use of electrochemistry as an analytical tool. This is acceptable for analytic chemistry studies. However, the understanding of electrochemical reactions that typically occur at the electrode surface, where simulation and theory indicate that the GCS theory can have substantial errors, requires modern approaches. New, fundamental experimental studies that would lead to deeper insights using more novel systems would be desirable. Further, biophysics is an interesting field. Recent studies of the selectivity of ion channels and of the adsorption of ions in a binding sites of a protein have shown that the linearized GCS theory has substantial errors.

  9. Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization

    NASA Astrophysics Data System (ADS)

    Yanagishita, Takashi; Masuda, Hideki

    2016-08-01

    Highly ordered porous alumina through-hole masks were fabricated on a substrate by combining two-layer anodization with subsequent through-holing by selective etching. This process allowed the fabrication of porous alumina masks without an increase in pore size during the etching performed for through-holing. Additionally, the process contributed to improved operability in the setting of the masks on substrates because the second anodizing layer acts as a supporting layer for the handling of the mask. The fabrication of ordered Au nanodot arrays was demonstrated as an example application of the through-hole masks obtained by the present process.

  10. Modeling of Threading Dislocation Density Reduction in Porous III-Nitride Layers

    NASA Astrophysics Data System (ADS)

    Artemiev, Dmitry M.; Orlova, Tatiana S.; Bougrov, Vladislav E.; Odnoblyudov, Maxim A.; Romanov, Alexei E.

    2015-05-01

    In this work, we report on the results of the theoretical analysis of threading dislocation (TD) density reduction in porous III-nitride layers grown in polar orientation. The reaction-kinetics model originally developed for describing TD evolution in growing bulk layers has been expanded to the case of the porous layer. The developed model takes into account TD inclinations under the influence of the pores as well as trapping TDs into the pores. It is demonstrated that both these factors increase the probability of dislocation reactions thus reducing the total density of TDs. The mean pore diameter acts as an effective interaction radius for the reactions among TDs. The model includes the main experimentally observed features of TD evolution in porous III-nitride layers.

  11. Noncovalently assembled nanotubular porous layers for delaying of heating surface failure

    PubMed Central

    Zhang, Bong June; Hwang, Taeseon; Nam, Jae-Do; Suhr, Jonghwan; Kim, Kwang Jin

    2014-01-01

    Thermal management to prevent extreme heat surge in integrated electronic systems and nuclear reactors is a critical issue. To delay the thermal surge on the heater effectively, we report the benefit of a three dimensional nanotubular porous layer via noncovalent interactions (hydrophobic forces and hydrogen bonds). To observe the contribution of individual noncovalent interactions in a porous network formation, pristine carbon nanotubes (PCNTs) and oxidatively functionalized carbon nanotubes (FCNTs) were compared. Hydrogen-bonded interwoven nanotubular porous layer showed approximately two times critical heat flux (CHF) increase compared to that of a plain surface. It is assumed that the hydrophilic group-tethered nanotubular porous wicks and enhanced fluidity are the main causes for promoting the CHF increase. Reinforced hydrophilicity assists liquid spreading and capillarity-induced liquid pumping, which are estimated by using Electrochemical Impedance Spectroscopy. Also, shear induced thermal conduction, thermal boundary reduction, and rheology of nanoparticles could attribute to CHF enhancement phenomena. PMID:25351892

  12. Noncovalently assembled nanotubular porous layers for delaying of heating surface failure

    NASA Astrophysics Data System (ADS)

    Zhang, Bong June; Hwang, Taeseon; Nam, Jae-Do; Suhr, Jonghwan; Kim, Kwang Jin

    2014-10-01

    Thermal management to prevent extreme heat surge in integrated electronic systems and nuclear reactors is a critical issue. To delay the thermal surge on the heater effectively, we report the benefit of a three dimensional nanotubular porous layer via noncovalent interactions (hydrophobic forces and hydrogen bonds). To observe the contribution of individual noncovalent interactions in a porous network formation, pristine carbon nanotubes (PCNTs) and oxidatively functionalized carbon nanotubes (FCNTs) were compared. Hydrogen-bonded interwoven nanotubular porous layer showed approximately two times critical heat flux (CHF) increase compared to that of a plain surface. It is assumed that the hydrophilic group-tethered nanotubular porous wicks and enhanced fluidity are the main causes for promoting the CHF increase. Reinforced hydrophilicity assists liquid spreading and capillarity-induced liquid pumping, which are estimated by using Electrochemical Impedance Spectroscopy. Also, shear induced thermal conduction, thermal boundary reduction, and rheology of nanoparticles could attribute to CHF enhancement phenomena.

  13. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  14. Homogenization of saturated double porous media with Eshelby-like velocity field

    NASA Astrophysics Data System (ADS)

    Shen, Wanqing; Lanoye, Emma; Dormieux, Luc; Kondo, Djimedo

    2014-10-01

    In this paper, we focus on strength properties of double porous materials having a Drucker-Prager solid phase at microscale. The porosity consists in two populations of micropores and mesopores saturated with different pressures. To this end, we consider a hollow sphere subjected to a uniform strain rate boundary conditions. For the microscale to mesoscale transition, we take advantage of available results by Maghous et al. (2009), while the meso to macro upscaling is performed by implementing a kinematical limit analysis approach using Eshelby-like trial velocity fields. This two-step homogenization procedure delivers analytical expression of the macroscopic criterion for the considered class of saturated double porous media. This generalizes and improves previous results established by Shen et al. (2014). The results are discussed in terms of the existence or not of effective stresses. Some illustrations are provided.

  15. Coulomb Drag and Magnetotransport in Graphene Double Layers

    NASA Astrophysics Data System (ADS)

    Tutuc, Emanuel

    2013-03-01

    Graphene double layers, a set of two closely spaced graphene monolayers seperated by an ultra-thin dielectric, represent an interesting electron system to explore correlated electron states. We discuss the fabrication of such samples using a layer-by-layer transfer approach, the electron transport in individual layers at zero and in a high magnetic field, and Coulomb drag measurements. Coulomb drag, probed by flowing a drive current in one layer, and measuring the voltage drop in the opposite layer provides a direct measurement of the electron-electron scattering between the two layers, and can be used to probe the electron system ground state. Coulomb drag in graphene, measured as a function of both layer densities and temperature reveals two distinct regimes: (i) diffusive drag at elevated temperatures, above 50 K, and (ii) mesoscopic fluctuations-dominated drag at low temperatures. A second topic discussed here is a technique that allows a direct measurement of the Fermi energy in an electron system with an accuracy independent of the sample size, using a graphene double layer heterostructure. The underlying principle of the technique is that an interlayer bias applied to bring the top layer to the charge neutrality point is equal to the Fermi energy of the bottom layer, which in effect renders the top graphene layer a resistively detected Kelvin probe. We illustrate this method by measuring the Fermi velocity, Landau level spacing, and Landau level broadening in monolayer graphene. Work done in collaboration with S. Kim, I. Jo, J. Nah, D. Dillen, K. Lee, B. Fallahazad, Z. Yao, and S. K. Banerjee. We thank ONR, NRI, and NSF for support.

  16. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  17. Study of the anode plasma double layer: optogalvanic detectors

    SciTech Connect

    Gurlui, S.; Dimitriu, D.; Strat, M.; Strat, Georgeta

    2006-01-15

    The experimental and theoretical results show that the anode double layer (DL) is a very sensitive plasma formation suitable for fine optogalvanic studies. The obtained results demonstrate that the parameters of the oscillations sustained by a DL (frequency, amplitude) can be used as optogalvanic detectors.

  18. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  19. Magnetic steering of a helicon double layer thruster

    SciTech Connect

    Charles, C.; Boswell, R. W.; Cox, W.; Laine, R.; MacLellan, P.

    2008-11-17

    The ion beam generated by a helicon double layer has been electrically steered up to 20 deg. off axis by using a solenoid placed normal to the two axial solenoids of the helicon plasma source without significantly changing the beam exhaust velocity.

  20. Electric Double-Layer Capacitors Applying to Voltage Sag Compensator

    NASA Astrophysics Data System (ADS)

    Nara, Hidetaka

    Recently the electric double-layer capacitor (EDLC) which is rapidly charged and discharged and offers long life, maintenance-free, has been developed as a new energy storage element. Therefore, we developed the uninterruptible power supply as voltage sag compensator utilizing EDLC. This paper describes an abstract of EDLC and applying to voltage sag compensation.

  1. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.

    PubMed

    Yu, Jing; Sanyal, Oishi; Izbicki, Andrew P; Lee, Ilsoon

    2015-09-01

    This work focuses on the design of porous polymeric films with nano- and micro-sized pores existing in distinct zones. The porous thin films are fabricated by the post-treatment of layer-by-layer assembled poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayers. In order to improve the processing efficiency, the deposition time is shortened to ≈ 10 s. It is found that fine porous structures can be created even by significantly reducing the processing time. The effect of using polyelectrolytes with widely different molecular weights is also studied. The pore size is increased by using high molecular weight PAH, while high molecular weight PAA minimizes the pore size to nanometer scale. Having gained a precise control over the pore size, layered multiscale porous thin films are further built up with either a microsized porous zone on top of a nanosized porous zone or vice versa. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  3. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-03

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g(-1) and 380 mA h g(-1) are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  4. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  5. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-07-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  6. Anomalous Coulomb drag in bilayer graphene double layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip

    Bilayer graphene double-layer structure consists of two layers of bilayer graphene separated by atomically thin hexagonal boron nitride (hBN). With a perfect Fermi surface nesting and strong electron-electron interaction (ECoulomb > Ekinetic), such systems offer exciting platforms to study interaction driven phenomena, such as Coulomb drag and exciton condensation. We fabricate ultra-clean encapsulated bilayer graphene double layers with dry pick-up method. Room temperature drag measurement on our devices shows the sign of drag agree with the typical Fermi liquid behavior. However, at lower temperatures, the sign of drag reversed, indicating a new drag mechanism emerges and dominates. We measure this with different geometry, temperature, bias and gating to investigate the origin of such effect and discuss the implication of the drag sign changes.

  7. Bound States in the Continuum in double layer structures

    PubMed Central

    Li, LiangSheng; Yin, Hongcheng

    2016-01-01

    We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing. PMID:27245435

  8. Lie symmetry analysis of a double-diffusive free convective slip flow with a convective boundary condition past a radiating vertical surface embedded in a porous medium

    NASA Astrophysics Data System (ADS)

    Afify, A. A.; Uddin, Md. J.

    2016-09-01

    A numerical study of a steady two-dimensional double-diffusive free convection boundary layer flow over a vertical surface embedded in a porous medium with slip flow and convective boundary conditions, heat generation/absorption, and solar radiation effects is performed. A scaling group of transformations is used to obtain the governing boundary layer equations and the boundary conditions. The transformed equations are then solved by the fourth- and fifth-order Runge-Kutta-Fehlberg numerical method with Maple 13. The results for the velocity, temperature, and concentration profiles, as well as the skin friction coefficient, the Nusselt number, and the Sherwood number are presented and discussed.

  9. The acoustic emission of a distributed mode loudspeaker near a porous layer.

    PubMed

    Prokofieva, E Yu; Horoshenkov, Kirill V; Harris, N

    2002-06-01

    Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.

  10. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  11. Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer.

    PubMed

    Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Cai, Lili; Rao, Pratap M; Zheng, Xiaolin

    2013-09-11

    An electroassisted method is developed to transfer silicon (Si) wire arrays from the Si wafers on which they are grown to other substrates while maintaining their original properties and vertical alignment. First, electroassisted etching is used to form a sacrificial porous Si layer underneath the Si wires. Second, the porous Si layer is separated from the Si wafer by electropolishing, enabling the separation and transfer of the Si wires. The method is further expanded to develop a current-induced metal-assisted chemical etching technique for the facile and rapid synthesis of Si nanowires with axially modulated porosity.

  12. Nonlinear Surface Transport in the Thin Double-Layer Limit

    NASA Astrophysics Data System (ADS)

    Chu, Kevin; Bazant, Martin

    2006-03-01

    At high applied electric fields, ionic transport within the double layer plays a significant role in the overall response of electrokinetic systems. It is well-known that surface transport processes, including surface electromigration, surface diffusion and surface advection, may impact the strength of electrokinetic phenomena by affecting both the zeta-potential and the magnitude of the tangential electric field. Therefore, it is important to include these effects when formulating the effective boundary conditions for the equations that govern electrokinetic flow outside of the double layer. In this talk, we discuss the application of a general formulation of ``surface conservation laws'' for diffuse boundary layers to derive effective boundary conditions that capture the physics of electrokinetic surface transport. Previous analyses (e.g. Deryagin & Dukhin 1969) are only valid for weak applied fields and are based on a linearization of the concentration and potential about a reference solution, but our results are fully nonlinear and hold at large applied fields as long as the double layer is sufficiently thin. We compare our nonlinear surface transport theory with existing linear analogues and apply it to the canonical problem of induced-charge electro-osmosis around a metal sphere or cylinder in a strong DC field.

  13. Micro-solid oxide fuel cell supported on a porous metallic Ni/stainless-steel bi-layer

    NASA Astrophysics Data System (ADS)

    Lee, Younki; Park, Young Min; Choi, Gyeong Man

    2014-03-01

    Metallic bi-layer of porous Ni and porous stainless steel (STS) is utilized as a support for micro-solid oxide fuel cells (SOFCs) using a thin-film layer of electrolyte. Tape-casting and screen-printing processes are employed to fabricate a thick (∼250 μm) STS-layer covered with a thin (∼20 μm) nano-porous Ni layer. Successful deposition of a nearly pore-free electrolyte layer by the pulsed laser deposition (PLD) method is demonstrated by the high open-circuit-voltage (OCV) value of a single cell. The Ohmic resistance of the micro-SOFC deposited on a porous Ni/STS-support is stable and it shows ∼28 mW cm-2 after operation for ∼112 h at 450 °C. The use of a porous Ni/STS bi-layer as a support for micro-SOFCs is successfully demonstrated.

  14. Surface molecular imprinted layer-by-layer film attached to a porous membrane for selective filtration.

    PubMed

    Liu, Zhihua; Yi, Yu; Gauczinski, Jan; Xu, Huaping; Schönhoff, Monika; Zhang, Xi

    2011-10-04

    A surface molecular imprinted layer-by-layer (SMILbL) film was fabricated on a polyethersulfone (PES) porous membrane substrate for selective filtration of cations and anions. The LbL deposition procedure and the ultraviolet (UV) cross-linking of the modified membrane were monitored by attenuated total reflection-infrared (ATR-IR) spectra. The SMILbL-PES membrane with 4.5 bilayers of diazoresin (DAR)/poly(acrylic acid) complexed with 5,10,15,20-tetrakis(4-(trimethylammonio)-phenyl)-21H,23H-porphyrin tetratosylate (PAA-Por(4+)) effectively reduced the permeation velocity of Por(4+) after washing the Por(4+) template out. In comparison to a control film DAR/PAA-modified PES membrane (ConLbL-PES) in a dialysis experiment, the SMILbL-PES membrane exhibited better selectivity for permeation of 5,10,15,20-tetraphenyl-21H,23H-porphine-p,p',p″,p‴-tetrasulfonic acid tetrasodium hydrate (Por(4-)) against permeation of Por(4+). In pressure-driven transport experiments, the SMILbL-PES membrane showed a much longer blocking time for Por(4+) than for Por(4-), indicating the selective loading of Por(4+) into the SMILbL film. The surface charge of the SMILbL-PES membrane after Por(4+) loading was higher than that of other membranes, resulting in an enhanced rejection ability of the SMILbL-PES membrane to Por(4+) caused by Coulomb repulsion. A possible mechanism was proposed as follows. The binding sites generated through imprinting in the SMILbL-PES membrane enable loading of a larger amount of Por(4+). The stronger repulsion between Por(4+) and the SMILbL film may cause the main contribution to the selective rejection of Por(4+). It can be easily imagined that this concept can be extended to the construction of composite membranes from other imprinting systems. © 2011 American Chemical Society

  15. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-by-layer assembly.

    PubMed

    Yan, Dongpeng; Lu, Jun; Wei, Min; Han, Jingbin; Ma, Jing; Li, Feng; Evans, David G; Duan, Xue

    2009-01-01

    Lavender layers: A poly(p-phenylene) anionic derivate and exfoliated Mg-Al layered double hydroxide monolayers were assembled into ultrathin films with well-defined blue fluorescence (see picture; the numbers indicate the number of bilayers), long-range order, and high photostability. These films work as multiple quantum-well structures for valence electrons.

  16. Onset of buoyancy-driven convection in a liquid-saturated cylindrical porous layer supported by a gas layer

    NASA Astrophysics Data System (ADS)

    Kim, Min Chan; Song, Kwang Ho; Choi, Chang Kyun; Yeo, Jong-Kee

    2008-05-01

    A theoretical analysis of convective instability driven by buoyancy forces under the transient concentration fields is conducted in an initially quiescent, liquid-saturated, cylindrical porous layer with gas diffusion from below. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion, and linear stability theory is employed to predict the onset of buoyancy-driven motion. Under the principle of exchange of stabilities, the stability equations are derived on the basis of the propagation theory and the dominant mode method, which have been developed in a self-similar boundary layer coordinate system. The present predictions suggest the critical Darcy-Rayleigh number RD, which is quite different from the previous ones. The onset time becomes smaller with increasing RD and follows the asymptotic relation derived in the infinite horizontal porous layer.

  17. Double layer in ionic liquids: overscreening versus crowding.

    PubMed

    Bazant, Martin Z; Storey, Brian D; Kornyshev, Alexei A

    2011-01-28

    We develop a simple Landau-Ginzburg-type continuum theory of solvent-free ionic liquids and use it to predict the structure of the electrical double layer. The model captures overscreening from short-range correlations, dominant at small voltages, and steric constraints of finite ion sizes, which prevail at large voltages. Increasing the voltage gradually suppresses overscreening in favor of the crowding of counterions in a condensed inner layer near the electrode. This prediction, the ion profiles, and the capacitance-voltage dependence are consistent with recent computer simulations and experiments on room-temperature ionic liquids, using a correlation length of order the ion size.

  18. Observations of double layers in earth's plasma sheet.

    PubMed

    Ergun, R E; Andersson, L; Tao, J; Angelopoulos, V; Bonnell, J; McFadden, J P; Larson, D E; Eriksson, S; Johansson, T; Cully, C M; Newman, D N; Goldman, M V; Roux, A; LeContel, O; Glassmeier, K-H; Baumjohann, W

    2009-04-17

    We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.

  19. Effect of UV-light illumination on oxide-based electric-double-layer thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jumei; Hu, Yunping

    2017-01-01

    Indium-tin-oxide (ITO)-based thin-film transistors (TFTs) were fabricated using porous SiO2 deposited by plasma-enhanced chemical vapor deposition and Al2O3 deposited by atomic layer deposition as dielectrics. The results showed that the porous SiO2 film exhibited a high electric-double-layer (EDL) capacitance. Devices gated by the EDL dielectric exhibited a high drain current on/off ratio of >106 and a low operation voltage of <2.0 V in the dark. When illuminated by 254 nm UV light, ITO-based EDL TFTs gated by a single SiO2 dielectric displayed weak photo-responses. However, devices gated by a stacked Al2O3/EDL dielectric displayed a high photo responsivity of more than 104 with a gate bias of -0.5 V (depletion state).

  20. Experimental investigation of current free double layers in helicon plasmas

    SciTech Connect

    Sahu, B. B.; Tarey, R. D.; Ganguli, A.

    2014-02-15

    The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal to the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.

  1. Effects of double-layer polarization on ion transport.

    PubMed

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin.

  2. Effects of double-layer polarization on ion transport.

    PubMed Central

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin. PMID:2432953

  3. Superconductivity in Electric Double Layer Capacitor under Pressure

    NASA Astrophysics Data System (ADS)

    McCann, Duncan; Misek, Martin; Kamenev, Konstantin; Huxley, Andrew

    2015-03-01

    Chemical doping generally provides the most common method for tuning into the superconducting state of a material yet can be difficult to control and also potentially introduces structural disorder complicating the underlying physics. Electric Double Layer devices however provide a means to electrostatically dope materials with high electric fields allowing continuous tuning of a 2D superconducting state thus avoiding such issues. One such device is the Electric Double Layer Capacitor which can detect the onset of superconductivity through AC magnetisation measurements. We make use of a similar device in an attempt to electrostatically dope and tune the superconductivity in the cuprate compound La1.93Sr0.07CuO4 as well as investigating whether application of pressure improves its efficiency.

  4. Theory of current-free double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Goswami, K. S.; Saharia, K.; Schamel, H.

    2008-06-01

    The existence of current-free double layers in unmagnetized plasma is studied by means of the quasipotential method applied to the Vlasov-Poisson system. Crucial for its existence are trapped particle populations that are characterized by notches (dips) in the velocity distribution functions at resonant velocity becoming flat at large amplitude limit. The potential drop across the double layer, or its amplitude ψ, can be arbitrarily strong covering the whole range 0<ψ <∞. Both the small and large amplitude limit are worked out explicitly, inclusively effective kinetic temperatures and pressures. It is, hence, the effective electron (ion) temperature increase (decrease) with increasing potential, caused by the trapped particles, which is responsible for the existence of this two-parameter family of solutions.

  5. Development and current status of electric double-layer capacitors

    SciTech Connect

    Morimoto, Takeshi; Hiratsuka, Kazuya; Sanada, Yasuhiro; Kurihara, Kaname

    1995-12-31

    An electric double layer capacitor (EDLC) based on the charge storage at the interface between a high surface area carbon electrode and an electrolyte solution is widely used as maintenance-free power source for IC memories and microcomputers. New applications for electric double-layer capacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density relative to conventional capacitors and their long cycle life and high power density relative to batteries. In this paper a classification and a characteristics of industrially produced Japanese small EDLCs are reviewed. Structure and performance of power capacitors under development as well as materials and performance of industrially produced small capacitors are discussed.

  6. Provenance graph query method based on double layer index structure

    NASA Astrophysics Data System (ADS)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Order to solve the problem that the efficiency of the existing source map is low and the resource occupancy rate is high, considering the relationship between the origin information and the data itself and the internal structure of the origin information, a method of provenance graph query based on double layer index structure is proposed. Firstly, we propose a two layer index structure based on the global index of the dictionary table and the local index based on the bitmap. The global index is used to query the server nodes stored in the source map. The local index is used to query the global index. Finally, based on the double-level index structure, a method of starting map query is designed. The experimental results show that the proposed method not only improves the efficiency of query and reduces the waste of memory resources.

  7. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  8. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.

    1981-01-01

    The turbulent boundary layer over a smooth, solid wall is examined along with a sandpaper-roughened, solid wall, and a porous wall. Suitable results are obtained with the smooth, solid wall for the Law of the Wall, the Defect Law, and the axial and turbulence intensities. The logarithmic portion of the Wall Law is shifted in the sandpaper-roughened, solid wall and an increase in the normal turbulence intensity and Reynolds stress is observed. An increase in the local skin friction values and all the turbulence values is found with the porous wall. The influence of a slightly rough, porous wall of sintered metal on the boundary layer is compared with a solid sandpaper-roughened wall in the same nominal K(+) range.

  9. The production of porous layers for the solid oxide fuel cell by vacuum plasma spraying

    SciTech Connect

    Fendler, E.; Henne, R.; Lang, M.

    1995-12-31

    The vacuum plasma spraying (VPS) method was used to produce porous perovskite and Ni/YSZ (Yttria Stabilized Zirconia) cermet layers as cathode and anode for a SOFC, respectively. The perovskite powder was deposited without decomposition of the perovskite phase due to the use of Laval-nozzles and the adaption of spray parameters. The deposition of porous Ni/YSZ cermets demanded a modification of the Laval-nozzle. With this modification high deposition rates compared to conventional nozzles could be attained. The deposition of NiAl-YSZ and subsequently etching of Al is a successful method to produce anode layers with very fine porosity. Up to now the feasibility of producing porous deposits was examined. The next step of investigation will be the electrochemical testing of the electrodes. The results of those tests will influence the further development of anode`s and cathode`s microstructure.

  10. Composition of nanocomposites based on thin layers of tin on porous silicon formed by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lenshin, A. S.; Kashkarov, V. M.; Domashevskaya, E. P.; Seredin, P. V.; Ryabtsev, S. V.; Bel'tyukov, A. N.; Gil'mutdinov, F. Z.

    2017-01-01

    Using scanning electron microscopy and X-ray photoelectron spectroscopy the features of morphology and peculiarities of the surface composition of nanocomposites made of thin tin layers by magnetron sputtering formed on porous silicon with pores size of 50-150 nm. Porous silicon was obtained on n-type conductivity crystalline silicon substrate. The obtained nanocomposites were found differ between themselves by the ratio of the main phases: tin dioxide, sub-oxide and metal tin in a dependence on the thickness of the deposited tin layer. Fraction of the oxidized tin in the phase composition of composites was reduced from the surface to the bulk of the sample. Moreover, it was determined that the deposition of tin nanolayers did not result in a considerable change of the phase composition of porous silicon substrate.

  11. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  12. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  13. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  14. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    PubMed Central

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-01-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10–200 ng/mL. PMID:26420511

  15. Electrostatic supersolitons and double layers at the acoustic speed

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-01-15

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication.

  16. Completed double layer boundary element method for periodic suspensions

    NASA Astrophysics Data System (ADS)

    Fan, X.-J.; Phan-Thien, N.; Zheng, R.

    In this paper, a traction-based boundary element method is formulated and implemented for periodic suspensions. Hydrodynamic interaction of particles at infinity is handled by O'Brien's method (1979), which is suitably modified for the adjoint double layer using the mean field values of the traction and the background flow. After a deflation of the extreme eigenvalue -1 of the adjoint double layer operator, an iterative solution strategy is implemented, which solves for the traction field on the surfaces of a group of near-by particles sequentially. Ewald's summation technique is employed, by expressing the adjoint double layer kernel in two sums, one converges rapidly in real space, and the other, in the reciprocal Fourier space. The implementation is tested on a periodic suspension of spheres and spheroids in simple and elongated face-centred cubic arrays, and proved to be very accurate when compared to established results. New results for the intrinsic viscosities of periodic suspensions of cubes and spheroids from moderate to high volume fractions are reported. Based on the numerical data for suspensions of spheroids, a simple modification of the constitutive equation of Hinch and Leal (1972), which was derived for dilute suspension of spheroids, is reported, allowing the constitutive equation to reasonably fit the numerical data at moderate to high concentrations.

  17. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  18. Assessment of Bulk Absorber Properties for Multi-Layer Perforates in Porous Honeycomb Liners

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    2006-01-01

    CONTINUING progress in materials technology provides potential for improved acoustic liners for attenuating broadband fan noise emissions from aircraft engine nacelles. Conventional liners (local-reacting perforate-over-honeycomb structures) provide significant narrow-band attenuation, but limited attenuation over wide bandwidths. Two approaches for increasing attenuation bandwidth are to (1) replace the honeycomb structure with bulk material, or (2) cascade multiple layers of perforate/honeycomb structures. Usage of the first approach is limited because of mechanical and maintenance reasons, while multi-layer liners are limited to about three layers because of their additional mechanical complexity, depth and weight. The current research concerns a novel approach reported by the University of Cincinnati, in which a single-layer conventional liner is converted into an extended-reaction, broadband absorber by making the honeycomb core structure porous. This modified single-layer liner requires no increase in depth and weight, and minimal increase in mechanical complexity. Langley has initiated research to identify potential benefits of liner structures with porous cell walls. This research has two complementary goals: (1) develop and validate experimental techniques for treating multi-layer perforates (representative of the internal cells of a liner with porous cell walls) as 1-D bulk materials, and (2) develop analytical approaches to validate this bulk material assumption. If successful, the resultant model can then be used to design optimized porous honeycomb liners. The feasibility of treating an N-layer perforate system (N porous plates separated by uniform air gaps) as a one-dimensional bulk absorber is assessed using the Two-Thickness Method (TTM), which is commonly used to educe bulk material intrinsic acoustic parameters. Tests are conducted with discrete tone and random noise sources, over an SPL range sufficient to determine the nonlinearity of the test

  19. An Analysis of Unstirred Layers in Series with "Tight" and "Porous" Lipid Bilayer Membranes

    PubMed Central

    Andreoli, Thomas E.; Troutman, Susan L.

    1971-01-01

    The present experiments were designed to evaluate the effective thickness of the unstirred layers in series with native and porous (i.e., in the presence of amphotericin B) lipid bilayer membranes and, concomitantly, the respective contributions of membranes and unstirred layers to the observed resistances to the diffusion of water and nonelectrolytes between aqueous phases. The method depended on measuring the tracer permeability coefficients for the diffusion of water and nonelectrolytes (PDDi, cm sec-1) when the aqueous phase viscosity (η) was increased with solutes having a unity reflection coefficient, such as sucrose or dextran. The effective thickness of the unstirred layers (αt, cm) and the true, or membrane, permeability coefficients for diffusion of water and nonelectrolytes (Pmmi, cm sec-1) were computed from, respectively, the slope and intercept of the linear regression of 1/PDDi on η. In both the native and porous membranes, αt was approximately 110 x 10-4 cm. The ratio of Pf, the osmotic water permeability coefficient (cm sec-1) to PmmH2O was 1.22 in the native membranes and 3.75 in the porous membranes. For the latter, the effective pore radius, computed from Poiseuille's law, was approximately 5.6 A. A comparison of Pmmi and PDDi, indicated that the porous membranes accounted for 16, 25, and 66% of the total resistance to the diffusion of, respectively, H2O, urea, and glycerol, while the remainder was referable to the unstirred layers. PMID:5549099

  20. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  1. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  2. Intercalation of Layered Silicates, Layered Double Hydroxides, and Lead Iodide: Synthesis, Characterization and Properties.

    NASA Astrophysics Data System (ADS)

    Mehrotra, Vivek

    Layered silicates, layered double hydroxides, and lead iodide are lamellar solids that can incorporate guest species into the galleries between their layers. Various intercalated forms of these layered materials have been synthesized and their properties studied. The dielectric behavior of pristine fluorohectorite, a typical layered silicate, and Zn-Al layered double hydroxide is explained by considering the structural ordering and mobility of the intercalated water molecules, as well as models invoking fractal time processes and fractal structure. Intercalative polymerization of aniline and pyrrole into fluorohectorite leads to a multilayered structure consisting of single polymer chains alternately stacked with the 9.6 A thick silicate layers. The polymer chains are confined to the quasi two-dimensional interlayer space between the rigid host layers. The hybrid films exhibit highly anisotropic properties. The optical, electrical and mechanical behavior is discussed in terms of the molecular confinement of the polymer chains. Ethylenediamine functionalized C _{60} clusters have also been intercalated into fluorohectorite via an ion-exchange procedure. Intercalation results in an improved thermal stability of the functionalized C_{60} clusters. Rutherford backscattering spectrometry has been used to elucidate the mechanism of intercalative ion exchange of silver in muscovite mica, a layered silicate with a layer charge density of 2e per unit cell. It is proposed that ion-exchange progresses by intercalating successive galleries through the edges of the mica layers. Guest-host interactions have been studied in the system aniline-PbI_2. The optical and structural effects of aniline intercalation in lead iodide thin films is discussed. Intercalation leads to a large shift in the optical band gap of PbI_2. The observed change in band gap is not only due to the increased separation between the PbI_2 layers but also because of an electrostatic interaction between the

  3. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor

    NASA Astrophysics Data System (ADS)

    Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng

    2016-01-01

    We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g‑1 at 0.5 A g‑1 and 1181 F g‑1 even at current density as high as 10 A g‑1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg‑1 (at power density of 551 W kg‑1) with a 1.5 V operating voltage.

  4. A molecular theory for optimal blue energy extraction by electrical double layer expansion

    SciTech Connect

    Kong, Xian; Gallegos, Alejandro; Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2015-08-19

    We proposed the electrical double layer expansion (CDLE) as a promising alternative to reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes for extracting osmotic power generated by the salinity difference between freshwater and seawater. The performance of the CDLE process is sensitive to the configuration of porous electrodes and operation parameters for ion extraction and release cycles. In our work, we use a classical density functional theory (CDFT) to examine how the electrode pore size and charging/discharging potentials influence the thermodynamic efficiency of the CDLE cycle. The existence of an optimal charging potential that maximizes the energy output for a given pore configuration is predicted, which varies substantially with the pore size, especially when it is smaller than 2 nm. Finally, the thermodynamic efficiency is maximized when the electrode has a pore size about twice the ion diameter.

  5. A molecular theory for optimal blue energy extraction by electrical double layer expansion

    DOE PAGES

    Kong, Xian; Gallegos, Alejandro; Lu, Diannan; ...

    2015-08-19

    We proposed the electrical double layer expansion (CDLE) as a promising alternative to reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes for extracting osmotic power generated by the salinity difference between freshwater and seawater. The performance of the CDLE process is sensitive to the configuration of porous electrodes and operation parameters for ion extraction and release cycles. In our work, we use a classical density functional theory (CDFT) to examine how the electrode pore size and charging/discharging potentials influence the thermodynamic efficiency of the CDLE cycle. The existence of an optimal charging potential that maximizes the energy output formore » a given pore configuration is predicted, which varies substantially with the pore size, especially when it is smaller than 2 nm. Finally, the thermodynamic efficiency is maximized when the electrode has a pore size about twice the ion diameter.« less

  6. Low Temperature Double-Layer Capacitors Using Asymmetric and Spiro-Type Quaternary Ammonium Salts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2014-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -80.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1')-bipyrrolidium tetrafluoroborate (SBPBF.sub.4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  7. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor

    PubMed Central

    Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng

    2016-01-01

    We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g−1 at 0.5 A g−1 and 1181 F g−1 even at current density as high as 10 A g−1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg−1 (at power density of 551 W kg−1) with a 1.5 V operating voltage. PMID:26754281

  8. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below

    NASA Technical Reports Server (NTRS)

    Chen, Falin; Chen, C. F.

    1989-01-01

    Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm x 12 cm x 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60 and 90 percent glycerin-water solutions, and 100 percent glycerin. The depth ratio d, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger d in order to keep the temperature difference across the tank within reasonable limits. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed: (1) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (2) an eightfold decrease in the critical wavelength between d = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen and Chen, 1988).

  10. On the Examination of Darcy Permeability a Thin Fibrous Porous Layer

    NASA Astrophysics Data System (ADS)

    Zhu, Zenghao; Wang, Qiuyun; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a novel experimental approach to investigate the Darcy permeability of a soft and thin fibrous porous layer. The project is inspired by recent studies involved compression of very thin porous films and the resultant pore fluid flow inside the confined porous structure. The Darcy permeability plays a critical role during the process, which however, is tricky to measure due to the very thin nature of the porous media. In the current study, a special micro-fluidic device is developed that consists of a rectangular flow channel with adjustable gap height ranging from 20 mm to 0.5 mm. Air is forced through the thin gap filled with testing fibrous materials. By measuring the flow rate and the pressure drop, we have successfully obtained the Darcy permeability of different thin porous sheets at different compression ratios. Furthermore, the surface area of the fibers are evaluated using a Micromeritics® ASAP 2020 (Accelerated Surface Area and Porosimetry) system. We found that, although the functions relating the permeability and porosities are different for different fibrous materials, these functions collapse to a single relationship if one express the permeability as a function of the solid phase surface area per unit volume. This finding provides a useful approach to evaluate the permeability of very thin fibrous porous sheet, which otherwise is difficult to measure directly. This research was supported by the National Science Foundation under Award #1511096.

  11. Gate-Induced Superconductivity in Layered-Material-Based Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ye, J. T.; Zhang, Y. J.; Matsuhashi, Y.; Craciun, M. F.; Russo, S.; Kasahara, Y.; Morpurgo, A. F.; Iwasa, Y.

    2012-12-01

    High carrier density part of many materials could be accessed by a variation of the field effect transistor technique: electric double layer transistor. Carrier density regime of n~1014 cm-2 can be easily accessed electrostatically realizing effective doping without chemical modification. In this study, we utilized micro-cleavage on a number of interesting layered materials. And realized high carrier density state and high performance transport on atomically flat surfaces.

  12. Skin electric explosion in double-layer conductors with a low-conductivity deposited layer

    NASA Astrophysics Data System (ADS)

    Datsko, I. M.; Labetskaya, N. A.; Chaikovsky, S. A.; Shugurov, V. V.

    2016-06-01

    The experiments on explosion of cylindrical conductors aimed at comparison of plasma formation during skin explosion of homogeneous and double-layer conductors with an external layer with a lower conductivity are carried out on a high-current MIG generator (current amplitude up to 2.5 MA and current rise time 100 ns). The generator is loaded with cylindrical copper conductors with a diameter of 3 mm on the cathode part of which a titanium layer of thickness 20, 50, and 80 μm is deposited in vacuum. This type of loading makes it possible to compare the behaviors of the homogeneous and double-layer conductors in identical conditions. It is shown that using the double-layer structure of the conductor with an external layer of thickness 20-80 μm with a lower conductivity, which is obtained by vacuum arc deposition, higher values of magnetic induction (as compared to homogeneous conductor) can be attained on its surface prior to plasma formation and spread.

  13. Enhanced light extraction of LYSO scintillator by photonic crystal structures from a modified porous anodized aluminum oxide layer

    NASA Astrophysics Data System (ADS)

    Zhang, Juannan; Liu, Bo; Zhu, Zhichao; Wu, Qiang; Cheng, Chuanwei; Liu, Jinliang; Chen, Liang; Ouyang, Xiaoping; Gu, Mu; Xu, Jun; Chen, Hong

    2017-08-01

    Although porous anodized aluminum oxide layer can be used to extract scintillation light from a LYSO scintillator, the low refractive index contrast of porous AAO layer obtains a moderate enhancement. In this investigation, we have designed and fabricated a modified porous anodized aluminum oxide layer with conformal deposition layer of high refractive index material of TiO2 on the surface of LYSO scintillator, achieving a significant enhancement by 60% with wavelength- and angle-integrated emission intensity. The fabrication method of the present study is simple and low-cost for the large area applications in the field of radiation detection.

  14. Highly sensitive recognition element based on birefringent porous silicon layers

    NASA Astrophysics Data System (ADS)

    Gross, E.; Kovalev, D.; Künzner, N.; Timoshenko, V. Yu.; Diener, J.; Koch, F.

    2001-10-01

    Anisotropically nanostructured silicon layers exhibit a strong in-plane birefringence. Their optical anisotropy parameters are found to be extremely sensitive to the presence of dielectric substances inside of the pores. Polarization-resolved transmittance measurements provide an extremely sensitive tool to analyze the adsorption of various atoms and molecules in negligible quantities. A variation of the transmitted linearly polarized light intensity up to two orders of magnitude combined with a fast optical response in the range of seconds make these layers a good candidate for sensor applications.

  15. Model of the radial distribution function of pores in a layer of porous aluminum oxide

    NASA Astrophysics Data System (ADS)

    Cherkas, N. L.; Cherkas, S. L.

    2016-03-01

    An empirical formula is derived to describe the quasi-periodic structure of a layer of porous aluminum oxide obtained by anodization. The formula accounts for two mechanisms of the transition from the ordered state (2D crystal) to the amorphous state. The first mechanism infers that vacancy-type defects arise, but the crystal lattice remains undestroyed. The second mechanism describes the lattice destruction. The radial distribution function of the pores in porous aluminum oxide is obtained using the Bessel transform. Comparison with a real sample is performed.

  16. Buried layer tungsten deposits in porous silicon: Metal penetration depth and film purity determinants

    SciTech Connect

    Blewer, R.S.; Tsao, S.S.; Gutierrez, G.M.

    1987-01-01

    Infiltration of anodically prepared porous silicon with tungsten hexafluoride gas has been investigated as a function of silicon porosity, source gas pressure and carrier gas type and flow rate. The depth of tungsten metallization in the silicon has been shown to depend most sensitively on the WF/sub 6/ partial pressure, and less on the flow rate and carrier gas type. Penetration depths of >30 ..mu..m have been attained. Structural integrity of the tungsten layer is dependent on the porosity of the starting material and the degree of internal oxidation of the porous silicon surface area. 6 refs., 8 figs.

  17. Thermal Instability in a Layer of Couple Stress Nanofluid Saturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Chand, Ramesh; Rana, G. C.; Yadav, Dhananjay

    2017-03-01

    Thermal instability in a horizontal layer of Couple-stress nanofluid in a porous medium is investigated. Darcy model is used for porous medium. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis. The flux of volume fraction of nanoparticle is taken to be zero on the isothermal boundaries. Normal mode analysis and perturbation method is employed to solve the eigenvalue problem with the Rayleigh number as eigenvalue. Oscillatory convection cannot occur for the problem. The effects of Couple-stress parameter, Lewis number, modified diffusivity ratio, concentration Rayleigh number and porosity on stationary convection are shown both analytically and graphically.

  18. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.

    PubMed

    Groby, J-P; Brouard, B; Dazel, O; Nennig, B; Kelders, L

    2013-02-01

    This papers reports a three-dimensional (3D) extension of the model proposed by Groby et al. [J. Acoust. Soc. Am. 127, 2865-2874 (2010)]. The acoustic properties of a porous layer backed by a rigid plate with periodic rectangular irregularities are investigated. The Johnson-Champoux-Allard model is used to predict the complex bulk modulus and density of the equivalent fluid in the porous material. The method of variable separation is used together with the radiation conditions and Floquet theorem to derive the analytical expression for the acoustic reflection coefficient from the porous layer with 3D inhomogeneities. Finite element method is also used to validate the proposed analytical solution. The theoretical and numerical predictions agree well with the experimental data obtained from an impedance tube experiment. It is shown that the measured acoustic absorption coefficient spectrum exhibits a quasi-total absorption peak at the predicted frequency of the mode trapped in the porous layer. When more than one irregularity per spatial period is considered, additional absorption peaks are observed.

  19. Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer

    NASA Astrophysics Data System (ADS)

    Desaive, Th.; Lebon, G.; Hennenberg, M.

    2001-12-01

    In this work, we study the problem of onset of thermal convection in a fluid layer overlying a porous layer, the whole system being heated from below. We use Brinkman's model to describe the porous medium and determine the corresponding linear stability equations. The eigenvalue problem is solved by means of a modified Galerkin method. The behavior of the critical wave number and temperature gradient is discussed in terms of the various parameters of the system. We also emphasize the influence of the boundary conditions at the upper surface of the fluid layer; in particular, we examine the role of a free surface whose surface tension is temperature dependent (Marangoni effect). Comparison with earlier works is also made.

  20. Cation ordering and superstructures in natural layered double hydroxides.

    PubMed

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A

    2010-01-01

    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  1. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure

    NASA Astrophysics Data System (ADS)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-01

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on.Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. Electronic supplementary information (ESI) available: SEM image of hexagonal silicon pillar templates, AFM images of clay platelets on a silicon substrate, photographs of free-standing gels, X-ray diffraction profiles for dried materials, FTIR and TGA of the samples, and

  2. Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports.

    PubMed

    Dotzauer, David M; Dai, Jinhua; Sun, Lei; Bruening, Merlin L

    2006-10-01

    Layer-by-layer adsorption of polyelectrolytes and gold nanoparticles within porous supports provides a convenient method for forming catalytic membranes. The polyelectrolyte film effectively immobilizes the gold nanoparticles without inhibiting access to catalytic sites, as shown by the similar rate constants for nanoparticle-catalyzed 4-nitrophenol reduction in solution and in membranes. Modified alumina membranes reduce >99% of 0.4 mM 4-nitrophenol at linear flow rates of 0.98 cm/s, and the modification process is also applicable to track-etched polycarbonate supports.

  3. Double dipole RET investigation for 32 nm metal layers

    NASA Astrophysics Data System (ADS)

    Babcock, Carl; Zou, Yi; Dunn, Derren; Baum, Zachary; Zhao, Zengqin; Matthew, Itty; LaCour, Pat

    2008-10-01

    For 32 nm test chips, aggressive resolution enhancement technology (RET) was required for 1x metal layers to enable printing minimum pitches before availability of the final 32 nm exposure tool. Using a currently installed immersion scanner with 1.2 numerical aperture (NA) for early 32 nm test chips, one of the RET strategies capable of resolving the minimum pitch with acceptable process latitude was dipole illumination. To avoid restricting the use of minimum pitch to a single orientation, we developed a double-expose/single-develop process using horizontal and vertical dipole illumination. To enable this RET, we developed algorithms to decompose general layouts, including random logic, interconnect test patterns, and SRAM designs, into two mask layers: a first exposure (E1) of predominantly vertical features, to be patterned with horizontal dipole illumination; and, a second exposure (E2) of predominantly horizontal features, to be patterned with vertical dipole illumination. We wrote this algorithm into our OPC program, which then applies sub-resolution assist features (SRAFs) separately to the E1 and E2 masks, coordinating the two to avoid problems with overlapping exposures. This was followed by two-mask OPC, using E1 and E2 as mask layers and the original layout (single layer) as the target layer. In this paper, we describe some of the issues with decomposing layout by orientation, issues that arise in SRAF application and OPC, and some approaches we examined to address these issues.

  4. Decoupling of double-tearing resonant layers by sheared flows

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; Germaschewski, Kai

    2015-11-01

    Double-tearing modes consist of two resonant, reconnecting layers of the same mode number coupled together by an ideal MHD outer region. Linearly this interaction can result in faster growth as the two layers drive each other. Nonlinearly it may lead to explosive releases of energy, and is a possible driver for off-axis sawtooth crashes in advanced tokamaks. Recent work has shown that differential rotation effects, such as equilibrium sheared flows or diamagnetic drifts, can decouple the DTM layers leaving two drifting, single tearing modes. These isolated tearing layers are slower growing and easier to stabilize. Understanding and producing this decoupling is thus an important element of preventing disruptive DTM activity. In this work we present progress on developing an analytic theory of DTM decoupling. We show that the application of equilibrium sheared flows mixes the symmetric and antisymmetric DTM eigenmode solutions, reducing the growth rate. This representation predicts a linear relationship between the growth rate and the amplitude of differential sheared flow needed to decouple the layers, which we confirm with linear MHD simulations. Through numerical scaling studies we examine the relationship between mode decoupling and the slab-kink mode underlying DTM growth.

  5. Near infrared organic photodetector utilizing a double electron blocking layer.

    PubMed

    Shafian, Shafidah; Hwang, Heewon; Kim, Kyungkon

    2016-10-31

    A near infrared organic photodiode (OPD) utilizing a double electron blocking layer (EBL) fabricated by the sequential deposition of molybdenum (VI) oxide (MoO3) and poly(3,4ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) is reported. The double EBL improves the on/off current ratio of OPD up to 1.36 x 104 at -1V, which is one order of magnitude higher than PEDOT:PSS single EBL (2.45 x 103) and three orders of magnitude higher than that of MoO3 single EBL (7.86). The detectivity at near infrared (800 nm) at -1V is 4.90 x 1011 Jones, which is 2.83 times higher than the PEDOT:PSS single EBL and 2 magnitudes higher compared to the MoO3 single EBL.

  6. Modeling of Multiphase Flow through Thin Porous Layers: Application to a Polymer Electrolyte Fuel Cell (PEFC)

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S.

    2013-12-01

    Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a

  7. Effect of different downstream temperatures on the performance of a two-layer porous burner

    NASA Astrophysics Data System (ADS)

    Hayashi, T. C.; Malico, I.; Pereira, J. C. F.

    2010-07-01

    The influence of considering different downstream temperatures on the performance of a two-layer porous burner is studied numerically. A 3D numerical model based on a unit cell was implemented to correctly predict the momentum, heat and mass transfer at the interface of the two layers. Two operating modes are simulated corresponding to the burner radiating to cold and hot environments. When the burner radiates to a hot environment, its radiative heat losses are lower and, as a consequence, the temperatures and pollutants emissions are higher. Additionally, the flame front moves upstream and stabilizes nearer the interface of the two layers.

  8. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization

    NASA Astrophysics Data System (ADS)

    Ali, Ghafar; Kim, Hyun Jin; Kim, Jae Joon; Cho, Sung Oh

    2014-03-01

    Double-walled TiO2 nanotubes with porous wall morphologies are fabricated by anodization under ultraviolet (UV) irradiation. TiO2 formed by anodization of Ti is activated to generate electrons and holes by UV and the anodization process is influenced by the photo-generated charges. As a consequence, morphologies of the fabricated TiO2 nanotubes can be adjusted by controlling the UV illumination. Double-walled TiO2 nanotubes or single-walled nanotubes can be selectively formed by switching on/off the UV illumination. The thickness of the inner and outer walls of the double-walled nanotubes can be tailored by changing the UV power. Due to their larger surface areas compared to single-walled nanotubes, the porous double-walled nanotubes exhibit an enhanced photo-degradation rate for methylene blue (MB). The mechanism of the porous double-walled TiO2 nanotubes is proposed based on the photoactive semiconducting property of the as-growing TiO2 nanotubes under UV.Double-walled TiO2 nanotubes with porous wall morphologies are fabricated by anodization under ultraviolet (UV) irradiation. TiO2 formed by anodization of Ti is activated to generate electrons and holes by UV and the anodization process is influenced by the photo-generated charges. As a consequence, morphologies of the fabricated TiO2 nanotubes can be adjusted by controlling the UV illumination. Double-walled TiO2 nanotubes or single-walled nanotubes can be selectively formed by switching on/off the UV illumination. The thickness of the inner and outer walls of the double-walled nanotubes can be tailored by changing the UV power. Due to their larger surface areas compared to single-walled nanotubes, the porous double-walled nanotubes exhibit an enhanced photo-degradation rate for methylene blue (MB). The mechanism of the porous double-walled TiO2 nanotubes is proposed based on the photoactive semiconducting property of the as-growing TiO2 nanotubes under UV. Electronic supplementary information (ESI) available

  9. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities

    NASA Astrophysics Data System (ADS)

    Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu

    2016-08-01

    We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"

  10. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP).

    PubMed

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-09-06

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.

  11. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP)

    PubMed Central

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028

  12. Template-directed preparation of two-layer porous NiO film via hydrothermal synthesis for lithium ion batteries

    SciTech Connect

    Chen, Z.; Xiao, A.; Chen, Y.; Zuo, C.; Zhou, S.; Li, L.

    2012-08-15

    Graphical abstract: A two-layer porous NiO film is prepared via hydrothermal synthesis method based on monolayer polystyrene sphere template and shows noticeable Li battery performance with good cycle life and high capacity. Highlights: ► Two-layer porous NiO film is prepared via monolayer polystyrene spheres template. ► NiO film with high capacity as anode material for lithium ion batteries. ► Two-layer porous structure is favorable for fast lithium ion and electron transfer. -- Abstract: A two-layer porous NiO film is prepared by hydrothermal synthesis method through self-assembled monolayer polystyrene spheres template. The substructure of the NiO film is composed of ordered close-packed hollow-sphere array and the superstructure is made up of randomly NiO nanoflakes. The electrochemical properties are measured by galvanostatic charge/discharge tests and cyclic voltammetric analysis (CV). As anode material for lithium ion batteries, the two-layer porous NiO film exhibits high initial coulombic efficiency of 75%, high reversible capacity and rather good cycling performance. The discharge capacity of the two-layer porous NiO film is 501 mAh g{sup −1} at 0.5 C after 50 cycles. The two-layer porous architecture is responsible for the enhancement of electrochemical properties.

  13. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  14. Cellular Uptake Behavior of Fluorescein: Intercalated Layered Double Hydroxide

    NASA Astrophysics Data System (ADS)

    Tanaka, Miyuki; Aisawa, Sumio; Hirahara, Hidetoshi; Narita, Eiichi; Yin, Shu; Sato, Tsugio

    2012-06-01

    In order to define the ability of layered double hydroxide (LDH) as materials for drug delivery, fluorescein (Fluo) anion intercalated LDH (Fluo/LDH) was synthesized by hydrothermal treatment and observed the cellular uptake of the Fluo/LDH for mammalian cell (L929). The synthesized Fluo/LDH showed a LDH structure, high fluorescence and low cytotoxicity. According to the fluorescence, confocal and TEM images of cells, the Fluo/LDH seemed to be internalized into the L929 cell by cellular endocytosis and dissolved inside the cell to exhibit the fluorescence of cellular cytoplasm.

  15. Tunable magnetic resonance in double layered metallic structures.

    PubMed

    Zhou, L; Zhu, Y Y

    2011-12-01

    Double layered metallic gratings have been investigated both theoretically and experimentally. The authors have reported that tunable magnetic resonance (MR) can be achieved by modulating the vertical chirped width dh which could be controlled conveniently in the common electron and/or ion beam microfabrications. The linear relationship between MR wavelength and dh has been reported. By introducing the difference of electric and magnetic penetration depth, an analytic formula deduced from a modified LC model has shown good agreement with the simulation results, and an effective width for trapezoidal sandwiched microstructures has been presented. Our results may provide an alternative choice for tunable MR and broad bandwidth of magnetic metamaterials.

  16. Multi-ion Double Layers in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Alinejad, H.; Tribeche, M.

    2015-11-01

    A theoretical investigation is carried out to study the existence, formation and basic properties of ion acoustic (IA) double layers (DLs) in a magnetized bi-ion plasma consisting of warm/cold ions and Boltzmann distributed electrons. Based on the reductive perturbation technique, an extended Korteweg de-Vries (KdV) equation is derived. The propagation of two possible modes (fast and slow), and their evolution are investigated. The effects of obliqueness, magnitude of the magnetic field, ion concentration, polarity of ions, and ion temperature on the IA DL profile are analyzed, and then the ranges of parameters for which the IA DLs exist are investigated in details.

  17. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  18. The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion

    NASA Astrophysics Data System (ADS)

    Schoofs, Stan; Trompert, Ron A.; Hansen, Ulrich

    2000-03-01

    Horizontally layered structures can develop in porous or partially molten environments, such as hydrothermal systems, magmatic intrusions and the early Earth's mantle. The porosity φ of these natural environments is typically small. Since dissolved chemical elements unlike heat cannot diffuse through the solid rocks, heat and solute influence the interstitial fluid density in a different manner: heat advects slower than solute through the liquid by the factor φ, while diffusion of heat through the bulk porous medium is larger by the factor φ-1 times the ratio between the thermal and chemical diffusivities. By performing numerical experiments in which a rigid low-porosity medium is heated from below, we have studied the formation and evolution of layers in an initially stably stratified liquid. Growth of a convective layer through convective entrainment, the formation of a stable density interface on top of the layer and destabilization of the next layer are intimately linked. By monitoring the heat (solute) fluxes, it is observed that the transport of heat (solute) across the interface changes from convective entrainment towards a regime in which transfer is purely diffusive (dispersive). Because this transition occurs before the stage at which the lower layer arrives at the thermal equilibrium, we conclude that the layer growth stops when the density interface on top has grown sufficiently strong to keep the ascending plumes in the lower layer from convectively entraining more fluid from above. A simple balance between the most important forces, exerted on a fluid parcel in the lower layer, is proposed to determine this transition. This force balance also indicates whether a density interface keeps intact, migrates upwards or breaks down during the further evolution of the layered sequence. Finally, mechanical dispersion tends to increase transport of chemically dissolved elements across the density interface. Since this reduces the density difference between

  19. Buckling instability of circular double-layered graphene sheets.

    PubMed

    Natsuki, Toshiaki; Shi, Jin-Xing; Ni, Qing-Qing

    2012-04-04

    In this paper, we study the buckling properties of circular double-layered graphene sheets (DLGSs), using plate theory. The two graphene layers are modeled as two individual sheets whose interactions are determined by the Lennard-Jones potential of the carbon-carbon bond. An analytical solution of coupled governing equations is proposed for predicting the buckling properties of circular DLGSs. Using the present theoretical approach, the influences of boundary conditions, plate sizes, and buckling-mode shapes on the buckling behaviors are investigated in detail. The buckling stability is significantly affected by the buckling-mode shapes. As a result of van der Waals interactions, the buckling stress of circular DLGSs is much larger for the anti-phase mode than for the in-phase mode.

  20. A novel vibrational energy harvester with electric double layer electrets

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Iori, J.; Mitsuya, H.; Ishibashi, K.; Sano, C.; Toshiyoshi, H.; Fujita, H.

    2016-11-01

    We propose a new type of vibrational energy harvester with an electric double layer (EDL) electrets. Instead of using any external bias-voltage source or dielectric layer on top of the metal electrode to sustain EDL, we succeed to anchor the ions to polymer network to form the EDL electrets. By changing contact area between the EDL electrets and the electrode, large electric current is generated in the circuit. Owing to extremely large capacitance of the EDL electret, vibrational energy harvesters have the unique capability to leverage the high- density charge accumulation to the electrode and obtained current density becomes as high as 200 μA/cm2 with output voltage of 1V even with low frequency vibrations as low as 1 Hz.

  1. Natural convection in horizontal porous layers with localized heating from below

    SciTech Connect

    Prasad, V. ); Kulacki, F.A. )

    1987-08-01

    Convective flow of fluid through saturated porous media heated from below is of considerable interest, and has been extensively studied. Most of these studies are concerned with either infinite horizontal porous layers or rectangular (or cylindrical) porous cavities with adiabatic vertical walls. A related problem of practical importance occurs when only a portion of the bottom surface is heated and the rest of it is either adiabatic or isothermally cooled. This situation is encountered in several geothermal areas which consists of troughs of volcanic debris contained by walls of nonfragmented ignimbrite. Thus, the model region considered is a locally heated long trough of isotropic porous medium confined by impermeable and insulating surroundings. Also, the recent motivation to study this problem has come from the efforts to identify a geologic repository for nuclear waste disposal. The purpose of the present work is to consider the effects of aspect ratio and Rayleigh number on free convection heat transfer from an isothermal heat source centrally located on the bottom surface of a horizontal porous cavity.

  2. Structural characterisation of a layered double hydroxide nanosheet

    NASA Astrophysics Data System (ADS)

    Funnell, Nicholas P.; Wang, Qiang; Connor, Leigh; Tucker, Matthew G.; O'Hare, Dermot; Goodwin, Andrew L.

    2014-06-01

    We report the atomic-scale structure of a Zn2Al-borate layered double hydroxide (LDH) nanosheet, as determined by reverse Monte Carlo (RMC) modelling of X-ray total scattering data. This study involves the extension of the RMC method to enable structural refinement of two-dimensional nanomaterials. The refined LDH models show the intra-layer geometry in this highly-exfoliated phase to be consistent with that observed in crystalline analogues, with the reciprocal-space scattering data suggesting a disordered arrangement of the Zn2+ and Al3+ cations within the nanosheet. The approach we develop is generalisable and so offers a method of characterising the structures of arbitrary nanosheet phases, including systems that support complex forms of disorder within the nanosheets themselves.We report the atomic-scale structure of a Zn2Al-borate layered double hydroxide (LDH) nanosheet, as determined by reverse Monte Carlo (RMC) modelling of X-ray total scattering data. This study involves the extension of the RMC method to enable structural refinement of two-dimensional nanomaterials. The refined LDH models show the intra-layer geometry in this highly-exfoliated phase to be consistent with that observed in crystalline analogues, with the reciprocal-space scattering data suggesting a disordered arrangement of the Zn2+ and Al3+ cations within the nanosheet. The approach we develop is generalisable and so offers a method of characterising the structures of arbitrary nanosheet phases, including systems that support complex forms of disorder within the nanosheets themselves. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01265h

  3. Enhanced molecular dynamics for simulating porous interphase layers in batteries.

    SciTech Connect

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan

    2009-10-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  4. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  5. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  6. Physical properties of fixed-charge layer double hydroxides

    NASA Astrophysics Data System (ADS)

    Hines, D. R.; Solin, S. A.; Costantino, Umberto; Nocchetti, Morena

    2000-05-01

    The physical properties of a series of layer double hydroxides (LDH) of the form [(CO3)0.195(1-x)Cl0.39x(H2O)y]:[Zn0.61Al0.39(OH)2], 0<=x<=1, 0<=y<=(0.4+0.2x) have been studied. The hydration dynamics of these materials indicate that the guest layer water molecules form a hydration ring which defines the height of the solvated, nested Cl anion. The water molecules can tilt around their C2v axis such that the height of the solvated Cl ion is a function of the number of molecules forming the hydration ring. The composition dependence of the basal spacing, determined from x-ray-diffraction powder patterns measured as a function of humidity and temperature for these materials, is a function of both the Cl concentration (x) and the number of guest layer water molecules (y). Distinct basal spacing curves are observed for fully hydrated, partially hydrated, and dehydrated materials. At x=1 the Cl end-member material exhibits a change in stacking sequence from a 3R polytype to a 2H polytype upon dehydration. The dehydrated form of this material also exhibits a (3×3)R30° superlattice ordering of the Cl ions. Due to the nesting of the Cl ion and the active nature of the water molecules, the basal spacing vs x curve for the dehydrated materials is the only curve that can be fit by the discrete finite layer rigidity model. The interlayer rigidity parameter for LDH materials has been determined to be p=4.84+/-0.06 indicating that these materials are stiffer than class-II layered solids but not as stiff as class-III layered solids.

  7. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  8. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  9. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  10. Biodiesel synthesis using calcined layered double hydroxide catalysts

    SciTech Connect

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam; Santillan-Jimenez, Eduardo; Morgan, Tonya; Ji, Yaying; Crocker, Mark; Toops, Todd J

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sites active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.

  11. Partial double-layered patella in a nondysplasic adolescent.

    PubMed

    García-Mata, Serafín; Hidalgo-Ovejero, Angel

    2016-11-01

    Double-layered patella (DLP) is a rare patella-formation abnormality reported in association with multiple epiphyseal dysplasia. DLP is one of the five types of bipartite patella, caused by a coronal septum that divides the patella into anterior and posterior segments. Although the double layer of bone has been reported as complete, it may also manifest as partial, as in our case. A 13-year-old male patient attended A&E after accidentally falling and sustaining a direct injury to his left knee, with pain in the anterior surface of the right patella. He was diagnosed with an incomplete vertical fracture of the left patella. An axial view radiography indicated an external partial DLP. No bone dysplasia was found. Computed tomographic scan and MRI showed partial DLP and bone marrow oedema because of the injury in the femoral condyle, but no fracture. The reason for highlighting this type of patella abnormality is to present the case of a patient without bone dysplasia, either partial or incomplete, that has not been reported previously. We also wish to emphasize the importance of not confusing it with a fracture in standard radiographies.

  12. SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2012-09-20

    During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

  13. textsc{ELECTROMAGNETIC Effect Generated by Filtration of Fluid in Permeable Porous LAYER}

    NASA Astrophysics Data System (ADS)

    Fedoryshyn, O.

    2012-04-01

    An anomalous magnetic field can always be detected during the exploration of oil and artesian wells. The nature of the field is not completely understood as yet, but there is a reason to assume that it arises due to electro-kinetic effects in saturated porous mediums. The filtration theory studies motion of fluids or gases in porous mediums. Porous medium can be represented as a set of chaotically distributed pores interconnected by micro-channels and cracks. In this medium flow of fluid follows Darcy's law →q = -kgradp/η. Taking into account the equation of continuity, the equation of fluid filtration in saturated porous media will be (Barrenblatt G.I. 1972) Δp - cfη dp= 0. kK dt Here p is pressure, →q is fluid flow, K is its bulk module, η is its viscosity, cf is porosity of medium, k is permeability of porous medium. In order to determine the formational pressure and the fluid flow in a porous layer it is necessary to solve this differential equation for the desired boundary and initial conditions. We consider a cylindrical well in an infinite statistically homogeneous porous layer. As a result we obtain the distributions of pressure and fluid flow around the well. Electrically charged particles are always present on a boundary between solid and fluid phases in porous media. During the filtration, fluid can carry those particles along, generating an electric current therefore. The phenomenon is known as seismo-electric effect of type II. If a surface density of charge is ρe, density of an electro-kinetic current should be →j = ρe→q . A magnetic field caused by this current can be calculated according to the Biot-Savart-Laplace law. Although the magnetic field is much weaker than a magnetic field of Earth, modern high-sensitivity methods of measurement are capable of detecting such the fields, several orders of magnitude weaker than the Earth's. And indeed, such anomalous magnetic fields are detected in a vicinity of active wells, oil and artesian

  14. Structure and dynamics of electrical double layers in organic electrolytes.

    PubMed

    Feng, Guang; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF(4)) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA(+) and BF(4)(-) in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF(4-)ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA(+) and BF(4)(-) ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA(+) cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in good

  15. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui; Feng, Guang

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in

  16. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  17. Broadband quasi perfect absorption using chirped multi-layer porous materials

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Romero-García, V.; Cebrecos, A.; Picó, R.; Sánchez-Morcillo, V. J.; Garcia-Raffi, L. M.

    2016-12-01

    This work theoretically analyzes the sound absorption properties of a chirped multi-layer porous material including transmission, in particular showing the broadband unidirectional absorption properties of the system. Using the combination of the impedance matching condition and the balance between the leakage and the intrinsic losses, the system is designed to have broadband unidirectional and quasi perfect absorption. The transfer and scattering matrix formalism, together with numerical simulations based on the finite element method are used to demonstrate the results showing excellent agreement between them. The proposed system allows to construct broadband sound absorbers with improved absorption in the low frequency regime using less amount of material than the complete bulk porous layer.

  18. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  19. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  20. Synthesis of Water-Dispersible Single-Layer CoAl-Carbonate Layered Double Hydroxide.

    PubMed

    Li, Haiping; Tran, Thanh-Nhan; Lee, Byong-Jun; Zhang, Chunfei; Park, Jong-Deok; Kang, Tong-Hyun; Yu, Jong-Sung

    2017-06-21

    Despite extensive study on single-layer layered double hydroxides (SL-LDHs) with NO3(-) counterions, SL-LDHs with CO3(2-) counterions (CO3(2-) SL-LDHs) have never been prepared before. Herein, a CoAl-CO3(2-) SL-LDH which stays stable in water and powdery state is first synthesized using ethylene glycol as a reaction medium. The SL-LDH, with thickness of ∼0.85 nm, is composed of one Co(Al)O6 layer sandwiched between two CO3(2-) layers. The SL-LDH powder shows high specific surface area (∼289 m(2)/g) and excellent electrocatalytic oxygen evolution efficiency. This work provides the first simple way to prepare CO3(2-) SL-LDHs and will open an avenue for synthesizing other SL-LDHs.

  1. Synthesis and characterization of lawsone-lntercalated Zn-Al-layered double hydroxides.

    PubMed

    Yasin, Yamin; Ismail, Nur Mushirah; Hussein, Mohd Zobir; Aminudin, Norhaniza

    2011-06-01

    A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.

  2. Cooling by discrete and porous injection into a turbulent, supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Nardo, C. T.; Jaffe, N. A.; Covington, M. A.

    1974-01-01

    A summary is provided of an experimental investigation which was carried out to determine the cooling effectiveness of an injection of water through slotted and porous surfaces into a turbulent, supersonic boundary layer. Correlations, based on the experimental data and the supporting analysis, were incorporated into a computer-code model. The model is used to compute discrete injection coolant flow rate requirements for arbitrary slot sizes and heating environments.

  3. Cooling by discrete and porous injection into a turbulent, supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Nardo, C. T.; Jaffe, N. A.; Covington, M. A.

    1974-01-01

    A summary is provided of an experimental investigation which was carried out to determine the cooling effectiveness of an injection of water through slotted and porous surfaces into a turbulent, supersonic boundary layer. Correlations, based on the experimental data and the supporting analysis, were incorporated into a computer-code model. The model is used to compute discrete injection coolant flow rate requirements for arbitrary slot sizes and heating environments.

  4. Analysis of heat and mass transfer enhancement in porous material subjected to electric fields (effects of particle sizes and layered arrangement)

    SciTech Connect

    Chaktranond, Chainarong; Rattanadecho, Phadungsak

    2010-11-15

    This research experimentally investigates the influences of electrical voltage, particle sizes and layer arrangement on the heat and mass transfer in porous packed bed subjected to electrohydrodynamic drying. The packed bed consists of a single and double layers of glass beads, water and air. Sizes of glass beads are 0.125 and 0.38 mm in diameter. Electric fields are applied in the range of 0-15 kV. Average velocity and temperature of hot airflow are controlled at 0.33 m/s and 60 C, respectively. The results show that the convective heat transfer coefficient and drying rate are enhanced considerably with a Corona wind. In the single-layered case, due to effects of porosity, the packed bed containing small beads has capillary pressure higher than that with big beads, resulting in higher removal rate of water and higher rate of heat transfer. Considering the effect of capillary pressure difference, temperature distribution and removal rate of moisture in the double-layered case appear to be different than those observed in the single-layered case. Moreover, in the double-layered case, the fine-coarse packed bed gives drying rate higher than that given by the coarse-fine packed bed. (author)

  5. Role of barrier layer on dielectric function of graphene double layer system at finite temperature

    NASA Astrophysics Data System (ADS)

    Patel, Digish K.; Ambavale, Sagar K.; Prajapati, Ketan; Sharma, A. C.

    2016-05-01

    We have theoretically investigated the static dielectric function of graphene double layer system (GDLS) at finite temperatures within the random phase approximation. GDLS has been suspended on a substrate and barrier layer of three different materials; h-BN, Al2O3 and HfO2 has been introduced between two graphene sheets of GDLS. We have reported dependence of the overall dielectric function of GDLS on interlayer distance and the effect of the dielectric environment at finite temperatures. Results show close relation between changing environment and behavior of dielectric constant of GDLS.

  6. Characteristics of Double Tropopause Layers Observed During TORERO

    NASA Astrophysics Data System (ADS)

    Haggerty, J. A.; Mahoney, M. J.; Campos, T. L.; Pierce, B.; Volkamer, R. M.

    2012-12-01

    The existence of double tropopauses is indicated in data collected during the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) experiment in January - February 2012. Airborne remote and in situ measurements from the NSF/NCAR Gulfstream V place tropopause heights at ~12-13 km and ~16-17 km during oceanic flights westward and southward from Antofagasta, Chile. Coastal radiosonde profiles confirm the locations of these tropopause layers. Various measurements define and characterize the transition layer between the upper troposphere and lower stratosphere. The Microwave Temperature Profiler (MTP), a scanning radiometer which measures emitted radiation at three frequencies, provides temperature vertical structure over a layer several kilometers above and below the aircraft with vertical resolution sufficient to resolve the tropopause. Tropopause height as determined from the temperature profile is based on the cold point and lapse rate transitions. In situ measurements of trace gases such as ozone, carbon monoxide, and water vapor also provide distinct signatures at the tropopause, although the aircraft did not always reach sufficient altitudes to detect the second tropopause. Model profiles of temperature and trace gases were also generated by the Real-time Air Quality Modeling System (RAQMS) during TORERO. RAQMS is a global meteorological, chemical and aerosol assimilation/forecasting system that assimilates real-time stratospheric ozone retrievals from the Microwave Limb Sounder (MLS), total column ozone from the Ozone Monitoring Instrument (OMI), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, observations of the TORERO double tropopause features as defined by temperature and trace gas profiles are presented and compared to model-defined tropopause properties.

  7. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  8. The Unique Characteristics of Double Layered Ejecta Craters on Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Boyce, J. M.

    2004-12-01

    THEMIS VIS images reveal several unique characteristics of double layered ejecta (DLE) craters on Mars that suggest a strikingly different mode of formation from single layered ejecta (SLE) or multi-layered ejecta (MLE) craters. DLE craters are typically 15 to 25 km in diameter and differ from the other types of Martian craters in the following ways: (1) DLE craters lack secondary craters; (2) ejecta layers of DLE craters lack distal ramparts; (3) flow features within the outer layer of DLE craters suggest a very low emplacement velocity; and (4) radial striations exist only within DLE ejecta, and that these striations cross both the inner and outer ejecta layers. The interior morphology of DLE is also less complex than SLE or MLE layered ejecta craters; DLE craters lack wall terraces and, where present, have only simple central peaks. Previous morphologic analyses of DLE craters proposed that they might have formed in the volatile-rich sediments that are believed to infill areas such as Utopia, Arcadia and Acidalia Planitiae. But our inspection of the THEMIS VIS data set confirms the Viking-based results of Barlow and Perez (JGR-Planets, vol. 108 (E8), doi 10.1029/2002JE002036, 2003) that DLE craters are not uniquely located in the northern plains. We find that DLE craters with nearly identical morphologies also occur within the highlands of Mars, including Hesperia Planum, Icaria Planum, Arabia Terra, Noachis Terra, and Terra Sirenum. A few examples of DLE craters are found at a range of elevations between -5.8 km to +2.7 km relative to the MOLA datum, and within two latitudes belts between 23° to 52° N, and between 29° to 46° S. Thus some other mode of formation apart from impact into volatile-rich sediments of the northern plains needs to be identified. Through our on-going characterization of DLE craters with THEMIS VIS data, we hope to identify the attributes of these craters to help identify their unique mode of formation.

  9. Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2017-02-01

    Enhancement of the soft X-ray emission including free-free, free-bound and bound-bound emissions from Au nano-porous targets irradiated by single and double laser pulses is studied through numerical simulations. Laser pulses of duration 2 ns are used in calculations considering different prepulse intensities and a fixed intensity of 1013 Wcm-2 for the main pulse. The effects of prepulse intensity and time separation between laser pulses are studied for targets of different porosities. Results show that the X-ray yield can be enhanced significantly by a nano-porous target having optimum initial density. Such enhancement can be more improved when double laser pulses with appropriate delay time and intensities irradiate nano-porous targets. It is shown that the enhancement will be reduced when the prepulse intensity is greater than a specific value.

  10. Effects of a random porosity model on double diffusive natural convection in a porous medium enclosure

    SciTech Connect

    Fu, W.S.; Ke, W.W.

    2000-01-01

    A double diffusive natural convection in a rectangular enclosure filled with porous medium is investigated numerically. The distribution of porosity is based upon the random porosity model. The Darcy-Brinkman-Forchheimer model is used and the factors of heat flux, mean porosity and standard deviation are taken into consideration. The SIMPLEC method with iterative processes is adopted to solve the governing equations. The effects of the random porosity model on the distributions of local Nusselt number are remarkable and the variations of the local Nusselt number become disordered. The contribution of latent heat transfer to the total heat transfer of the high Rayleigh number is larger than that of the low Rayleigh number and the variations of the latent heat transfer are not in order.

  11. Fabrication of resistive switching memory structure using double-sided-anodized porous alumina

    NASA Astrophysics Data System (ADS)

    Morishita, Yoshitaka; Hosono, Takaya; Ogawa, Hiroto

    2017-05-01

    Double-sides of aluminum sheet were anodized; at first, one side (front-side) of aluminum sheet was anodized, and the pores were filled with nickel using electroplating technique. Next, the other side (back side) of aluminum sheet was anodized. After formation of electrodes on both sides of anodic porous alumina, the current-voltage characteristics were examined, and reversible change in the resistance between metallic and insulating states was measured during mono-polar operation. This switching behavior could be measured for the sample with the depth of backside pores of about 100 μm. The bias voltage, at which the resistance state changed into the lower-resistance state from the higher-resistance state, decreased with decreasing the depth of backside pores, and the bias voltage was about 1 V in the case of the backside pores of about 10 μm.

  12. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    NASA Astrophysics Data System (ADS)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  13. TbFeCo perpendicular magnetic recording media deposited on nanohole arrays of porous alumina layer

    NASA Astrophysics Data System (ADS)

    Tofizur Rahman, M.; Liu, Xiaoxi; Morisako, Akimitsu

    2006-04-01

    A nonlithographic fabrication method of magnetic nanodot array by using porous anodized alumina formed on a glass substrate is studied. We carried out anodic oxidation of a sputtered Al film at the anodic voltage in the range of 10-30 V, and found that the density of the nanohole arrays increased with the decrease in anodization voltage. On the other hand, hole diameter decreased with the decrease in anodic voltage. Then TbFeCo is deposited onto this porous array by sputtering with a thickness of around 20 nm and subsequently overcoated with 5 nm tungsten (W) for the protection from surface oxidation. The TbFeCo deposited on this porous layer shows complete perpendicular anisotropy. The coercivity increased with the decrease in anodization voltage as well as hole diameter. The coercivity of the TbFeCo deposited on the porous array with a mean hole diameter of around 15 nm is 4.3 kOe. The squareness ratio is also improved with the reduction of the hole diameter. From the angular dependence of coercivity, Hc, it is found that the Hc decreases gradually with the decrease of applied field angle from the perpendicular direction (easy axis) to in-plane direction (hard axis). This indicates that the magnetization reversal in the TbFeCo nanodot array occurs by Stoner-Wohlfarth model.

  14. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    SciTech Connect

    Laha, P. Terryn, H.; Ustarroz, J.; Nazarkin, M. Y. Gavrilov, S. A.; Volkova, A. V.; Simunin, M. M.

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  15. Transitioning from a single-phase fluid to a porous medium: a boundary layer approach

    NASA Astrophysics Data System (ADS)

    Dalwadi, Mohit P.; Chapman, S. Jon; Oliver, James M.; Waters, Sarah L.

    2014-11-01

    Pressure-driven laminar channel flow is a classic problem in fluid mechanics, and the resultant Poiseuille flow is one of the few exact solutions to the Navier-Stokes equations. If the channel interior is a porous medium (governed by Darcy's law) rather than a single-phase fluid, the resultant behaviour is plug flow. But what happens when these two flow regions are coupled, as is the case for industrial membrane filtration systems or biological tissue engineering problems? How does one flow transition to the other? We use asymptotic methods to investigate pressure-driven flow through a long channel completely blocked by a finite-length porous obstacle. We analytically solve for the flow at both small and large Reynolds number (whilst remaining within the laminar regime). The boundary layer structure is surprisingly intricate for large Reynolds number. In that limit, the structure is markedly different depending on whether there is inflow or outflow through the porous medium, there being six asymptotic regions for inflow and three for outflow. We have extended this result to a wide class of 3D porous obstacles within a Hele-Shaw cell. We obtain general boundary conditions to couple the outer flows, and find that these conditions are far from obvious at higher order.

  16. Weak localization in electric-double-layer gated few-layer graphene

    NASA Astrophysics Data System (ADS)

    Gonnelli, R. S.; Piatti, E.; Sola, A.; Tortello, M.; Dolcini, F.; Galasso, S.; Nair, J. R.; Gerbaldi, C.; Cappelluti, E.; Bruna, M.; Ferrari, A. C.

    2017-09-01

    We induce surface carrier densities up to  ˜7\\centerdot {{10}14} cm-2 in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30 K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab initio calculations we derive the dependence of transport, intervalley and phase coherence scattering lifetimes on total carrier density. We find that electron-electron scattering in the Nyquist regime is the main source of dephasing at temperatures lower than 30 K in the  ˜1013 cm-2 to  ˜7\\centerdot {{10}14} cm-2 range of carrier densities. With the increase of gate voltage, transport elastic scattering is dominated by the competing effects due to the increase in both carrier density and charged scattering centers at the surface. We also tune our devices into a crossover regime between weak and strong localization, indicating that simultaneous tunability of both carrier and defect density at the surface of electric double layer gated materials is possible.

  17. On the dielectric response of complex layered oxides: Mica-type silicates and layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Mehrotra, Vivek; Giannelis, Emmanuel P.

    1992-08-01

    The dielectric properties of mica-type silicates and layered double hydroxides have been studied in the pristine and various intercalated forms in the frequency range 101-107 Hz. A relaxation peak has been observed for the pristine silicate, whereas the pristine layered double hydroxide exhibits an anomalous low-frequency dispersion. The dielectric response is rationalized in terms of structural ordering and fluctuation of charge carriers as well as models invoking fractal time processes and fractal structure. The response is also related to the structure and mobility of the intercalated water molecules. In both pristine hosts, the predominant conduction mechanism is proton hopping between sites generated by a network of intercalated water molecules. Silicate intercalated with the insulating form of polyaniline exhibits an almost frequency-independent response. In the case of conducting polyaniline intercalated silicate, where polarons are the majority charge carriers, an anomalous low-frequency dispersion is observed and the response is typical of a metal-insulator composite. Finally, impedance measurements have been used to calculate the spatial disorder and/or surface irregularity of the host layers, expressed by the fractal dimension ds. The changes observed in ds upon intercalation of high-charge ions are correlated to the stacking disorder of the host layers.

  18. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    PubMed Central

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  19. Hybrid and biohybrid layered double hydroxides for electrochemical analysis.

    PubMed

    Mousty, Christine; Prévot, Vanessa

    2013-04-01

    Layered double hydroxides (LDH) are lamellar materials that have been extensively used as electrode modifiers. Nanostructured organic-inorganic materials can be designed by intercalation of organic or metallic complexes within the interlayer space of these materials or by the formation of composite materials based on biopolymers (alginate or chitosan) or biomolecules, such as enzymes. These hybrid or biohybrid materials have interesting properties applicable in electroanalytical devices. From an exhaustive review of the literature, the relevance of these hybrid and biohybrid LDH materials as electrode materials for electrochemical detection of species with an environmental or health impact is evaluated. The analytical characteristics (sensitivity and detection limit) of LDH-based amperometric sensors or biosensors are scrutinized.

  20. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  1. Limiting factors for carbon based chemical double layer capacitors

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.

    1993-01-01

    The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.

  2. Double-layer shocks in a magnetized quantum plasma

    SciTech Connect

    Misra, A. P.; Samanta, S.

    2010-09-15

    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves obliquely to an external magnetic field is reported in a quantum electron-positron-ion plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter H associated with the Bohm potential and the positron to electron density ratio {delta}. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.

  3. Biological evaluation of layered double hydroxides as efficient drug vehicles.

    PubMed

    Li, Yan; Liu, Dan; Ai, Hanhua; Chang, Qing; Liu, Dandan; Xia, Ying; Liu, Shuwen; Peng, Nanfang; Xi, Zhuge; Yang, Xu

    2010-03-12

    Recently there has been a rapid expansion of the development of bioinorganic hybrid systems for safe drug delivery. Layered double hydroxides (LDH), a variety of available inorganic matrix, possess great promise for this purpose. In this study, an oxidative stress biomarker system, including measurement of reactive oxygen species, glutathione content, endogenous nitric oxide, carbonyl content in proteins, DNA strand breaks and DNA-protein crosslinks, was designed to evaluate the biocompatibility of different concentrations of nano-Zn/Al-LDH with a Hela cell line. The drug delivery activity of the LDH-folic-acid complex was also assessed. The resulting data clearly demonstrated that nano-LDH could be applied as a relatively safe drug vehicle with good delivery activity, but with the caveat that the effects of high dosages observed here should not be ignored when attempting to maximize therapeutic activity by increasing LDH concentration.

  4. Layered double hydroxides: an attractive material for electrochemical biosensor design.

    PubMed

    Shan, Dan; Cosnier, Serge; Mousty, Christine

    2003-08-01

    Electrochemical biosensors for phenol determination were developed based on the immobilization of polyphenol oxidase (PPO) within two different clay matrixes, one anionic (layered double hydroxide, LDH) and the other cationic (Laponite). The biosensor based on the enzyme immobilized in [Zn-Al-Cl] LDH shows greater sensitivity (7807 mA M(-1) cm(-2)) and maximum current (492 microA cm(-2)). Biosensor characteristics, such as Michaelis-Menten constant, recycling constant, activation energy, and permeability highlight the advantages of LDH matrixes to immobilize PPO. It appears that LDH provides a favorable environment to PPO activity. The best PPO/[Zn-Al-Cl] configuration was used to determine five different phenol derivatives reaching extremely sensitive detection limits (< or = 1 nM).

  5. "Thermal Charging" Phenomenon in Electrical Double Layer Capacitors.

    PubMed

    Wang, Jianjian; Feng, Shien-Ping; Yang, Yuan; Hau, Nga Yu; Munro, Mary; Ferreira-Yang, Emerald; Chen, Gang

    2015-09-09

    Electrical double layer capacitors (EDLCs) are usually charged by applying a potential difference across the positive and negative electrodes. In this paper, we demonstrated that EDLCs can be charged by heating. An open circuit voltage of 80-300 mV has been observed by heating the supercapacitor to 65 °C. The charge generated at high temperature can be stored in the device after its returning to the room temperature, thus allowing the lighting up of LEDs by connecting the "thermally charged" supercapacitors in a series. The underlying mechanism is related to a thermo-electrochemical process that enhances the kinetics of Faradaic process at the electrode surface (e.g., surface redox reaction of functional group, or chemical adsorption/desorption of electrolyte ions) at higher temperature. Effects of "thermal charging" times, activation voltage, rate, and times on "thermally charged" voltage are studied and possible mechanisms are discussed.

  6. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  7. Layered double oxide (LDO) particle containing photoreactive hybrid layers with tunable superhydrophobic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Deák, Ágota; Janovák, László; Csapó, Edit; Ungor, Ditta; Pálinkó, István; Puskás, Sándor; Ördög, Tibor; Ricza, Tamás; Dékány, Imre

    2016-12-01

    Inorganic/organic hybrid layers have been prepared having superhydrophobic as well as photoreactive properties. The hybrid thin films with micro- and nanosized dual-scale surface roughness consist of ∼25 μm layered double oxide (LDO) photocatalyst particles and low surface energy poly(perfluorodecyl acrylate) [p(PFDAc)] fluoropolymer binder material. The application of [p(PFDAc)] resulted in the decrease in the surface free energy of the hydrophilic LDO. The structured surface LDO with ∼12% ZnO phase content were synthesized from layer double hydroxide (LDH) spheres. The determined excitation wavelength and the calculated band gap energy values were 386 nm and 3.23 eV, respectively. The hybrid thin films were prepared by a simple spray-coating method, which is a low-cost, fast and scalable film-forming technique. The surface roughness and also the wetting properties of the two-component hybrid layers proved to be finely adjustable by the LDO:fluoropolymer ratio. It was found that at 80-90 wt% LDO content, the thin films with a surface free energy value of ∼12 mJ/m2 displayed superhydrophobic behaviour (Θ > 150°) with satisfactory photocatalytic properties. This means special photoreactive surfaces with superhydrophobic properties instead of the conventional superhydropilic photocatalyst layers. According to the benzoic acid photodegradation test experiments of benzoic acid, the hybrid layers with 80-90 wt% LDO content photooxidized 22-24% of the initial test molecule concentration (0.17 g/L) under UV-A (λmax = 365 nm) illumination.

  8. Eddy turbulence, the double mesopause, and the double layer of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Vlasov, M. N.; Kelley, M. C.

    2012-01-01

    In this study, we consider the impact of eddy turbulence on temperature and atomic oxygen distribution when the peak of the temperature occurs in the upper mesosphere. A previous paper (Vlasov and Kelley, 2010) considered the simultaneous impact of eddy turbulence on temperature and atomic oxygen density and showed that eddy turbulence provides an effective mechanism to explain the cold summer and warm winter mesopause observed at high latitudes. Also, the prevalent role of eddy turbulence in this case removes the strong contradiction between seasonal variations of the O density distribution and the impact of upward/downward motion corresponding to adiabatic cooling/heating of oxygen atoms. Classically, there is a single minimum in the temperature profile marking the location of the mesopause. But often, a local maximum in the temperature is observed in the height range of 85-100 km, creating the appearance of a double mesopause (Bills and Gardner, 1993; Yu and She, 1995; Gusev et al., 2006). Our results show that the relative temperature maximum in the upper mesosphere (and thus the double mesopause) can result from heating by eddy turbulence. According to our model, there is a close connection between the extra temperature peak in the mesosphere and the oxygen atom density distribution. The main feature of the O density height profile produced by eddy turbulence in our model is a double peak instead of a single peak of O density. A rocket experiment called TOMEX confirms these results (Hecht et al., 2004). Applying our model to the results of the TOMEX rocket campaign gives good agreement with both the temperature and oxygen profiles observed. Climatology of the midlatitude mesopause and green line emission shows that the double mesopause and the double layers of the green line emission, corresponding to the double O density height profile, are mainly observed in spring and fall (Yu and She, 1995; Liu and Shepherd, 2006). Further observations of the oxygen atom

  9. Some dynamical properties of very strong double layers in a triple plasma device

    NASA Technical Reports Server (NTRS)

    Carpenter, T.; Torven, S.

    1987-01-01

    Dynamical properties of very strong double layers seen in a differentially pumped triple plasma device are reported. These double layers are V-shaped. The following findings are discussed: (1) Disruptions in the double layer potential and in the plasma current occur when an inductance is placed in series with the bias supply between the sources in the external circuit. These disruptions, which can be highly periodic, are the result of a negative resistance region. (2) When reactances in the circuit are minimized, the double layer exhibits a jitter motion in position approximately equal to the double layer thickness. (3) When the bias between the sources is rapidly turned on, the initial phase in the double layer formation is the occurrence of a constant electric field for the first few microseconds. First the apparatus used in all of the work is discussed and then each of the three phenomena are considered.

  10. Stability of Water Ice Beneath Porous Dust Layers of the Martian South Polar Terrain

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Skorov, Yu. V.; Markiewicz, W. J.; Basilevsky, A. T.

    2000-08-01

    The analysis of the Viking Infrared Thermal Mapper (IRTM) data show that the surface layers of the Mars south polar layered deposits have very low thermal inertia between 75 and 125 J/(sq m)(s-1/2)(K-1). This is consistent with the assumption that the surface is covered by a porous layer of fine dust. Paige and Keegan determined a slightly higher value based on a thermal model similar to that of Kieffer et al. In this model the heat transfer equation is used to estimate the thickness of the layer that protects the ground ice from seasonal and diurnal temperature variations. The physical properties of the layer are unimportant as long as it has a low thermal inertia and conductivity and keeps the temperature at the ice boundary low enough to prevent sublimation. A thickness between 20 and 4 cm was estimated. This result can be considered to be an upper limit. We assume the surface to be covered by a porous dust layer and consider the gas diffusion through it, from the ground ice and from the atmosphere. Then the depth of the layer is determined by the mass flux balance of subliming and condensing water and not by the temperature condition. The dust particles in the atmosphere are of the order 1 gm. On the surface we can expect larger grains (up to sand size). Therefore assuming an average pore size of 10 gm, a volume porosity of 0.5, a heat capacity of 1300 J/(kg-1)(K-1) leads to a thermal inertia of approx. 80 J/(sq m)(s-1/2)(K-1). With these parameters a dust layer of only 5 mm thickness is found to establish the flux balance at the ice-dust interface during spring season in the southern hemisphere at high latitudes (where Mars Polar Lander arrived). The diurnal temperature variation at the ice-dust surface is shown. The maximum of 205 K well exceeds the sublimation temperature of water ice at 198 K under the atmospheric conditions. The corresponding vapour flux during the last day is shown together with the flux condensing from the atmosphere. The calculations

  11. Vorticity Transport in a Two Layer, Double Gyre Ocean Basin

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan; Clayson, Carol Anne; Jayne, Steve

    2016-11-01

    The double gyre ocean circulations predicted by strongly frictional, barotropic, linearized ocean models qualitatively agree with the patterns of large scale gyres in the world ocean. However, nonlinear ocean models featuring less intense eddy diffusion parameterization can converge to an infinite number of statistically stationary circulations, depending on the parameterization of dissipation of energy and vorticity. Patterns of vorticity flux and dissipation in a barotropic ocean have been examined previous studies; in this work the inclusion of the first baroclinic mode is examined. The first vertical mode permits the model to be split into two layers, the top approximating the thermocline and the bottom approximating the abyssal circulation. The separation into two layers not only adds realism and but also removes the nonphysical direct restraint of the upper ocean by bottom friction. Steady state circulations for various boundary conditions, sources and sinks of vorticity, and Reynolds numbers are simulated using a parallel pseudo-spectral quasi-geostrophic flow solver and mechanisms of vorticity flux and dissipation are discussed.

  12. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  13. Layered double hydroxides as anion- and cation-exchanging materials

    NASA Astrophysics Data System (ADS)

    Richardson, Mickey Charles

    2007-12-01

    Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.

  14. Plasmons in spatially separated double-layer graphene nanoribbons

    SciTech Connect

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-07

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  15. Propagation characteristics of ion-acoustic double layer in multicomponent inhomogeneous auroral zone plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Harvinder; Gill, Tarsem Singh; Bala, Parveen

    2017-08-01

    In the present investigation, ion-acoustic double layers in an inhomogeneous plasma consisting of Maxwellian and non-thermal distributions of electrons are studied. We have derived a modified Korteweg-de Vries (mKdV) equation for ion-acoustic double layers propagating in a collisionless inhomogeneous plasma. It is observed that the non-thermal parameters affect the amplitude and width of the double layer which further depend on the density.

  16. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics.

    PubMed

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L

    2016-04-14

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g(-1) is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.

  17. Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic

    NASA Astrophysics Data System (ADS)

    Bovand, M.; Rashidi, S.; Esfahani, J. A.; Saha, S. C.; Gu, Y. T.; Dehesht, M.

    2016-03-01

    The present study focuses on the analysis of two-dimensional Magnetohydrodynamic (MHD) flow past a circular cylinder wrapped with a porous layer in different laminar flow regimes. The Darcy-Brinkman-Forchheimer model has been used for simulating flow in porous medium using finite volume based software, Fluent 6.3. In order to analyze the MHD flow, the mean and instantaneous drag and lift coefficients and stream patterns are computed to elucidate the role of Stuart number, N and Darcy number, Da. It is revealed that the magnetic fields are capable to stabilize flow and suppress the vortex shedding of vortices. The N-Re plane shows the curves for separating steady and periodic flow regimes, Ncr and disappearing of vortex, Ndiss. For validate the solution, the obtained CD and St are compared with available results of literature.

  18. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  19. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  20. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization.

    PubMed

    Ali, Ghafar; Kim, Hyun Jin; Kim, Jae Joon; Cho, Sung Oh

    2014-04-07

    Double-walled TiO2 nanotubes with porous wall morphologies are fabricated by anodization under ultraviolet (UV) irradiation. TiO2 formed by anodization of Ti is activated to generate electrons and holes by UV and the anodization process is influenced by the photo-generated charges. As a consequence, morphologies of the fabricated TiO2 nanotubes can be adjusted by controlling the UV illumination. Double-walled TiO2 nanotubes or single-walled nanotubes can be selectively formed by switching on/off the UV illumination. The thickness of the inner and outer walls of the double-walled nanotubes can be tailored by changing the UV power. Due to their larger surface areas compared to single-walled nanotubes, the porous double-walled nanotubes exhibit an enhanced photo-degradation rate for methylene blue (MB). The mechanism of the porous double-walled TiO2 nanotubes is proposed based on the photoactive semiconducting property of the as-growing TiO2 nanotubes under UV.

  1. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location

    NASA Astrophysics Data System (ADS)

    Lukashevich, S. V.; Morozov, S. O.; Shiplyuk, A. N.

    2016-09-01

    The effect of the location of a passive porous coating on natural disturbances in a hypersonic boundary layer is studied experimentally. The experiments are performed in the flow around a sharp cone aligned at a zero angle of attack with the free-stream Mach number M∞ = 5.8, stagnation temperature T 0 = 370 ± 5 K, and unit Reynolds numbers Re1∞ = 2.6 · 106, 4.6 · 106, 6.6 · 106, and 107 m-1. The wave characteristics of the boundary layer are calculated with the use of the linear stability theory for flow parameters corresponding to experimental values. A comparison of experimental and predicted results shows that the presence of a porous coating in the region where the second mode is unstable leads to reduction of its amplitude at the measurement point, whereas the presence of a porous coating in the region of second mode stability leads to enhancement of the amplitude.

  2. Selective layer-by-layer self-assembly on patterned porous films modulated by Cassie-Wenzel transition.

    PubMed

    Ke, Bei-Bei; Wan, Ling-Shu; Li, Yang; Xu, Ming-Yao; Xu, Zhi-Kang

    2011-03-21

    We describe a robust and facile approach to the selective modification of patterned porous films via layer-by-layer (LBL) self-assembly. Positively charged honeycomb-patterned films were prepared from polystyrene-block-poly(N,N-dimethyl-aminoethyl methacrylate) (PS-b-PDMAEMA) and a PS/PDMAEMA blend by the breath figure method followed by surface quaternization. Alginate and chitosan were alternately deposited on the films via LBL self-assembly. The assembly on the PS-b-PDMAEMA film exhibits two stages with different growth rates, as elucidated by water contact angles, fluorescence microscopy, and quartz crystal microbalance results. The assembly can be controlled on the top surface or across all surfaces of the film by changing the number of deposition cycles. We confirm that there exists a Cassie-Wenzel transition with an increase in deposition cycles, which is responsible for the tunable assembly. For the PS/PDMAEMA film, the pores can be completely wetted and the polyelectrolytes selectively assemble inside the pores, instead of on the top surface. The controllable selective assembly forms unique hierarchical structures and opens a new route for surface modification of patterned porous films.

  3. Performance analysis of double pass solar air heater with packed bed porous media in Rajshahi

    NASA Astrophysics Data System (ADS)

    Roy, Amit; Hoque, Md. Emdadul

    2017-06-01

    This paper depicts the experimental analysis to investigate the performance of steel wire mesh as porous media of double pass solar air heater in the city of Rajshahi, Bangladesh. The study includes the effect of mass flow rate, wire mesh in the bottom channel, temperature differences and thermal efficiency of a double pass solar air heater. The results show that the efficiency increases with increasing mass flow rate though temperature difference for higher mass flow rate get decreases. The mass flow rate used in this experiment varies from 0.0116 kg/s to 0.0251 kg/s. The optimum temperature difference was found to be 62.4°C for mass flow rate 0.0116 kg/s where the minimum temperature difference was 42.75°C for 0.0251 kg/s. The maximum collector efficiency was observed to be 82.2% at a temperature difference of 42.75°C for mass flow rate of 0.0251 kg/s and solar intensity 1000 W/m2. From the experiment it is clear that solar air heater with steel wire mesh has the potential to heat the air with reasonable high performance.

  4. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  5. Single-particle thermal diffusion of charged colloids: double-layer theory in a temperature gradient.

    PubMed

    Dhont, J K G; Briels, W J

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that includes a small temperature gradient. There are three forces that constitute the total thermophoretic force on a charged colloidal sphere due to the presence of its double layer: i) the force F W that results from the temperature dependence of the internal electrostatic energy W of the double layer, ii) the electric force Fel with which the temperature-induced non-spherically symmetric double-layer potential acts on the surface charges of the colloidal sphere and iii) the solvent-friction force Fsol on the surface of the colloidal sphere due to the solvent flow that is induced in the double layer because of its asymmetry. The force F W will be shown to reproduce predictions based on irreversible-thermodynamics considerations. The other two forces Fel and Fsol depend on the details of the temperature-gradient-induced asymmetry of the double-layer structure which cannot be included in an irreversible-thermodynamics treatment. Explicit expressions for the thermal diffusion coefficient are derived for arbitrary double-layer thickness, which complement the irreversible-thermodynamics result through the inclusion of the thermophoretic velocity resulting from the electric- and solvent-friction force.

  6. On The Physical Mechanism At The Origin Of Multiple Double Layers Appearance In Plasma

    SciTech Connect

    Dimitriu, D. G.; Gurlui, S.; Aflori, M.; Ivan, L. M.

    2006-01-15

    Double layer in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charges, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a double layer structure is to positively bias an electrode immersed into stable plasma. Under certain experimental conditions, a more complex structure in form of two or more subsequent double layers was observed, which was called multiple double layers. It appears as several bright and concentric plasma shells attached to the electrode. The successive double layers are located at the abrupt changes of luminosity between two adjacent plasma shells. However, if the electrode is large, the multiple double layers structure appears non-concentrically, as a network of plasma spots, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is confined by an electrical double layer. Here, we will present experimental results on the appearance and dynamics of concentric, as well as non-concentric multiple double layers. The results prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism, the electron-neutral impact excitations and ionizations play the key role.

  7. Growth and characterization of organic layers deposited on porous-patterned Si surface

    NASA Astrophysics Data System (ADS)

    Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz

    2016-12-01

    The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.

  8. Synthesis and sorption properties of porous layers of cyclames on a modified polyvinyl chloride surface

    NASA Astrophysics Data System (ADS)

    Tsivadse, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Shapokhina, O. P.

    2012-03-01

    The structure and adsorption properties of the porous layers of synthesized ethanol-cyclames and sodium acetate cyclames on a surface of polyvinyl chloride (PVC) encapsulating fibers of the asbestos tissue of chrysotile asbestos are studied. It is established that PVC is linked to the silicon-oxygen chains of magnesium hydrosilicate; the capsule ensures the stability of the asbestos tissue under the action of the concentrated solutions of acids and alkalis; its exterior reproduces the fiber surface and has a typical microrelief; and there are voids in the layers. We conclude that the specific surface of layers and the volume of the adsorption space are larger than those of the initial fibers, and the statistical capacity upon the adsorption of water vapor and polar and nonpolar organic molecules depends on the nature and affinity for cyclames.

  9. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  10. A numerical study of double-diffusive flow in a long rotating porous channel

    NASA Astrophysics Data System (ADS)

    Alhusseny, Ahmed; Turan, A.

    2015-04-01

    The problem of double-diffusive flow in a long rotating porous channel has been analysed numerically. The two opposite vertical walls of the channel are maintained at constant but different temperature and concentration, while both horizontal walls are kept insulated. The generalised model is used to mathematically simulate the momentum equations with employing the Boussinesq approximation for the density variation. Moreover, both the fluid and solid phases are assumed to be at a local thermal equilibrium. The Coriolis effect is considered to be the main effect of rotation, which is induced by means of the combined natural heat and mass transfer within the transverse plane. The governing equations are discretised according to the finite volume method with employing the hybrid differencing scheme to calculate the fluxes across the faces of each control volume. The problem of pressure-velocity coupling is sorted out by relying on PISO algorithm. Computations are performed for a wide range of dimensionless parameters such as Darcy-Rayleigh number (100 ≤ Ra* ≤ 10,000), Darcy number (10-6 ≤ Da ≤ 10-4), the buoyancy ratio (-10 ≤ N ≤ 8), and Ekman number (10-7 ≤ Ek ≤ 10-3), while the values of Prandtl and Schmidt numbers are maintained constant and equal to 1.0. The results reveal that the rotation seems to have a dominant role at high levels of porous medium permeability, where it reduces the strength of the secondary flow, and hence the rates of heat and mass transfer. However, this dominance decreases gradually with lessening the permeability for the same level of rotation, but does not completely vanish.

  11. Measurement of capillary pressure in fuel cell diffusion media, micro-porous layers, catalyst layers, and interfaces

    NASA Astrophysics Data System (ADS)

    LaManna, Jacob M.; Bothe, James V.; Zhang, Feng Yuan; Mench, Matthew M.

    2014-12-01

    In this work, semi-empirical Leverett J-Function relationships relating capillary pressure and water saturation are experimentally derived for commercial and experimental polymer electrolyte fuel cell materials developed for automotive applications. Relationships were derived for Mitsubishi Rayon Corp. (MRC) U105 and General Motors (GM) experimental high tortuosity diffusion media (DM), the micro-porous layer (MPL), and the catalyst layer (CL). The standard Leverett J-Function under-predicted drainage curves for the DM at high saturation levels and significantly under-predicted the capillary pressure requirements for the MPL and CL across the entire saturation range. Composite structures were tested to understand interfacial effects for DM|MPL and MPL|CL. Each additional layer was found to superimpose its effects on capillary pressure onto the previous layers. The MPL formulation tested increased in porosity from a 136 nm peak average to a 153 nm peak average with increased surface porosity of the substrate. Additionally, small voids and pockets that accumulate liquid water were found to exist in the MPL|CL interface. The results of this work are useful for computational modelers seeking to enhance the resolution of their macroscopic multi-phase flow models which underestimate capillary pressure using the standard Leverett J-Function.

  12. Unsteady boundary layer flow over a sphere in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohammad, Nurul Farahain; Waini, Iskandar; Kasim, Abdul Rahman Mohd; Majid, Nurazleen Abdul

    2017-08-01

    This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to attain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the nonsimilar governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph.

  13. Large-scale simulations of layered double hydroxide nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  14. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  15. Illustrating the processability of magnetic layered double hydroxides: layer-by-layer assembly of magnetic ultrathin films.

    PubMed

    Coronado, E; Martí-Gastaldo, C; Navarro-Moratalla, E; Ribera, A; Tatay, S

    2013-05-20

    We report the preparation of single-layer layered double hydroxide (LDH) two-dimensional (2D) nanosheets by exfoliation of highly crystalline NiAl-NO3 LDH. Next, these unilamellar moieties have been incorporated layer-by-layer (LbL) into a poly(sodium 4-styrenesulfonate)/LDH nanosheet multilayer ultrathin film (UTF). Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-vis), and X-ray diffraction (XRD) profiles have been used to follow the uniform growth of the UTF. The use of a magnetic LDH as the cationic component of the multilayered architecture enables study of the resulting magnetic properties of the UTFs. Our magnetic data show the appearance of spontaneous magnetization at ∼5 K, thus confirming the effective transfer of the magnetic properties of the bulk LDH to the self-assembled film that displays glassy-like ferromagnetic behavior. The high number of bilayers accessible-more than 80-opens the door for the preparation of more-complex hybrid multifunctional materials that combine magnetism with the physical properties provided by other exfoliable layered inorganic hosts.

  16. [Sorption of nitrobenzene to anionic surfactant modified layered double hydroxides].

    PubMed

    Xia, Yan; Zhu, Run-Liang; Tao, Qi; Liu, Han-Yang

    2013-01-01

    Sodium dodecyl sulfate (SDS) modified MgAl layered double hydroxides (LDHs) were synthesized at different surfactant concentrations (0.5-2.0 TAEC) by the co-precipitation method. The LDH-DS samples obtained were characterized by powder X-ray diffraction and FT-IR spectroscopy. The results showed that SDS was successfully intercalated into the interlayer of the LDH, and the basal spacing was expanded from 0.80 nm to 3.98 nm. The intercalated SDS was considered consistent with a paraffin bilayers arrangement. The sorption of nitrobenzene on LDH-DS was examined, and the results showed that linear model could fit the sorption isotherms well (R2 > 0.99), which implied a partitioning sorption process. The sorption coefficient of nitrobenzene (K(d)) on LDH-DS was positively related to the DS - loading amount, but the organic carbon content normalized sorption coefficient of nitrobenzene (K(oc)) was shown to remain relatively constant. The sorption thermodynamics results showed that the sorption of nitrobenzene on LDH-DS was an endothermic process, and the increase of entropy was the driving force for the sorption process.

  17. Novel synthesis of layered double hydroxides (LDHs) from zinc hydroxide

    NASA Astrophysics Data System (ADS)

    Meng, Zilin; Zhang, Yihe; Zhang, Qian; Chen, Xue; Liu, Leipeng; Komarneni, Sridhar; Lv, Fengzhu

    2017-02-01

    The most common synthesis methods for layered double hydroxides (LDHs) are co-precipitation and reconstruction, which can have some limitations for application. Here, we report a novel synthesis method for LDHs. We use zinc hydroxide as the precursor to synthesize LDHs phase through a simple transformation process of zinc hydroxide phase. For this transformation process, aluminum can enter into zinc hydroxide and replace zinc quickly to transform it into LDH by creating positive charges in the zinc hydroxide solid phase. The mechanism of LDH formation was through Al3+ reaction first with zinc hydroxide followed by recrystallization of the original structure of zinc hydroxide. Thus, the new process of LDH formation involves a reaction of Al to substitute for Zn and recrystallization leading to LDH and the final pH influences the crystallization of LDHs by this process. In addition, Cr3+ was employed as a trivalent cation for LDH formation to react with zinc hydroxide, which also led to LDH structure.

  18. Layered double hydroxide nanoparticles in gene and drug delivery.

    PubMed

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  19. High performance spiro ammonium electrolyte for Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    DeRosa, Donald; Higashiya, Seiichiro; Schulz, Adam; Rane-Fondacaro, Manisha; Haldar, Pradeep

    2017-08-01

    The smallest spiro ammonium salt reported to date, 1 M 4-Axoniaspiro[3,4]octane tetrafluoroborate (APBF4), was successfully synthesized and investigated as the electrolyte with acetonitrile (AN) in an Electric Double Layer Capacitor (EDLC) for the first time. The electrochemical characteristics of EDLC devices containing 1 M APBF4/AN paired with commercial activated carbon electrodes were compared to devices containing popular EDLC electrolytes, 1 M 5-Azoniaspiro[4.4]nonane tetrafluoroborate (SBPBF4/AN) and 1 M tetraethyl ammonium tetrafluoroborate (TEABF4/AN), using cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS). The average gravimetric capacitance of the 1 M APBF4 device (124.7 F g-1) was found to be greater than the values measured for both the 1 M SBPBF4 device (108.6 F g-1) and the 1 M TEABF4 device (99.2 F g-1). The direct current equivalent series resistance (ESR) of the 1 M APBF4 device (383.4 mΩ cm-2) was found to be substantially lower than the values measured for both the 1 M SBPBF4 device (501.0 mΩ cm-2) and the 1 M TEABF4 device (710.8 mΩ cm-2). These results demonstrate that APBF4, when compared to current commercial electrolytes, significantly enhances the energy storage properties of EDLC devices.

  20. Lubrication approximation in completed double layer boundary element method

    NASA Astrophysics Data System (ADS)

    Nasseri, S.; Phan-Thien, N.; Fan, X.-J.

    This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.

  1. Dislocated double-layer metal gratings: an efficient unidirectional coupler.

    PubMed

    Liu, Tianran; Shen, Yang; Shin, Wonseok; Zhu, Qiangzhong; Fan, Shanhui; Jin, Chongjun

    2014-07-09

    We propose theoretically and demonstrate experimentally a dislocated double-layer metal grating structure, which operates as a unidirectional coupler capable of launching surface plasmon polaritons in a desired direction under normal illumination. The structure consists of a slanted dielectric grating sandwiched between two gold gratings. The upper gold grating has a nonzero lateral relative displacement with respect to the lower one. Numerical simulations show that a grating structure with 7 periods can convert 49% of normally incident light into surface plasmons with a contrast ratio of 78 between the powers of the surface plasmons launched in two opposite directions. We explain the unidirectional coupling phenomenon by the dislocation-induced interference of the diffracted waves from the upper and lower gold gratings. Furthermore, we developed a simple and cost-effective technique to fabricate the structure via tilted two-beam interference lithography and subsequent shadow deposition of gold. The experimental results demonstrate a coupling efficiency of 36% and a contrast ratio of 43. The relatively simple periodic nature of our structure lends itself to large-scale low-cost fabrication and simple theoretical analysis. Also, unlike the previous unidirectional couplers based on aperiodic structures, the design parameters of our unidirectional coupler can be determined analytically. Therefore, this structure can be an important component for surface-plasmon-based nanophotonic circuits by providing an efficient interface between free-space and surface plasmon waves.

  2. Stable electrolyte for high voltage electrochemical double-layer capacitors

    DOE PAGES

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; ...

    2016-12-28

    A simple electrolyte consisting of NaPF6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na+), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density at moderate power.more » The conductivity of NaPF6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less

  3. Stable electrolyte for high voltage electrochemical double-layer capacitors

    SciTech Connect

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; Cheng, Shiwang; Delnick, Frank M.; Zawodzinski, Thomas A.; Nanda, Jagjit

    2016-12-28

    A simple electrolyte consisting of NaPF6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na+), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density at moderate power. The conductivity of NaPF6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.

  4. Fast charging self-powered electric double layer capacitor

    NASA Astrophysics Data System (ADS)

    Parida, Kaushik; Bhavanasi, Venkateswarlu; Kumar, Vipin; Wang, Jiangxin; Lee, Pooi See

    2017-02-01

    Self-powered electrochemical energy storage devices, which store energy upon application of mechanical force, have emerged as a promising technology for the realization of autonomous systems for maintenance-free, independent and multifunctional operations. However, the existing state-of-the-art technology demonstrates slow self-charging due to slow Faradaic reactions and intercalation mechanism. Here, we report a fast self-charging, self-powered electrochemical energy storage device owing to the formation of an electric double layer with fast adsorption and desorption of ions at the carbon nanotube (CNT) electrode upon application of mechanical force. The device charges up to 70 mV from the open-circuit potential, storing a capacitance of 95 μFcm-2 upon application of a mechanical pressure of 70 N at a frequency of 5 Hz. More importantly, it takes less than 10 s to achieve 90% of the increment in the potential (60 mV), which is more than one order of magnitude faster than all of the previously reported self-powered energy storage devices.

  5. Field-Induced Superconductivity in Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-03-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induced superconductivity using an FET device, with a particular focus on the latest advances in EDL transistors.

  6. Junction conditions in quadratic gravity: thin shells and double layers

    NASA Astrophysics Data System (ADS)

    Reina, Borja; Senovilla, José M. M.; Vera, Raül

    2016-05-01

    The junction conditions for the most general gravitational theory with a Lagrangian containing terms quadratic in the curvature are derived. We include the cases with a possible concentration of matter on the joining hypersurface—termed as thin shells, domain walls or braneworlds in the literature—as well as the proper matching conditions where only finite jumps of the energy-momentum tensor are allowed. In the latter case we prove that the matching conditions are more demanding than in general relativity. In the former case, we show that generically the shells/domain walls are of a new kind because they possess, in addition to the standard energy-momentum tensor, a double layer energy-momentum contribution which actually induces an external energy flux vector and an external scalar pressure/tension on the shell. We prove that all these contributions are necessary to make the entire energy-momentum tensor divergence-free, and we present the field equations satisfied by these energy-momentum quantities. The consequences of all these results are briefly analyzed.

  7. Methotrexate intercalated ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  8. Bionanocomposites based on layered double hydroxides as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Aranda, Pilar; Alcântara, Ana C. S.; Ribeiro, Ligia N. M.; Darder, Margarita; Ruiz-Hitzky, Eduardo

    2012-10-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biopolymers to produce bionanocomposites, able to act as effective drug delivery systems (DDS). Ibuprofen (IBU) and 5-aminosalicylic acid (5-ASA) have been chosen as model drugs, being intercalated in a Mg-Al LDH matrix. On the one side, the LDHIBU intercalation compound prepared by ion-exchange reaction was blended with the biopolymers zein, a highly hydrophobic protein, and alginate, a polysaccharide widely applied for encapsulating drugs. On the other side, the LDH- 5-ASA intercalation compound prepared by co-precipitation was assembled to the polysaccharides chitosan and pectin, which show mucoadhesive properties and resistance to acid pH values, respectively. Characterization of the intercalation compounds and the resulting bionanocomposites was carried out by means of different experimental techniques: X-ray diffraction, infrared spectroscopy, chemical and thermal analysis, as well as optical and scanning electron microscopies. Data on the swelling behavior and drug release under different pH conditions are also reported.

  9. Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.

    1981-01-01

    A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.

  10. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Shepherd, Gordon G.; Tang, Yuanhe; Bu, Lingbing; Wang, Zhen

    2017-02-01

    Double-layer structures in polar mesospheric clouds (PMCs) are observed by using Solar Occultation for Ice Experiment (SOFIE) data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH) and Southern Hemisphere (SH) respectively. Double-layer PMCs almost always have less mean ice water content (IWC) than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs') potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  11. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  12. Theory of volumetric capacitance of an electric double-layer supercapacitor.

    PubMed

    Skinner, Brian; Chen, Tianran; Loth, M S; Shklovskii, B I

    2011-05-01

    Electric double-layer supercapacitors are a fast-rising class of high-power energy storage devices based on porous electrodes immersed in a concentrated electrolyte or ionic liquid. As yet there is no microscopic theory to describe their surprisingly large capacitance per unit volume (volumetric capacitance) of ~100 F/cm(3), nor is there a good understanding of the fundamental limits on volumetric capacitance. In this paper we present a non-mean-field theory of the volumetric capacitance of a supercapacitor that captures the discrete nature of the ions and the exponential screening of their repulsive interaction by the electrode. We consider analytically and via Monte Carlo simulations the case of an electrode made from a good metal and show that in this case the volumetric capacitance can reach the record values. We also study how the capacitance is reduced when the electrode is an imperfect metal characterized by some finite screening radius. Finally, we argue that a carbon electrode, despite its relatively large linear screening radius, can be approximated as a perfect metal because of its strong nonlinear screening. In this way the experimentally measured capacitance values of ~100 F/cm(3) may be understood.

  13. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering.

    PubMed

    Guduric, Vera; Metz, Carole; Siadous, Robin; Bareille, Reine; Levato, Riccardo; Engel, Elisabeth; Fricain, Jean-Christophe; Devillard, Raphaël; Luzanin, Ognjan; Catros, Sylvain

    2017-05-01

    The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL) bioassembly is based on "bottom-up" approach, which considers assembly of small cellularized blocks. The aim of this work was to evaluate proliferation and differentiation of human bone marrow stromal cells (HBMSCs) and endothelial progenitor cells (EPCs) in two and three dimensions (2D, 3D) using a LBL assembly of polylactic acid (PLA) scaffolds fabricated by 3D printing. 2D experiments have shown maintain of cell viability on PLA, especially when a co-cuture system was used, as well as adequate morphology of seeded cells. Early osteoblastic and endothelial differentiations were observed and cell proliferation was increased after 7 days of culture. In 3D, cell migration was observed between layers of LBL constructs, as well as an osteoblastic differentiation. These results indicate that LBL assembly of PLA layers could be suitable for BTE, in order to promote homogenous cell distribution inside the scaffold and gene expression specific to the cells implanted in the case of co-culture system.

  14. Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices

    NASA Astrophysics Data System (ADS)

    Starly, Binil

    Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.

  15. Numerical modeling and analysis of micro-porous layer effects in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kang, Kyungmun; Ju, Hyunchul

    It is well known that a micro-porous layer (MPL) plays a crucial role in the water management of polymer electrolyte fuel cells (PEFCs), and thereby, significantly stabilizes and improves cell performance. To ascertain the exact roles of MPLs, a numerical MPL model is developed in this study and incorporated with comprehensive, multi-dimensional, multi-phase fuel-cell models that have been devised earlier. The effects of different porous properties and liquid-entry pressures between an MPL and a gas diffusion layer (GDL) are examined via fully three-dimensional numerical simulations. First, when the differences in pore properties and wettability between the MPL and GDL are taken into account but the difference in the entry pressures is ignored, the numerical MPL model captures a discontinuity in liquid saturation at the GDL|MPL interface. The simulation does not, however, capture the beneficial effects of an MPL on cell performance, predicting even lower performance than in the case of no MPL. On the other hand, when a high liquid-entry pressure in an MPL is additionally considered, the numerical MPL model predicts a liquid-free MPL and successfully demonstrates the phenomenon that the high liquid-entry pressure of the MPL prevents any liquid water from entering the MPL. Consequently, it is found from the simulation results that a liquid-free MPL significantly enhances the back-flow of water across the membrane into the anode, which, in turn, helps to avoid membrane dehydration and alleviate the level of GDL flooding. As a result, the model successfully reports the beneficial effects of MPLs on PEFC performance and predicts higher performance in the presence of MPLs (e.g., an increase of 67 mV at 1.5 A cm -2). This study provides a fundamental explanation of the function of MPLs and quantifies the influence of their porous properties and the liquid-entry pressure on water transport and cell performance.

  16. Dispersive effects on the multi-layer porous media flows with permeable and impermeable interfaces

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2016-11-01

    We investigate dispersive effects on the linear stability of multi-layer porous media flow models of enhanced oil recovery for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types of interfaces. Several key results will be presented including our finding that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces. Time permitting, full simulation results will also be presented. NSF Grant # DMS-1522782 and QNRF NPRP Grant 08-777-1-141.

  17. Synthesis and characterization of porous, mixed phase, wrinkled, few layer graphene like nanocarbon from charcoal

    NASA Astrophysics Data System (ADS)

    Manoj, B.

    2015-12-01

    A technique to synthesis wrinkled graphene like nano carbon (GNC) from charcoal is reported in the current study. The charcoal produced by thermal decomposition and is intercalated by Hummers method. It is separated by centrifugation and sonication to get few layer graphene sheets. The structural and chemical changes of the nanostructure is elucidated by Raman spectroscopy, TEM, SEM-EDS and XPS. Raman spectra revealed the existence of highly graphitized amorphous carbon, which is confirmed by the appearance of five peaks in the deconvoluted first order Raman spectra. The SEM analysis reveals the formation of large area graphene sheets with nano-porous structure in it. The TEM/SAED analysis exhibits the presence of short range few layer graphene.

  18. Weak dust-acoustic double-layers in a polarized dusty plasma

    NASA Astrophysics Data System (ADS)

    Messekher, Abderrahim; Tribeche, Mouloud

    2017-03-01

    The problem of small amplitude dust-acoustic double-layers in a polarized dusty plasma is addressed. Our results show that in such a plasma double-layers structures, the amplitude and nature of which depend sensitively on the plasma parameters, can exist. In particular, it may be noted that as the polarization parameter R increases, the domain of the allowable Mach numbers M enlarges and small values of M are more involved. An increase of R leads to a monotonic decrease of the dust-acoustic double-layers amplitude before levelling-off at a constant value. An increase of M provides qualitatively the same results by with a net shift of the R-values towards lower values. We have then investigated the threshold R_{cr} for the possible onset of rarefactive dust-acoustic double-layers and concluded that only compressive double-layers are admitted.

  19. Weak dust-acoustic double-layers in a polarized dusty plasma

    NASA Astrophysics Data System (ADS)

    Messekher, Abderrahim; Tribeche, Mouloud

    2017-08-01

    The problem of small amplitude dust-acoustic double-layers in a polarized dusty plasma is addressed. Our results show that in such a plasma double-layers structures, the amplitude and nature of which depend sensitively on the plasma parameters, can exist. In particular, it may be noted that as the polarization parameter R increases, the domain of the allowable Mach numbers M enlarges and small values of M are more involved. An increase of R leads to a monotonic decrease of the dust-acoustic double-layers amplitude before levelling-off at a constant value. An increase of M provides qualitatively the same results by with a net shift of the R-values towards lower values. We have then investigated the threshold R_{ {cr}} for the possible onset of rarefactive dust-acoustic double-layers and concluded that only compressive double-layers are admitted.

  20. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  1. Viscous fingering in two dimensional porous layer under g-jitter

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradyumna

    2012-07-01

    Slow fluid-fluid displacement in a porous medium under the influence of real microgravity field is going to reveal important fluid physics associated with hydrology, chemical engineering and the physics of disordered media. Most systems of practical importance include fluids of different densities. Therefore it is important to study the effect of g-jitter (perturbed broadband type residual acceleration due to spacecraft vibration etc.) on the front/displacement-structure (fingering: due to the nonlinear interactions among viscous, capillary and gravitational forces). CFD (Computational Fluid Dynamics) analysis glycerin/water mixture through two dimensional single layer anisotropic artificial porous layer have been performed in ground level condition as well as g-jitter condition modifying the body force source term in the momentum equation through UDF (user defined functions) written in C. Ground level experiment to capture fingering has also been performed to validate the CFD results. Fingering structures in the microgravity condition have been predicted using the validated CFD model. Keywords: CFD, g-jitter, Fingering, Nonlinear Interactions, User defined functions

  2. Forchheimer flow in gently sloping layers: Application to drainage of porous asphalt

    NASA Astrophysics Data System (ADS)

    Eck, B. J.; Barrett, M. E.; Charbeneau, R. J.

    2012-01-01

    This paper presents analytical solutions for the problem of steady one-dimensional Forchheimer flow in an unconfined layer. The study's motivation is the drainage behavior of a highway pavement called permeable friction course. Permeable friction course is a layer of porous asphalt placed on top of impermeable pavement. Porous overlays are growing in popularity because they reduce noise, mitigate the hazards of wet weather driving, and produce cleaner runoff. Several of these benefits occur because water drains within the pavement rather than on the road surface. Drainage from the friction course is essentially that of an unconfined aquifer and has been successfully modeled using Darcy's law and the Dupuit-Forchheimer assumptions. Under certain cases, drainage may occur outside of the range where Darcy's law applies. The purpose of this paper is to identify cases where the assumption of Darcy flow is violated, develop analytical solutions based on Forchheimer's equation, and compare the solutions with those obtained for the Darcy case. The principle assumptions used in this analysis are that the relationship between hydraulic gradient and specific discharge is quadratic in nature (Forchheimer's equation) and that the Dupuit-Forchheimer assumptions apply. Comparing the Darcy and Forchheimer solutions leads to a new criterion for assessing the applicability of Darcy's law termed the discharge ratio.

  3. Structure of a PEGylated protein reveals a highly porous double-helical assembly

    NASA Astrophysics Data System (ADS)

    Cattani, Giada; Vogeley, Lutz; Crowley, Peter B.

    2015-10-01

    PEGylated proteins are a mainstay of the biopharmaceutical industry. Although the use of poly(ethylene glycol) (PEG) to increase particle size, stability and solubility is well-established, questions remain as to the structure of PEG-protein conjugates. Here we report the structural characterization of a model β-sheet protein (plastocyanin, 11.5 kDa) modified with a single PEG 5,000. An NMR spectroscopy study of the PEGylated conjugate indicated that the protein and PEG behaved as independent domains. A crystal structure revealed an extraordinary double-helical assembly of the conjugate, with the helices arranged orthogonally to yield a highly porous architecture. Electron density was not observed for the PEG chain, which indicates that it was disordered. The volume available per PEG chain in the crystal was within 10% of the calculated random coil volume. Together, these data support a minimal interaction between the protein and the synthetic polymer. Our work provides new possibilities for understanding this important class of protein-polymer hybrids and suggests a novel approach to engineering protein assemblies.

  4. Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers.

    PubMed

    Huang, Jiang; Wang, Hanyu; Yan, Kangrong; Zhang, Xiaohua; Chen, Hongzheng; Li, Chang-Zhi; Yu, Junsheng

    2017-03-15

    An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%.

  5. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  6. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  7. Electroluminescent layers based on ZnS:Cu deposited into matrices of porous anodic Al2O3

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Petukhov, D. I.; Chukavin, A. I.; Bel'tyukov, A. N.

    2016-02-01

    It is suggested to use a new nanocomposite material—nanostructures of copper-doped zinc sulfide in a matrix of porous aluminum oxide—as a light-emitting layer of electroluminescent sources of light. The material was deposited by thermal evaporation in a vacuum. The microstructure of the layers, impurity distribution in the electroluminescent-phosphor layer, and electroluminescence spectra at various copper concentrations in ZnS:Cu were studied.

  8. Semi-analytical model for quasi-double-layer surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Shuming; Wang, Yaohua

    2016-11-01

    To realize scale quantum processors, the surface-electrode ion trap is an effective scaling approach, including single-layer, double-layer, and quasi-double-layer traps. To calculate critical trap parameters such as the trap center and trap depth, the finite element method (FEM) simulation was widely used, however, it is always time consuming. Moreover, the FEM simulation is also incapable of exhibiting the direct relationship between the geometry dimension and these parameters. To eliminate the problems above, House and Madsen et al. have respectively provided analytic models for single-layer traps and double-layer traps. In this paper, we propose a semi-analytical model for quasi-double-layer traps. This model can be applied to calculate the important parameters above of the ion trap in the trap design process. With this model, we can quickly and precisely find the optimum geometry design for trap electrodes in various cases.

  9. Does the plasma radiate near a Double Layer?

    NASA Astrophysics Data System (ADS)

    Pottelette, Raymond; Berthomier, Matthieu; Pickett, Jolene

    2016-04-01

    Earth is an intense radio source in the kilometer wavelength range. Being a direct consequence of the parallel acceleration processes taking place in the Earth's auroral region, the radiation contains fundamental information on the characteristic spatial and temporal scales of the turbulent accelerating layer. It is now widely assumed that the cyclotron maser instability leads to Auroral Kilometric Radiation (AKR) generation. It has been suggested from the FAST measurements that the AKR results from a so-called horseshoe electron distribution. This distribution is generated when a localized parallel electric field - called Double Layer (DL) - accelerates earthward the electrons that propagate into an increasing magnetic field. The magnetic moment of the electrons is conserved so that their pitch angle is increased. This results in the creation of a horseshoe-like shape for the electron distribution exhibiting large positive velocity gradients in the direction perpendicular to B, thereby providing free energy for the AKR generation which takes place at the local electron gyrofrequency. In these circumstances, the radiation is generated far away (several thousand kilometers) from a DL, because the parallel accelerated electrons need to travel a long distance before forming a horseshoe distribution. From an experimental point of view, it is not an easy task to highlight the presence of DLs, because they are moving transient structures so that high time resolution measurements are needed. A detailed analysis suggests that these large-amplitude parallel electric fields are located inside sharp density gradients at the interface separating the cold, dense ionospheric plasma from the hot, tenuous magnetospheric plasma. We present some FAST observations which illustrate the generation of elementary radiation events in the neighborhood of a DL. The events occur 10 to 20% above the local electron gyrofrequency in association with the presence of nonlinear coherent structures

  10. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  11. Direct numerical simulation of breakdown to turbulence in a Mach 6 boundary layer over a porous surface

    NASA Astrophysics Data System (ADS)

    De Tullio, Nicola; Sandham, Neil D.

    2010-09-01

    Transition to turbulence of a Mach 6 flat plate boundary layer over a porous surface is investigated by direct numerical simulation considering two Reynolds numbers based on the laminar boundary layer displacement thickness, namely, Reδ∗=6000 and Reδ∗=20 000. The transition was initiated by perturbing the laminar boundary layer with small random disturbances and was followed all the way to the turbulent state. The porous geometry was modeled by directly resolving the flow within the pores and the damping of the primary Mack mode of instability was verified. The presence of a porous surface was found to reduce the secondary instability growth rate by reducing the amplitude of the second mode saturation. In particular, the pores suppress the growth of the secondary wave in the near wall region, so that the secondary instability mainly happens near the critical layer. Besides the secondary instabilities Fourier analysis shows additional modes growing at the same rate as the primary instability, consistent with a model for sound waves scattering from the porous surface. The transient growth of u', ρ', and T' fluctuations, in the form of streamwise streaks, appears to favor the fundamental type of secondary instability. Additional calculations revealed that an oblique first mode wave is the most amplified mode in this porous surface configuration. This wave is slightly destabilized by the pores. With the oblique first mode excited, the flow becomes turbulent due to the nonlinear interactions without the need for secondary instabilities.

  12. A porous yttria-stabilized zirconia layer to eliminate the delamination of air electrode in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Shirjeel; Xu, Xiaoyong; Zhao, Jie; Knibbe, Ruth; Zhu, Zhonghua

    2017-08-01

    Delamination of La0.8Sr0.2MnO3-δ (LSM) in solid oxide electrolysis cells (SOECs) is usually associated with the high oxygen partial pressure build-up at the LSM-YSZ (yttria-stabilized zirconia) interface. Here we sandwich a porous YSZ layer between the LSM electrode and YSZ electrolyte to release this oxygen pressure. Symmetric cells with and without the porous YSZ layers are prepared and tested in air at 800 °C under the current densities of 0.5 and 1 A cm-2 for 100 h. Voltage change is continuously monitored, and impedance spectrum studies have been carried out before and after testing. No delamination has been observed for the samples with the porous YSZ layer even after 100 h. The improved performance for these samples is due to the shift of oxygen evolution reaction from the dense YSZ-LSM interface to a porous YSZ-LSM interface. This shift also helps the oxygen to be easily released instead of going into the pores or grain boundaries of the electrolyte. On the other hand, for the sample without the porous YSZ layer, the LSM is totally delaminated from the electrolyte just after 70 h.

  13. Effect of porous surface on pre-transitional supersonic boundary-layer disturbances generated by free-stream vortices

    NASA Astrophysics Data System (ADS)

    Ricco, Pierre

    2013-11-01

    A supersonic laminar flat-plate boundary layer at Mach number M = 6 flowing over a porous surface is studied numerically and by asymptotic methods. The flow is perturbed by small-amplitude free-stream vortical disturbances of the convective gust type. These external agents generate streamwise-elongated low-frequency disturbances of the kinematic kind, i.e. compressible streaky Klebanoff modes, and of the thermal kind, i.e. thermal streaks, which grow algebraically downstream. For boundary layer fluctuations with a spanwise wavelength comparable with the boundary layer thickness, the porous surface has a negligible effect on the growth and evolution of the streaks. When the spanwise wavelength is instead larger than the boundary layer thickness, the disturbances are effectively attenuated by the porous surface. For a specified set of frequency and wavelengths, the streaky structures evolve into oblique Tollmien-Schlichting waves through a leading-edge-adjustment receptivity mechanism. The growth rate of these waves increases slightly over the porous set, thus confirming previous results obtained through stability analysis. Our receptivity analysis allows us to calculate the wave amplitude, which is attenuated by the porous surface. Further asymptotic analysis based on triple-deck theory confirms the numerical results.

  14. Effect of water sorption on the electronic conductivity of porous polymer electrolyte membrane fuel cell catalyst layers.

    PubMed

    Morris, David R P; Liu, Selina P; Villegas Gonzalez, David; Gostick, Jeff T

    2014-11-12

    A method is described for measuring the effective electronic conductivity of porous fuel cell catalyst layers (CLs) as a function of relative humidity (RH). Four formulations of CLs with different carbon black (CB) contents and ionomer equivalent weights (EWs) were tested. The van der Pauw method was used to measure the sheet resistance (RS), which increased with RH for all samples. The increase was attributed to ionomer swelling upon water uptake, which affects the connectivity of CB aggregates. Greater increases in RS were observed for samples with lower EW, which uptake more water on a mass basis per mass ionomer. Transient RS measurements were taken during absorption and desorption, and the resistance kinetics were fit using a double exponential decay model. No hysteresis was observed, and the absorption and desorption kinetics were virtually symmetric. Thickness measurements were attempted at different RHs, but no discernible changes were observed. This finding led to the conclusion that the conducting Pt/C volume fraction does not change with RH, which suggests that effective medium theory models that depend on volume fraction alone cannot explain the reduction in conductivity with RH. The merits of percolation-based models were discussed. Optical micrographs revealed an extensive network of "mud cracks" in some samples. The influence of water sorption on CL conductivity is primarily explained by ionomer swelling, and its effects on the quantity and quality of interaggregate contacts were discussed.

  15. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    NASA Astrophysics Data System (ADS)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  16. A theory study of the multiplication characteristics of InP/InGaAs avalanche photodiodes with double multiplication layers and double charge layers

    NASA Astrophysics Data System (ADS)

    Liu, Guipeng; Chen, Wenjie; Liu, Linsheng; Jin, Peng; Tian, Yonghui; Yang, Jianhong

    2016-09-01

    An In0.53Ga0.47As/InP avalanche photodiodes (APD) structure with double multiplication layers and double charge layers has been proposed. The calculated results with considering the dead space effect show that a thin 2nd multiplication layer will reduce the excess noise factor F in this structure for a fixed mean gain . And its performances will reach the best when the 2nd multiplication layer is 0.01 μm, which will reduce the excess noise factor 7% compared to a conventional APD for =10. The effects of 1st and 2nd charge layers on the APD have also been studied in this paper.

  17. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    NASA Astrophysics Data System (ADS)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hállen D. R.; Welter, Cezar; Trigueiro, João P. C.; Rieumont, Jacques; Neves, Bernardo R. A.; Silva, Glaura G.

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO 4 as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 μm and delivered a capacitance of 17 F g -1 with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass.

  18. Inter-layer edge tunneling and transport properties in separately contacted double-layer quantum-Hall systems

    NASA Astrophysics Data System (ADS)

    Yoshioka, Daijiro

    1998-01-01

    A theory of transport in the quantum-Hall regime is developed for separately contacted double-layer electron systems. Inter-layer tunneling provides a channel for equilibration of the distribution functions in the two layers at the edge states. Resistances and transresistances for various configurations of the electrodes are calculated as functions of the inter-layer tunneling amplitude. Induced current in one of the layer by a current in the other is also calculated. It is shown that reflection at the leads causes change in the results for some electrode configurations. The results obtained in this work is consistent with recent experiments.

  19. Novel solid-state polymer electrolyte consisting of a porous layer-by-layer polyelectrolyte thin film and oligoethylene glycol.

    PubMed

    Lowman, Geoffrey M; Tokuhisa, Hiroaki; Lutkenhaus, Jodie L; Hammond, Paula T

    2004-10-26

    A novel solid-state polymer electrolyte was constructed using layer-by-layer (LbL) polyelectrolyte assembly of linear poly(ethylenimine) (LPEI) and poly(acrylic acid) (PAA), combined with a plasticization step using oligoethylene glycol dicarboxylic acid (OEGDA). This composite film exhibits a relatively high ionic conductivity of 9.5 x 10(-5) S/cm at 25 degrees C and 22% relative humidity. Detailed characterization of the composite was undertaken using grazing-angle Fourier transform infrared (GA-FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and impedance spectroscopy. After immersing the LPEI/PAA films into OEGDA aqueous solutions, the films exhibited a swelling behavior and increased surface roughness indicative of porosity induced by reorganization of ionic interactions between LPEI and PAA in acidic solution. This internal porous structure allows inclusion of OEGDA within the multilayer and increased ionic conductivity under ambient conditions due to the combined effects of plasticization of the LbL matrix by atmospheric water as well as the added mobility of ions in molten OEGDA within the composite.

  20. Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.

    PubMed

    Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen

    2008-07-15

    TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.

  1. Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Xiong, Yuli; Dong, Hongmei; Peng, Huarong; Zhang, Yunhuai; Xiao, Peng

    2017-03-01

    Monoclinic bismuth vanadate (BiVO4) is a promising semiconductor for photoelectrochemical water splitting. Here, we developed a facile fabrication of BiVO4 double layer photoanode on the fluorine-doped tin oxide substrate by electrodeposition. The BiVO4 double layer photoanode is composed by a dense BiVO4 film as the inner layer and a nanoporous BiVO4 film as the outer layer. Compared to the BiVO4 single layer photoanode, the optimized BiVO4 double layer photoanode produced a much higher photocurrent of 1.15 mA/cm2 at 0.6 V vs. Ag/AgCl under AM 1.5G (100 mW/cm2) illumination. The results of the photoelectric conversion kinetics for different samples revealed that the charge separation and oxidation kinetics efficiencies for the BiVO4 double layer are 47.2% and 51.6% at 0.6 V vs. Ag/AgCl, while the values for BiVO4 single layer are 32.3% and 35.8%, respectively. The improved photoelectrochemical performance for BiVO4 double layer is mainly ascribed to the decrease of defect state at the interface after inserting a dense BiVO4 as an inner layer to prevent the recombination of photogenerated electron-hole pairs.

  2. Layer-by-layer assembly of bi-protein/layered double hydroxide ultrathin film and its electrocatalytic behavior for catechol.

    PubMed

    Kong, Xianggui; Rao, Xiuying; Han, Jingbin; Wei, Min; Duan, Xue

    2010-10-15

    This paper reports the fabrication of a bi-protein/layered double hydroxide (LDH) ultrathin film in which hemoglobin (HB) and horseradish peroxidase (HRP) molecules were assembled alternately with LDH nanosheets via the layer-by-layer (LBL) deposition technique, and its electrocatalytic performances for oxidation of catechol were demonstrated. The results of XRD indicate that the HB-HRP/LDH ultrathin film possesses a long range stacking order in the normal direction of the substrate, with the two proteins accommodated in the LDH gallery respectively as monolayer arrangement. SEM images show that the film surface exhibits a continuous and uniform morphology, and AFM reveals the Root-Mean-Square (RMS) roughness of ∼10.2 nm for the film. A stable direct electrochemical redox behavior of the proteins was successfully obtained for the HB-HRP/LDH film modified electrode. In addition, it exhibits remarkable electrocatalytic activity towards oxidation of catechol, based on the synergistic effect of the two proteins. The catechol biosensor in this work displays a wide linear response range (6-170 μM, r=0.999), low detection limit (5 μM), high sensitivity and good reproducibility.

  3. Design of double layer printed spiral coils for wirelessly-powered biomedical implants.

    PubMed

    Ashoori, Ehsan; Asgarian, Farzad; Sodagar, Amir M; Yoon, Euisik

    2011-01-01

    In this paper employing double layer printed spiral coils (PSCs) is proposed for wireless power transmission in implantable biomedical applications. Detailed modeling of this type of PSCs is presented. Both calculations and measurements of fabricated double layer PSCs indicate that this structure can decrease the size of typical single layer PSCs without any change in the most important parameters of the coils, such as quality factor. Also, it is shown that with equal PSC dimensions and design parameters, double layer PSCs achieve significantly higher inductances and quality factors. Ultimately, a pair of double layer PSCs with a distance of 5 mm in air is used in an inductive link. The power transfer efficiency of this link is about 79.8% with a carrier frequency of 5 MHz and coupling coefficient of 0.189.

  4. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wang, Wei-Dong; Liu, Yun; Wei, Xue-Ming

    2012-02-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS.

  5. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.

    PubMed

    Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li

    2014-09-10

    To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.

  6. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  7. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for

  8. Modeling precursor diffusion and reaction of atomic layer deposition in porous structures

    SciTech Connect

    Keuter, Thomas Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter

    2015-01-01

    Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

  9. Electrochemical Double Layered Capacitor Development and Implementation System

    NASA Astrophysics Data System (ADS)

    Strunk, Gavin P.

    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design

  10. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  11. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  12. Molecular physics of electrical double layers in electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Feng, Guang

    At present, electrochemical capacitors (ECs) are emerging as a novel type of energy storage devices and have attracted remarkable attention, due to their key characteristics, such as high power density and excellent durability. However, the moderate energy density of ECs restricts their widespread deployment in everyday technology. To surmount this limitation, four strategies are adopted: (1) to reduce the total system mass, (2) to increase the specific surface area of electrodes, (3) to enhance normalized capacitance, and (4) to expand the range of potentials applied on electrodes. The implementation of these approaches critically relies on the fundamental understanding of physical processes underlying the energy storage mechanisms hinging on the electrical double layers (EDLs) in ECs. In this dissertation, to gain the fundamentals of EDLs in ECs, based on the strategies described above, we studied the structure, capacitance, and dynamics of EDLs in different electrolytes near electrodes featuring different pores using atomistic simulations. The pores of electrodes are categorized into macropores, mesopores, and micropores, following the decreasing order of pore size. The chosen electrolytes fall into aqueous electrolytes, organic electrolytes, and ionic liquids (ILs), listed by the increasing order of their decomposition voltages. For the aqueous electrolytes, we explored the water and ion distributions inside electrified micropores (< 2nm) using molecular dynamics (MD) simulations. The results showed that the ion distribution differs qualitatively from that described by classical EDL theories. Based on such exceptional phenomenon, a new sandwich capacitance model was developed to describe the EDLs inside micropores, which is capable of predicting the sharp increase of capacitance that has been experimentally observed in micropores. For the organic electrolytes, we examined the ion solvation and the EDL structure, capacitance, and dynamics in the electrolyte of

  13. Double sporadic metal layers as observed by colocated Fe and Na lidars at Wuhan, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Yi, Fan; Huang, Kaiming

    2017-02-01

    In this paper, we report a set of double sporadic layer events observed by Fe and Na lidars over Wuhan, China. The two sporadic metal layers above normal layer were named as upper and middle sporadic metal layers, respectively. In these events, the upper, middle, and normal Fe layers presented altitude separately. There were nine double sporadic Fe events observed in 163 nights during 2010-2013. Eight of the nine events were observed in summer. The maximum ratios of peak density for upper and middle sporadic Fe layers to normal Fe layer were up to 375% and 225%, respectively. The peak altitudes of upper (middle) sporadic Fe layers were in the range of 102-107 km (95-98.5 km). The double sporadic Fe layers lasted more than 2 h. Interestingly, we found that density enhancement occurred simultaneously in upper, middle, and normal Fe layers on two events. On the nine Fe events, there existed five nights of colocated Na lidar observations. We found that double sporadic Na and Fe layers simultaneously appeared. They presented similar structures, altitudes, and temporal variations in all five compared events. A little different from Fe, the middle sporadic Na layer was not separated from Na main layer maybe for the wide altitude range of Na main layer. The ratios of upper (middle) sporadic Fe and Na peak values were in the range of 6.6-52 (0.57-6.58). While the exact formation mechanism responsible for double sporadic metal layers is still unclear, some possible explanations and corresponding observations are discussed.

  14. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  15. Effect of halogens on the formation and properties of the porous silicon layers

    SciTech Connect

    Bolotov, V. V.; Sten'kin, Yu. A. Davletkil'deev, N. A.; Krivozubov, O. V.; Ponomareva, I. V.

    2009-01-15

    The method of atomic-force microscopy is used to study the morphology of the surface of porous silicon layers formed on the p-Si substrate and obtained by anodic etching in an electrolyte with addition of free halogens (bromine, iodine) and potassium halogenides (KCl, KI). It is established that the presence of halogens in the electrolyte is conducive to formation of large pores with the diameter as large as 150 nm. The mechanism of an increase in the pore sizes with involvement of halogens is related to an increase in the concentration of free holes due to formation of donor-acceptor pairs in the case of adsorption of halogens on the silicon surface.

  16. Adjustment of residual stress and intermediate layer to BDD/porous Ti composite membrane

    NASA Astrophysics Data System (ADS)

    Tian, Cheng-lu; Li, Xiao-wei; Chang, Ming

    2013-05-01

    Diamond films are deposited on porous Ti substrates by hot filament chemical vapor deposition (HFCVD) method. For adjusting the residual stress of substrate and the titanium carbide (TiC) intermediate layer, the substrates are under annealing process firstly, then are put into alkaline solution with electricity oxidation, and finally composite membranes are obtained by HFCVD, which are characterized by X-ray diffraction (XRD), metalloscope and scanning electron microscope (SEM). Results show that the composite membranes deposited on unannealed substrates are cracked obviously in both sides and broken off easily. After annealing process, the membranes are no longer cracked easily, because the tensile stress distributed in substrates is significantly relieved. After passivation process, TiC generated between diamond film and substrate is less than that without passivation process.

  17. Strong infrared photoluminescence in highly porous layers of large faceted Si crystalline nanoparticles

    PubMed Central

    de Jong, E. M. L. D; Mannino, G.; Alberti, A.; Ruggeri, R.; Italia, M.; Zontone, F.; Chushkin, Y.; Pennisi, A. R.; Gregorkiewicz, T.; Faraci, G.

    2016-01-01

    Almost all physical processes in solids are influenced by phonons, but their effect is frequently overlooked. In this paper, we investigate the photoluminescence of large silicon nanoparticles (approximately 100 nm size, synthesized by chemical vapor deposition) in the visible to the infrared detection range. We find that upon increasing laser irradiance, an enormous photoluminescence emission band appears in the infrared. Its intensity exhibits a superlinear power dependence, increasing over four orders of magnitude in the investigated pump power range. Particles of different sizes as well as different shapes in porous layers are investigated. The results are discussed taking into account the efficient generation of phonons under high-power pumping, and the reduced capability, porosity dependent, of the silicon nanoparticles to exchange energy with each other and with the substrate. Our findings are relevant for heat management strategies in silicon. PMID:27216452

  18. Formation of a macro-porous SiO2 layer as an anti-reflective coating on glass substrates.

    PubMed

    Park, No-Kuk; Kim, Yong Sul; Kim, Min Jung; Lee, Tae Jin; Lee, Seung Hyun; Lee, Seung Hun

    2013-11-01

    A macro-porous silica layer, consisting of a silica layer with macro-sized pores, was formed as an antireflective material on glass substrates. The silica layer and macro-pores were formed by the oxidative thermal decomposition of tetra-ethylorthorsilicate (TEOS) used as the precursor and polystyrene (PS) spherical beads used as the polymer template for the macro-pores at high temperatures. The size of pores was determined by the size of PS beads in the antireflective agent solution. The size of the PS spherical beads can be controlled by changing the concentration of styrene monomer, and the porosity of the macro pore in the silica layer could be controlled by the TEOS/PS ratio. The optimal thermal treating temperature for the formation of a macro-porous silica layer was found to be 650 degrees C. The size of the spherical type macro pores formed in the silica layer on the glass substrate was 100-150 nm. UV-Vis spectrophotometry confirmed the improved antireflective properties of the glass substrate with the macro-porous silica layer.

  19. A technique to form a porous silicon layer with no backside contact by alternating current electrochemical process

    NASA Astrophysics Data System (ADS)

    El-Bahar, A.; Nemirovsky, Y.

    2000-07-01

    We report here the formation of porous silicon under alternating current conditions. Instead of applying the usual direct current electrochemical process, an alternating current was applied with a given frequency and peak voltage. The porous silicon layer properties are equivalent to the properties that would be achieved by the standard direct current formation technique (i.e., same porosity level). The main advantages of this process are: (a) The alternating current formed porous silicon exhibits higher mechanical stability during the drying step than layers formed using the standard direct current technique. (b) The alternating current process can be performed without a deposited backside contact. These simplify the process and permit its integration with high temperature processing steps and clean furnaces of a modern very large sale-integrated technology.

  20. Supercritical Hadley circulation within a layer of fluid saturated porous medium: Bifurcation to traveling wave

    SciTech Connect

    Manole, D.M.; Lage, J.L.; Antohe, B.V.

    1995-12-31

    Hadley circulation induced by horizontal and vertical temperature gradients imposed on a fluid saturated porous medium layer is simulated numerically. The flow is assumed to be longitudinal, that is the secondary flow is composed of cells with axes transverse to the direction of the Hadley circulation. Critical (bifurcation) states predicted theoretically via linear stability analysis are verified by the numerical results giving confidence on the accuracy of the method. Several values of horizontal Rayleigh number, Ra{sub h}, and vertical Rayleigh number, Ra{sub v}, are studied. Results indicate that beyond a threshold horizontal Rayleigh number value the flow and temperature fields evolve from subcritical Hadley circulation to a supercritical time periodic flow. The secondary flow emerges in the form of a traveling wave aligned with the main (Hadley) flow direction. This traveling wave is characterized, at supercritical low vertical Rayleigh numbers, by the continuous drifting of two horizontal layers of flow cells that move in opposite directions. As the vertical Rayleigh number increases, the traveling wave becomes characterized by a unique layer of cells drifting in the direction opposite to the applied horizontal temperature gradient. Numerical animation unravels the main features of the transport process. This simplified model is of fundamental and practical importance, for instance, to the study of geothermal activities, underground transport of pollutants, paper processing, crystal growth, building insulation, and gas reservoirs.

  1. Critical layer thickness enhancement of InAs overgrowth on porous GaAs

    NASA Astrophysics Data System (ADS)

    Beji, L.; Ismaı̈l, B.; Sfaxi, L.; Hassen, F.; Maaref, H.; Ben Ouada, H.

    2003-10-01

    In the present work we have investigated the initial stage of InAs layer grown on porous GaAs (π-GaAs) substrate by using reflection high-energy electron diffraction (RHEED) and low temperature photoluminescence (PL). RHEED measurements show that the 2D-3D growth mode transition appears after a deposition of 4.2 atomic monolayer (ML) of InAs, which is higher than that deposited on nominal GaAs (1.7 ML). PL investigations show two luminescence bands at 1.24 and 1.38 eV. The 1.24 eV PL peak emission is associated to the radiative transitions in InAs quantum dots (QDs), whereas the 1.38 eV PL peak emission is attributed to the InAs wetting layer (WL). The results show that π-GaAs is a promising candidate to obtain a reduced QDs size distribution, and to grow pseudomorphic epitaxial layer on GaAs substrate with higher indium concentration.

  2. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  3. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    NASA Astrophysics Data System (ADS)

    Lotfi, Derbali; Hatem, Ezzaouia

    2012-07-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current-voltage ( I- V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I- V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells.

  4. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  5. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.

    PubMed

    Yang, Xi; Zhang, Long; Zhang, Fan; Huang, Yi; Chen, Yongsheng

    2014-05-27

    Because of advantages such as excellent electronic conductivity, high theoretical specific surface area, and good mechanical flexibility, graphene is receiving increasing attention as an additive to improve the conductivity of sulfur cathodes in lithium-sulfur (Li-S) batteries. However, graphene is not an effective substrate material to confine the polysulfides in cathodes and stable the cycling. Here, we designed and synthesized a graphene-based layered porous carbon material for the impregnation of sulfur as cathode for Li-S battery. In this composite, a thin layer of porous carbon uniformly covers both surfaces of the graphene and sulfur is highly dispersed in its pores. The high specific surface area and pore volume of the porous carbon layers not only can achieve a high sulfur loading in highly dispersed amorphous state, but also can act as polysulfide reservoirs to alleviate the shuttle effect. When used as the cathode material in Li-S batteries, with the help of the thin porous carbon layers, the as-prepared materials demonstrate a better electrochemical performance and cycle stability compared with those of graphene/sulfur composites.

  6. Nanostructured ZnS and CdS films synthesized using layered double hydroxide films as precursor and template.

    PubMed

    Schwenzer, Birgit; Pop, Lia Z; Neilson, James R; Sbardellati, Timothy B; Morse, Daniel E

    2009-02-16

    Anion exchange reactions in layered double hydroxide films (M(OH)(2-x)(NO(3))(x).mH(2)O) followed by solid state conversion reactions are shown to yield micrometer-sized unsupported metal sulfide (M = Zn, Cd) films with unique textured morphologies. The characteristic three-dimensional nanostructured film morphology and crystallinity of the initial films are retained in the metal sulfide films although these conversion reactions involve anion exchanges concomitant with significant rearrangements of the crystal structures. Surface areas of 42 m(2)/g for zinc sulfide and 50 m(2)/g for cadmium sulfide thin films are observed. These values correspond to an increase in surface area of 75% for the Zn(5)(OH)(8)(NO(3))(2).2H(2)O to zinc sulfide conversion, while the cadmium sulfide films exhibit more than three times the surface area of their precursor material, Cd(OH)(NO(3)).H(2)O. The three-dimensional morphology of the resulting films is thus observed to combine the physical properties of the bulk materials with the advantages of higher surface areas typically associated with nanostructured or porous materials. The layered double hydroxide materials used in this study to provide both structural and chemical templates were prepared using the mild conditions of a biologically inspired vapor-diffusion catalytic synthesis.

  7. Double-Layered Matrix of Shellac Wax-Lutrol in Controlled Dual Drug Release.

    PubMed

    Phaechamud, Thawatchai; Choncheewa, Chai-Ek

    2016-12-01

    Double-layered matrix tablets prepared from shellac wax-lutrol were fabricated using a molding technique, and the release of hydrochlorothiazide and propranolol HCl from the inner tablet or outer layer was studied. The simultaneous determination of dual drug release was measured with first derivative UV spectrophotometry. The tablet containing shellac wax as the outer tablet and lutrol as the inner tablet showed more appropriate drug release and the size of the inner layer influenced the rate of drug release. In addition, the aqueous solubility of the drug and the components of the inner tablet or outer layer affected the drug release behavior. Most of the double-layered tablets exhibited the drug-release pattern which fitted well with zero-order kinetic due to the restriction of the release surface. Biphasic drug release pattern was found in the tablet of which the outer layer rapidly eroded. The drug dissolution data from drug-loaded-outer layer could predict the dissolution time for the outer layer of drug-loaded inner part of double-layered matrix tablet. Incorporation of lutrol increased the drug release from shellac wax matrix, and the zero-order release was attained by fabricating it into a double-layered tablet.

  8. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    SciTech Connect

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.

  9. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  10. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    PubMed Central

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  11. Double Layers Throughout the Magnetosphere and Their Relation to Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine; Ergun, Robert; Wilder, Frederick; Ahmadi, Narges; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Torbert, Roy; Argall, Matthew; Le Contel, Olivier; Russell, Christopher; Strangeway, Robert; Giles, Barbara; Burch, James

    2017-04-01

    Observations throughout the terrestrial magnetosphere have shown large-amplitude parallel electric field signatures in regions of strong magnetic turbulence. Debye-length, unipolar parallel electric fields identified as double layers have consistently been observed in regions such as the auroral acceleration region, near-Earth plasmasheet, and in the terrestrial bow shock. Double layers have been theorized to be a dissipation mechanism for magnetic turbulence. Recent observations from MMS have suggested that double layers can act as a signature of secondary magnetic reconnection, particularly in the Earth's magnetopause. We present a comparative study of double layer signatures in various regions of the Earth's magnetosphere to determine the relationship between secondary magnetic reconnection and turbulent dissipation.

  12. Formation and stability of self-consistent double layer structures in plasma

    SciTech Connect

    Sanduloviciu, M.

    1995-12-31

    The presence of critical values in the current versus voltage characteristic of an electrode immersed in a plasma is used as an argument for the existence of self-consistent (autoorganized) double layers in collisional and collisionless presumed plasmas.

  13. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    DOE PAGES

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less

  14. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-08-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.

  15. Sagdeev potential approach for large amplitude compressional Alfvenic double layers in viscous plasmas

    SciTech Connect

    Panwar, Anuraj; Rizvi, H.; Ryu, C. M.

    2013-11-15

    Sagdeev’s technique is used to study the large amplitude compressional Alfvenic double layers in a magnetohydrodynamic plasma taking into account the small plasma β and small values of kinematic viscosity. Dispersive effect raised by non-ideal electron inertia currents perpendicular to the ambient magnetic field. The range of allowed values of the soliton speed, M (Mach number), plasma β (ratio of the plasma thermal pressure to the pressure in the confining magnetic field), and viscosity coefficient, wherein double layer may exist, are determined. In the absence of collisions, viscous dissipation modifies the Sagdeev potential and results in large amplitude compressional Alfvenic double layers. The depth of Sagdeev potential increases with the increasing Mach number and plasma β, however, decreases with the increasing viscosity. The double layer structure increases with the increasing plasma β, but decreases with increasing viscous dissipation μ(tilde sign)

  16. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  17. Convective mixing in vertically-layered porous media: The linear regime and the onset of convection

    NASA Astrophysics Data System (ADS)

    Ghorbani, Zohreh; Riaz, Amir; Daniel, Don

    2017-08-01

    We study the effect of permeability heterogeneity on the stability of gravitationally unstable, transient, diffusive boundary layers in porous media. Permeability is taken to vary periodically in the horizontal plane normal to the direction of gravity. In contrast to the situation for vertical permeability variation, the horizontal perturbation structures are multimodal. We therefore use a two-dimensional quasi-steady eigenvalue analysis as well as a complementary initial value problem to investigate the stability behavior in the linear regime, until the onset of convection. We find that thick permeability layers enhance instability compared with thin layers when heterogeneity is increased. On the contrary, for thin layers the instability is weakened progressively with increasing heterogeneity to the extent that the corresponding homogeneous case is more unstable. For high levels of heterogeneity, we find that a small change in the permeability field results in large variations in the onset time of convection, similar to the instability event in the linear regime. However, this trend does not persist unconditionally because of the reorientation of vorticity pairs due to the interaction of evolving perturbation structures with heterogeneity. Consequently, an earlier onset of instability does not necessarily imply an earlier onset of convection. A resonant amplification of instability is observed within the linear regime when the dominant perturbation mode is equal to half the wavenumber of permeability variation. On the other hand, a substantial damping occurs when the perturbation mode is equal to the harmonic and sub-harmonic components of the permeability wavenumber. The phenomenon of such harmonic interactions influences both the onset of instability as well as the onset of convection.

  18. Convective mixing in vertically-layered porous media: The linear regime and the onset of convection

    DOE PAGES

    Ghorbani, Zohreh; Riaz, Amir; Daniel, Don

    2017-08-02

    In this paper, we study the effect of permeability heterogeneity on the stability of gravitationally unstable, transient, diffusive boundary layers in porous media. Permeability is taken to vary periodically in the horizontal plane normal to the direction of gravity. In contrast to the situation for vertical permeability variation, the horizontal perturbation structures are multimodal. We therefore use a two-dimensional quasi-steady eigenvalue analysis as well as a complementary initial value problem to investigate the stability behavior in the linear regime, until the onset of convection. We find that thick permeability layers enhance instability compared with thin layers when heterogeneity is increased.more » On the contrary, for thin layers the instability is weakened progressively with increasing heterogeneity to the extent that the corresponding homogeneous case is more unstable. For high levels of heterogeneity, we find that a small change in the permeability field results in large variations in the onset time of convection, similar to the instability event in the linear regime. However, this trend does not persist unconditionally because of the reorientation of vorticity pairs due to the interaction of evolving perturbation structures with heterogeneity. Consequently, an earlier onset of instability does not necessarily imply an earlier onset of convection. A resonant amplification of instability is observed within the linear regime when the dominant perturbation mode is equal to half the wavenumber of permeability variation. On the other hand, a substantial damping occurs when the perturbation mode is equal to the harmonic and sub-harmonic components of the permeability wavenumber. Finally, the phenomenon of such harmonic interactions influences both the onset of instability as well as the onset of convection.« less

  19. Stability results for multi-layer radial Hele-Shaw and porous media flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2015-01-01

    Motivated by stability problems arising in the context of chemical enhanced oil recovery, we perform linear stability analysis of Hele-Shaw and porous media flows in radial geometry involving an arbitrary number of immiscible fluids. Key stability results obtained and their relevance to the stabilization of fingering instability are discussed. Some of the key results, among many others, are (i) absolute upper bounds on the growth rate in terms of the problem data; (ii) validation of these upper bound results against exact computation for the case of three-layer flows; (iii) stability enhancing injection policies; (iv) asymptotic limits that reduce these radial flow results to similar results for rectilinear flows; and (v) the stabilizing effect of curvature of the interfaces. Multi-layer radial flows have been found to have the following additional distinguishing features in comparison to rectilinear flows: (i) very long waves, some of which can be physically meaningful, are stable; and (ii) eigenvalues can be complex for some waves depending on the problem data, implying that the dispersion curves for one or more waves can contact each other. Similar to the rectilinear case, these results can be useful in providing insight into the interfacial instability transfer mechanism as the problem data are varied. Moreover, these can be useful in devising smart injection policies as well as controlling the complexity of the long-term dynamics when drops of various immiscible fluids intersperse among each other. As an application of the upper bound results, we provide stabilization criteria and design an almost stable multi-layer system by adding many layers of fluid with small positive jumps in viscosity in the direction of the basic flow.

  20. On the threshold energization of radiation belt electrons by double layers.

    NASA Astrophysics Data System (ADS)

    Dimmock, A. P.; Osmane, A.; Pulkkinen, T. I.

    2014-12-01

    Recent in situ electric field measurements by the Van Allen Probes in the radiation belts have revealed the existence and ubiquitous presence of double layers [Mozer et al. Phys. Rev. Lett., 2013]. Encounters with double layers during 1 minute burst mode intervals were both common and indicative of large cumulative potential drops. With electric fields averaging 20 mV/m, and sometimes reaching as high as 100 mV/m, observed double layers have been suggested as possible accelerators of radiation belt electrons and generators of a seed population of 100 keV. Using a Hamiltonian approach we quantify the energization threshold of electrons interacting with radiation belts' double layers analytically and numerically. We find that double layers with electric field amplitude δE ranging between 10-100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v ≤ vthermal≈3000 km/s to 1 keV levels, but are unable to energize electrons with energies E ≥ 10 keV. Our results therefore indicate that the localized electric field associated with the double layers are unlikely to generate a seed population of 100 keV necessary for a plethora of relativistic acceleration mechanisms and additional transport to higher energetic levels.

  1. Transition from moving to stationary double layers in a single-ended Q machine

    NASA Technical Reports Server (NTRS)

    Song, Bin; Merlino, R. L.; D'Angelo, N.

    1990-01-01

    Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.

  2. Transition from moving to stationary double layers in a single-ended Q machine

    NASA Technical Reports Server (NTRS)

    Song, Bin; Merlino, R. L.; D'Angelo, N.

    1990-01-01

    Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.

  3. The polarization of a nanoparticle surrounded by a thick electric double layer.

    PubMed

    Zhao, Hui; Bau, Haim H

    2009-05-15

    The polarization of a charged, dielectric, nanoparticle enveloped by a thick electric double layer and subjected to a uniform, alternating electric field is studied theoretically with the standard model (the Poisson-Nernst-Planck PNP equations). The dipole coefficient (f) is calculated as a function of the electric field's frequency and the double layer's thickness (lambda(D)). For a weakly charged particle with a small zeta potential zeta, an approximate, analytic expression for the dipole moment coefficient, accurate within O(zeta(2)), is derived. Two processes contribute to the dipole moment: the ion transport in the electric double layer under the action of the electric field and the particle's electrophoretic motion. As the thickness of the electric double layer increases so does the importance of the latter. In contrast to the case of the thin electric double layer, the particle with the thick double layer exhibits only high-frequency dispersion. The theoretical predictions are compared and favorably agree with experimental data, leading one to conclude that the standard, PNP based-model adequately represents the behavior of nanoparticles subject to electric fields.

  4. Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas

    SciTech Connect

    Merino, Mario; Ahedo, Eduardo

    2013-02-15

    The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.

  5. Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas; Janssen, Mathijs; Samin, Sela; van Roij, René

    2015-05-01

    Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surfaces of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water desalination. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for desalination cycles.

  6. Vortex state formation and stability in single and double layer nanorings and nanodisks

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Mathieu, Christoph; Scholz, Werner; Dubbaka, Sridhar; Kautzky, Michael

    2013-05-01

    Quasi-static magnetic properties of microscopic Ni80Fe20 disks, rings, and double layered disks and rings were studied via longitudinal magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM), concomitant with micromagnetic simulations to elucidate the systems' vortex properties and remagnetization behavior. The features were fabricated lithographically, with diameters between 0.6 and 2 micrometers, and thicknesses of 50 and 100 nm. Key results are: (i) Dual-vortex to single-vortex transitions were observed at nucleation in 100 nm thick disks. (ii) Vortex nucleation and annihilation fields increase with single layer disk thickness whereas they decrease with thickness in single layer ring features. (iii) Double-layer disks separated by a Ru spacer indicate interactions of vortex cores at nucleation and avoidance of vortex core movements, whereas double-layer rings show successive switching in- and out- of vortex states with strong interactions only at vortex-to-onion transition.

  7. Small-Scale Modeling of Fluid Displacement Patterns in Layered Porous Media

    NASA Astrophysics Data System (ADS)

    Karpyn, Z. T.; Ayala, L. F.

    2007-05-01

    Naturally occurring porous media are inherently heterogeneous. The depositional characteristics that give rise to permeable formations, and the complex diagenetic processes taking place afterwards, create important heterogeneous features such as bedding planes, fractures, and faults. Rock heterogeneities can have strong impact on fluid displacement patterns because they define preferential flow paths in underground permeable formations. The efficiency of processes of pollution and contaminant removal from soil and groundwater, as well as hydrocarbon recovery, is greatly controlled by our ability to understand and represent fluid transport in heterogeneous permeable media. The present study focuses on a numerical analysis of two-phase flow in fractured rocks exhibiting contrasting rock properties in the form of bedding planes. Simulation scenarios were conducted to monitor contaminant displacement during water imbibition in a synthetic permeable medium model with multiple layers and a single fracture. A commercially available reservoir simulator was used to construct the synthetic three-dimensional model. Previous laboratory observations aid in the construction of the model and interpretation of results. Rock and fluid properties assigned to the synthetic model were estimated from those reported in the literature for a similar rock-fluid system. The presence of bedding planes in the rock's structure was found to have a strong impact on the advancing water front. Temporal saturation maps and fluid displacement patterns are presented in this work for various rates of injection and rock-property contrasts. Even though fracture capillary pressures are often regarded as negligible in the modeling of fractured porous media, our findings suggest that fractures can still provide passages under strong capillary action, which are able to drive wetting fluids into the rock matrix. Such behavior can be captured through proper description of fracture capillary pressures.

  8. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel.

    PubMed

    Zhuang, Yuan; Yu, Fei; Ma, Jie; Chen, Junhong

    2017-12-01

    Alginate/graphene double network hydrogel has recently been demonstrated as a promising adsorbent for water pollutants. To improve the adsorption capacity of the double network hydrogel, physical and chemical modifications are made to obtain an excellent porous structure and more functional groups. As-modified alginate/graphene double network hydrogel has a higher hydroxyl group content under a higher polyvinyl alcohol content and a higher carboxyl group content with a higher oxidation degree. Moreover, the CO2 produced by CaCO3 is used as pore formation agent avoiding the use of toxic organic matters. The modified alginate/graphene double network hydrogel shows a higher specific surface area, a larger mean pore diameter, and a higher pore volume with a higher initial CaCO3. In antibiotics adsorption, the mechanistic understanding shows that hydrogen bonds have greater influence on adsorption than carboxyl groups. The results reported here pave the way for the use of the alginate/graphene double network hydrogel for water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.

    PubMed

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-21

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  10. Modeling contaminant transport and biodegradation in a layered porous media system

    NASA Astrophysics Data System (ADS)

    Wood, Brian D.; Dawson, Clint N.; Szecsody, Jim E.; Streile, Gary P.

    1994-06-01

    The transport and biodegradation of an organic compound (quinoline) were studied in a meter-scale system of layered porous media. A two-dimensional laboratory experiment was conducted in a saturated system with two hydraulic layers with a ratio of conductivities of 1:13. A solution containing dissolved quinoline was injected as a front at one end of the system, and the aqueous-phase concentrations of quinoline, its first degradation product (2-hydroxyquinoline), and oxygen were monitored over time at several spatial locations. Results from a set of ancillary batch and small-column experiments were used to generate a mathematical model for the microbial kinetics; these kinetics described the time rate of change of the concentrations of the two organic compounds (quinoline and 2-hydroxyquinoline), the electron acceptor (oxygen), and microbial biomass. This independently developed kinetic model was incorporated into a two-dimensional numerical model for flow and transport, so that simulations of the laboratory system could be conducted and the results compared with observed data. An analysis of the applicability of single-phase and multiple-phase models for the description of the microbial kinetics was conducted. The results of this analysis indicated that for some cases, it is not necessary to explicitly model the mass transfer between the aqueous phase and the biomass phase. A single-phase model was used for simulating the laboratory system described here. Favorable comparisons between the laboratory and simulation data suggested that a single-phase model was appropriate for describing the microbially mediated reactions in this system. A method for incorporating the effects of metabolic lag into microbial kinetics is described. Metabolic lag was explicitly accounted for in the degradation kinetics for this system; the inclusion of metabolic lag proved to be important for describing transient concentration pulses that were observed in the low-conductivity layer.

  11. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  12. Numerical Study of Non-Newtonian Boundary Layer Flow of Jeffreys Fluid Past a Vertical Porous Plate in a Non-Darcy Porous Medium

    NASA Astrophysics Data System (ADS)

    Ramachandra Prasad, V.; Gaffar, S. Abdul; Keshava Reddy, E.; Bég, O. Anwar

    2014-07-01

    Polymeric enrobing flows are important in industrial manufacturing technology and process systems. Such flows are non-Newtonian. Motivated by such applications, in this article we investigate the nonlinear steady state boundary layer flow, heat, and mass transfer of an incompressible Jefferys non-Newtonian fluid past a vertical porous plate in a non-Darcy porous medium. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, Keller-box finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De), Darcy number (Da), Prandtl number (Pr), ratio of relaxation to retardation times (λ), Schmidt number (Sc), Forchheimer parameter (Λ), and dimensionless tangential coordinate (ξ) on velocity, temperature, and concentration evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate, mass transfer rate, and local skin friction are also investigated. It is found that the boundary layer flow is decelerated with increasing De and Forchheimer parameter, whereas temperature and concentration are elevated. Increasing λ and Da enhances the velocity but reduces the temperature and concentration. The heat transfer rate and mass transfer rates are found to be depressed with increasing De and enhanced with increasing λ. Local skin friction is found to be decreased with a rise in De, whereas it is elevated with increasing λ. An increasing Sc decreases the velocity and concentration but increases temperature.

  13. Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman-Forchheimer model.

    PubMed

    Khan, Waqar A; Pop, Ioan M

    2012-01-01

    In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium), whereas, Bongiorno's model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically.

  14. Boundary Layer Flow Past a Stretching Surface in a Porous Medium Saturated by a Nanofluid: Brinkman-Forchheimer Model

    PubMed Central

    Khan, Waqar A.; Pop, Ioan M.

    2012-01-01

    In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium), whereas, Bongiorno’s model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically. PMID:23077541

  15. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery.

    PubMed

    Lei, Yu; Lu, Jun; Luo, Xiangyi; Wu, Tianpin; Du, Peng; Zhang, Xiaoyi; Ren, Yang; Wen, Jianguo; Miller, Dean J; Miller, Jeffrey T; Sun, Yang-Kook; Elam, Jeffrey W; Amine, Khalil

    2013-09-11

    In this study, atomic layer deposition (ALD) was used to deposit nanostructured palladium on porous carbon as the cathode material for Li-O2 cells. Scanning transmission electron microscopy showed discrete crystalline nanoparticles decorating the surface of the porous carbon support, where the size could be controlled in the range of 2-8 nm and depended on the number of Pd ALD cycles performed. X-ray absorption spectroscopy at the Pd K-edge revealed that the carbon supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The conformality of ALD allowed us to uniformly disperse the Pd catalyst onto the carbon support while preserving the initial porous structure. As a result, the charging and discharging performance of the oxygen cathode in a Li-O2 cell was improved. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports in energy storage devices.

  16. Toward the Theory of an Electric Double Layer in a Plasma

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2017-07-01

    The conditions for the appearance of a double layer are considered. A theoretical description of the latter is given. Based on experimental data on probe diagnostics of oxygen and helium plasmas, a self-consistent theory of the volume charge layer is being constructed. Analysis of the phenomenon of screening the probe potential by charged particles is carried out. The procedure used for correcting the particle temperature determined by the logarithmic operation method is presented. The problem of application of Langmuir probes, the 3/2 law, and of the theory of electric double layer in a plasma is discussed.

  17. Improved Electrochemical Cycling Durability in a Nickel Oxide double layer film.

    PubMed

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, A I; Li, Yao

    2017-09-07

    For the first time, a crystalline-amorphous double-layered NiOx film has been prepared by reactive radio frequency magnetron sputtering, which has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, i.e. the short coloration/bleaching time (0.8s/1.1s) and an enhanced transmittance modulation range (62.2%) at the wavelength of 550 nm. Besides this, the double-layered film has shown the best reversibility as compared with amorphous and crystalline single-layer films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  19. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGES

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  20. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing.

    PubMed

    Xi, Qian; Chen, Xu; Evans, David G; Yang, Wensheng

    2012-06-26

    A uniform three-dimensional (3D) gold nanoparticle (AuNP)-embedded porous graphene (AuEPG) thin film has been fabricated by electrostatic layer-by-layer assembly of AuNPs and graphene nanosheets functionalized with bovine serum albumin and subsequent thermal annealing in air at 340 °C for 2 h. Scanning electron microscopy (SEM) investigations for the AuEPG film indicate that an AuNP was embedded in every pore of the porous graphene film, something that was difficult to achieve with previously reported methods. The mechanism of formation of the AuEPG film was initially explored. Application of the AuEPG film in electrochemical sensing was further demonstrated by use of H(2)O(2) as a model analyte. The AuEPG film-modified electrode showed improved electrochemical performance in H(2)O(2) detection compared with nonporous graphene-AuNP composite film-modified electrodes, which is mainly attributed to the porous structure of the AuEPG film. This work opens up a new and facile way for direct preparation of metal or metal oxide nanoparticle-embedded porous graphene composite films, which will enable exciting opportunities in highly sensitive electrochemical sensors and other advanced applications based on graphene-metal composites.

  1. Nanoporous carbon for electric double layer supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Garcia, Betzaida Batalla

    The subject of this study is the synthesis, characterization, chemical composition, and tuning of the porous structure of organic and carbon cryogels for electrochemical applications, particularly supercapacitors. Alternate methods such as an improved synthesis using a reactive catalyst, surface chemical modifications and an electrochemical characterization that takes into account the pore morphology are discussed. Impedance spectroscopy, complex capacitance and power were used to identify key energy losses in the capacitor; an optimal pore size of ca. 2 nm and other features were found. Also, synthesis modification and surface chemistry were used to improve the chemistry and structure of the electrodes reducing metal impurities and removing detrimental functional groups. First, carbon cryogels produced without metal ion impurities were synthesized using hexamine (an amine base catalyst), resorcinol, furaldehyde and solvent mixtures. These metal ion free amine-catalyzed gels also produced strong cryogels that can be machined. The carbon cryogels produced using the amine catalyst have cycle stability performances that exceed that of commercial samples. Carbon cryogels were also doped using ammonia borane to promote boron and nitrogen esters and improved the capacitance up to 30% due to faradaic reactions. Furthermore, nitrogen esters were also introduced into the carbon (via pyrolysis of hexamine) with yields of up to 14 at%. These new esters have low content of oxygen and increased the capacitance up to 50%.

  2. One-dimensional magnetophotonic crystals with magnetooptical double layers

    SciTech Connect

    Berzhansky, V. N. Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O. Salyuk, O. Yu.; Belotelov, V. I.

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  3. Development of Double Layer Microwave Absorber Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Singh, Samarjit; Singh, Dharmendra

    2017-09-01

    In this paper, an efficient two-layer microwave absorber at X-band is designed, optimized and implemented using the available materials with frequency dependent complex permittivity and complex permeability values as material database. The present work is focused on the design of a two-layer microwave absorber with good microwave absorption properties combined with broadband features at X-band. The optimization of various parameters such as materials, their sequence and thickness for obtaining better microwave absorption characteristics at X-band has been realized using Genetic Algorithm (GA). The optimized results were used to design a two-layer microwave absorber and experimentally tested using Attenuation Testing Device (ATD). Further verification of the experimentally obtained absorption results were simulated in High Frequency Structure Simulator (HFSS). The ATD result show that the maximum Reflection Loss (RL) for two-layer microwave absorber was -21.98 dB with 2.77 GHz bandwidth (corresponding to -10 dB) at 11.06 GHz for a total coating thickness of 1.5 mm.

  4. Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography.

    PubMed

    Peng, Li; Zhu, Manman; Zhang, Lingyi; Liu, Haiyan; Zhang, Weibing

    2016-10-01

    A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused-silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide coating. In addition, the poly[2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run-to-run (n = 5), day-to-day (n = 3), and column-to-column (n = 3) of toluene, N,N-dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.

  5. Unipolar Complementary Circuits Using Double Electron Layer Tunneling Tansistors

    SciTech Connect

    Blount, M.A.; Hafich, M.J.; Moon, J.S.; Reno, J.L.; Simmons, J.A.

    1998-10-19

    We demonstrate unipolar complementary circuits consisting of a pair of resonant tunneling transistors based on the gate control of 2D-2D interlayer tunneling, where a single transistor - in addition to exhibiting a welldefined negative-differential-resistance can be operated with either positive or negative transconductance. Details of the device operation are analyzed in terms of the quantum capacitance effect and band-bending in a double quantum well structure, and show good agreement with experiment. Application of resonant tunneling complementary logic is discussed by demonstrating complementary static random access memory using two devices connected in series.

  6. Direct evidence of layer-by-layer assembly of polyelectrolyte multilayers on soft and porous temperature-sensitive PNiPAM microgel using fluorescence correlation spectroscopy.

    PubMed

    Wong, John E; Müller, Claus B; Laschewsky, André; Richtering, Walter

    2007-07-26

    We describe the layer-by-layer assembly of polyelectrolyte multilayers on soft and porous temperature-sensitive poly(N-isopropylacrylamide) (PNiPAM) microgel. Microgels are not hard and rigid but rather are soft and porous particles, and polyelectrolytes not only interdigitate with each other during multilayer formation but also with the microgel. Because of this difference, there could be concerns about the feasibility of the layer-by-layer technique on these systems. The argument is that the layer being deposited is stripping the underlying layer instead of anchoring to the latter, and common methods of characterizing film growth on particles such as zeta-potentials will still show "successful" charge reversal. To address this issue, we used two differently labeled polyelectrolytes during the deposition. Because of the small size of the microgel (400 nm) studied, we cannot distinguish between polyelectrolytes adsorbed on or in the microgel. However, with fluorescence correlation spectroscopy, we can clearly distinguish between free labeled polyelectrolytes and those that are bound to the microgel. Dual-color correlation confirms the presence of both polyelectrolytes bound to the same particle while fluorescence imaging (on a dry sample) provides the visual proof.

  7. Double Charged Surface Layers in Lead Halide Perovskite Crystals.

    PubMed

    Sarmah, Smritakshi P; Burlakov, Victor M; Yengel, Emre; Murali, Banavoth; Alarousu, Erkki; El-Zohry, Ahmed M; Yang, Chen; Alias, Mohd S; Zhumekenov, Ayan A; Saidaminov, Makhsud I; Cho, Namchul; Wehbe, Nimer; Mitra, Somak; Ajia, Idris; Dey, Sukumar; Mansour, Ahmed E; Abdelsamie, Maged; Amassian, Aram; Roqan, Iman S; Ooi, Boon S; Goriely, Alain; Bakr, Osman M; Mohammed, Omar F

    2017-03-08

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  8. Field Portable Low Temperature Porous Layer Open Tubular Cryoadsorption Headspace Sampling and Analysis Part II: Applications*

    PubMed Central

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.

    2016-01-01

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934

  9. A numerical study of convection in a layered porous medium heated from below

    SciTech Connect

    Hickox, C.E.; Chu, Tze Yao.

    1990-01-01

    As part of the Magma Energy Project being pursued at Sandia National Laboratories, a drilling program has been initiated within the Long Valley caldera near Mammoth Lakes, California. Seismological evidence obtained in this region suggests the presence of a relatively shallow magma body. We have performed a numerical simulation for a simplified model of the Long Valley geothermal system in order to elucidate the nature of the large-scale thermal structure within the system and to assess implications for the drilling program. The two-dimensional model consists of three horizontal layers, the upper two of which are porous and saturated with a single phase fluid. The system is limited in horizontal extent and heated uniformly from below. An associated planar, natural convective flow is thus produced. The results of our simulation indicate the possibility of wide variations in vertical temperature profiles for the model system, depending on the location of the drilling operation. Thus it can be inferred that, during the early stages of drilling, the vertical temperature distribution is not a reliable indicator of the presence or absence of a magma body at depth. 14 refs., 5 figs., 4 tabs.

  10. Two single-layer porous gallium nitride nanosheets: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Meng, Fan-Sun; Wu, Yan-Bin

    2017-01-01

    The gallium nitride (GaN) is a novel wide-gap semiconductor for photoelectric devices. In this paper, two 2D single-layer GaN crystal structures, called H-GaN and T-GaN, are discovered by the density functional theory calculations. The phase stability is confirmed by phonon dispersions. The sole-atom-thick crystals of H-GaN and T-GaN, has possess enlarged specific surface area than the graphene-like allotrope (g-GaN) due to the porous structures. In addition, they have indirect band gaps of 1.85-1.89 eV and the electronic structures can be further modulated by applied strains. For example, T-GaN transforms from an indirect semiconductor to a direct one due to compressed strains. Both the combination of high specific surface area and moderate band gaps make these 2D crystals potential high-efficiency photocatalysts. Our results will also stimulate the investigations on 2D GaN nano crystals with rich electronic structures for wide applications.

  11. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications.

    PubMed

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J

    2016-01-15

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.

  12. Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ali, M.; Alim, M. A.; Munshi, M. J. Haque

    2017-06-01

    The present study is performed to find the similarity solution like Blasius solution and also analyzed the effect of various dimensionless parameters on the momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer along a porous stretching surface. So the governing partial differential equations are transformed to ordinary differential equations by using similarity transformations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of unsteadiness parameter, permeability parameter and stretching ratio parameter but there is no effect for magnetic parameter, the temperature profile decreases for increasing values of Brownian motion, unsteadiness, thermophoresis and stretching ratio but increases for magnetic parameter, the nanoparticle concentration decreases for increasing values of unsteadiness parameter, thermophoresis parameter, suction parameter, stretching ratio parameter and Lewis number but increases for magnetic parameter and Brownian motion parameter. For validity and accuracy the present results are compared with previously published work and found to in good agreement.

  13. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  14. Layered double hydroxide formation in Bayer liquor and its promotional effect on oxalate precipitation

    SciTech Connect

    Perrotta, A.J.; Williams, F.

    1996-10-01

    Enhancing the precipitation of sodium oxalate from Bayer process liquor to improve the quality of alumina product remains an important objective for Bayer refining. The formation of layered double hydroxides by the reaction of alkaline earth oxides, such as lime and magnesia, with Bayer liquor gives a crystal structure which is capable of intercalating anions, both inorganic and organic, within its structure. Both lime and magnesia, with long contact times in Bayer liquor, show layered double hydroxide formation. This layered double hydroxide formation is accompanied with a decrease in the sodium oxalate content in the liquor from about 3 g/L to below 1 g/L. Short contact times lead to a destabilization of the liquor which facilitates sodium oxalate precipitation. Additional work on magnesium hydroxide shows, in comparison to lime and magnesia, much less layered double hydroxide formation with equivalent residence time in the liquor. Destabilization of the liquor also occurs, giving enhanced oxalate precipitation with less alumina being consumed in agreement with lower layered double hydroxide formation. Thermal regeneration of these structures, followed by in-situ recrystallization in Bayer liquor, also gives enhanced oxalate precipitation, suggesting that there is an opportunity for a regenerable oxalate reduction system. The implementation of these experiments and other related technology into the plant has resulted in the Purox Process for enhancing the precipitation of sodium oxalate from Bayer liquor.

  15. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  16. Double-layered ZnO nanostructures for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-11-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field.

  17. Double-layered ZnO nanostructures for efficient perovskite solar cells.

    PubMed

    Mahmood, Khalid; S Swain, Bhabani; Amassian, Aram

    2014-12-21

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field.

  18. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.

    PubMed

    Yang, Tianshu; Wang, Xiaodong; Liu, Wen; Shi, Yanpeng; Yang, Fuhua

    2013-07-29

    Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

  19. Controlled ultraviolet (UV) photoinitiated fabrication of monolithic porous layer open tubular (monoPLOT) capillary columns for chromatographic applications.

    PubMed

    Collins, David A; Nesterenko, Ekaterina P; Brabazon, Dermot; Paull, Brett

    2012-04-03

    An automated column fabrication technique that is based on a ultraviolet (UV) light-emitting diode (LED) array oven, and provides precisely controlled "in-capillary" ultraviolet (UV) initiated polymerization at 365 nm, is presented for the production of open tubular monolithic porous polymer layer capillary (monoPLOT) columns of varying length, inner diameter (ID), and porous layer thickness. The developed approach allows the preparation of columns of varying length, because of an automated capillary delivery approach, with precisely controlled and uniform layer thickness and monolith morphology, from controlled UV power and exposure time. The relationships between direct exposure times, intensity, and layer thickness were determined, as were the effects of capillary delivery rate (indirect exposure rate), and multiple exposures on the layer thickness and axial distribution. Layer thickness measurements were taken by scanning electron microscopy (SEM), with the longitudinal homogeneity of the stationary phase confirmed using scanning capacitively coupled contactless conductivity detection (sC(4)D). The new automated UV polymerization technique presented in this work allows the fabrication of monoPLOT columns with a very high column-to-column production reproducibility, displaying a longitudinal phase thickness variation within ±0.8% RSD (relative standard deviation).

  20. Effects of Passive Porous Walls on the First Mode of Hypersonic Boundary Layers Over a Sharp Cone

    DTIC Science & Technology

    2013-01-01

    porous coating on the cone surface to comprise of several layers of stainless steel wire mesh as shown in Figure 3 of their paper. A similar model to...h2) we find the solution for A2 takes the form A2 = A22E 2 + A20 + A (c) 22 E −2, with similar expansions for U2, V2, W2 , P2 and p̃2. The analysis

  1. Double-gate SnO{sub 2} nanowire electric-double-layer transistors with tunable threshold voltage

    SciTech Connect

    Liu, Huixuan

    2015-06-08

    Double-gate Sb-SnO{sub 2} nanowire electric-double-layer (EDL) transistors with in-plane gates were fabricated using only one shadow mask. The threshold voltage of such devices can be tuned in a wide range from −0.13 V to 0.72 V by the in-plane gate, which allows the device to switch from depletion-mode to enhancement-mode operation. The operation voltage of the double-gate device is 1 V because the EDL gate dielectric can lead to a high gate capacitance (>3.5 μF/cm{sup 2}). Moreover, all double-gate devices show good electrical characteristics with high field-effect mobility (>200 cm{sup 2}/V·s), high drain-current I{sub on/off} ratio (>7 × 10{sup 4}), and small subthreshold slope (<100 mV/dec). These double-gate nanowire EDL transistors can pave the way for an electrically working low-voltage nano-electronic process.

  2. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  3. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    NASA Astrophysics Data System (ADS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-03-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate.

  4. Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator.

    PubMed

    Park, Sungjae; Roh, Jinyoung; Kim, Soobin; Park, Juseong; Kang, Hoon; Hahn, Joonku; Jeon, Youngjin; Park, Shinwoong; Kim, Hwi

    2017-02-20

    The complex modulation characteristics of a light field through an amplitude-phase double-layer spatial light modulator are analyzed based on the wave-optic numerical model, and the structural conditions for the optimal double-layer complex modulation structure are investigated. The relationships of interlayer distance, pixel size, and complex light modulation performance are analyzed. The main finding of this study is that the optimal interlayer distance for the double-layer structure can be found at the Talbot effect condition. For validating the practical usefulness of our findings, a high quality reconstruction of the complex computer-generated holograms and the robustness of the angular tolerance of the complex modulation at the Talbot interlayer distance are numerically demonstrated.

  5. Interfacial double layer mediated electrochemical growth of thin-walled platinum nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiu; Kim, Sang Min; Cho, Sanghyun; Jang, Hee-Jeong; Liu, Lichun; Park, Sungho

    2017-01-01

    This work demonstrates that thin-walled platinum nanotubes can be readily synthesized by controlling the interfacial double layer in alumina nanochannels. The gradient distribution of ions in nanochannels enables the creation of Pt nanotubes with walls as thin as 5 nm at the top end when using a solution containing polyvinylpyrrolidone (PVP) and chloroplatinic acid (H2PtCl6) under the influence of an electric potential in nanochannels. The highly efficient formation of thin-walled Pt nanotubes is a result of the concentration gradient of {{{{PtCl}}}6}2- and a thick double layer, which was caused by the low concentration of Pt precursors and the enhanced surface charge density induced by protonated PVP steric adsorption. This well-controlled synthesis reveals that the interfacial double layer is a useful tool to tailor the structure of nanomaterials in a nanoscale space, and holds promise in the construction of more complex functional nanostructures.

  6. Experimental studies of the lower convective layer in a thermohaline, double-diffusive system

    SciTech Connect

    Mehta, J.M.; Lavan, Z.; Worek, W.M.

    1983-06-01

    This paper reports the preliminary results of an experimental investigation that was undertaken to characterize the growth of the lower mixing layer in a double-diffusive system. Detailed concentration and temperature profiles are presented for the lower mixing layer as well as the diffusive layer. For all of the experiments reported here, the heat input flux at the bottom is restricted to 0.036 cal/cm/sup 2/-min. At such low heating rates, only a three layered system, where a diffusive layer is separated from the lower mixing layer by a lower interfacial boundary layer is observed. Preliminary estimations of the flux ratio indicate the dependance of this ratio on the stability parameter as well as on the applied heat flux.

  7. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    PubMed

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-06

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  8. Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth's Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Mozer, F. S.; Bale, S. D.; Bonnell, J. W.; Chaston, C. C.; Roth, I.; Wygant, J.

    2013-12-01

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth’s outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230 000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1 000 000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  9. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    PubMed

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-10

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10(6) charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  10. Transport spectroscopy in bilayer graphene using double layer heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Kayoung; Jung, Jeil; Fallahazad, Babak; Tutuc, Emanuel

    2017-09-01

    We provide a comprehensive study of the chemical potential of bilayer graphene in a wide range of carrier density, at zero and high magnetic (B)-fields, and at different transverse electric (E)-fields, using high quality double bilayer graphene heterostructures. Using a direct thermodynamic transport spectroscopic technique, we probe the chemical potential as a function of carrier density in six samples. The data clearly reveal the non-parabolicity and electron-hole asymmetry of energy-momentum dispersion in bilayer graphene. The tight-binding hopping amplitudes, t 0, t 1, and t 4, renormalized by electron-electron interaction are extracted from the chemical potential versus density dependence. A diverse set of electron-electron interaction driven phenomena were also clearly discerned at zero and high B-fields. We measure the gaps at integer fillings with orbital index N  =  0, 1, and discuss about the dependence of the N  =  0, 1 quantum Hall phases on the carrier density (or filling factor), E-field, and B-field.

  11. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.

    PubMed

    Groby, J-P; Lauriks, W; Vigran, T E

    2010-05-01

    The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.

  12. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  13. Tooth preparation and fabrication of porcelain veneers using a double-layer technique.

    PubMed

    Chpindel, P; Cristou, M

    1994-09-01

    This article discusses proper tooth preparation when using the double-layered porcelain technique for constructing porcelain veneers designed to produce strength and translucency. Indications for this technique include color correction, restoration of lost tooth structure or improper tooth size, and overall smile design. A new indication--misalignment--has been added. The objective of this article is to review tooth preparation and double-layered laboratory techniques using hydrothermal ceramics in combination. Four cases are used to illustrate the procedure, concentrating on the correction of misaligned teeth.

  14. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  15. Large amplitude double layers in a positively charged dusty plasma with nonthermal electrons

    SciTech Connect

    Djebli, M.; Marif, H.

    2009-06-15

    A pseudopotential approach is used to investigate large amplitude dust-acoustic solitary structures for a plasma composed of positively charged dust, cold electrons, and nonthermal hot electrons. Numerical investigation for an adiabatic situation is conducted to examine the existence region of the wave. The negative potential of the double layers is found to be dependent on nonthermal parameters, Mach number, and electrons temperature. A range of the nonthermal parameters values exists for which two possible double layers for the same plasma mix at different Mach numbers and with significant different amplitudes. The present model is used to investigate localized structures in the lower-altitude Earth's ionosphere.

  16. Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas

    SciTech Connect

    Gogoi, Runmoni; Devi, Nirupama

    2008-07-15

    Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.

  17. Ion phase-space vortices and their relation to small amplitude double layers

    NASA Technical Reports Server (NTRS)

    Pecseli, Hans L.

    1987-01-01

    The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared with similar results from one-dimensional numerical simulations of the problem.

  18. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    SciTech Connect

    Rios, L. A.; Galvão, R. M. O.

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  19. Influence of radiation on double conjugate diffusion in a porous cavity

    SciTech Connect

    Azeem,; Idris, Mohd Yamani Idna; Khan, T. M. Yunus; Badruddin, Irfan Anjum Nik-Ghazali, N.

    2016-05-06

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T{sub w} and concentration C{sub w} whereas the right surface is maintained at T{sub c} and C{sub c} such that T{sub w}>T{sub c} and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  20. Influence of radiation on double conjugate diffusion in a porous cavity

    NASA Astrophysics Data System (ADS)

    Azeem, Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.; Idris, Mohd Yamani Idna

    2016-05-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature Tw and concentration Cw whereas the right surface is maintained at Tc and Cc such that Tw>Tc and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.