NASA Astrophysics Data System (ADS)
Shan, S. Ali; Saleem, H.
2018-05-01
Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using q-nonextensive distribution function for the electrons and assuming ions to be cold Ti< Te. It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The q-nonextensivity parameter q and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the F-region ionosphere for illustration.
Solitary waves and double layers in a dusty electronegative plasma.
Mamun, A A; Shukla, P K; Eliasson, B
2009-10-01
A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].
On the generation of double layers from ion- and electron-acoustic instabilities
Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...
2016-03-17
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Current-free double layers: A review
NASA Astrophysics Data System (ADS)
Singh, Nagendra
2011-12-01
During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
On the generation of double layers from ion- and electron-acoustic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xiangrong, E-mail: xrfu@lanl.gov; Cowee, Misa M.; Winske, Dan
2016-03-15
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electronmore » acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Experimental investigation of current free double layers in helicon plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, B. B.; Tarey, R. D.; Ganguli, A.
2014-02-15
The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal tomore » the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.« less
Double layers in expanding plasmas and their relevance to the auroral plasma processes
NASA Astrophysics Data System (ADS)
Singh, Nagendra; Khazanov, George
2003-04-01
When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [, 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [, 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.
Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2003-01-01
When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.
Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1987-01-01
It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.
NASA Astrophysics Data System (ADS)
Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István
2017-07-01
The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).
NASA Astrophysics Data System (ADS)
Singh, N.
2014-12-01
It is now widely recognized that superthermal electrons commonly exist with the thermal population in most space plasmas. When plasmas consisting of such electron population expand, double layers (DLs) naturally forma due to charge separation; the more mobile superthermal electrons march ahead of the thermal population, leaving a positive charge behind and generating electric fields. Under certain conditions such fields evolve into thin double layers or shocks. The double layers accelerate ions. Such double-layer formation was first invoked to explain expansion of laser produced plasmas. Since then it has been studied in laboratory experiments, and applied to (i) polar wind acceleration,(ii) the existence of low-altitude double layers in the auroral acceleration, (iii) a possible mechanism for the origination of the solar wind, (iv) the helicon double layer thrusters, and (v) the deceleration of electrons after their acceleration in solar flare events. The role of superthermal-electron driven double layers, also known as the low-altitude auroral double layers in the upward current region, in the upward acceleration of ionospheric ions is well-known. In the auroral application the upward moving superthermal electrons consist of backscattered downgoing primary energetic electrons as well as the secondary electrons. Similarly we suggest that such double layers might play roles in the acceleration of ions in the solar wind across the coronal transition region, where the superthermal electrons are supplied by magnetic reconnection events. We will present a unified theoretical view of the superthermal electron-driven double layers and their applications. We will summarize theoretical, experimental, simulation and observational results highlighting the common threads running through the various existing studies.
Variability of single-leg versus double-leg stance radiographs in the varus knee.
Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I
2009-07-01
We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.
Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Imtiaz, Nadia
2018-05-01
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.
Ion-Acoustic Double-Layers in Plasmas with Nonthermal Electrons
NASA Astrophysics Data System (ADS)
Rios, L. A.; Galvão, R. M. O.
2014-12-01
A double layer (DL) consists of a positive/negative Debye sheath, connecting two quasineutral regions of a plasma. These nonlinear structures can be found in a variety of plasmas, from discharge tubes to space plasmas. It has applications to plasma processing and space propulsion, and its concept is also important for areas such as applied geophysics. In the present work we investigate the ion-acoustic double-layers (IADLs). It is believed that these structures are responsible for the acceleration of auroral electrons, for example. The plasma distributions near a DL are usually non-Maxwellian and can be modeled via a κ distribution function. In its reduced form, the standard κ distribution is equivalent to the distribution function obtained from the maximization of the Tsallis entropy, the q distribution. The parameters κ and q measure the deviation from the Maxwellian equilibrium ("nonthermality"), with -κ=1/(1-q) (in the limit κ → ∞ (q → 1) the Maxwellian distribution is recovered). The existence of obliquely propagating IADLs in magnetized two-electron plasmas is investigated, with the hot electron population modeled via a κ distribution function [1]. Our analysis shows that only subsonic and rarefactive DLs exist for the entire range of parameters investigated. The small amplitude DLs exist only for τ=Th/Tc greater than a critical value, which grows as κ decreases. We also observe that these structures exist only for large values of δ=Nh0/N0, but never for δ=1. In our model, which assumes a quasineutral condition, the Mach number M grows as θ decreases (θ is the angle between the directions of the external magnetic field and wave propagation). However, M as well as the DL amplitude are reduced as a consequence of nonthermality. The relation of the quasineutral condition and the functional form of the distribution function with the nonexistence of IADLs has also been analyzed and some interesting results have been obtained. A more detailed discussion about this topic will be presented during the conference. References: [1] L. A. Rios and R. M. O. Galvão, Phys. Plasmas 20, 112301 (2013).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra
A novel mechanism for the supply of hot plasma into the corona from the chromosphere is suggested here; the mechanism involves collisionless magnetic reconnection (CMR) in the transition region (TR) followed by double layer (DL) formation in the enhanced expansion of the chromospheric cold plasma mixed with CMR-heated hot electrons. It is well known that (i) the CMR produces energetic electrons and (ii) DLs naturally form in expanding dense plasmas containing a minor population of hot electrons. We apply these plasma physics facts to the dynamics of stratified plasma in the TR. In the TR where densities fall below ∼10{supmore » 16} m{sup −3}, all collisional mean-free paths, electron–ion, ion–neutral, and electron–neutral, become long enough to render plasma collisionless at kinetic scale lengths, making CMR and DL formation possible. The DLs accelerate the chromospheric cold ions to energies comparable to the energy of the hot electrons. When the upflowing energized ions neutralized by the escaping hot electrons thermalize, the resulting hot tenuous plasma supplies an energy flux ∼3 × 10{sup 5} erg cm{sup −2} s{sup −1} = 3 × 10{sup 2} J m{sup −2} s{sup −1} into the corona. The CMR–DL mechanism introduces sudden transitions in the TR as microstructures in both density and energy. The global transition in the TR could be a fractal structure containing such microscopic features. If not impossible, it is difficult to measure such microstructures, but it seems that the coronal heating begins in the nearly collisionless TR by CMR and DL formation.« less
NASA Astrophysics Data System (ADS)
Moslem, W. M.; Rezk, S.; Abdelsalam, U. M.; El-Labany, S. K.
2018-04-01
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.
Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.
Lv, Jing; Qiao, Weihong; Li, Zongshi
2016-10-01
Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonlinear Coherent Structures, Microbursts and Turbulence
NASA Astrophysics Data System (ADS)
Lakhina, G. S.
2015-12-01
Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.
Diffuse charge and Faradaic reactions in porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Fu, Yeqing; Bazant, Martin Z.
2011-06-01
Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We also present numerical solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge, and reaction rates in response to an applied voltage.
A novel method of testing the shear strength of thick honeycomb composites
NASA Technical Reports Server (NTRS)
Hodge, A. J.; Nettles, A. T.
1991-01-01
Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.
Parida, Pradipta Kumar; Kalaiarasi, Raja; Gopalakrishnan, Surianarayana
2016-06-01
To assess and compare the efficacy of diode laser stapedotomy (DLS) and conventional manual stapedotomy (CMS) in the treatment of otosclerosis. Randomized clinical trial. Tertiary health center. We randomly assigned 60 patients with otosclerosis planned for primary stapedotomy to receive either DLS or CMS. Primary outcome measure was hearing gain measured by pure-tone audiometry (PTA) performed preoperatively and postoperatively. Hearing gain was compared within and between the groups. Secondary outcome measures were the incidence of intraoperative (bleeding and fractured footplate) and postoperative (vomiting, vertigo, sensorineural hearing loss, tinnitus, facial nerve paralysis, and hospital stay) morbidities. Sixty primary stapedotomies (30 in the CMS group and 30 in the DLS group) done for 60 patients (male, n = 42; female, n = 18) were included in the analysis. Preoperative mean air-bone (AB) gap in the DLS and CMS groups was 38.51 ± 8.643 dB and 36.42 ± 8.678 dB, respectively. Mean AB gap at 6 month was 10.86 ± 5.383 dB and 11.05 ± 5.236 dB in the CMS and DLS groups, respectively. Air conduction was improved by 24.98 ± 5.348 dB in the DLS group and 24.08 ± 5.911 dB in the CMS group at 6 months. No statistically significant differences were found in hearing gain between the 2 groups at 6 months (P > .05). A decreased rate and severity of intraoperative bleeding, postoperative vertigo, and vomiting were observed with the diode laser (0%, 6.6%, and 10%) compared with the conventional technique (16.7%, 16.7%, and 16.7%), but these differences were not statistically significant (P > .05). Hearing outcomes and complications of DLS were similar to CMS. These study findings confirm the efficacy of the diode laser in stapedotomy, but DLS offers no advantages over CMS for otosclerosis surgery. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Shilov, V N; Borkovskaja, Y B; Dukhin, A S
2004-09-15
Existing theories of electroacoustic phenomena in concentrated colloids neglect the possibility of double layer overlap and are valid mostly for the "thin double layer," when the double layer thickness is much less than the particle size. In this paper we present a new electroacoustic theory which removes this restriction. This would make this new theory applicable to characterizing a variety of aqueous nanocolloids and of nonaqueous dispersions. There are two versions of the theory leading to the analytical solutions. The first version corresponds to strongly overlapped diffuse layers (so-called quasi-homogeneous model). It yields a simple analytical formula for colloid vibration current (CVI), which is valid for arbitrary ultrasound frequency, but for restricted kappa alpha range. This version of the theory, as well the Smoluchowski theory for microelectrophoresis, is independent of particle shape and polydispersity. This makes it very attractive for practical use, with the hope that it might be as useful as classical Smoluchowski theory. In order to determine the kappa alpha range of the quasi-homogeneous model validity we develop the second version that limits ultrasound frequency, but applies no restriction on kappa alpha. The ultrasound frequency should substantially exceed the Maxwell-Wagner relaxation frequency. This limitation makes active conductivity related current negligible compared to the passive dielectric displacement current. It is possible to derive an expression for CVI in the concentrated dispersion as formulae inhering definite integrals with integrands depending on equilibrium potential distribution. This second version allowed us to estimate the ranges of the applicability of the first, quasi-homogeneous version. It turns out that the quasi-homogeneous model works for kappa alpha values up to almost 1. For instance, at volume fraction 30%, the highest kappa alpha limit of the quasi-homogeneous model is 0.65. Therefore, this version of the electroacoustic theory is valid for almost all nonaqueous dispersions and a wide variety of nanocolloids, especially with sizes under 100 nm.
Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma
NASA Astrophysics Data System (ADS)
Carr, Jerry, Jr.
We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion gheatingh rate during reconnection should scale as the square root of the cube of the charge per unit mass (q3/m)1/2 for ions with varying charge-to-mass ratios. A new RFEA probe was benchmarked on the low pressure CFDL plasmas produced in WVU HELIX-LEIA. This work was the result of collaboration between the University of Tromso (UiT) and WVU. LIF was used to confirm the RFEAs ability to detect a beam when one was present. The RFEA was also able to detect the presence of a beam when LIF techniques were limited by metastable quenching. The probefs limitations in dealing with ion focusing are discussed as well.
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
NASA Astrophysics Data System (ADS)
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin
2015-02-13
Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0.01). Deviations in muscular activity between injured and non-injured sides and between antagonistic muscular activity within injured as compared to non-injured sides indicated specific alterations in sensorimotor control of the lower limb in individuals with ACL rupture. Also, correlations between deviating muscular activity and specific altered movement patterns were suggested as indications of altered sensorimotor control. We therefore advocate that quantitative assessments of altered movement patterns should be considered in ACL-rehabilitation.
Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša
2017-12-01
Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.
Stimuli responsive magnetic nanogels for biomedical application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craciunescu, I.; Petran, A.; Turcu, R.
2013-11-13
We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated withmore » pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.« less
Hou, Lei; Wu, Peiyi
2016-06-21
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
Yang, Wei; Chen, Quanyu; Xia, Renpei; Zhang, Yujun; Shuai, Ling; Lai, Jiejuan; You, Xiaolin; Jiang, Yan; Bie, Ping; Zhang, Leida; Zhang, Hongyu; Bai, Lianhua
2018-05-28
Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)
1987-01-01
Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.
Íbias, J; Soria-Molinillo, E; Kastanauskaite, A; Orgaz, C; DeFelipe, J; Pellón, R; Miguéns, M
2015-08-06
Schedule-induced polydipsia (SIP) is an adjunctive behavior in which rats exhibit excessive drinking as a consequence of intermittent feeding, and it has been proposed as a candidate model to study the development of compulsive and repetitive behavior. Although several brain structures are involved in compulsive behavior, it has been suggested that alterations in fronto-striatal circuits may underlie compulsive spectrum disorders. In the present work, we examined whether SIP would induce modifications in dorsolateral striatum (DLS) and anterior prefrontal cortex (aPFC) neurons. Specifically, the effects of 20 sessions of SIP were determined in the dendrites of DLS medium spiny neurons and in the basal dendritic arbors of layer V pyramidal cells in the aPFC. The structure, size and branching complexity in aPFC neurons were also studied. Results showed that SIP resulted in an increase in dendritic spine density in DLS neurons. Moreover, dendritic spine density was highly correlated with the level of drinking in animals subjected to SIP. By contrast, we observed no differences either in dendritic spine density or in the morphological structure of the dendrites of the aPFC in SIP rats compared to their control counterparts. We hypothesize that SIP-induced structural plasticity in DLS neurons could be related to inflexible response in compulsive behavior. The findings of this study could provide new insights into the involvement of particular cell populations of the dorsolateral striatum and anterior prefrontal cortex regions in compulsive spectrum disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles
NASA Astrophysics Data System (ADS)
Rearick, Colton
In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.
Large Area Few Layers Hexagonal Boron Nitride Prepared by Quadrupole Field Aided Exfoliation.
Hanlun, Lu; Rong, Min Zhi; Zhang, Ming Qiu
2018-01-16
A quadrupole electric field mediated exfoliation method is proposed to convert micron sized hexagonal boron nitride (hBN) powders into few layers hexagonal boron nitride nano-sheets (h-BNNS). Under the optimum conditions (400 Hz, 40 V, 32μg/mL, sodium deoxycholate, TAE medium), the hBN powders (thickness > 200 nm, horizontal scale ~ 10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering (DLS) and atomic force microscope (AFM) statistics show that the yield is 47.6 % (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers). © 2018 IOP Publishing Ltd.
The double layers in the plasma sheet boundary layer during magnetic reconnection
NASA Astrophysics Data System (ADS)
Guo, J.; Yu, B.
2014-11-01
We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.
The interactions between three typical PPCPs and LDH
NASA Astrophysics Data System (ADS)
Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan
2018-03-01
With a positively charged layered structure, layered double hydroxide has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) (tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)) by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, FT-IR spectroscopy and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the Cl-LDH for TC and DF were 1.85 mmol/g and 0.95 mmol/g, respectively. The adsorption isothermal of TC was fitted with the Freundlich adsorption model, and the adsorption isothermal of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs onto Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was mainly driven by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of anionic DF was attributed both to ion exchange of DF for Cl- and the electrostatic interaction between the negatively charged DF and the positively charged structure layer of Cl-LDH. Cl-LDH does not adsorb the neutral CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of the three selected PPCPs in the interlayer of Cl-LDH, which were responsible for the different uptake process of PPCPs on Cl-LDH.
Berkovich, Inbal; Mavila, Sudheendran; Iliashevsky, Olga; Kozuch, Sebastian
2016-01-01
High molecular weight polybutadienes and rhodium complexes were used to produce single chain organometallic nanoparticles. Irradiation of high cis-polybutadiene in the presence of a photosensitizer isomerised the double bonds to produce differing cis/trans ratios within the polymer. Notably, a higher cis percentage of carbon–carbon double bonds within the polymer structure led to faster binding of metal ions, as well as their faster removal by competing phosphine ligands. The experimental results were supported and rationalized by DFT computations. PMID:28936327
Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.
Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen
2017-01-01
Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.
Mowery, Todd M.; Harrold, Jon B.
2011-01-01
The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes. PMID:21389309
Mowery, Todd M; Harrold, Jon B; Alloway, Kevin D
2011-05-01
The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes.
Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning.
Bergstrom, Hadley C; Lipkin, Anna M; Lieberman, Abby G; Pinard, Courtney R; Gunduz-Cinar, Ozge; Brockway, Emma T; Taylor, William W; Nonaka, Mio; Bukalo, Olena; Wills, Tiffany A; Rubio, F Javier; Li, Xuan; Pickens, Charles L; Winder, Danny G; Holmes, Andrew
2018-05-22
In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2014-04-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. This study investigated the effects of habitual wearing of high-heeled shoes on the body's center of mass (COM) motion relative to the center of pressure (COP) during gait. Fifteen female experienced wearers and 15 matched controls walked with high-heeled shoes (7.3cm) while kinematic and ground reaction force data were measured and used to calculate temporal-distance parameters, joint moments, COM-COP inclination angles (IA) and the rate of IA changes (RCIA). Compared with inexperienced wearers, experienced subjects showed significantly reduced frontal IA with increased ankle pronator moments during single-limb support (p<0.05). During double-limb support (DLS), they showed significantly increased magnitudes of the frontal RCIA at toe-off and contralateral heel-strike, and reduced DLS time (p<0.05) but unaltered mean RCIA over DLS. In the sagittal plane experienced wearers showed significantly increased mean RCIA (p<0.05) and significant differences in the RCIA at toe-off and contralateral heel-strike (p<0.05). Significantly increased hip flexor moments and knee extensor moments at toe-off (p<0.05) were needed for forward motion of the trailing limb. The current results identified the change in the balance control in females after long-term use of high-heeled shoes, providing a basis for future design of strategies to minimize the risk of falling during high-heeled gait. Copyright © 2014 Elsevier B.V. All rights reserved.
Research on liquid impact forming technology of double-layered tubes
NASA Astrophysics Data System (ADS)
Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan
2018-03-01
A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.
Langmuir probe measurements of double-layers in a pulsed discharge
NASA Technical Reports Server (NTRS)
Levine, J. S.; Crawford, F. W.
1980-01-01
Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.
Kajbafvala, Marzieh; Farbod, Mansoor
2018-05-14
Although liquid phase exfoliation is a powerful method to produce MoS 2 nanosheets in large scale, but its effectiveness is limited by the diversity of produced nanosheets sizes. Here a novel approach for separation of MoS 2 flakes having various lateral sizes and thicknesses based on the cascaded centrifugation has been introduced. This method involves a pre-separation step which is performed through low-speed centrifugation to avoid the deposition of large area single and few-layers by the heavier particles. The bulk MoS 2 powders were dispersed in an aqueous solution of sodium cholate (SC) and sonicated for 12 h. The main separation step was performed using different speed centrifugation intervals of 10-11, 8-10, 6-8, 4-6, 2-4 and 0.5-2 krpm by which nanosheets containing 2, 4, 7, 8, 14, 18 and 29 layers were obtained respectively. The samples were characterized using XRD, FESEM, AFM, TEM, DLS and also UV-vis, Raman and PL spectroscopy measurements. Dynamic light scattering (DLS) measurements have confirmed the existence of a larger number of single or few-layers MoS 2 nanosheets compared to when the pre-separation step was not used. Finally, Photocurrent and cyclic voltammetry of different samples were measured and found that the flakes with bigger surface area had larger CV loop area. Our results provide a method for the preparation of a MoS 2 monolayer enriched suspension which can be used for different applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamic light scattering in ophthalmology: results of in vitro and in vivo experiments.
Fankhauser, Franz
2006-01-01
To calibrate new dynamic light scattering (DLS) devices in defined solutions and post mortem porcine and human eyes. To examine all segments of the eye and to become familiar with the usage of the technique in living subjects. METHODS, DESIGN: Three new DLS devices for the usage in patients were developed. Mono-disperse solutions, poly-disperse solutions, gels, post mortem porcine and human eyes as well as healthy volunteers were studied. The detected signals were inverted into autocorrelation functions. We constructed three DLS devices appropriate for in vitro as well as in vivo examinations. In mono disperse solution precise disintegration rates could be calculated. In poly-disperse solutions, in gel and in the vitreous the results did not correlate with movements of individual particles but we could calculate characteristics of the complete scattering system. In vivo measurements demonstrated that DLS can be used in all human eye segments. DLS is a unique technique. With DLS the molecular composition of eye segments can be studied in living subjects. This can be used to understand the molecular basis of severe eye diseases. The presented data demonstrate that DLS delivers reproducible data from all eye segments. It is possible to study the molecular structures of eye segments in living subjects. The developed devices were proved successfully in vitro as well as in vivo. Limitations are the low specificity of DLS and its sensitivity to background noise. Now clinical studies are necessary to demonstrate potential diagnostic benefits of DLS in specific eye diseases.
Double layers and circuits in astrophysics
NASA Technical Reports Server (NTRS)
Alfven, Hannes
1986-01-01
As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.
Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A
2014-03-03
Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (D<10 nm) SPIONs into large assemblies can considerably enhance their relaxivity. However, this assembly process is difficult to control and can easily result in unwanted aggregation and precipitation, which might further lead to lower contrast agent performance. Herein, we present highly stable protein-polymer double-stabilized SPIONs for improving contrast in MRI. We used a cationic-neutral double hydrophilic poly(N-methyl-2-vinyl pyridinium iodide-block-poly(ethylene oxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Díaz, Estrella; Vargas, Juan Pedro; Quintero, Esperanza; Gonzalo de la Casa, Luis; O'Donnell, Patricio; Lopez, Juan Carlos
2014-05-01
The dorsal striatum has been ascribed to different behavioral roles. While the lateral area (dls) is implicated in habitual actions, its medial part (dms) is linked to goal expectancy. According to this model, dls function includes representation of stimulus-response associations, but not of goals. Dls function has been typically analyzed with regard to movement, and there is no data indicating whether this region could processes specific stimulus-outcome associations. To test this possibility, we analyzed the effects of dls and dms inactivation on the retrieval phase, and dms lesion on the acquisition phase of a latent inhibition procedure using two conditions, long and short presentations of the future conditioned stimulus. Contrary to current theories of basal ganglia function, we report evidence in favor of the dls involvement in cognitive processes of learning and retrieval. Moreover, we provide data about the sequential relationship between dms and dls, in which the dms could be involved, but it would not be critical, in new learning and the dls could be subsequently involved in consolidating cognitive routines. Copyright © 2014 Elsevier Inc. All rights reserved.
Simulation of plasma double-layer structures
NASA Technical Reports Server (NTRS)
Borovsky, J. E.; Joyce, G.
1982-01-01
Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.
Li, Haoting; Chen, Rongqing; Xu, Canhua; Liu, Benyuan; Tang, Mengxing; Yang, Lin; Dong, Xiuzhen; Fu, Feng
2017-08-21
Dynamic brain electrical impedance tomography (EIT) is a promising technique for continuously monitoring the development of cerebral injury. While there are many reconstruction algorithms available for brain EIT, there is still a lack of study to compare their performance in the context of dynamic brain monitoring. To address this problem, we develop a framework for evaluating different current algorithms with their ability to correctly identify small intracranial conductivity changes. Firstly, a simulation 3D head phantom with realistic layered structure and impedance distribution is developed. Next several reconstructing algorithms, such as back projection (BP), damped least-square (DLS), Bayesian, split Bregman (SB) and GREIT are introduced. We investigate their temporal response, noise performance, location and shape error with respect to different noise levels on the simulation phantom. The results show that the SB algorithm demonstrates superior performance in reducing image error. To further improve the location accuracy, we optimize SB by incorporating the brain structure-based conductivity distribution priors, in which differences of the conductivities between different brain tissues and the inhomogeneous conductivity distribution of the skull are considered. We compare this novel algorithm (called SB-IBCD) with SB and DLS using anatomically correct head shaped phantoms with spatial varying skull conductivity. Main results and Significance: The results showed that SB-IBCD is the most effective in unveiling small intracranial conductivity changes, where it can reduce the image error by an average of 30.0% compared to DLS.
Electrosorption capacitance of nanostructured carbon-based materials.
Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas
2006-10-01
The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1986-01-01
After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.
The Interactions Between Three Typical PPCPs and LDH
Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan
2018-01-01
With a layered structure, layered double hydroxide (LDH) has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) [tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)] by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, Fourier transform infrared (FTIR) spectroscopy, and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the TC and DF were 1.85 and 0.95 mmol/g, respectively. The isothermal adsorption model of TC was fitted with the Freundlich adsorption model, and the isothermal adsorption model of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs into Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was accompanied by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of DF was attributed to anion exchange and electrostatic interaction. Cl-LDH does not adsorb CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of three selected PPCPs, which were ultimately responsible for the uptake of PPCPs on Cl-LDH. PMID:29556493
Rochester, Lynn; Baker, Katherine; Nieuwboer, Alice; Burn, David
2011-02-15
Independence of certain gait characteristics from dopamine replacement therapies highlights its complex pathophysiology in Parkinson's disease (PD). We explored the effect of two different cue strategies on gait characteristics in relation to their response to dopaminergic medications. Fifty people with PD (age 69.22 ± 6.6 years) were studied. Participants walked with and without cues presented in a randomized order. Cue strategies were: (1) internal cue (attention to increase step length) and (2) external cue (auditory cue with instruction to take large step to the beat). Testing was carried out two times at home (on and off medication). Gait was measured using a Stride Analyzer (B&L Engineering). Gait outcomes were walking speed, stride length, step frequency, and coefficient of variation (CV) of stride time and double limb support duration (DLS). Walking speed, stride length, and stride time CV improved on dopaminergic medications, whereas step frequency and DLS CV did not. Internal and external cues increased stride time and walking speed (on and off dopaminergic medications). Only the external cue significantly improved stride time CV and DLS CV, whereas the internal cue had no effect (on and off dopaminergic medications). Internal and external cues selectively modify gait characteristics in relation to the type of gait disturbance and its dopa-responsiveness. Although internal (attention) and external cues target dopaminergic gait dysfunction (stride length), only external cues target stride to stride fluctuations in gait. Despite an overlap with dopaminergic pathways, external cues may effectively address nondopaminergic gait dysfunction and potentially increase mobility and reduce gait instability and falls. Copyright © 2010 Movement Disorder Society.
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.
Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M
2018-03-15
Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Tests on Double Layer Metalization
NASA Technical Reports Server (NTRS)
Woo, D. S.
1983-01-01
28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.
Mei, Xiaoliang; Zhang, Zhenxiang; Yang, Jingwen
2016-12-01
To evaluate the clinical results of a randomized controlled trial of single-layer versus double-layer bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Fifty-eight subjects who underwent primary ACL reconstruction with a BPTB allograft were prospectively randomized into two groups: single-layer reconstruction (n = 31) and double-layer reconstruction (n = 27). The following evaluation methods were used: clinical examination, KT-1000 arthrometer measurement, muscle strength, Tegner activity score, Lysholm score, subjective rating scale regarding patient satisfaction and sports performance level, graft retear, contralateral ACL tear, and additional meniscus surgery. Forty-eight subjects (24 in single-layer group and 24 in double-layer group) who were followed up for 3 years were evaluated. Preoperatively, there were no differences between the groups. At 3-year follow-up, the Lachman and pivot-shift test results were better in the double-layer group (P = 0.019 and P < 0.0001, respectively). KT measurements were better in the double-layer group (mean 2.9 versus 1.5 mm; P = 0.0025). The Tegner score was also better in the double-layer group (P = 0.024). There were no significant differences in range of motion, muscle strength, Lysholm score, subjective rating scale, graft retear, and secondary meniscal tear. In ACL reconstruction, double-layer BPTB reconstruction was significantly better than single-layer reconstruction regarding anterior and rotational stability at 3-year follow-up. The results of KT measurements and the Lachman and pivot-shift tests were significantly better in the double-layer group, whereas there was no difference in the anterior drawer test results. The Tegner score was also better in the double-layer group; however, there were no differences in the other subjective findings.
NASA Astrophysics Data System (ADS)
Harris, David Lee
The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.
Observation of a stationary, current-free double layer in a plasma
NASA Technical Reports Server (NTRS)
Hairapetian, G.; Stenzel, R. L.
1990-01-01
A stationary, current-free, potential double layer is formed in a two-electron-population plasma due to self-consistent separation of the two electron species. The position and amplitude of the double layer are controlled by the relative densities of the two electron populations. The steady-state double layer traps the colder electrons on the high potential side, and generates a neutralized, monoenergetic ion beam on the low potential side. The field-aligned double layer is annihilated when an electron current is drawn through the plasma.
Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald
2016-04-15
Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Transition from single to multiple double layers. [of plasma
NASA Technical Reports Server (NTRS)
Chan, C.; Hershkowitz, N.
1982-01-01
Laboratory results are presented to define parameters which allow the boundary conditions to control the characteristics of double layers of plasma. It is shown that multiple double layers arise when the ratio of Debye length to system length decreases, a result which is in line with boundary layer theory. The significance of inclusion of the system length is noted to render BGK treatments of double layers, wherein the length is neglected, invalid.
Zheng, Tianyu; Bott, Steven; Huo, Qun
2016-08-24
Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.
Influence of the charge double layer on solid oxide fuel cell stack behavior
NASA Astrophysics Data System (ADS)
Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.
2015-10-01
While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.
Little, Charles A E; Orloff, Nathan D; Hanemann, Isaac E; Long, Christian J; Bright, Victor M; Booth, James C
2017-07-25
Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.
NASA Astrophysics Data System (ADS)
Xie, Dexuan; Jiang, Yi
2018-05-01
This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
Dynamical features and electric field strengths of double layers driven by currents. [in auroras
NASA Technical Reports Server (NTRS)
Singh, N.; Thiemann, H.; Schunk, R. W.
1985-01-01
In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.
Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity
NASA Astrophysics Data System (ADS)
T, T. T., Vi; Lue, S. J.
2016-11-01
A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.
NASA Astrophysics Data System (ADS)
Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu
2018-05-01
Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.
ERIC Educational Resources Information Center
Spencer, Jamala
2017-01-01
The question of which strategies for teaching daily living skills (DLS) are most effective for students with autism spectrum disorder (ASD) requires increased attention. Special education elementary teachers may not have the instructional strategies necessary to teach DLS to students with ASD. DLS instruction for students with ASD is important…
Goodman, Jarid; Ressler, Reed L; Packard, Mark G
2017-06-03
The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Bamberg, Christian; Hinkson, Larry; Dudenhausen, Joachim W; Bujak, Verena; Kalache, Karim D; Henrich, Wolfgang
2017-12-01
Cesarean deliveries are the most common abdominal surgery procedure globally, and the optimal way to suture the hysterotomy remains a matter of debate. The aim of this study was to assess the incidence of cesarean scar niches and the depth after single- or double-layer uterine closure. We performed a randomized controlled trial in which women were allocated to three uterotomy suture techniques: continuous single-layer unlocked, continuous locked single-layer, or double-layer sutures. Transvaginal ultrasound was performed six weeks and 6-24 months after cesarean delivery [Clinicaltrials.gov (NCT02338388)]. The study included 435 women. Six weeks after delivery, the incidence of niche was not significantly different between the groups (p = 0.52): 40% for single-layer unlocked, 32% for single-layer locked and 43% for double-layer sutures. The mean ± SD niche depths were 3.0 ± 1.4 mm for single-layer unlocked, 3.6 ± 1.7 mm for single-layer locked and 3.3 ± 1.3 mm for double-layer sutures (p = 1.0). There were no significant differences (p = 0.58) in niche incidence between the three groups at the second ultrasound follow up: 30% for single-layer unlocked, 23% for single-layer locked and 29% for double-layer sutures. The mean ± SD niche depth was 3.1 ± 1.5 mm after single-layer unlocked, 2.8 ± 1.5 mm after single-layer locked and 2.5 ± 1.2 mm after double-layer sutures (p = 0.61). There was a trend (p = 0.06) for the residual myometrium thickness to be thicker after double-layer repair at the long-term follow up. The incidence of cesarean scar niche formation and the niche depth was independent of the hysterotomy closure technique. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
NASA Astrophysics Data System (ADS)
Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying
In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.
Contributions of dorsal striatal subregions to spatial alternation behavior.
Moussa, Roula; Poucet, Bruno; Amalric, Marianne; Sargolini, Francesca
2011-07-01
Considerable evidence has shown a clear dissociation between the dorsomedial (DMS) and the dorsolateral (DLS) striatum in instrumental conditioning. In particular, DMS activity is necessary to form action-outcome associations, whereas the DLS is required for developing habitual behavior. However, few studies have investigated whether a similar dissociation exists in more complex goal-directed learning processes. The present study examined the role of the two structures in such complex learning by analyzing the effects of excitotoxic DMS and DLS lesions during the acquisition and extinction of spatial alternation behavior, in a continuous alternation T-maze task. We demonstrate that DMS and DLS lesions have opposite effects, the former impairing and the latter improving animal performance during learning and extinction. DMS lesions may impair the acquisition of spatial alternation behavior by disrupting the signal necessary to link a goal with a specific spatial sequence. In contrast, DLS lesions may accelerate goal-driven strategies by minimizing the influence of external stimuli on the response, thus increasing the impact of action-reward contingencies. Taken together, these results suggest that DMS- and DLS-mediated learning strategies develop in parallel and compete for the control of the behavioral response early in learning.
Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong
2017-01-01
An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti
NASA Astrophysics Data System (ADS)
Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.
In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.
Polysulfide intercalated layered double hydroxides for metal capture applications
Kanatzidis, Mercouri G.; Ma, Shulan
2017-04-04
Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.
Structural and biophysical properties of h-FANCI ARM repeat protein.
Siddiqui, Mohd Quadir; Choudhary, Rajan Kumar; Thapa, Pankaj; Kulkarni, Neha; Rajpurohit, Yogendra S; Misra, Hari S; Gadewal, Nikhil; Kumar, Satish; Hasan, Syed K; Varma, Ashok K
2017-11-01
Fanconi anemia complementation groups - I (FANCI) protein facilitates DNA ICL (Inter-Cross-link) repair and plays a crucial role in genomic integrity. FANCI is a 1328 amino acids protein which contains armadillo (ARM) repeats and EDGE motif at the C-terminus. ARM repeats are functionally diverse and evolutionarily conserved domain that plays a pivotal role in protein-protein and protein-DNA interactions. Considering the importance of ARM repeats, we have explored comprehensive in silico and in vitro approach to examine folding pattern. Size exclusion chromatography, dynamic light scattering (DLS) and glutaraldehyde crosslinking studies suggest that FANCI ARM repeat exist as monomer as well as in oligomeric forms. Circular dichroism (CD) and fluorescence spectroscopy results demonstrate that protein has predominantly α- helices and well-folded tertiary structure. DNA binding was analysed using electrophoretic mobility shift assay by autoradiography. Temperature-dependent CD, Fluorescence spectroscopy and DLS studies concluded that protein unfolds and start forming oligomer from 30°C. The existence of stable portion within FANCI ARM repeat was examined using limited proteolysis and mass spectrometry. The normal mode analysis, molecular dynamics and principal component analysis demonstrated that helix-turn-helix (HTH) motif present in ARM repeat is highly dynamic and has anti-correlated motion. Furthermore, FANCI ARM repeat has HTH structural motif which binds to double-stranded DNA.
Capacitance of carbon-based electrical double-layer capacitors.
Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S
2014-01-01
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang
2018-06-01
We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness. Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique. An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture. A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.
Laboratory observation of multiple double layer resembling space plasma double layer
NASA Astrophysics Data System (ADS)
Alex, Prince; Arumugam, Saravanan; Sinha, Suraj
2017-10-01
Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.
ERIC Educational Resources Information Center
McKibben, Suzanne J.
This study assessed the ongoing development of digital libraries (DLs) on the World Wide Web. DLs of art and literature were surveyed for selected works from the early Italian Renaissance in order to gain insight into the current trends prevalent throughout the larger population of DLs. The following artists and authors were selected for study:…
Double layers and circuits in astrophysics
NASA Technical Reports Server (NTRS)
Alfven, H.
1986-01-01
A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.
Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces
NASA Astrophysics Data System (ADS)
Tang, Huiying; Dong, Huimin; Liu, Zhanwei
2017-11-01
Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.
NASA Astrophysics Data System (ADS)
Dubin, Stephen; Ansari, Rafat R.; Tulp, Orien; Steinberg, Sheldon; Koch, Seth; DellaVecchia, Michael A.; Cozmi, Mihaela; Victor, Mary
1999-06-01
The absence of verbal feedback, available from most human patients, is a major limitation in veterinary diagnosis in general and in the evaluation of ophthalmic lens opacity in particular. A novel compact dynamic light scattering (DLS) instrument, developed at NASA, offers significant mitigation to this limitation. It not only yields objective repeatable non-invasive estimation of lens opacity but also provides insight into the nature of chemical and physical alternations in the lens and other eye structures. For example, DLS measurements of the cataractous lens may be interpreted in terms of alpha crystalline protein size. In contrast to most conventional methods, the examination results are numerical and readily accommodate statistical analysis. We present results of DLS measurements in laboratory rabbits with naphthalene induced cataracts, rodents with genetically conditioned hypertension and/or diabetes mellitus; as well as applications of the DLS method in clinical veterinary patients. Use of DLS in examination of phacoemulsification fluid, urine and other biological materials, and potential applications in ocular toxically will also be discussed.
NASA Astrophysics Data System (ADS)
Zhang, Jiangshan; Yang, Shufeng; Li, Jingshe; Tang, Haiyan; Jiang, Zhengyi
2018-01-01
The effect of a dissipative ladle shroud (DLS) on mixing in tundish was investigated, compared with that of a conventional ladle shroud (CLS) using mathematical and physical modelling. The tracer profiles of mathematical results, achieved using large eddy simulation, were validated by physical observations employing high-speed cinephotography. The design of a DLS dramatically changed the flow patterns and contributed the intermixing of fluid elements inside the ladle shroud. The vortex flow encouraged the turbulent mixing and was verified by tracking of physical tracer dispersion inside the DLS. Residence Time Distribution (RTD) curves were obtained in two different sized tundishes to examine the mixing behaviours. The findings indicated that the DLS benefited the tundish mixing in terms of increasing active volume. The effect seemed to be more remarkable in the smaller tundish. The DLS gave rise to a more plug-like flow pattern inside the tundish, showing potential to shorten the transition length during grade change.
STM/STS Study of the Sb (111) Surface
NASA Astrophysics Data System (ADS)
Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.
An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.
Acoustic evaluation of pirfenidone on patients with combined pulmonary fibrosis emphysema syndrome.
Charleston-Villalobos, Sonia; Castaneda-Villa, Norma; Gonzalez-Camarena, Ramon; Mejia-Avila, M; Mateos-Toledo, H; Aljama-Corrales, Tomas
2016-08-01
The combined pulmonary fibrosis emphysema syndrome (CPFES) overall has a poor prognosis with a 5-year survival of 35-80%. Consequently, to evaluate possible positive effects on patients of novel agents as pirfenidone is relevant. However, the efficacy of pirfenidone in CPFES patients is still not well-known. In this study we propose an alternative to evaluate the effects of pirfenidone treatment on CPFES patients via acoustic information. Quantitative analysis of discontinuous adventitious lung sounds (DLS), known as crackles, has been promising to detect and characterize diverse pulmonary pathologies. The present study combines independent components (ICs) analysis of LS and the automated selection of ICs associated with DLS. ICs's features as fractal dimension, entropy and sparsity produce several clusters by kmeans. Those clusters containing ICs of DLS are exclusively considered to finally estimate the number of DLS per ICs by a time-variant AR modeling. For the evaluation of the effects of pirfenidone, the 2D DLS-ICs spatial distribution in conjunction with the estimated number of DLS events are shown. The methodology is applied to two real cases of CPFES with 6 and 12 months of treatment. The acoustical evaluation indicates that pirfenidone treatment may not be satisfactory for CPFES patients but further evaluation has to be performed.
Skelin, Ivan; Hakstol, Rhys; VanOyen, Jenn; Mudiayi, Dominic; Molina, Leonardo A; Holec, Victoria; Hong, Nancy S; Euston, David R; McDonald, Robert J; Gruber, Aaron J
2014-05-01
We used focal brain lesions in rats to examine how dorsomedial (DMS) and dorsolateral (DLS) regions of the striatum differently contribute to response adaptation driven by the delivery or omission of rewards. Rats performed a binary choice task under two modes: one in which responses were rewarded on half of the trials regardless of choice; and another 'competitive' one in which only unpredictable choices were rewarded. In both modes, control animals were more likely to use a predictable lose-switch strategy than animals with lesions of either DMS or DLS. Animals with lesions of DMS presumably relied more on DLS for behavioural control, and generated repetitive responses in the first mode. These animals then shifted to a random response strategy in the competitive mode, thereby performing better than controls or animals with DLS lesions. Analysis using computational models of reinforcement learning indicated that animals with striatal lesions, particularly of the DLS, had blunted reward sensitivity and less stochasticity in the choice mechanism. These results provide further evidence that the rodent DLS is involved in rapid response adaptation that is more sophisticated than that embodied by the classic notion of habit formation driven by gradual stimulus-response learning. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Yu, H; Zhang, L; Li, X H; Xu, H Y; Liu, Y C
2016-04-01
The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitro-genated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.
Transition from moving to stationary double layers in a single-ended Q machine
NASA Technical Reports Server (NTRS)
Song, Bin; Merlino, R. L.; D'Angelo, N.
1990-01-01
Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.
Sinsurin, Komsak; Srisangboriboon, Sarun; Vachalathiti, Roongtiwa
2017-07-01
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2 × 4, limb × direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p < .05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p < .05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.
Becker, Anton S; Mueller, Michael; Stoffel, Elina; Marcon, Magda; Ghafoor, Soleen; Boss, Andreas
2018-02-01
To train a generic deep learning software (DLS) to classify breast cancer on ultrasound images and to compare its performance to human readers with variable breast imaging experience. In this retrospective study, all breast ultrasound examinations from January 1, 2014 to December 31, 2014 at our institution were reviewed. Patients with post-surgical scars, initially indeterminate, or malignant lesions with histological diagnoses or 2-year follow-up were included. The DLS was trained with 70% of the images, and the remaining 30% were used to validate the performance. Three readers with variable expertise also evaluated the validation set (radiologist, resident, medical student). Diagnostic accuracy was assessed with a receiver operating characteristic analysis. 82 patients with malignant and 550 with benign lesions were included. Time needed for training was 7 min (DLS). Evaluation time for the test data set were 3.7 s (DLS) and 28, 22 and 25 min for human readers (decreasing experience). Receiver operating characteristic analysis revealed non-significant differences (p-values 0.45-0.47) in the area under the curve of 0.84 (DLS), 0.88 (experienced and intermediate readers) and 0.79 (inexperienced reader). DLS may aid diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists, and learns better and faster than a human reader with no prior experience. Further clinical trials with dedicated algorithms are warranted. Advances in knowledge: DLS can be trained classify cancer on breast ultrasound images high accuracy even with comparably few training cases. The fast evaluation speed makes real-time image analysis feasible.
DiFeliceantonio, Alexandra G.; Berridge, Kent C.
2016-01-01
Pavlovian cues for rewards can become attractive incentives: approached and ‘wanted’ as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here we report that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits was suggested by: 1) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection, and 2) DAMGO in DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, our results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet. PMID:26924040
The dorsolateral striatum selectively mediates extinction of habit memory.
Goodman, Jarid; Ressler, Reed L; Packard, Mark G
2016-12-01
Previous research has indicated a role for the dorsolateral striatum (DLS) in acquisition and retrieval of habit memory. However, the neurobiological mechanisms guiding extinction of habit memory have not been extensively investigated. The present study examined whether the dorsolateral striatum (DLS) is involved in extinction of habit memory in a food-rewarded response learning version of the plus-maze in adult male Long-Evans rats (experiment 1). In addition, to determine whether the role of this brain region in extinction is selective to habit memory, we also examined whether the DLS is required for extinction of hippocampus-dependent spatial memory in a place learning version of the plus-maze (experiment 2). Following acquisition in either task, rats received two days of extinction training, in which the food reward was removed from the maze. The number of perseverative trials (a trial in which the rat made the same previously reinforced body-turn) and latency to reach the previously correct food well were used as measures of extinction. Animals were given immediate post-training intra-DLS administration of the sodium channel blocker bupivacaine or vehicle to determine the effect of DLS inactivation on consolidation of extinction memory in each task. In the response learning task, post-training DLS inactivation impaired consolidation of extinction memory. Injections of bupivacaine delayed 2 h post-training did not affect extinction, indicating a time-dependent effect of neural inactivation on consolidation of extinction memory in this task. In contrast, post-training DLS inactivation did not impair, but instead slightly enhanced, extinction memory in the place learning task. The present findings indicate a critical role for the DLS in extinction of habit memory in the response learning task, and may be relevant to understanding the neural mechanisms through which maladaptive habits in human psychopathologies (e.g. drug addiction) may be suppressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Method of making a high performance ultracapacitor
Farahmandi, C. Joseph; Dispennette, John M.
2000-07-26
A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.
Aluminum-carbon composite electrode
Farahmandi, C. Joseph; Dispennette, John M.
1998-07-07
A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.
Aluminum-carbon composite electrode
Farahmandi, C.J.; Dispennette, J.M.
1998-07-07
A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.
Double layer drainage performance of porous asphalt pavement
NASA Astrophysics Data System (ADS)
Ji, Yangyang; Xie, Jianguang; Liu, Mingxi
2018-06-01
In order to improve the design reliability of the double layer porous asphalt pavement, the 3D seepage finite element method was used to study the drainage capacity of double layer PAC pavements with different geometric parameters. It revealed that the effect of pavement drainage length, slope, permeability coefficient and structure design on the drainage capacity. The research of this paper can provide reference for the design of double layer porous asphalt pavement in different rainfall intensity areas, and provide guides for the related engineering design.
Ting, Daniel Shu Wei; Cheung, Carol Yim-Lui; Lim, Gilbert; Tan, Gavin Siew Wei; Quang, Nguyen D; Gan, Alfred; Hamzah, Haslina; Garcia-Franco, Renata; San Yeo, Ian Yew; Lee, Shu Yen; Wong, Edmund Yick Mun; Sabanayagam, Charumathi; Baskaran, Mani; Ibrahim, Farah; Tan, Ngiap Chuan; Finkelstein, Eric A; Lamoureux, Ecosse L; Wong, Ian Y; Bressler, Neil M; Sivaprasad, Sobha; Varma, Rohit; Jonas, Jost B; He, Ming Guang; Cheng, Ching-Yu; Cheung, Gemmy Chui Ming; Aung, Tin; Hsu, Wynne; Lee, Mong Li; Wong, Tien Yin
2017-12-12
A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Use of a deep learning system. Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
Ting, Daniel Shu Wei; Cheung, Carol Yim-Lui; Lim, Gilbert; Tan, Gavin Siew Wei; Quang, Nguyen D.; Gan, Alfred; Hamzah, Haslina; Garcia-Franco, Renata; San Yeo, Ian Yew; Lee, Shu Yen; Wong, Edmund Yick Mun; Sabanayagam, Charumathi; Baskaran, Mani; Ibrahim, Farah; Tan, Ngiap Chuan; Finkelstein, Eric A.; Lamoureux, Ecosse L.; Wong, Ian Y.; Bressler, Neil M.; Sivaprasad, Sobha; Varma, Rohit; Jonas, Jost B.; He, Ming Guang; Cheng, Ching-Yu; Cheung, Gemmy Chui Ming; Aung, Tin; Hsu, Wynne; Lee, Mong Li
2017-01-01
Importance A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). Conclusions and Relevance In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes. PMID:29234807
Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.
Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun
2012-04-01
Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.
The Electrical Double Layer and Its Structure
NASA Astrophysics Data System (ADS)
Stojek, Zbigniew
At any electrode immersed in an electrolyte solution, a specific interfacial region is formed. This region is called the double layer. The electrical properties of such a layer are important, since they significantly affect the electrochemical measurements. In an electrical circuit used to measure the current that flows at a particular working electrode, the double layer can be viewed as a capacitor. Figure I.1.1 depicts this situation where the electrochemical cell is represented by an electrical circuit and capacitor C d corresponds to the differential capacity of the double layer. To obtain a desired potential at the working electrodes, the double-layer capacitor must be first appropriately charged, which means that a capacitive current, not related to the reduction or oxidation of the substrates, flows in the electrical circuit. While this capacitive current carries some information concerning the double layer and its structure, and in some cases can be used for analytical purposes, in general, it interferes with electrochemical investigations. A variety of methods are used in electrochemistry to depress, isolate, or filter the capacitive current.
Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko
2014-12-26
The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
NASA Astrophysics Data System (ADS)
Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar
2018-03-01
The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Spadoni, A.; Antonaia, A.
2013-12-01
Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhshayesh, A.M., E-mail: bakhshayesh@alum.sharif.edu
2016-01-15
Highlights: • A new architecture of double-layered TiO{sub 2} electrodes is presented. • The electrode contains two alternate layers of TiO{sub 2} nanoparticles and aggregates. • The aggregates layers are deposited onto the nanocrystalline layer. • The new design showed improved efficiency compared to conventional cells. - Abstract: This study presents a new double-layered TiO{sub 2} film containing a nanocrystalline under-layer and a uniform, sponge-like light scattering over-layer for dye-sensitized solar cells (DSCs) application. The over-layer is composed of 2-μm-diameter uniform aggregates, containing small nanoparticles with the average grain size of 20 nm. X-ray diffraction reveals that the light scatteringmore » layer has a mixture of anatase and rutile phases, whereas the nanocrystalline layer has a pure anatase phase. Ultraviolet–visible (UV–vis) spectra show that the light scattering layer has lower band gap energy than the nanocrystalline under-layer, extending the absorption of TiO{sub 2} into visible region. Diffuse reflectance spectroscopy demonstrates that the double-layered electrode enjoyed better light scattering ability. The double-layered DSC shows the highest power conversion efficiency of 7.69% and incident photon-to-current efficiency of 88% as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy.« less
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
DiFeliceantonio, Alexandra G; Berridge, Kent C
2016-05-01
Pavlovian cues for rewards can become attractive incentives: approached and 'wanted' as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here it was reported that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individualized fashion, at the expense of a competing cue. In an autoshaping (sign-tracking vs. goal-tracking) paradigm, microinjection of the mu opioid receptor agonist (DAMGO) or dopamine indirect agonist (amphetamine) in the DLS of sign-tracker individuals selectively enhanced their sign-tracking attraction toward the reward-predictive lever cue. By contrast, DAMGO or amphetamine in the DLS of goal-trackers selectively enhanced prepotent attraction toward the reward-proximal cue of sucrose dish. Amphetamine also enhanced goal-tracking in some sign-tracker individuals (if they ever defected to the dish even once). That DLS enhancement of cue attraction was due to stronger motivation, not stronger habits, was suggested by: (i) sign-trackers flexibly followed their cue to a new location when the lever was suddenly moved after DLS DAMGO microinjection; and (ii) DAMGO in the DLS also made sign-trackers work harder on a new instrumental nose-poke response required to earn presentations of their Pavlovian lever cue (instrumental conditioned reinforcement). Altogether, the current results suggest that DLS circuitry can enhance the incentive salience of a Pavlovian reward cue, selectively making that cue a stronger motivational magnet. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?
NASA Astrophysics Data System (ADS)
Skinner, Brian; Loth, M. S.; Shklovskii, B. I.
2010-03-01
The capacitance of the double layer formed at a metal/ionic-conductor interface can be remarkably large, so that the apparent width of the double layer is as small as 0.3 Å. Mean-field theories fail to explain such large capacitance. We propose an alternate theory of the ionic double layer which allows for the binding of discrete ions to their image charges in the metal. We show that at small voltages the capacitance of the double layer is limited only by the weak dipole-dipole repulsion between bound ions, and is therefore very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the mean-field value.
Tibial nerve somatosensory evoked potentials in dogs with degenerative lumbosacral stenosis.
Meij, Björn P; Suwankong, Niyada; van den Brom, Walter E; Venker-van Haagen, Anjop J; Hazewinkel, Herman A W
2006-02-01
To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. Clinical and experimental study. Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.
Xiang, Yang; Lu, Kewei; James, Stephen L.; Borlawsky, Tara B.; Huang, Kun; Payne, Philip R.O.
2011-01-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. PMID:22154838
New noninvasive index for evaluation of the vascular age of healthy and sick people
NASA Astrophysics Data System (ADS)
Fine, Ilya; Kuznik, Boris I.; Kaminsky, Alexander V.; Shenkman, Louis; Kustovsjya, Evgeniya M.; Maximova, Olga G.
2012-08-01
We conducted a study on 861 healthy and sick subjects and demonstrated that some calculated parameters based on measurement of the dynamic light scattering (DLS) signal from the finger correlate highly with chronological age ranging from 1.5 to 85 years old. Measurements of DLS signals were obtained during both occlusion and nonocclusion of blood flow in the finger. For the nonocclusion case we found that the low-frequency component of the DLS signal significantly correlates with the biological age while the high-frequency component of the DLS signal resembles the arterial pulse-wave and does correlate with age. However, the most prominent correlation between the DLS characteristics and age was noted with the stasis stage measurements. We propose that the observed age-related phenomena are caused by alterations in local blood viscosity and interactions of the endothelial cells with erythrocytes. Further, a new noninvasive index based on the age-related optical characteristics was introduced. This noninvasive index may be used as a research and diagnostic tool to examine the endothelial and thrombolytic properties of the vascular system.
New noninvasive index for evaluation of the vascular age of healthy and sick people.
Fine, Ilya; Kuznik, Boris I; Kaminsky, Alexander V; Shenkman, Louis; Kustovsjya, Evgeniya M; Elena, Evgeniya M; Maximova, Olga G
2012-08-01
We conducted a study on 861 healthy and sick subjects and demonstrated that some calculated parameters based on measurement of the dynamic light scattering (DLS) signal from the finger correlate highly with chronological age ranging from 1.5 to 85 years old. Measurements of DLS signals were obtained during both occlusion and nonocclusion of blood flow in the finger. For the nonocclusion case we found that the low-frequency component of the DLS signal significantly correlates with the biological age while the high-frequency component of the DLS signal resembles the arterial pulse-wave and does correlate with age. However, the most prominent correlation between the DLS characteristics and age was noted with the stasis stage measurements. We propose that the observed age-related phenomena are caused by alterations in local blood viscosity and interactions of the endothelial cells with erythrocytes. Further, a new noninvasive index based on the age-related optical characteristics was introduced. This noninvasive index may be used as a research and diagnostic tool to examine the endothelial and thrombolytic properties of the vascular system.
Xiang, Yang; Lu, Kewei; James, Stephen L; Borlawsky, Tara B; Huang, Kun; Payne, Philip R O
2012-04-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis
NASA Astrophysics Data System (ADS)
Saiful; Borneman, Z.; Wessling, M.
2018-05-01
Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.
NASA Astrophysics Data System (ADS)
Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.
2009-05-01
In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.
NASA Astrophysics Data System (ADS)
Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.
2015-10-01
The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.
Growth of multilayered polycrystalline reaction rims in the MgO-SiO2 system, part I: experiments
NASA Astrophysics Data System (ADS)
Gardés, E.; Wunder, B.; Wirth, R.; Heinrich, W.
2011-01-01
Growth of transport-controlled reaction layers between single crystals of periclase and quartz, and forsterite and quartz was investigated experimentally at 1.5 GPa, 1100°C to 1400°C, 5 min to 72 h under dry and melt-free conditions using a piston-cylinder apparatus. Starting assemblies consisting of Per | Qtz | Fo sandwiches produced polycrystalline double layers of forsterite and enstatite between periclase and quartz, and enstatite single layers between forsterite and quartz. The position of inert Pt-markers initially deposited at the interface of the reactants and inspection of mass balance confirmed that both layer-producing reactions are controlled by MgO diffusion, while SiO2 is relatively immobile. BSE and TEM imaging revealed thicknesses from 0.6 μm to 14 μm for double layers and from 0 to 6.8 μm for single layers. Both single and double layers displayed non-parabolic growth together with pronounced grain coarsening. Textural evolution and growth rates for each reaction are directly comparable. Forsterite-enstatite double layers are always wider than enstatite single layers, and the growth of enstatite in the double layer is slower than that in the single layer. In double layers, the enstatite/forsterite layer thickness ratio significantly increases with temperature, reflecting different MgO mobilities as temperature varies. Thus, thickness ratios in multilayered reaction zones may contain a record of temperature, but also that of any physico-chemical parameter that modifies the mobilities of the chemical components between the various layers. This potential is largely unexplored in geologically relevant systems, which calls for further experimental studies of multilayered reaction zones.
NASA Astrophysics Data System (ADS)
Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey
2015-08-01
Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.
Yagi, Mitsuru; Hosogane, Naobumi; Watanabe, Kota; Asazuma, Takashi; Matsumoto, Morio
2016-04-01
Various factors are reported to affect the spinal alignment in degenerative lumbar scoliosis (DLS). Although trunk muscles also appear to affect spinal alignment, the role of the trunk muscles is not yet clear. The aim was to elucidate the role of the multifidus (MF) and psoas (PS) in maintaining global spinal alignment in patients with DLS. This was a multicenter retrospective matched cohort study. Surgically treated 60 paired DLS and lumbar spinal stenosis (LSS) female (120 patients), matched for age and body mass index (BMI; DLS age 68.0±6.8 vs. LSS 67.1±8.9 years; BMI 21.6±3.3 vs. 23.2±3.8 kg/m(2)), were included and were followed for at least 2 years. Spinal alignment, muscle area, and volume were measured from radiographs, magnetic resonance images (MRIs), and whole-body dual-energy X-ray absorptiometry (DXA) scans. Muscle strength was measured by grip power and peak expiratory flow (PEF). As a surrogate of muscle area, we obtained the cross-sectional area (CSA) at the L5-S level from preoperative MRIs. The MF and PS CSAs were significantly smaller in the DLS group than in the LSS group (MF 477.7±192.5 vs. 779.8±248.6 mm(2), p<.01; PS 692.3±201.2 vs. 943.4±272.4 mm(2), p=.002), whereas percentage of difference between the right and left sides was significantly larger in the DLS group (MF 18.4±30.6 vs. 2.4±3.3%, p<.01; PS 14.4±15.8 vs. 2.1±2.2%, p<.01). In the extremities, there were no significant differences in the left- or right-side lean composition and grip strength or PEF tests between the groups. Correlation coefficient tests showed moderate correlations between the MF average CSA (avCSA) and global spinal alignment and spinopelvic alignment (pelvic incidence-lumbar lordosis; R=-0.37, -0.38) in the DLS group. The MF avCSA was correlated with the postoperative progression of kyphosis at the unfused thoracic vertebrae in the DLS group (R=0.34). The CSAs of the MF and PS were significantly smaller in the DLS group. Whole-body DXA showed no significant difference in the lean composition between the groups. There were significant correlations in the DLS patients between the MF CSA and sagittal spinal alignment. These findings suggest the causal relationship between muscles and global spine alignment. Copyright © 2016 Elsevier Inc. All rights reserved.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Electron temperature differences and double layers
NASA Technical Reports Server (NTRS)
Chan, C.; Hershkowitz, N.; Lonngren, K. E.
1983-01-01
Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.
A fluid description of plasma double-layers
NASA Technical Reports Server (NTRS)
Levine, J. S.; Crawford, F. W.
1979-01-01
The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.
A new hydrodynamic analysis of double layers
NASA Technical Reports Server (NTRS)
Hora, Heinrich
1987-01-01
A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.
Synergetic effect of double-step blocking layer for the perovskite solar cell
NASA Astrophysics Data System (ADS)
Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo
2017-10-01
In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.
NASA Astrophysics Data System (ADS)
Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.
2018-05-01
The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.
Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas
NASA Astrophysics Data System (ADS)
Merino, Mario; Ahedo, Eduardo
2013-02-01
The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.
Dynamics of multiple double layers in high pressure glow discharge in a simple torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.
2014-06-15
Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less
Unravelling the electrochemical double layer by direct probing of the solid/liquid interface
Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.
2016-01-01
The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762
Sub-Grid Modeling of Electrokinetic Effects in Micro Flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
2005-01-01
Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this approach, the numeric grid size can be much larger than the thickness of double layer. Presented in this report are a description of the approach, methodology for implementation and several validation simulations for micro flows.
Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong
2018-06-18
CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.
Pd/Ni-WO3 anodic double layer gasochromic device
Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping
2004-04-20
An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.
Topological defects in electric double layers of ionic liquids at carbon interfaces
Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...
2015-06-07
The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less
MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.
Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan
2016-11-01
Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the cytotoxicity tests performed revealed the less toxic nature of the nanohybrid as compared to the bare SA drug. Copyright © 2016 Elsevier B.V. All rights reserved.
Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe
2011-08-01
Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis
Accretion onto neutron stars with the presence of a double layer
NASA Technical Reports Server (NTRS)
Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.
1986-01-01
It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.
Accretion onto neutron stars with the presence of a double layer
NASA Technical Reports Server (NTRS)
Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.
1987-01-01
It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.
Challenges facing lithium batteries and electrical double-layer capacitors.
Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G
2012-10-01
Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Double Negative Materials (DNM), Phenomena and Applications
2009-07-01
Nanoparticles Formed by Pairs Of Concentric Double-Negative (DNG), Single-Negative ( SNG ) and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl...material RRL Rapid Research Letters SHG second-harmonic generation SNG single-negative SSR split-ring resonator A-1 Appendix A. October 2008...Pairs of Concentric Double-Negative (DNG), Single-Negative ( SNG ), and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl. Phys. 97, no. 9 (May
Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems
Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan
2008-01-01
In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726
Water transport and desalination through double-layer graphyne membranes.
Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah
2018-05-16
Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.
Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana
2017-01-01
The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function. PMID:28400730
Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J
2015-01-01
Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.
de Souza Abreu, Nathalia; de Castro Villas Boas, Bia; Netto, José Murilo Bastos; Figueiredo, André Avarese
2017-11-01
To compare the results of the dynamic lumbopelvic stabilization (DLS) exercises with exercises for the pelvic floor muscles (PFM) in women with stress urinary incontinence. Randomized controlled clinical trial comparing 17 women submitted to the DLS with 16 women submitted to the exercises for the PFM. The evaluated outcomes were incontinence severity, quality of life (QoL), and impression of improvement in three moments. Significance was set at 5%. For socio-demographic and clinical variables, only climacteric was more prevalent in the DLS group (82% vs. 44%, P = 0.02). Soon after the intervention, there was no difference between the groups in relation to the outcomes evaluated. In the evaluation after 90 days, the DLS group presented better values for the severity of the losses (4.1 ± 2.6 vs. 5.7 ± 2.4, P = 0.006, d = 0.64), daytime frequency (4.6 ± 0.4 vs. 6.2 ± 0.6, P < 0.001, d = 2.67), and nighttime frequency (0.4 ± 0.3 vs. 1.4 ± 0.5, P < 0.001, d = 2.50), QoL and impression of improvement (P < 0.001). After treatment, the DLS plus PFM exercise patients had results similar to those performing PFM exercises alone. However, the DLS plus PFM exercises were superior in the outcomes of incontinence severity, QoL, and impression of improvement in the post-90-day evaluation, showing longer lasting effect. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.
2001-01-01
The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael
2018-01-01
In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
Meissner effect in normal-superconducting proximity-contact double layers
NASA Astrophysics Data System (ADS)
Higashitani, Seiji; Nagai, Katsuhiko
1995-02-01
The Meissner effect in normal-superconducting proximity-contact double layers is discussed in the clean limit. The diamagnetic current is calculated using the quasi-classical Green's function. We obtain the quasi-classical Green's function linear in the vector potential in the proximity-contact double layers with a finite reflection coefficient at the interface. It is found that the diamagnetic current in the clean normal layer is constant in space, therefore, the magnetic field linearly decreases in the clean normal layer. We give an explicit expression for the screening length in the clean normal layer and study its temperature dependence. We show that the temperature dependence in the clean normal layer is considerably different from that in the dirty normal layer and agrees with a recent experiment in Au-Nb system.
Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu
2014-04-01
A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Borovsky, Joseph E.
1992-01-01
The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871
It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.
Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity
NASA Astrophysics Data System (ADS)
Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard
2014-12-01
We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G
Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2018-02-01
Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.
Unravelling the electrochemical double layer by direct probing of the solid/liquid interface
Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...
2016-08-31
The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less
Layering and Ordering in Electrochemical Double Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.
Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.
Vargas, Susana; Millán-Chiu, Blanca E; Arvizu-Medrano, Sofía M; Loske, Achim M; Rodríguez, Rogelio
2017-06-01
A comparison between plate counting (PC) and dynamic light scattering (DLS) is reported. PC is the standard technique to determine bacterial population as a function of time; however, this method has drawbacks, such as the cumbersome preparation and handling of samples, as well as the long time required to obtain results. Alternative methods based on optical density are faster, but do not distinguish viable from non-viable cells. These inconveniences are overcome by using DLS. Two different bacteria strains were considered: Escherichia coli and Staphylococcus aureus. DLS was performed at two different illuminating conditions: continuous and intermittent. By the increment of particle size as a function of time, it was possible to observe cell division and the formation of aggregates containing very few bacteria. The scattered intensity profiles showed the lag phase and the transition to the exponential phase of growth, providing a quantity proportional to viable bacteria concentration. The results revealed a clear and linear correlation in both lag and exponential phase, between the Log 10 (colony-forming units/mL) from PC and the Log 10 of the scattered intensity I s from DLS. These correlations provide a good support to use DLS as an alternative technique to determine bacterial population. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways
Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.
2017-01-01
The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899
Influence of electrical double-layer interaction on coal flotation.
Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M
2002-06-15
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.
Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.
Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J
2013-12-06
Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.
Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
Luo, W-J
2004-10-15
This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.
1984-09-21
Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN
Numerically simulated two-dimensional auroral double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.; Joyce, G.
1983-01-01
A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.
40 CFR 63.8540 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... retrofitting with a dry lime injection fabric filter (DIFF), dry lime scrubber/fabric filter (DLS/FF), or wet... fired product to meet the relevant standards by retrofitting with a DIFF, DLS/FF, or WS. (g) An affected...
Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali
2018-07-15
Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.
Lim, Kee Siang; Mimura, Kosaku; Kua, Ley-Fang; Shiraishi, Kensuke; Kono, Koji
2018-04-20
Esophageal squamous cell carcinoma (ESCC) is an aggressive upper gastrointestinal cancer and effective treatments are limited. Previous studies reported that natural killer (NK) cells expanded by coculturing with K562-mb15-41BBL feeder cells, a genetically modified K562 leukemia cell line that expresses membrane-bound interleukin (IL)-15 and 41BBL ligand, were highly proliferative and highly cytotoxic. Here, we investigated the potential of expanded NK cells for ESCC treatment. We analyzed both genetic and surface expression levels of NKG2D ligands (NKG2DLs) in ESCC using publicly available microarray data sets and ESCC cell lines. The cytotoxicity of resting and of IL-2-activated NK cells against ESCC cell lines was compared with that of expanded NK cells. We then also investigated the effect of epithelial mesenchymal transition (EMT) inducers, GSK3β inhibitor and epidermal growth factor, on NKG2DLs expressions. As a result, MICA and MICB were significantly overexpressed in ESCC compared with adjacent normal tissues and surface NKG2DLs were expressed in ESCC cell lines. Expanded NK cells were much potent than IL-2-activated and resting NK cells against ESCC cell lines. Blocking of NKG2D with anti-NKG2D monoclonal antibody dampened expanded NK cell cytotoxicity, suggesting that the NKG2DLs-NKG2D interaction is crucial for NK cells to eliminate ESCC cells. EMT inducers concurrently induced EMT and NKG2DLs expression in ESCC cell lines rendering transitioned cells more sensitive to expanded NK cells. In conclusion, expanded NK cells were highly cytotoxic against NKG2DLs-expressing ESCC cells, particularly the EMT phenotype. These results provide a strong rationale for clinical use of these NK cells in ESCC patients.
Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark
2015-04-01
The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.
Observation of warm, higher energy electrons transiting a double layer in a helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Yung-Ta, E-mail: ysung2@wisc.edu; Li, Yan; Scharer, John E.
2015-03-15
Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Lafleur, T.; Boswell, R. W.
Current-free double layers of the type reported in plasmas in the presence of an expanding magnetic field [C. Charles and R. W. Boswell, Appl. Phys. Lett. 82, 1356 (2003)] are modeled theoretically and with particle-in-cell/Monte Carlo simulations. Emphasis is placed on determining what mechanisms affect the electron velocity distribution function (EVDF) and how the EVDF influences the double layer. A theoretical model is developed based on depletion of electrons in certain velocity intervals due to wall losses and repletion of these intervals due to ionization and elastic electron scattering. This model is used to predict the range of neutral pressuresmore » over which a double layer can form and the electrostatic potential drop of the double layer. These predictions are shown to compare well with simulation results.« less
NASA Astrophysics Data System (ADS)
Mani, Vigneshwaran
Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based assays. The high sensitivity of these approaches will allow monitoring of biomarker levels in diseases states where proteins are in sub pg mL -1 concentrations that are normally challenging to detect using traditional methods such as enzyme linked immunosorbent assays (ELISA). Further emphases will be on SPR-based fundamental studies on binding affinity enhancement of MP conjugates to protein surfaces. In addition, this thesis describes the assembly of glucose/O2 enzymatic biofuel cells for power generation utilizing layer-by-layer films of osmium redox polymers and enzymes. Towards the end, the present thesis describes a simple, low-cost and accurate paper-based electrochemical device fabrication methods and its applications towards monitoring genotoxic activities in the environmental samples.
Pathway-Specific Striatal Substrates for Habitual Behavior.
O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole
2016-02-03
The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.
A Survey of Complex Object Technologies for Digital Libraries
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Argue, Brad; Efron, Miles; Denn, Sheila; Pattuelli, Maria Cristina
2001-01-01
Many early web-based digital libraries (DLs) had implicit assumptions reflected in their architecture that the unit of focus in the DL (frequently "reports" or "e-prints") would only be manifested in a single, or at most a few, common file formats such as PDF or PostScript. DLs have now matured to the point where their contents are commonly no longer simple files. Complex objects in DLs have emerged from in response to various requirements, including: simple aggregation of formats and supporting files, bundling additional information to aid digital preservation, creating opaque digital objects for e-commerce applications, and the incorporation of dynamic services with the traditional data files. We examine a representative (but not necessarily exhaustive) number of current and recent historical web-based complex object technologies and projects that are applicable to DLs: Aurora, Buckets, ComMentor, Cryptolopes, Digibox, Document Management Alliance, FEDORA, Kahn-Wilensky Framework Digital Objects, Metadata Encoding & Transmission Standard, Multivalent Documents, Open eBooks, VERS Encapsulated Objects, and the Warwick Framework.
Double-layered cell transfer technology for bone regeneration
Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo
2016-01-01
For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya
We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less
Daubs, Michael D; Brara, Harsimran S; Raaen, Laura B; Chen, Peggy Guey-Chi; Anderson, Ashaunta T; Asch, Steven M; Nuckols, Teryl K
2018-05-01
Degenerative lumbar scoliosis (DLS) is often associated with sagittal imbalance, which may affect patients' health outcomes before and after surgery. The appropriateness of surgery and preferred operative approaches has not been examined in detail for patients with DLS and sagittal imbalance. The goals of this article were to describe what is currently known about the relationship between sagittal imbalance and health outcomes among patients with DLS and to determine how indications for surgery in patients with DLS differ when sagittal imbalance is present. This study included a literature review and an expert panel using the RAND/University of California at Los Angeles (UCLA) Appropriateness Method. To develop appropriate use criteria for DLS, researchers at the RAND Corporation recently employed the RAND/UCLA Appropriateness Method, which involves a systematic review of the literature and multidisciplinary expert panel process. Experts reviewed a synopsis of published literature and rated the appropriateness of five common operative approaches for 260 different clinical scenarios. In the present work, we updated the literature review and compared panelists' ratings in scenarios where imbalance was present versus absent. This work was funded by the Collaborative Spine Research Foundation, a group of surgical specialty societies and device manufacturers. On the basis of 13 eligible studies that examined sagittal imbalance and outcomes in patients with DLS, imbalance was associated with worse functional status in the absence of surgery and worse symptoms and complications postoperatively. Panelists' ratings demonstrated a consistent pattern across the diverse clinical scenarios. In general, when imbalance was present, surgery was more likely to be appropriate or necessary, including in some situations where surgery would otherwise be inappropriate. For patients with moderate to severe symptoms and imbalance, a deformity correction procedure was usually appropriate and frequently necessary, except in some patients with severe risk factors for complications. Conversely, procedures that did not correct imbalance, when present, were usually inappropriate. Clinical experts agreed that sagittal imbalance is a major factor affecting both when surgery is appropriate and which type of procedure is preferred among patients with DLS. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouioui, Imen; Göker, Markus; Carro, Lorena
Nakamurella lactea DLS-10 T , isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10 T and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10 T presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed.
Nouioui, Imen; Göker, Markus; Carro, Lorena; ...
2017-01-06
Nakamurella lactea DLS-10 T , isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10 T and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10 T presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed.
Confirmation of theoretical colour predictions for layering dental composite materials.
Mikhail, Sarah S; Johnston, William M
2014-04-01
The aim of this study is to confirm the theoretical colour predictions for single and double layers of dental composite materials on an opaque backing. Single and double layers of composite resins were fabricated, placed in optical contact with a grey backing and measured for spectral radiance. The spectral reflectance and colour were directly determined. Absorption and scattering coefficients as previously reported, the measured thickness of the single layers and the effective reflectance of the grey backing were utilized to theoretically predict the reflectance of the single layer using corrected Kubelka-Munk reflectance theory. For double layers the predicted effective reflectance of the single layer was used as the reflectance of the backing of the second layer and the thickness of the second layer was used to predict the reflectance of the double layer. Colour differences, using both the CIELAB and CIEDE2000 formulae, measured the discrepancy between each directly determined colour and its corresponding theoretical colour. The colour difference discrepancies generally ranged around the perceptibility threshold but were consistently below the respective acceptability threshold. This theory can predict the colour of layers of composite resin within acceptability limits and generally also within perceptibility limits. This theory could therefore be incorporated into computer-based optical measuring instruments that can automate the shade selections for layers of a more opaque first layer under a more translucent second layer for those clinical situations where an underlying background colour and a desirable final colour can be measured. Copyright © 2014 Elsevier Ltd. All rights reserved.
Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.
Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao
2017-11-16
For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth and adhesion properties of monosodium urate monohydrate (MSU) crystals
NASA Astrophysics Data System (ADS)
Perrin, Clare M.
The presence of monosodium urate monohydrate (MSU) crystals in the synovial fluid has long been associated with the joint disease gout. To elucidate the molecular level growth mechanism and adhesive properties of MSU crystals, atomic force microscopy (AFM), scanning electron microscopy, and dynamic light scattering (DLS) techniques were employed in the characterization of the (010) and (1-10) faces of MSU, as well as physiologically relevant solutions supersaturated with urate. Topographical AFM imaging of both MSU (010) and (1-10) revealed the presence of crystalline layers of urate arranged into v-shaped features of varying height. Growth rates were measured for both monolayers (elementary steps) and multiple layers (macrosteps) on both crystal faces under a wide range of urate supersaturation in physiologically relevant solutions. Step velocities for monolayers and multiple layers displayed a second order polynomial dependence on urate supersaturation on MSU (010) and (1-10), with step velocities on (1-10) generally half of those measured on MSU (010) in corresponding growth conditions. Perpendicular step velocities on MSU (010) were obtained and also showed a second order polynomial dependence of step velocity with respect to urate supersaturation, which implies a 2D-island nucleation growth mechanism for MSU (010). Extensive topographical imaging of MSU (010) showed island adsorption from urate growth solutions under all urate solution concentrations investigated, lending further support for the determined growth mechanism. Island sizes derived from DLS experiments on growth solutions were in agreement with those measured on MSU (010) topographical images. Chemical force microscopy (CFM) was utilized to characterize the adhesive properties of MSU (010) and (1-10). AFM probes functionalized with amino acid derivatives and bio-macromolecules found in the synovial fluid were brought into contact with both crystal faces and adhesion forces were tabulated into histograms for comparison. AFM probes functionalized with -COO-, -CH3, and -OH functionalities displayed similar adhesion force with both crystal surfaces of MSU, while adhesion force on (1-10) was three times greater than (010) for -NH2+ probes. For AFM probes functionalized with bovine serum albumin, adhesion force was three times greater on MSU (1-10) than (010), most likely due to the more ionic nature of (1-10).
Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming
2012-10-05
It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.
Double-diffusive layers in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut
2008-01-01
A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.
Single Body Parts are Processed by Individual Neurons in the Mouse Dorsolateral Striatum
Coffey, Kevin R.; Nader, Miles; West, Mark O.
2016-01-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). PMID:26827625
Alin, Jonas; Rubino, Maria; Auras, Rafael
2015-06-01
Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.
Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian
2011-03-28
An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.
Low frequency solitons and double layers in a magnetized plasma with two temperature electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R.; Bharuthram, R.; Singh, S. V.
2012-12-15
Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to bemore » 49 mV/m which is in agreement of the Viking observations in this region.« less
Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors
NASA Astrophysics Data System (ADS)
Tien, Chien-Pin; Teng, Hsisheng
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.
Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio
2015-10-27
In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.
Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E
2016-05-01
The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes
NASA Astrophysics Data System (ADS)
Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena
2017-08-01
Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.
NASA Astrophysics Data System (ADS)
Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi
2015-05-01
We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.
Effect of degassing on the aggregation of carbon nanotubes dispersed in water
NASA Astrophysics Data System (ADS)
Chen, C.-J.; Huang, J.-R.; Hwang, I.-S.; Choi, H. J.; Lai, P.-Y.; Chan, C. K.
2017-10-01
Dynamic light scattering (DLS) along with centrifugation and shaking tests reveal that dissolved gases can significantly affect the aggregation behavior of carbon nanotubes (CNTs) dispersed in water. The CNTs in non-degassed samples form loose, stable networks having the DLS result reminiscent of semidilute polymer solutions, whereas the CNTs in degassed samples aggregate to form Brownian colloids that sediment quickly. Interestingly, the CNTs dispersed in acetone, with or without degassing, also behave like semidilute polymers in DLS experiments. We propose a surface nanobubble-assisted mechanism to explain the observed aggregation behaviors. Our work signifies that dissolved gases may play an important role in determining hydrophobicity and biomolecular functions in aqueous environments.
Characterization of magnetic nanoparticle by dynamic light scattering
2013-01-01
Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
In Situ Clay Formation: Evaluation of a Proposed New Technology for Stable Containment Barriers
2004-03-01
situ layered double hydroxide precipitation........... 23 4.2.1 Solution preparation and column mixing...22 Table 4.2 Summary of in situ precipitation of layered double hydroxide (LDH...effect on permeability for the smallest volume precipitated is sheet silicates or layered -clay phases (hereafter called “clays”). In natural
Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure
NASA Astrophysics Data System (ADS)
Saha, S.; Chattopadhyay, A.; Singh, A. K.
2018-02-01
The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it. Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters, initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress in context of considered problem has been carried out with detailed analysis in a comparative approach.
A New Theory of Mix in Omega Capsule Implosions
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie
2014-10-01
We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic
2014-06-01
An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.
ERIC Educational Resources Information Center
Eddy, Meghan C.; Stansfield, Katherine J.; Green, John T.
2014-01-01
We have previously demonstrated that voluntary exercise facilitates discrimination learning in a modified T-maze. There is evidence implicating the dorsolateral striatum (DLS) as the substrate for this task. The present experiments examined whether changes in DLS dopamine receptors might underlie the exercise-associated facilitation. Infusing a…
MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.
1981-01-01
The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.
The Department of Legal Services ("DLS") is a dependency of the Secretariat for Legal Affairs of the OAS General Secretariat. www.oas.org/en/sla DLS provides legal advice on: interpretation of Secretariat for Legal Affairs Inter-American Commission on Human Rights Inter-American Court of Human Rights
Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students
ERIC Educational Resources Information Center
Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel
2012-01-01
Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…
Analyzing Digital Library Initiatives: 5S Theory Perspective
ERIC Educational Resources Information Center
Isah, Abdulmumin; Mutshewa, Athulang; Serema, Batlang; Kenosi, Lekoko
2015-01-01
This article traces the historical development of Digital Libraries (DLs), examines some DL initiatives in developed and developing countries and uses 5S Theory as a lens for analyzing the focused DLs. The analysis shows that present-day systems, in both developed and developing nations, are essentially content and user centric, with low level…
NASA Astrophysics Data System (ADS)
Ma, Lan; He, Yi; Luo, Pingya; Zhang, Liyun; Yu, Yalu
2018-02-01
Nanoparticles have been known as the useful materials in working fluids for petroleum industry. But the stabilization of nano-scaled materials in water-based working fluids at high salinities is still a big challenge. In this study, we successfully prepared the anionic polymer/multi-walled carbon nanotubes (MWNTs) composites by covalently wrapping of MWNTs with poly (sodium 4-styrenesulfonate) (PSS) to improve the stability of MWNTs in high concentration electrolytes. The PSS/MWNTs composites can automatically disperse in salinity up to 15 wt% NaCl and API brines (8 wt% NaCl + 2 wt% CaCl2). Hydrodynamic diameters of composites were measured as a function of ionic strength and API brines by dynamic light scattering (DLS). By varying the concentration of brines, hydrodynamic diameter of PSS/MWNTs composites in brines fluctuated between 545 ± 110 nm for 14 days and 673 ± 171 nm for 30 days. Above results showed that PSS/MWNTs could be well stable in high salts solutions for a long period of time. After wrapped with PSS, the diameters of nanotubes changed from 30 40 to 430 nm, the thickness of wrapped polymer is about 400 nm by analysis of morphologies. The zeta potentials of PSS/MWNTs composites in various salinity of brines kept at approximately - 41 - 52 mV. Therefore, the well dispersion of PSS/MWNTs in high salinity is due to large negative charges of poly (sodium 4-styrenesulfonate), which provide enough electrostatic repulsion and steric repulsion to hinder compression of electric double layer caused by high concentration electrolytes.
Single body parts are processed by individual neurons in the mouse dorsolateral striatum.
Coffey, Kevin R; Nader, Miles; West, Mark O
2016-04-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). Copyright © 2016 Elsevier B.V. All rights reserved.
The impact of surface chemistry on the performance of localized solar-driven evaporation system
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561
The impact of surface chemistry on the performance of localized solar-driven evaporation system.
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-09-04
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
Effect of Induced Charge Electroosmosis on the Dielectrophoretic Motion of Particles
NASA Astrophysics Data System (ADS)
Swaminathan, T.; Hu, Howard
2006-11-01
Most suspensions involve the formation of ionic double layers next to the surface of particles due to the induced-charge on the surface. These double layers affect the motion of the particle even under AC electric fields. They modify the net dipole moment of the particle and at the same time produce slip velocities on the surfaces of these particles. A method to numerically evaluate the effect of the double layer on the dielectrophoretic motion of particles has been previously developed to study these two effects. The technique involves a matched asymptotic expansion of the electric field near the particle surface, where the double layer is formed, and is written as a jump-boundary-condition for the electric potential when the thickness of the double layer is small compared to the size of the particle. The developed jump-boundary-condition is then used to calculate an effective zeta potential on the particle surface. Unlike classical electroosmosis, this zeta potential is no longer constant on every part of the surface and is dependent on the applied electric field. The effect of the induced-charge electroosmotic slip velocity on the dielectrophoretic motion of particles has been observed using this technique.
Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway
NASA Astrophysics Data System (ADS)
Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.
NASA Astrophysics Data System (ADS)
Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi
2011-02-01
We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.
NASA Astrophysics Data System (ADS)
Su, Ling-Hao; Zhang, Xiao-Gang
Co-Al layered double hydroxides (LDH) were synthesized from nitrates and sodium benzoate by direct coprecipitation, and heated at 600 °C for 3 h in argon gas flow to obtain Co-Al double oxides. The effect of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on structural reconstruction was investigated by X-ray diffraction, scanning electron microscope, Raman spectroscopy, and infrared spectroscopy techniques. It is horizontal arrangement rather than vertical dilayer orientation in the interlayer spacing that was adopted by benzoate. An abnormal phenomenon was found that when immersed in aqueous 6 M KOH solution in air, the double oxides restacked to Co-Al layered double hydroxides with more regular crystal than before. The reason is believed that carbon was confined in the matrix of resulting double oxides, which prevented further collapse of the layered structure. Cyclic voltammetries (CV) and constant current charge/discharge measurements reveal that the restacked Co-Al layered double hydroxide has good long-life capacitive performance with a capacitance up to 145 F g -1 even at a large current of 2 A g -1. In addition, two clear slopes in chronoampermetric test demonstrated two different diffusion coefficients, explaining the slope of about 118.4 mV in the plot of formal potential E f versus pOH.
Seragioli, Rafael; Simao, Marcelo Novelino; Simao, Gustavo Novelino; Herrero, Carlos Fernando P S; Nogueira-Barbosa, Marcello H
2018-03-01
Denticulate ligaments (DLs) are pial extensions on each side of the spinal cord, comprising about 20 to 21 pairs of fibrous structures connecting the dura mater to the spinal cord. These ligaments are significant anatomical landmarks in the surgical approach to intradural structures. To our knowledge, there is no previous study on the detection of DLs using MRI. After IRB approval, we retrospectively evaluated 116 consecutive MRI scans of the cervical spine, using the volumetric sequence 3D COSMIC, 65 and 51 studies with 1.5T and 3.0T respectively. We did not include trauma and tumor cases. Two independent radiologists assessed the detection of cervical spine DLs independently and blinded for each cervical vertebral level. We compared the frequency of detection of these ligaments in 1.5 Tesla and 3.0 Tesla MRI using Fisher exact test considering P<0.05 as significant. We evaluated interobserver agreement with Kappa coefficient. We observed high detection frequency of the cervical spine DLs using both 1.5T (70 to 91%) and 3.0T (68 to 98%). We found no statistically significant difference in the detection frequency of ligaments between the 1.5T and 3.0T MRI in all vertebral levels. Using 3.0T, radiologists identified ligaments better in higher vertebral levels than for lower cervical levels (P=0.0003). Interobserver agreement on the identification of DL was poor both for 1.5T (k=0.3744; CI 95% 0.28-0.46) and 3.0T (k=0.3044; CI 95% 0.18-0.42) MRI. Radiologists identified most of the cervical DLs using volumetric MRI acquisition. Our results suggest 1.5T and 3.0T MRI performed similarly in the detection of DLs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra
2018-04-01
The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.
Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.
Terrill, Sarah J; Maske, Calyn B; Williams, Diana L
2018-03-03
Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2017-01-01
Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727
A review of molecular modelling of electric double layer capacitors.
Burt, Ryan; Birkett, Greg; Zhao, X S
2014-04-14
Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and electrode models which account for polarisation effects are critical for future simulations which will consider more complex electrode geometries, particularly for the study of dynamics of electrolyte transport, where the exclusion of electrode polarisation leads to significant artefacts.
NASA Astrophysics Data System (ADS)
Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu
2018-04-01
The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.
Cursory examination of the zeta potential behaviors of two optical materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Oja, T.
1992-01-02
When an oxide surface is placed in water, a difference in potential across the interface occurs due to dipole orientation. Hydroxyl groups or bound oxygen atoms on the oxide surface will orient adjacent water molecules which balance the dipole charge. This occurs over some small distance called the electrical double layer. Trace amounts of high field strength ions present in the vicinity of the double layer can have significant effects on the double layer. When there is movement of the oxide surface with respect to the water, a shearing of the double layer occurs. The electrical potential at this surfacemore » of shear is termed the zeta potential. The impetus for this study was to document the zeta potential behavior in water of two optical materials. (1) a multicomponent phosphate glass; and (2) Zerodur, a silicate glass-ceramic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de
We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroicmore » materials.« less
NASA Astrophysics Data System (ADS)
Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.
2017-12-01
We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.
NASA Astrophysics Data System (ADS)
Rajamathi, Jacqueline T.; Ravishankar, N.; Rajamathi, Michael
2005-02-01
Surfactant anion intercalated nickel-zinc and cobalt-zinc layered hydroxy double salts were prepared through a modified acetate hydrolysis route. These organo-inorganic hybrids delaminate readily in alcohols such as 1-butanol to give stable translucent colloids. The extent of delamination and the stability of the colloids obtained are comparable to what has been observed in the case of layered double hydroxides (LDHs). The original layered solid could be obtained either by evaporation of the colloid or precipitation by the addition of a polar solvent such as acetone.
Predictors and Course of Daily Living Skills Development in Toddlers with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Green, Shulamite A.; Carter, Alice S.
2014-01-01
Self-sufficiency is central to child and family well-being. This report focuses on predictors of adaptive daily living skills (DLS) development in young children with ASD and whether DLS gains predict decreases in parenting stress. Participants were 162 toddlers with ASD and their parents, assessed at 3 annual timepoints. Hierarchical Linear…
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
Szúcs, G; Tóth, I; Bráth, E; Gyáni, K; Miko, I
2001-08-01
We have good results with telescopic anastomosis technique in partial oesophagectomies and gastrectomies. As we could not find data about the healing process of telescopic anastomoses so we started experimenting. Inside pressure tolerance was examined immediately after performing anastomoses by measuring the bursting pressure using the organs of pigs slaughtered in the meat industry. Both oesophago-gastrostomies and oesophago-jejunostomies were performed with telescopic, single layer interrupted, single layer continuous, double layer interrupted and double layer continuous-interrupted technique, 9 of each anastomosis. A series of oesophago-jejunostomies were performed with EEA stapler. 99 anastomoses of 11 types were investigated. We found, that the inner pressure tolerance of telescopic oesophago-gastrostomy is better than any other single layer type variant. On the other hand the double layer type variants have much better pressure tolerance than the telescopic and other two type single layer anastomoses. The difference is statistically significant. In oesophago-jejunostomies the pressure tolerance of telescopic anastomosis is better than of the single layer interrupted type but the difference between the telescopic and single layer continuous type anastomoses is not significant. The pressure tolerance of double layer anastomosis is higher than the telescopic one but the difference is significant only in the continuous-interrupted type. The inner pressure tolerance of telescopic and EEA stapler anastomoses are equal. The investigation of additional features in anastomosis healing is in progress.
Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-11-13
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.
Okada, Takaharu; Uto, Koichiro; Sasai, Masao; Lee, Chun Man; Ebara, Mitsuhiro; Aoyagi, Takao
2013-06-18
In this study, we created a nanoscale layer of hyaluronic acid (HA) on the inactivated Hemagglutinating Virus of Japan envelope (HVJ-E) via a layer-by-layer (LbL) assembly technique for CD-44 targeted delivery. HVJ-E was selected as the template virus because it has shown a tumor-suppressing ability by eliciting inflammatory cytokine production in dendritic cells. Although it has been required to increase the tumor-targeting ability and reduce nonspecific binding because HVJ-E fuses with virtually all cells and induces hemagglutination in the bloodstream, complete modifications of single-envelope-type viruses with HA have been difficult. Therefore, we studied the surface ζ potential of HVJ-E at different pH values and carefully examined the deposition conditions for the first layer using three cationic polymers: poly-L-lysine (PLL), chitosan (CH), and glycol chitosan (GC). GC-coated HVJ-E particles showed the highest disperse ability under physiological pH and salt conditions without aggregation. An HA layer was then prepared via alternating deposition of HA and GC. The successive decoration of multilayers on HVJ-E has been confirmed by dynamic light scattering (DLS), ζ potentials, and transmission electron microscopy (TEM). An enzymatic degradation assay revealed that only the outermost HA layer was selectively degraded by hyaluronidase. However, entire layers were destabilized at lower pH. Therefore, the HA/GC-coated HVJ-E describe here can be thought of as a potential bomb for cancer immunotherapy because of the ability of targeting CD44 as well as the explosion of nanodecorated HA/GC layers at endosomal pH while preventing nonspecific binding at physiological pH and salt conditions such as in the bloodstream or normal tissues.
46 CFR 194.10-25 - Ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and shall serve no other space. Weather cowls shall be provided with a double layer of wire screen of.... Louvers or weather cowls with a double layer of wire screen of not less than 1/8-inch mesh shall be...
NASA Astrophysics Data System (ADS)
George, Giphin; Saravanakumar, M. P.
2017-11-01
The layered double hydroxides (LDH) which are anionic clay substances comprising of stacked cationic layers and interlayer anions. The cationic sheets contain octahedral structure consisting the divalent and trivalent ions in the center and hydroxyl bunches in the corners, gathered by three bonding with the neighbouring octahedra on every side of the layer. The ratio between the quantity of cations and OH- ions is 2:1, so a positive charge shows up on the layer because of the presence of trivalent cations. The interlayer space gives the compensation anions and water molecules, assuring a balanced out layered structure. The LDH materials were successfully synthesised from magnesium, aluminium, zinc and chromium chloride salts utilizing the co-precipitation technique. A Zn-Al LDH was researched as a potential sorbent material. This article reviews the recent advances in the preparation and intercalation of layered double hydroxides and its application in the fabrication of Dye Sensitized Solar Cell (DSSC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bing-Ping, E-mail: ybp@fjirsm.ac.cn; Mao, Jiang-Gao
Systematic explorations of new compounds in the cadmium iodate system by hydrothermal reactions led to two layered iodates, namely, Cd(IO{sub 3})X (X=Cl, OH). Cd(IO{sub 3})Cl crystallizes in the orthorhombic space group Cmca (No. 64) whereas Cd(IO{sub 3})(OH) crystallizes in the orthorhombic space group Pnma (No. 62). Cd(IO{sub 3})Cl displays a unique double layered structure composed of {sup 1}{sub ∞}[Cd−O{sub 3}Cl]{sub n} chains. Cadmium octahedrons form a 1D chain along the a-axis through edge sharing, and such chains are further interconnected via IO{sub 3} groups to form a special double layer on (020) plane. Cd(IO{sub 3})(OH) also exhibits a layered structuremore » that is composed of cadmium cations, IO{sub 3} groups and hydroxyl ions. Within a layer, chains of CdO{sub 6} edge-shared octahedra are observed along the b-axis. And these chains are connected by IO{sub 3} groups into a layer parallel to the bc plane. Spectroscopic characterizations, elemental analysis, and thermogravimetric analysis for the reported two compounds are also presented. - Graphical abstract: Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. Cd(IO{sub 3})Cl features a unique double layered structure whereas Cd(IO{sub 3})(OH) displays an ordinary layered structure. - Highlights: • Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. • Cd(IO{sub 3})Cl features a unique double layered structure. • Cd(IO{sub 3})(OH) displays an ordinary layered structure. • The spectroscopic and thermal properties have been studied in detail.« less
Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore
NASA Astrophysics Data System (ADS)
Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.
2018-04-01
Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.
Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.
Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong
2018-02-01
In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.
Production of Exocytic Vesicular Antigens by Primary Liver Cell Cultures
1990-05-08
cells should be plated over the basement membrane proteins, and for optimal results, a second layer of protein should be precipitated over the cells...culture as two layer (two gelatin coated nylon sheets stapled together) and single layer carriers seeded with cells (Table 2). From the performance results...summarized in table 2, it can be seen that double sheets of 2% gelatin: 6% glutaraldehyde (carrier II) made the best carriers. A double layer of
Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments
NASA Astrophysics Data System (ADS)
Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook
2016-05-01
The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.
General practitioner understanding of abbreviations used in hospital discharge letters.
Chemali, Mark; Hibbert, Emily J; Sheen, Adrian
2015-08-03
To determine the incidence of abbreviation use in electronic hospital discharge letters (eDLs) and general practitioner understanding of abbreviations used in eDLsDesign, setting and participants: Retrospective audit of abbreviation use in 200 sequential eDLs was conducted at Nepean Hospital, Sydney, a tertiary referral centre, from 18 December to 31 December 2012. The 15 most commonly used abbreviations and five clinically important abbreviations were identified from the audit. A survey questionnaire using these abbreviations in context was then mailed to 240 GPs in the area covered by the Nepean Blue Mountains Local Health District to determine their understanding of these abbreviations. Number of abbreviations and frequency of their use in eDLs, and GPs' understanding of abbreviations used in the survey. 321 abbreviations were identified in the eDL audit; 48.6% were used only once. Fifty five per cent of GPs (132) responded to the survey. No individual abbreviation was correctly interpreted by all GPs. Six abbreviations were misinterpreted by more than a quarter of GPs. These were SNT (soft non-tender), TTE (transthoracic echocardiogram), EST (exercise stress test), NKDA (no known drug allergies), CTPA (computed tomography pulmonary angiogram), ORIF (open reduction and internal fixation). These abbreviations were interpreted incorrectly by 47.0% (62), 33.3% (44), 33.3% (44) 32.6% (43), 31.1% (41) and 28.0% (37) of GPs, respectively. Abbreviations used in hospital eDLs are not well understood by the GPs who receive them. This has potential to adversely affect patient care in the transition from hospital to community care.
NASA Astrophysics Data System (ADS)
Messner, Richard A.; Hludik, Frank; Crowley, Todd A.; Vidacic, Dragan; Stetson, Barrett; Nadel, Lawrence D.; Nichols, Linda J.; Harris, Carol
2004-08-01
This paper describes the results of a collaborative effort between the University of New Hampshire (UNH) and the Mitretek Systems (MTS) Center for Criminal Justice Technology (CCJT). Mitretek conducted an investigation into the impact of anticipated biometrically encoded driver licenses (DLs) on law enforcement. As part of this activity, Mitretek teamed with UNH to leverage the results of UNH's Project54 and develop a pilot Driver License Interoperability Test Bed to explore both implementation and operational aspects associated with reading and authenticating biometrically encoded DLs in law enforcement scenarios. The test bed enables the exploration of new methods, techniques (both hardware and software), and standards in a structured fashion. Spearheaded by the American Association of Motor Vehicle Administrators (AAMVA) and the International Committee for Information Technology Standards Technical Group M1 (INCITS-M1) initiatives, standards involving both DLs and biometrics, respectively, are evolving at a rapid pace. In order to ensure that the proposed standards will provide for interstate interoperability and proper functionality for the law enforcement community, it is critical to investigate the implementation and deployment issues surrounding biometrically encoded DLs. The test bed described in this paper addresses this and will provide valuable feedback to the standards organizations, the states, and law enforcement officials with respect to implementation and functional issues that are exposed through exploration of actual test systems. The knowledge gained was incorporated into a report prepared by MTS to describe the anticipated impact of biometrically encoded DLs on law enforcement practice.
ERIC Educational Resources Information Center
Bockris, J. O'M.
1983-01-01
Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…
Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, L. A.; Galvão, R. M. O.; Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo
2013-11-15
In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.
Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong
2017-07-31
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
NASA Astrophysics Data System (ADS)
Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian
2018-02-01
An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-12-14
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-01-01
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331
Sensori-Motor and Daily Living Skills of Preschool Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Jasmin, Emmanuelle; Couture, Melanie; McKinley, Patricia; Reid, Greg; Fombonne, Eric; Gisel, Erika
2009-01-01
Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed…
371. A.J.M. and D.L.S., Delineators April 1934. STATE OF CALIFORNIA; ...
371. A.J.M. and D.L.S., Delineators April 1934. STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; SUPERSTRUCTURE - WEST BAY CROSSING; PIER NO. 4; VERTICAL SECTIONS; CONTRACT NO. 2; SUP. DRAWING NO. 17A - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
NASA Astrophysics Data System (ADS)
Stepanek, Adam J.
The prospect for skillful long-term predictions of atmospheric conditions known to directly contribute to the onset and maintenance of severe convective storms remains unclear. A thorough assessment of the capability for a global climate model such as the Climate Forecast System Version 2 (CFSv2) to skillfully represent parameters related to severe weather has the potential to significantly improve medium- to long-range outlooks vital to risk managers. Environmental convective available potential energy (CAPE) and deep-layer vertical wind shear (DLS) can be used to distinguish an atmosphere conducive to severe storms from one supportive of primarily non-severe 'ordinary' convection. As such, this research concentrates on the predictability of CAPE, DLS, and a product of the two parameters (CAPEDLS) by the CFSv2 with a specific focus on the subseasonal timescale. Individual month-long verification periods from the Climate Forecast System reanalysis (CFSR) dataset are measured against a climatological standard using cumulative distribution function (CDF) and area-under-the-CDF (AUCDF) techniques designed mitigate inherent model biases while concurrently assessing the entire distribution of a given parameter in lieu of a threshold-based approach. Similar methods imposed upon the CFS reforecast (CFSRef) and operational CFSv2 allow for comparisons elucidating both spatial and temporal trends in skill using correlation coefficients, proportion correct metrics, Heidke skill score (HSS), and root-mean-square-error (RMSE) statistics. Key results show the CFSv2-based output often demonstrates skill beyond a climatologically-based threshold when the forecast is notably anomalous from the 29-year (1982-2010) mean CFSRef prediction (exceeding one standard deviation at grid point level). CFSRef analysis indicates enhanced skill during the months of April and June (relative to May) and for predictions of DLS. Furthermore, years exhibiting skill in terms of RMSE are shown to possess certain correlations with El Nino-Southern Oscillation conditions from the preceding winter and concurrent Madden Julian Oscillation activity. Applying results gleaned from the CFSRef analysis to the operational CFSv2 (2011-16) indicates predictive skill can be increased by isolating forecasts meeting multiple parameter-based relationships.
Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M
2010-03-08
The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.
Design and measure of a tunable double-band metamaterial absorber in the THz spectrum
NASA Astrophysics Data System (ADS)
Guiming, Han
2018-04-01
We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.
Kim, Yang-Soo; Lee, Hyo-Jin; Jin, Hong-Ki; Kim, Sung-Eun; Lee, Jin-Woo
2016-05-01
The rotator cuff tendon is known to exert a shear force between the superficial and deep layers. Owing to this characteristic, separate repair of delaminated rotator cuff tears has been introduced for the restoration of the physiological biomechanics of the rotator cuff. However, whether conventional en masse repair or separate repair is superior is controversial in terms of outcomes. To compare clinical outcomes between conventional en masse repair and separate double-layer double-row repair for the treatment of delaminated rotator cuff tears. Randomized controlled study; Level of evidence, 2. Between August 2007 and March 2014, a total of 82 patients who underwent arthroscopic rotator cuff repair of a delaminated tear were enrolled and randomized into 2 groups. In group 1 (n = 48), arthroscopic conventional en masse repair was performed. In group 2 (n = 34), separate double-layer double-row repair was performed. The American Shoulder and Elbow Surgeons score, Constant score, Simple Shoulder Test score, and visual analog scale (VAS) score for pain and range of motion (ROM) were assessed before surgery; at 3, 6, and 12 months after surgery; and at the last follow-up visit. Magnetic resonance imaging (MRI) was performed at 12 months postoperatively to examine the retear rate and pattern. There was no significant difference between groups in the preoperative demographic data, including patient age, sex, symptom duration, tear size, and functional scores (P > .05). The mean follow-up period was 25.9 ± 1.2 months. Significant improvements in functional and pain scores were observed in both groups at the last follow-up visit. However, no significant differences in functional scores and ROM were found between the 2 groups at each time point, except that group 2 had significantly lower VAS pain scores (P < .05) at 3, 6, and 12 months postoperatively. Eight (17%) of 48 patients in group 1 and 6 (18%) of 34 patients in group 2 showed retears on MRI at 12-month follow-up (P > .05). Both conventional en masse repair and separate double-layer double-row repair were effective in improving clinical outcomes in the treatment of delaminated rotator cuff tears. Lower pain scores were seen in patients who underwent separate double-layer double-row repair. © 2016 The Author(s).
Yu, Zhou; Reid, Jennifer C; Yang, Yan-Ping
2013-12-01
Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Use of Shape Memory Alloys in the Robust Control of Smart Structures
1993-08-01
OHP (anions) @ Cation II I I JU Anion O0HP(cations) 0 Ano Cation electrf statically h eld in double layer 0 ’ Double Diff sion Bulk Layer L., Layer I...Effect in Thermoelastic In-Tl Martensite, Mem . Fac. Eng. Kyoto Univ., 43(2): 287-303 (1981) 43. A. Nagasawa, Memory Effect in In-Tl Alloy, J. Phys. Soc
Synthesis and characterization of nanomagnetite particles and their polymer coated forms.
Utkan, Guldem Guven; Sayar, Filiz; Batat, Pinar; Ide, Semra; Kriechbaum, Manfred; Pişkin, Erhan
2011-01-15
Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer. Copyright © 2010 Elsevier Inc. All rights reserved.
Effects of channel thickness on oxide thin film transistor with double-stacked channel layer
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk
2017-11-01
To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.
Katagiri, Kiyofumi; Shishijima, Yoshinori; Koumoto, Kunihito; Inumaru, Kei
2018-01-01
pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.
Gunatilake, Udara Bimendra; Bandara, Jayasundera
2017-04-15
For the effective oil/water separation, a novel superhydrophilic (underwater superoleophobic) filter is fabricated with the naturally and hydrothermally treated mica particles. To fabricate a double layered filter, hydrothermally treated mica particles were initially electrodeposited on a stainless steel mesh and a natural mica particles were sprayed on the first hydrothermally deposited mica layer. The double layered mica coated membrane showed superamphiphilic and superhydrophilic/superoleophobic (contact angle >159°) characteristics in air and underwater respectively. The membrane can separate range of oil-water mixtures with oil/water separation efficiency over ∼99%. Properties of double layered mica membrane were investigated and noted that the surface adhesion properties of mica is enhanced by the hydrothermal treatment of mica and the higher roughness of the mica layer is maintained by the natural mica. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interface reconstruction with emerging charge ordering in hexagonal manganite
Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent
2018-01-01
Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782
NASA Astrophysics Data System (ADS)
Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun
2016-01-01
The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew; Dergunov, Sergey; Ganus, Bill
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill
2011-03-10
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb
2012-01-01
Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.
Streaming potential generated by a pressure-driven flow over a super-hydrophobic surface
NASA Astrophysics Data System (ADS)
Zhao, Hui
2010-11-01
The streaming potential generated by a pressured-driven flow over a weakly charged striped slip-stick surface (the zeta potential of the surface is smaller than the thermal potential (25 mV) with an arbitrary double layer thickness is theoretically studied by solving the Poisson-Boltzmann equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also presented, in excellent agreement with the full solution. The streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced when the liquid-gas interface is charged. In addition, as the double layer thickness increases, the advantage of the super-hydrophobic surface diminishes. The impact of a slip-stick surface on the streaming potential might provide guidance for designing novel and efficient microfludic energy conversion devices using a super-hydrophobic surface.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
An S3-3 search for confined regions of large parallel electric fields
NASA Astrophysics Data System (ADS)
Boehm, M. H.; Mozer, F. S.
1981-06-01
S3-3 satellite passes through several hundred perpendicular shocks are searched for evidence of large, mostly parallel electric fields (several hundred millivolts per meter, total potential of several kilo-volts) in the auroral zone magnetosphere at altitudes of several thousand kilometers. The actual search criteria are that one or more E-field data points have a parallel component E sub z greater than 350 mV/m in general, or 100 mV/m for data within 10 seconds of a perpendicular shock, since double layers might be likely, in such regions. Only a few marginally convincing examples of the electric fields are found, none of which fits a double layer model well. From statistics done with the most unbiased part of the data set, upper limits are obtained on the number and size of double layers occurring in the auroral zone magnetosphere, and it is concluded that the double layers most probably cannot be responsible for the production of diffuse aurora or inverted-V events.
Chemical treatment of wastewater from flue gas desulphurisation
NASA Astrophysics Data System (ADS)
Pasiecznik, Iwona; Szczepaniak, Włodzimierz
2017-11-01
The article presents results of laboratory tests of removing boron and arsenium from non-ideal solutions using double-layered magnesium/aluminium hydroxides (Mg/Al Double-Layered Hydroxide - DLH) produced with nitrate-chloride method. In research, wastewater from an installation for flue gas desulfurization was examined. Double-layered hydroxides are perfect absorbents for anionic compounds. The research proved high effectiveness of preparation with reference to arsenium, as well as confirmed the effect of presence of sulfatic and arsenate ions on the effectiveness of boron removal. On the basis of research on absorption kinetics a theoretical dose of DLH/NO3-Cl/M preparation was calculated and compared with a dose that ensures emimination of boron below the limit standarized by the national regulations. Application of double-layered magnesium/aluminium hydroxides for boron elimination from industrial wastewater requires significantly higher doses of preparation than those calculated in model investigations. It is due to the priority of removal of multivalent ions, such as sulfatic, arsenate or phosphate ions, by DLH/NO3-Cl/M.
The electric double layer at a metal electrode in pure water
NASA Astrophysics Data System (ADS)
Brüesch, Peter; Christen, Thomas
2004-03-01
Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Arne; Dierks, Karsten; XtalConcepts, Marlowring 19, 22525 Hamburg
Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 µl in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advancedmore » hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-β-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of protein–detergent complexes for crystallization applications.« less
Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.
Albert, R D; Lindstrom, P J
1970-12-25
Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.
Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures
Kuang, Ye; Zhao, Lina; Zhang, Shuai; Zhang, Fazhi; Dong, Mingdong; Xu, Sailong
2010-01-01
Layered double hydroxides (LDHs), also well-known as hydrotalcite-like layered clays, have been widely investigated in the fields of catalysts and catalyst support, anion exchanger, electrical and optical functional materials, flame retardants and nanoadditives. This feature article focuses on the progress in micro-/nanostructured LDHs in terms of morphology, and also on the preparations, applications, and perspectives of the LDHs with different morphologies. PMID:28883378
Frequency Characteristics of the MAGLEV Double-layered Propulsion Coil
NASA Astrophysics Data System (ADS)
Ema, Satoshi
The MAGLEV (magnetically levitated vehicle) is now well along in development testing at Yamanashi Test Line. The MAGLEV power source needs to supply a variable voltage and variable frequency to propulsion coils, which installed on outdoor guideway. The output voltage of the electric power converter contains many higher harmonics, which causes many troubles such as inductive interference. Accordingly, it is necessary to clarify the frequency characteristics of the propulsion coils and the power feeding circuit. In view of this situation, experiments and the theoretical analysis concerning the frequency characteristics of the propulsion coils with single-layer arrangement and the power feeding circuit at Miyazaki Test Line had been performed by the author. But the arrangement of the propulsion coils had been changed in Yamanashi Test Line from the single-layered coils to the double-layered coils for the stability of the super-conducting magnet on board. Thus, experiments and investigations concerning the frequency characteristics(resonance characteristics)of the propulsion coils with double-layer arrangement at Yamanashi Test Line have been performed but a theoretical analysis had not been done enough. A theoretical analysis was therefore done in this paper by applying the inverted L equivalent circuit with mutual inductance and capacitance to the propulsion coil, from which the positive and zero phase characteristics of the double-layered propulsion coils were analyzed.
The double capsules in macro-textured breast implants.
Giot, Jean-Philippe; Paek, Laurence S; Nizard, Nathanael; El-Diwany, Mostafa; Gaboury, Louis A; Nelea, Monica; Bou-Merhi, Joseph S; Harris, Patrick G; Danino, Michel A
2015-10-01
Breast implants are amongst the most widely used types of permanent implants in modern medicine and have both aesthetic and reconstructive applications with excellent biocompatibility. The double capsule is a complication associated with textured prostheses that leads to implant displacement; however, its etiology has yet to be elucidated. In this study, 10 double capsules were sampled from breast expander implants for in-depth analysis; histologically, the inner capsular layer demonstrated highly organized collagen in sheets with delamination of fibers. At the prosthesis interface (PI) where the implant shell contacts the inner capsular layer, scanning electron microscopy (SEM) revealed a thin layer which mirrored the three-dimensional characteristics of the implant texture; the external surface of the inner capsular layer facing the intercapsular space (ICS) was flat. SEM examination of the inner capsule layer revealed both a large bacterial presence as well as biofilm deposition at the PI; a significantly lower quantity of bacteria and biofilm were found at the ICS interface. These findings suggest that the double capsule phenomenon's etiopathogenesis is of mechanical origin. Delamination of the periprosthetic capsule leads to the creation of the ICS; the maintained separation of the 2 layers subsequently alters the biostability of the macro-textured breast implant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hepp, Pierre; Osterhoff, Georg; Engel, Thomas; Marquass, Bastian; Klink, Thomas; Josten, Christoph
2009-07-01
The layered configuration of the rotator cuff tendon is not taken into account in classic rotator cuff tendon repair techniques. The mechanical properties of (1) the classic double-row technique, (2) a double-layer double-row (DLDR) technique in simple suture configuration, and (3) a DLDR technique in mattress suture configuration are significantly different. Controlled laboratory study. Twenty-four sheep shoulders were assigned to 3 repair groups of full-thickness infraspinatus tears: group 1, traditional double-row repair; group 2, DLDR anchor repair with simple suture configuration; and group 3, DLDR knotless repair with mattress suture configuration. After ultrasound evaluation of the repair, each specimen was cyclically loaded with 10 to 100 N for 50 cycles. Each specimen was then loaded to failure at a rate of 1 mm/s. There were no statistically significant differences among the 3 testing groups for the mean footprint area. The cyclic loading test revealed no significant difference among the 3 groups with regard to elongation. For the load-to-failure test, groups 2 and 3 showed no differences in ultimate tensile load when compared with group 1. However, when compared to group 2, group 3 was found to have significantly higher values regarding ultimate load, ultimate elongation, and energy absorbed. The DLDR fixation techniques may provide strength of initial repair comparable with that of commonly used double-row techniques. When compared with the knotless technique with mattress sutures, simple suture configuration of DLDR repair may be too weak. Knotless DLDR rotator cuff repair may (1) restore the footprint by the use of double-row principles and (2) enable restoration of the shape and profile. Double-layer double-row fixation in mattress suture configuration has initial fixation strength comparable with that of the classic double-row fixation and so may potentially improve functional results of rotator cuff repair.
Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; Wypych, Fernando
2008-04-01
A layered zinc hydroxide nitrate (Zn5(OH)8(NO3)2.2H2O) and a layered double hydroxide (Zn/Al-NO3) were synthesized by coprecipitation and doped with different amounts of Cu2+ (0.2, 1, and 10 mol%), as paramagnetic probe. Although the literature reports that the nitrate ion is free (with D3h symmetry) between the layers of these two structures, the FTIR spectra of two zinc hydroxide nitrate samples show the C2v symmetry for the nitrate ion, whereas the g ||/A || value in the EPR spectra of Cu2+ is high. This fact suggests bonding of some nitrate ions to the layers of the zinc hydroxide nitrate. The zinc hydroxide nitrate was used as matrix in the intercalation reaction with benzoate, o-chlorobenzoate, and o-iodobenzoate ions. FTIR spectra confirm the ionic exchange reaction and the EPR spectroscopy reveals bonding of the organic ions to the inorganic layers of the zinc hydroxide nitrate, while the layered double hydroxides show only exchange reactions.
Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...
2016-06-15
Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less
Bhupathiraju, Shilpa N; Lichtenstein, Alice H; Dawson-Hughes, Bess; Tucker, Katherine L
2011-03-01
In 2006, the AHA released diet and lifestyle recommendations (AHA-DLR) for cardiovascular disease (CVD) risk reduction. The effect of adherence to these recommendations on CVD risk is unknown. Our objective was to develop a unique diet and lifestyle score based on the AHA-DLR and to evaluate this score in relation to available CVD risk factors. In a cross-sectional study of Puerto Rican adults aged 45-75 y living in the greater Boston area, information was available for the following variables: diet (semiquantitative FFQ), blood pressure, waist circumference (WC), 10-y risk of coronary heart disease (CHD) (Framingham risk score), and fasting plasma lipids, serum glucose, insulin, and C-reactive protein (CRP) concentrations. We developed a diet and lifestyle score (AHA-DLS) based on the AHA-DLR. The AHA-DLS had both internal consistency and content validity. It was associated with plasma HDL cholesterol (P = 0.001), serum insulin (P = 0.0003), and CRP concentrations (P = 0.02), WC (P < 0.0001), and 10-y risk of CHD score (P = 0.01 in women). The AHA-DLS was inversely associated with serum glucose among those with a BMI < 25 (P = 0.01). Women and men in the highest quartile of the AHA-DLS had lower serum insulin (P-trend = 0.0003) and CRP concentrations (P-trend = 0.002), WC (P-trend = 0.0003), and higher HDL cholesterol (P-trend = 0.008). The AHA-DLS is a useful tool to measure adherence to the AHA-DLR and may be used to examine associations between diet and lifestyle behaviors and CVD risk.
Bhupathiraju, Shilpa N.; Lichtenstein, Alice H.; Dawson-Hughes, Bess; Tucker, Katherine L.
2011-01-01
In 2006, the AHA released diet and lifestyle recommendations (AHA-DLR) for cardiovascular disease (CVD) risk reduction. The effect of adherence to these recommendations on CVD risk is unknown. Our objective was to develop a unique diet and lifestyle score based on the AHA-DLR and to evaluate this score in relation to available CVD risk factors. In a cross-sectional study of Puerto Rican adults aged 45–75 y living in the greater Boston area, information was available for the following variables: diet (semiquantitative FFQ), blood pressure, waist circumference (WC), 10-y risk of coronary heart disease (CHD) (Framingham risk score), and fasting plasma lipids, serum glucose, insulin, and C-reactive protein (CRP) concentrations. We developed a diet and lifestyle score (AHA-DLS) based on the AHA-DLR. The AHA-DLS had both internal consistency and content validity. It was associated with plasma HDL cholesterol (P = 0.001), serum insulin (P = 0.0003), and CRP concentrations (P = 0.02), WC (P < 0.0001), and 10-y risk of CHD score (P = 0.01 in women). The AHA-DLS was inversely associated with serum glucose among those with a BMI < 25 (P = 0.01). Women and men in the highest quartile of the AHA-DLS had lower serum insulin (P-trend = 0.0003) and CRP concentrations (P-trend = 0.002), WC (P-trend = 0.0003), and higher HDL cholesterol (P-trend = 0.008). The AHA-DLS is a useful tool to measure adherence to the AHA-DLR and may be used to examine associations between diet and lifestyle behaviors and CVD risk. PMID:21270369
NASA Astrophysics Data System (ADS)
Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.
2017-07-01
Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P < 0.001) and ST ( r > 0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
NASA Technical Reports Server (NTRS)
Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.
2015-01-01
NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.
Veeneman, Maartje M J; Broekhoven, Mark H; Damsteegt, Ruth; Vanderschuren, Louk J M J
2012-01-01
Dopaminergic neurotransmission in the dorsal and ventral striatum is thought to be involved in distinct aspects of cocaine addiction. Ventral striatal dopamine mediates the acute reinforcing properties of cocaine, whereas dopamine in the dorsolateral striatum (DLS) is thought to become involved in later stages of the addiction process to mediate well-established cue-controlled drug seeking. However, it is unclear whether the DLS also has a role in the reinforcing properties of cocaine itself. Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals with limited drug taking experience. Intra-DLS infusion of the dopamine receptor antagonist α-flupenthixol did not affect the acquisition of cocaine self-administration, increased cocaine self-administration under a fixed ratio-1 (FR-1) schedule of reinforcement, caused a rightward and downward shift of the dose–response curve of cocaine under an FR-1 schedule of reinforcement and decreased responding for cocaine under a progressive ratio (PR) schedule of reinforcement. Infusion of α-flupenthixol into the ventral nucleus accumbens (NAcc) shell inhibited the acquisition of cocaine self-administration, reduced responding for the drug under FR-1 and PR schedules of reinforcement, and caused a downward shift of the dose–response curve of cocaine self-administration under an FR-1 schedule of reinforcement. These data show that dopamine in both the DLS and NAcc shell is involved in cocaine reinforcement. We suggest that the DLS and the NAcc shell mediate somewhat distinct facets of the reinforcing properties of cocaine, related to its rewarding and motivational aspects, respectively. PMID:21918505
Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim
2015-11-01
Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while being able to tune their individual release over months. We believe that our findings would be of interest to the readers of Acta Biomaterialia because the proposed system could open a new avenue on how two drugs can be released, through rate-controlling carriers, for combination chemotherapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
NASA Astrophysics Data System (ADS)
Scharer, John; Sung, Yung-Ta; Li, Yan
2017-10-01
Fast, two-temperature electrons (>80 eV, Te =13 eV tail, 4 eV bulk) with substantial tail density fractions are created at low (< = 1.7 mtorr) Ar pressure @ 340 G in the antenna region with nozzle mirror ratio of 1.4 on MadHeX @ 900W. These distributions including a fast tail are observed upstream of a double layer. The fast, untrapped tail electrons measured downstream of the double layer have a higher temperature of 13 eV than the trapped, upstream electrons of 4 eV temperature. Upstream plasma potential fluctuations of + - 30 percent are observed. An RF-compensated Langmuir probe is used to measure the electron temperatures and densities and OES, mm wave IF and an RPA for the IEDF are also utilized. As the magnetic field is increased to 1020 G, an increase in the electron temperature and density upstream of the double layer is observed with Te= 15-25 eV with a primarily single temperature mode. Accelerated ion beam energies in the range of 65-120 eV are observed as the magnetic field is increased from 340 to 850 G. The role of the nozzle, plasma double layer and helicon wave coupling on the EEDF and ion acceleration will be discussed. Research supported in part by the University of Wisconsin.
Synoptic Formation of Double Tropopauses
NASA Astrophysics Data System (ADS)
Liu, Chengji; Barnes, Elizabeth
2018-01-01
Double tropopauses are ubiquitous in the midlatitude winter hemisphere and represent the vertical stacking of two stable tropopause layers separated by a less stable layer. By analyzing COSMIC GPS data, reanalysis, and eddy life cycle simulations, we demonstrate that they often occur during Rossby wave breaking and act to increase the stratosphere-to-troposphere exchange of mass. We further investigate the adiabatic formation of double tropopauses and propose two mechanisms by which they can occur. The first mechanism operates at the tropopause break in the subtropics where the higher tropical tropopause sits on one side of the break and the lower extratropical tropopause sits on the other. The double tropopauses are then formed by differential meridional advection of the higher and lower tropopauses on the two sides of the tropopause break. We show that anticyclonic wave breaking can form double tropopauses mainly by providing stronger poleward advection of the higher tropopause in its poleward lobe. Cyclonic wave breaking mainly forms double tropopauses by providing stronger equatorward advection of the lower tropopause in its equatorward lobe. We demonstrate in the COSMIC GPS data and reanalysis that about half of the double tropopauses in the Northern Hemisphere winter can be directly attributed to such differential advection. For the second mechanism, adiabatic destabilization of the air above the tropopause contributes to the formation of a double tropopause. In this case, a tropopause inversion layer is necessary for this destabilization to result in a double tropopause.
Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi
2014-04-01
Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.
a Unified Matrix Polynomial Approach to Modal Identification
NASA Astrophysics Data System (ADS)
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-01-01
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455
Thabet, Yasmin; Lunter, Dominique; Breitkreutz, Joerg
2018-05-30
Various drug therapies require more than one active pharmaceutical ingredient (API) for an effective treatment. There are many advantages, e.g. to improve the compliance or pharmacodynamic response in comparison to a monotherapy or to increase the therapy safety. Until now, there are only a few products available for the paediatric population due to the lack of age appropriate dosage forms or studies proving the efficacy and safety of these products. This study aims to develop orodispersible films (ODFs) in a continuous solvent casting process as child appropriate dosage form containing both enalapril maleate (EM) and hydrochlorothiazide (HCT) separated in different film layers. Furthermore, they should be characterised and the API migration analysed by confocal Raman microscopy (CRM). ODFs were successfully produced in a continuous manufacturing process in form of double- and triple-layer formulations based on hydroxypropylcellulose (HPC) or a combination of HPC and polyvinyl alcohol (PVA). CRM revealed that both APIs migrate within the film layers shortly after manufacturing. PVA inhibits the migration inside the double-layer film, but is not able to prevent the API migration as an interlayer inside a triple-layer ODF. With increasing film layers, the content of residual solvents and the disintegration time increases (mono-layer films: <10 s, triple-layer films: 37 s). In conclusion, it was feasible to produce fixed-dose combinations in therapeutic doses up to 9 mg HCT and 3.5 mg EM for the double-layer film with adequate mechanical properties, which enable coiling up onto jumbo rolls directly after production. The best separation of the two APIs was achieved by casting a double-layer ODF consisting of different film forming polymers, which can be beneficial when processing two incompatible APIs. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrodynamics of frictional interaction in tribolink “metal-polymer”
NASA Astrophysics Data System (ADS)
Volchenko, N. A.; Krasin, P. S.; Volchenko, A. I.; Zhuravlev, D. Yu
2018-03-01
The materials of the article illustrate the estimation of the energy loading of a metal friction element in the metal-electrolyte-polymer friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The energy loading of the contact spots of the microprotrusions of the friction pairs of braking devices depends to a large extent on the electrical, thermal and chemical fields that are of a different nature to an allowable temperature and are above the surface layers of the polymer patch. The latter is significantly influenced by double electrical layers that are formed at the boundaries of the phases “metal-metal”, “metal-polymer”, “metal-semiconductor”, “semiconductor-semiconductor” and “metal-electrolyte”. When two electrically conducting phases come into contact with electrothermomechanical friction, a difference in electrical potentials arises, which is due to the formation of a double electric layer, that is an asymmetric distribution of charged particles near the phase boundary. The structure of the double electric layer does not matter for the magnitude of the reversible electrode potential, which is determined by the variation of the isobaric-isothermal potential of the corresponding electrochemical reaction.
Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr
NASA Astrophysics Data System (ADS)
Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.
1993-05-01
A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.
Double-atomic layer of Tl on Si(111): Atomic arrangement and electronic properties
NASA Astrophysics Data System (ADS)
Mihalyuk, Alexey N.; Bondarenko, Leonid V.; Tupchaya, Alexandra Y.; Gruznev, Dimitry V.; Chou, Jyh-Pin; Hsing, Cheng-Rong; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.
2018-02-01
Metastable double-atomic layer of Tl on Si(111) has recently been found to display interesting electric properties, namely superconductivity below 0.96 K and magnetic-field-induced transition into an insulating phase intermediated by a quantum metal state. In the present work, using a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, in a combination with density-functional-theory calculations, we have characterized atomic and electronic properties of the Tl double layer on Si(111). The double Tl layer has been concluded to contain ∼ 2.4 monolayer of Tl. A top Tl layer has a '1 × 1' basic structure and displays 6 × 6 moiré pattern which originates from various residence sites of Tl atoms. Upon cooling below ∼ 140 K, the 6 × 6 moiré pattern changes to that having a 6√{ 3} × 6√{ 3} periodicity. However, the experimentally determined electron band dispersions show a 1 × 1 periodicity. The calculated band structure unfolded into the 1 × 1 surface Brillouin zone reproduces well the main features of the photoelectron spectra.
Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan
2017-03-22
Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.
Shi, Wenying; Fu, Yi; Li, Zhixiong; Wei, Min
2015-01-14
Multiple and configurable fluorescence logic gates were fabricated via self-assembly of layered double hydroxides and various chromophores. These logic gates were operated by observation of different emissions with the same excitation wavelength, which achieve YES, NOT, AND, INH and INHIBIT logic operations, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, F.W.; Sun, Y.C.
1980-11-01
The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.
Progress in MOSFET double-layer metalization
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Trotter, J. D.; Wade, T. E.
1980-01-01
Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
NASA Astrophysics Data System (ADS)
Mahade, Satyapal; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per; Vaßen, Robert
2017-01-01
7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.
Goodman, Jarid; Gabriele, Amanda; Packard, Mark G
2017-04-01
The present study examined the role of the dorsolateral striatum (DLS) in extinction behavior. Male Long-Evans rats were initially trained on the straight alley maze, in which they were reinforced to traverse a straight runway and retrieve food reward at the opposite end of the maze. After initial acquisition, animals were given extinction training using 1 of 2 distinct protocols: response extinction or latent extinction. For response extinction, the animal was released from the same starting position and had the opportunity to perform the originally reinforced approach response to the goal end of the maze, which no longer contained food. For latent extinction, the animal was confined to the original goal location without food, allowing the animal to form a new cognitive expectation (i.e., that the goal location is no longer reinforced). Immediately before response or latent extinction training, animals received bilateral intra-DLS administration of the sodium channel blocker bupivacaine or control injections of physiological saline. Results indicated that neural inactivation of the DLS with bupivacaine impaired response extinction, but did not influence latent extinction. The dissociation observed indicates that the DLS selectively mediates extinction mechanisms involving suppression of the original response, as opposed to cognitive mechanisms involving a change in expectation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.
Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc
2006-01-01
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.
Concurrent silent strokes impair motor function by limiting behavioral compensation.
Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A
2012-08-01
Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
Wanlass, Mark W.
2001-01-01
A low-bandgap, double-heterostructure PV device is provided, including in optical alignment a first InP.sub.1-y As.sub.y n-layer formed with an n-type dopant, an Ga.sub.x In.sub.1-x As absorber layer, the absorber layer having an n-region formed with an n-type dopant and an p-region formed with a p-type dopant to form a single pn-junction, and a second InP.sub.1-y As.sub.y p-layer formed with a p-type dopant, wherein the first and second layers are used for passivation and minority carrier confinement of the absorber layers.
PAA-PAMPS copolymers as an efficient tool to control CaCO3 scale formation.
Dietzsch, Michael; Barz, Matthias; Schüler, Timo; Klassen, Stefanie; Schreiber, Martin; Susewind, Moritz; Loges, Niklas; Lang, Michael; Hellmann, Nadja; Fritz, Monika; Fischer, Karl; Theato, Patrick; Kühnle, Angelika; Schmidt, Manfred; Zentel, Rudolf; Tremel, Wolfgang
2013-03-05
Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4·2H2O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then been investigated in detail regarding their impact on the different stages of the crystallization process of CaCO3. Ca(2+) complexation, the first step of a precipitation process, and polyelectrolyte stability in aqueous solution have been investigated by potentiometric measurements, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). A weak Ca(2+) induced copolymer aggregation without concomitant precipitation was observed. Nucleation, early particle growth, and colloidal stability have been monitored in situ with DLS. The copolymers retard or even completely suppress nucleation, most probably by complexation of solution aggregates. In addition, they stabilize existing CaCO3 particles in the nanometer regime. In situ AFM was used as a tool to verify the coordination of the copolymer to the calcite (104) crystal surface and to estimate its potential as a growth inhibitor in a supersaturated CaCO3 environment. All investigated copolymers instantly stopped further crystal growth. The carboxylate richest copolymer as the most promising antiscaling candidate proved its enormous potential in scale inhibition as well in an industrial-filming test (Fresenius standard method).
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2013-07-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. Knowledge of the motion of the body's center of mass (COM) with respect to the center of pressure (COP) during high-heeled gait may offer insights into the balance control strategies and provide a basis for approaches that minimize the risk of falling and associated adverse effects. The study aimed to investigate the influence of the base and height of the heels on the COM motion in terms of COM-COP inclination angles (IA) and the rate of change of IA (RCIA). Fifteen females who regularly wear high heels walked barefoot and with narrow-heeled shoes with three heel heights (3.9cm, 6.3cm and 7.3cm) while kinematic and ground reaction force data were measured and used to calculate the COM and COP, as well as the temporal-distance parameters. The reduced base of the heels was found to be the primary factor for the reduced normalized walking speed and the reduced frontal IA throughout the gait cycle. This was achieved mainly through the control of the RCIA during double-leg stance (DLS). The heel heights affected mainly the peak RCIA during DLS, which were not big enough to affect the IA. These results suggest young adults adopt a conservative strategy for balance control during narrow-heeled gait. The results will serve as baseline data for future evaluation of patients and/or older adults during narrow-heeled gait with the aim of reducing the risk of falling. Copyright © 2012 Elsevier B.V. All rights reserved.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen
2017-04-15
We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.
1999-01-01
Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.
Interlayer tunneling in double-layer quantum hall pseudoferromagnets.
Balents, L; Radzihovsky, L
2001-02-26
We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.
Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn
2011-12-01
The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.
An incentive-based distributed mechanism for scheduling divisible loads in tree networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, T. E.; Grosu, D.
The underlying assumption of Divisible Load Scheduling (DLS) theory is that the pro-cessors composing the network are obedient, i.e., they do not “cheat” the scheduling algorithm. This assumption is unrealistic if the processors are owned by autonomous, self-interested organizations that have no a priori motivation for cooperation and they will manipulate the algorithm if it is beneficial to do so. In this paper, we address this issue by designing a distributed mechanism for scheduling divisible loads in tree net-works, called DLS-T, which provides incentives to processors for reporting their true processing capacity and executing their assigned load at full processingmore » capacity. We prove that the DLS-T mechanism computes the optimal allocation in an ex post Nash equilibrium. Finally, we simulate and study the mechanism under various network structures and processor parameters.« less
OAI and NASA's Scientific and Technical Information
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.
2002-01-01
The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is an evolving protocol and philosophy regarding interoperability for digital libraries (DLs). Previously, "distributed searching" models were popular for DL interoperability. However, experience has shown distributed searching systems across large numbers of DLs to be difficult to maintain in an Internet environment. The OAI-PMH is a move away from distributed searching, focusing on the arguably simpler model of "metadata harvesting". We detail NASA s involvement in defining and testing the OAI-PMH and experience to date with adapting existing NASA distributed searching DLs (such as the NASA Technical Report Server) to use the OAI-PMH and metadata harvesting. We discuss some of the entirely new DL projects that the OAI-PMH has made possible, such as the Technical Report Interchange project. We explain the strategic importance of the OAI-PMH to the mission of NASA s Scientific and Technical Information Program.
NASA Astrophysics Data System (ADS)
Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.
2018-02-01
Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
Duodenal and jejunal Dieulafoy’s lesions: optimal management
Yılmaz, Tonguç Utku; Kozan, Ramazan
2017-01-01
Dieulafoy’s lesions (DLs) are rare and cause gastrointestinal bleeding resulting from erosion of dilated submucosal vessels. The most common location for DL is the stomach, followed by duodenum. There is little information about duodenal and jejunal DLs. Challenges for diagnosis and treatment of Dieulafoy’s lesions include the rare nature of the disease, asymptomatic patients, bleeding symptoms often requiring rapid diagnosis and treatment in symptomatic patients, variability in the diagnosis and treatment methods resulting from different lesion locations, and the risk of re-bleeding. For these reasons, there is no universal consensus about the diagnosis and treatment approach. There are few published case reports and case series recently published. Most duodenal DLs are not evaluated seperately in the studies, which makes it difficult to determine the optimal model. In this study, we summarize the general aspects and recent approaches used to treat duodenal DL. PMID:29158686
ELBERS, P F; VERVERGAERT, P H
1965-05-01
Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.
The role of double TiO 2 layers at the interface of FeSe/SrTiO 3 superconductors
Zou, Ke; Bozovic, Ian; Mandal, Subhasish; ...
2016-05-16
We determine the surface reconstruction of SrTiO 3 used to achieve superconducting FeSe films in experiments, which is different from the 1×1 TiO 2-terminated SrTiO 3 assumed by most previous theoretical studies. In particular, we identify the existence of a double TiO 2 layer at the FeSe/SrTiO 3 interface that plays two important roles. First, it facilitates the epitaxial growth of FeSe. Second, ab initio calculations reveal a strong tendency for electrons to transfer from an oxygen deficient SrTiO 3 surface to FeSe when the double TiO 2 layer is present. The double layer helps to remove the hole pocketmore » in the FeSe at the Γ point of the Brillouin zone and leads to a band structure characteristic of superconducting samples. The characterization of the interface structure presented here is a key step towards the resolution of many open questions about this superconductor.« less
NASA Astrophysics Data System (ADS)
Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng
2017-09-01
The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.
Structure of water clusters on graphene: A classical molecular dynamics approach
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro
2018-03-01
The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.
NASA Astrophysics Data System (ADS)
da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.
2011-08-01
We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.
Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte
NASA Astrophysics Data System (ADS)
Chen, Siyu; Chen, Ying; Li, Chengyuan; Ouyang, Huijun; Qin, Shuai; Song, Ye
2018-04-01
Normally, the well-ordered anodic TiO2 nanotubes (ATNTs) are obtained in NH4F electrolyte, after annealing, the double-walled structure of nanotubes will appear. Here, after adding H3PO4 into NHF4 electrolyte, we got the double-walled structure of nanotubes by anodizing without annealing, which means the direct existence of anion-contaminated layer in ATNTs. Influence of H3PO4 content on anodizing voltage and morphology of ATNTs were compared in detail. The XRD pattern illustrated that the crystallinity decreases with increasing H3PO4 concentration, and the anion-contaminated layer thickens with the increase of H3PO4 concentration. Meanwhile, the existence of the anion-contaminated layer also proved the limitations of the filed-assisted dissolution theory, while the double-walled structure can be explained by oxygen bubble model and plastic flow model.
Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.
Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip
2017-08-04
Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.
Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo
2014-08-01
A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of this insight might be useful for designing temperature-responsive cell culture surfaces for achieving efficient cell culture and quick target cell detachment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Retinyl palmitate flexible polymeric nanocapsules: characterization and permeation studies.
Teixeira, Zaine; Zanchetta, Beatriz; Melo, Bruna A G; Oliveira, Luciana L; Santana, Maria H A; Paredes-Gamero, Edgar J; Justo, Giselle Z; Nader, Helena B; Guterres, Sílvia S; Durán, Nelson
2010-11-01
Polymeric nanocapsules with elastic characteristics were prepared by the pre-formed polymer interfacial deposition method. The system consists of an oily core of retinyl palmitate with Span 60 and a polymeric wall of poly(D,L-lactide) (PLA). A narrow size distribution (215 nm, P.D.I. 0.10) was showed by dynamic light scattering (DLS) analyses. Particle deformability was observed by transmission electron microscopy (TEM) images and permeation of the particles through two superposed membranes of smaller pore diameters. Permeation studies were achieved using plastic surgery abdominal human skin by Franz diffusion cell. Retinyl palmitate permeates into deep skin layers. Besides, a PLA fluorescent derivative conjugated with Nile blue dye by an amide covalent bound was additionally obtained. Permeation profile of the nanocapsules with the fluorescent polymer was evaluated by confocal laser scanning microscopy (CLSM). The CLSM showed that nanocapsules were distributed uniformly, suggesting that the permeation mechanism through skin is intercellular. Thus, the use of these nanocapsules may be a feasible strategy to enhance the permeation of actives into the skin when delivery to deep layers is aimed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Fabiano, Simone; Crispin, Xavier; Berggren, Magnus
2014-01-08
The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending
NASA Astrophysics Data System (ADS)
Baltov, Anguel; Yanakieva, Ana
2015-12-01
Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).
Si/Ge double-layered nanotube array as a lithium ion battery anode.
Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu
2012-01-24
Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries. © 2011 American Chemical Society
Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer
NASA Astrophysics Data System (ADS)
Berman, Oleg L.; Kezerashvili, Roman Ya.
2017-09-01
We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.
NASA Astrophysics Data System (ADS)
Li, Cang; Wang, Ge; Evans, David G.; Duan, Xue
2004-12-01
Reaction of an aqueous slurry of an Mg 2Al-NO 3 layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg 0.68Al 0.32(OH) 2[Eu(EDTA)] 0.10(CO 3) 0.11·0.66H 2O. The interlayer spacing of the material is 13.8 Å, corresponding to a gallery height of 9.0 Å, which accords with the maximal dimensions (9-10 Å) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)] - alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.
Influence of nonelectrostatic ion-ion interactions on double-layer capacitance
NASA Astrophysics Data System (ADS)
Zhao, Hui
2012-11-01
Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse-charge dynamics of the double layer with ion specificity and steric effects.
AFRRI (Armed Forces Radiobiology Research Institute) Reports, July, August and September 1987.
1987-11-01
mononuclear cell layer obtained after Percol isolation contained approximately 90% mono- cytes as assessed by esterase staining. In most experiments...forming cell) were assayed using the double layer agar technique basically as described by Hagan et al. (22). The culture medium was double strength CMRL...trypticase soy broth, 20 g/ml L-asparagine. and penicillin-streptomycin. In the bottom layer of 35 mm plastic Petri dishes was 1 ml of a 1:1 mixture of culture
Double layered tailorable advanced blanket insulation
NASA Technical Reports Server (NTRS)
Falstrup, D.
1983-01-01
An advanced flexible reusable surface insulation material for future space shuttle flights was investigated. A conventional fly shuttle loom with special modifications to weave an integral double layer triangular core fabric from quartz yarn was used. Two types of insulating material were inserted into the cells of the fabric, and a procedure to accomplish this was developed. The program is follow up of a program in which single layer rectangular cell core fabrics are woven and a single type of insulating material was inserted into the cells.
NASA Astrophysics Data System (ADS)
Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente
2005-08-01
Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.
NASA Astrophysics Data System (ADS)
Lee, Ilbok; Jeong, Gyoung Hwa; An, Soyeon; Kim, Sang-Wook; Yoon, Songhun
2018-01-01
Herein, MnNi-layered double hydroxides (LDH) were imbibed within the interlayers of graphene nanosheets. The anionic surfactant, sodium dodecyl sulfate played a role of graphite exfoliator adding interaction with metal cations. Using this process, layered MnNi-LDH-graphene nanocomposite was prepared without formation of graphene oxide. When applied into pseudocapacitor electrode, LDH-graphene with optimal ratio between Mn and Ni exhibited very stable cycle with 90% at 1400 cycles and high energy 47.29 Wh kg-1 at the power density of 7473 W kg-1, which was attributed to highly stable layered LDH structure within conductive graphene layers.
ERIC Educational Resources Information Center
Crosby, Patrick H.
2009-01-01
The purpose of this sequential mixed methods study was to determine if students with autism from 19-to-26 years of age who receive instruction in Daily Living Skills (DLS) class sustain, improve, or decline in their ability to generalize DLS at home and in the community. Research regarding how well students with autism from 19-to-26 years of age…
Analysis of hepatitis C virus RNA dimerization and core–RNA interactions
Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc
2006-01-01
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664
NASA Astrophysics Data System (ADS)
Rigaux, G.; Gheran, C. V.; Callewaert, M.; Cadiou, C.; Voicu, S. N.; Dinischiotu, A.; Andry, M. C.; Vander Elst, L.; Laurent, S.; Muller, R. N.; Berquand, A.; Molinari, M.; Huclier-Markai, S.; Chuburu, F.
2017-02-01
Chitosan CS—tripolyphosphate TPP/hyaluronic acid HA nanohydrogels loaded with gadolinium chelates (GdDOTA ⊂ CS-TPP/HA NGs) synthesized by ionic gelation were designed for lymph node (LN) MRI. In order to be efficiently drained to LNs, nanogels (NGs) needed to exhibit a diameter ϕ < 100 nm. For that, formulation parameters were tuned, using (i) CS of two different molecular weights (51 and 37 kDa) and (ii) variable CS/TPP ratio (2 < CS/TPP < 8). Characterization of NG size distribution by dynamic light scattering (DLS) and asymetrical flow-field-flow-fractionation (AF4) showed discrepancies since DLS diameters were consistently above 200 nm while AF4 showed individual nano-objects with ϕ < 100 nm. Such a difference could be correlated to the presence of aggregates inherent to ionic gelation. This point was clarified by atomic force microscopy (AFM) in liquid mode which highlighted the main presence of individual nano-objects in nanosuspensions. Thus, combination of DLS, AF4 and AFM provided a more precise characterization of GdDOTA ⊂ CS-TPP/HA nanohydrogels which, in turn, allowed to select formulations leading to NGs of suitable mean sizes showing good MRI efficiency and negligible toxicity.
Campus, P; Colelli, V; Orsini, C; Sarra, D; Cabib, S
2015-02-01
The forced swimming test (FST) remains one of the most used tools for screening antidepressants in rodent models. Nonetheless, the nature of immobility, its main behavioral measure, is still a matter of debate. The present study took advantage of our recent finding that mice of the inbred DBA/2J strain require a functioning left dorsolateral striatum (DLS) to consolidate long-term memory of FST to test whether immobility is the outcome of stress-related learning. Infusion of the GABA-A agonist muscimol in the left DLS immediately after a single experience of FST prevented and infusion in the left or the right amygdala impaired recall of the acquired levels of immobility in a probe test performed 24h later. Post-training left DLS infusion of muscimol, at a dose capable of preventing retention of FST-induced immobility, did not influence 24h retention of inhibitory avoidance training or of the escape response acquired in a water T-maze. However, this same treatment prevented 24h retention of the extinction training of the consolidated escape response. These results indicate that a left DLS-centered memory system selectively mediates memory consolidation of FST and of escape extinction and support the hypothesis that immobility is the result of extinction-like inhibitory learning involving all available escape responses due to the inescapable/unavoidable nature of FST experience. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho
2014-06-25
We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.
NASA Astrophysics Data System (ADS)
Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh
2018-05-01
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.
1997-01-01
Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.
1997-06-10
Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.
Strategy for improved frequency response of electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi
2015-10-01
We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.
Reversible Heating in Electric Double Layer Capacitors
NASA Astrophysics Data System (ADS)
Janssen, Mathijs; van Roij, René
2017-03-01
A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014), 10.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014), 10.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006), 10.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.
Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device.
Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Bang, Suhyun; Kim, Tae-Hyeon; Chen, Ying-Chen; Lee, Jong-Ho; Park, Byung-Gook
2017-07-26
Here we demonstrate low-power resistive switching in a Ni/SiN y /SiN x /p ++ -Si device by proposing a double-layered structure (SiN y /SiN x ), where the two SiN layers have different trap densities. The LRS was measured to be as low as 1 nA at a voltage of 1 V, because the SiN x layer maintains insulating properties for the LRS. The single-layered device suffers from uncontrollability of the conducting path, accompanied by the inherent randomness of switching parameters, weak immunity to breakdown during the reset process, and a high operating current. On the other hand, for a double-layered device, the effective conducting path in each layer, which can determine the operating current, can be well controlled by the I CC during the initial forming and set processes. A one-step forming and progressive reset process is observed for a low-power mode, which differs from the high-power switching mode that shows a two-step forming and reset process. Moreover, nonlinear behavior in the LRS, whose origin can be attributed to the P-F conduction and F-N tunneling driven by abundant traps in the silicon-rich SiN x layer, would be beneficial for next-generation nonvolatile memory applications by using a conventional passive SiN x layer as an active dielectric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Kim, H.J.; Kim, J.W.
2013-11-15
Graphical abstract: - Highlights: • Chemical solution deposition of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}–NiFe{sub 2}O{sub 4} double layered thin film. • Studies on structural, electrical and multiferroic properties. • NiFe{sub 2}O{sub 4} acts as both resistive buffer layer and magnetic source. - Abstract: (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film was prepared on a Pt(111)/Ti/SiO{sub 2}/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4}more » double layered thin film. The (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film exhibited well saturated ferromagnetic (2 M{sub r} of 18.1 emu/cm{sup 3} and 2H{sub c} of 0.32 kOe at 20 kOe) and ferroelectric (2P{sub r} of 60 μC/cm{sup 2} and 2E{sub c} of 813 kV/cm at 866 kV/cm) hysteresis loops with low order of leakage current density (4.5 × 10{sup −6} A/cm{sup 2} at an applied electric field of 100 kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.« less
Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.
Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R
2014-01-01
The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.
Sound transmission through stiffened double-panel structures lined with elastic porous materials
NASA Astrophysics Data System (ADS)
Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming
This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.
Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.
Bria, Carmen R M; Williams, S Kim Ratanathanawongs
2016-09-23
The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
Hyaluronan degrading silica nanoparticles for skin cancer therapy
NASA Astrophysics Data System (ADS)
Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.
2013-09-01
We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02787b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Soumya; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
Electron transfer and proton coupled electron transfer (PCET) reactions at electrochemical interfaces play an essential role in a broad range of energy conversion processes. The reorganization energy, which is a measure of the free energy change associated with solute and solvent rearrangements, is a key quantity for calculating rate constants for these reactions. We present a computational method for including the effects of the double layer and ionic environment of the diffuse layer in calculations of electrochemical solvent reorganization energies. This approach incorporates an accurate electronic charge distribution of the solute within a molecular-shaped cavity in conjunction with a dielectricmore » continuum treatment of the solvent, ions, and electrode using the integral equations formalism polarizable continuum model. The molecule-solvent boundary is treated explicitly, but the effects of the electrode-double layer and double layer-diffuse layer boundaries, as well as the effects of the ionic strength of the solvent, are included through an external Green’s function. The calculated total reorganization energies agree well with experimentally measured values for a series of electrochemical systems, and the effects of including both the double layer and ionic environment are found to be very small. This general approach was also extended to electrochemical PCET and produced total reorganization energies in close agreement with experimental values for two experimentally studied PCET systems. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Strongly nonlinear dynamics of electrolytes in large ac voltages.
Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik
2010-07-01
We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V.
2017-01-15
The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It ismore » shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.« less
Non-mean-field theory of anomalously large double layer capacitance
NASA Astrophysics Data System (ADS)
Loth, M. S.; Skinner, Brian; Shklovskii, B. I.
2010-07-01
Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.
Turan, Cem; Büyükbayrak, Esra Esim; Yilmaz, Aylin Onan; Karsidag, Yasemin Karageyim; Pirimoglu, Meltem
2015-04-01
To compare the classical double-layer uterine closure to a double-layer purse-string uterine closure (Turan technique) in cesarean section regarding short- and long-term results. Patients were randomized into either the double-layer purse-string uterine closure arm (study group, 84 patients) or the classical double-layer uterine closure arm (control group, 84 patients). For short-term comparison, a detailed transvaginal ultrasound examination was planned in all patients 6 weeks after the operation and a wedge-shaped defect in the uterine incision scar was accepted as uterine scar defect and recorded. For the long-term comparison, subsequent pregnancies of these patients were followed up for any complication. The number of patients with ultrasonographically visible uterine scar defect was 12 (23.5% of all scar defects) in the study group whereas it was 39 (76.5% of all scar defects) in the control group (P < 0.001, χ(2) = 15.42). Demographic data, operation time, hospitalization time, preoperative and postoperative hemoglobin values were not significantly different between the groups. During the 2-year of the follow-up period, five patients in the study group and six patients in the control group became pregnant again. No complication during their pregnancies and second cesarean operation were encountered. With the Turan technique, the uterine incision length becomes shorter, and the frequency of uterine scar defect is lower regarding short-term results. More data is needed for long-term results. ClinicalTrials.gov NCT01287611. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Park, Jung Gu; Jung, Gyoo-Sik; Oh, Kyung Seung; Park, Seon-Ja
2010-08-01
We evaluated the effectiveness of a double-layered polytetrafluoroethylene (PTFE)-covered nitinol stent in the palliative treatment of malignant esophageal strictures. A double-layered PTFE-covered nitinol stent was designed to reduce the propensity to migration of conventional covered stent. The stent consists of an inner PTFE-covered stent and an outer uncovered nitinol stent tube. With fluoroscopic guidance, the stent was placed in 32 consecutive patients with malignant esophageal strictures. During the follow-up period, the technical and clinical success rates, complications, and cumulative patient survival and stent patency were evaluated. Stent placement was technically successful in all patients, and no procedural complications occurred. After stent placement, the symptoms of 30 patients (94%) showed improvement. During the mean follow-up of 103 days (range, 9-348 days), 11 (34%) of 32 patients developed recurrent symptoms due to tumor overgrowth in five patients (16%), tumor ingrowth owing to detachment of the covering material (PTFE) apart from the stent wire in 3 (9%), mucosal hyperplasia in 2 (6%), and stent migration in 1 (3%). Ten of these 11 patients were treated by means of placing a second covered stent. Thirty patients died, 29 as a result of disease progression and 1 from aspiration pneumonia. The median survival period was 92 days. The median period of primary stent patency was 190 days. The double-layered PTFE-covered nitinol stent seems to be effective for the palliative treatment of malignant esophageal strictures. We believe that the double-layer configuration of this stent can contribute to decreasing the stent's migration rate.
Design rules and reality check for carbon-based ultracapacitors
NASA Astrophysics Data System (ADS)
Eisenmann, Erhard T.
1995-04-01
Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cu cm. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqueous electrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cu cm for carbon that had 100 F/cu cm in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.
Gain enhancement with near-zero-index metamaterial superstrate
NASA Astrophysics Data System (ADS)
Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.
2015-11-01
The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.
NASA Astrophysics Data System (ADS)
Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang
2018-06-01
In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.
NASA Astrophysics Data System (ADS)
Bisht, R. S.; Thapa, N.; Babu, P. N.
2016-04-01
The Earth's airglow layer, when observed in the limb view mode, appears to be a double layer. LiVHySI onboard YOUTHSAT (inclination 98.730, apogee 817 km, launched by Indian Space Research Organization in April, 2011) is an Earth's limb viewing camera measuring airglow emissions in the spectral window of 550-900 nm. Total altitude coverage is about 500 km with command selectable lowest altitude. During few of the orbits we have observed the double layer structure and obtained absolute spectral intensity and altitude profile for 630 nm airglow emission. Our night time observations of upper atmosphere above dip equator carried out on 3rd May, 2011 show a prominent 630 nm double layer structure. The upper airglow layer consists of the 630 nm atomic oxygen O(1D) emission line and lower layer consists of OH(9-3) meinel band emission at 630 nm. The volume emission rate as a function of altitude is simulated for our observational epoch and the modeled limb intensity distribution is compared with the observations. The observations are in good agreement with the simulated intensity distribution.
Layered Halide Double Perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for Photovoltaic Applications.
Tang, Gang; Xiao, Zewen; Hosono, Hideo; Kamiya, Toshio; Fang, Daining; Hong, Jiawang
2018-01-04
Over the past few years, the development of lead-free and stable perovskite absorbers with excellent performance has attracted extensive attention. Much effort has been devoted to screening and synthesizing this type of solar cell absorbers. Here, we present a general design strategy for designing the layered halide double perovskites Cs 3+n M(II) n Sb 2 X 9+3n (M = Sn, Ge) with desired photovoltaic-relevant properties by inserting [MX 6 ] octahedral layers, based on the principles of increased electronic dimensionality. Compared to Cs 3 Sb 2 I 9 , more suitable band gaps, smaller carrier effective masses, larger dielectric constants, lower exciton binding energies, and higher optical absorption can be achieved by inserting variable [SnI 6 ] or [GeI 6 ] octahedral layers into the [Sb 2 I 9 ] bilayers. Moreover, our results show that adjusting the thickness of inserted octahedral layers is an effective approach to tune the band gaps and carrier effective masses in a large range. Our work provides useful guidance for designing the promising layered antimony halide double perovskite absorbers for photovoltaic applications.
Loya-Castro, María F; Sánchez-Mejía, Mariana; Sánchez-Ramírez, Dante R; Domínguez-Ríos, Rossina; Escareño, Noé; Oceguera-Basurto, Paola E; Figueroa-Ochoa, Édgar B; Quintero, Antonio; Del Toro-Arreola, Alicia; Topete, Antonio; Daneri-Navarro, Adrián
2018-05-15
The use of colloidal particles (CPs) in the transport of drugs is developing rapidly thanks to its effectiveness and biosafety, especially in the treatment of various types of cancer. In this study Rose Bengal/PLGA CPs synthesized by double emulsion (W/O/W) and by electrostatic adsorption (layer-by-layer), were characterized and evaluated as potential breast cancer treatment. CPs were evaluated in terms of size, zeta potential, drug release kinetics and cell viability inhibition efficacy with the triple negative breast cancer cell line HCC70. The results showed that both types of CPs can be an excellent alternative to conventional cancer treatment by taking advantage of the enhanced permeation and retention (EPR) effect, manifested by solid tumors; however, the double emulsion CPs showed more suitable delivery times of up to 60% within two days, while layer-by-layer showed fast release of 50% in 90 min. Both types of CPs were capable to decrease cell viability, which encourage us to further testing in in vivo models to prove their efficacy and feasible use in the treatment of triple negative breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Shinohara, Katsuji; Furukawa, Shinya
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by double-layer capacitors is proposed. The motor is driven by a PWM inverter with voltage booster. The voltage booster is used to control the dc link voltage in high speed region to improve the system efficiency. Furthermore, the double-layer capacitor as a storage element is combined with the PWM inverter with voltage booster to gain the efficiency for the regenerating operation. In this system, normally, the regenerative power does not return to a battery directly but is stored in the double-layer capacitors for the next motoring action to suppress the excessive regenerative current to battery, and the regenerative power returns to the battery when the regenerative energy is larger than a certain value. The charging current to the battery is controlled to a constant value to extend the life-time of the battery. The transient and steady state characteristics of the system for 1.5kW IPM motor are investigated by both simulation and experiment. Finally, the effectiveness of the system is demonstrated by the simulated and experimental results.
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2016-02-01
By using optical electric-field-induced second-harmonic generation (EFISHG) technique, we studied carrier behavior caused by contact electrification (CE) in an organic double-layer element. This double-layer sample was half suspended in the open air, where one electrode (anode or cathode) was connected with a Cu foil for electrification while the other electrode was floated. Results showed two distinct carrier behaviors, depending on the (anode or cathode) connections to the Cu foil, and these carrier behaviors were analyzed based on the Maxwell-Wagner model. The double-layer sample works as a simple solar cell device. The photovoltaic effect and CE process have been proved to be two paralleled effects without strong interaction with each other, while photoconductivity changing in the sample can enhance the relaxation of CE induced charges. By probing the carrier behavior in this half-suspended device, the EFISHG technique has been demonstrated to be an effective non-contact method for clarifying the CE effect on related energy harvesting devices and electronics devices. Meanwhile, the related physical analysis in this letter is also useful for elucidating the fundamental characteristic of hybrid energy system based on solar cell and triboelectric nanogenerator.
Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Gönüllü, Y.; Arndt, B.
2013-05-01
Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.
Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty
Lee, Dong-Hyun; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung
2016-01-01
We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022
Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling
NASA Astrophysics Data System (ADS)
Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani
2017-02-01
Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.
Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel
2016-06-15
Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.
Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho
2013-11-01
We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.
Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.
Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini
2015-09-30
An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.
Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics
NASA Astrophysics Data System (ADS)
Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini
2015-09-01
An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.
Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir
2016-01-01
The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verheest, Frank, E-mail: frank.verheest@ugent.be; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000; Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za
The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.more » Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.« less
Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene
NASA Astrophysics Data System (ADS)
Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.
2017-02-01
We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.
Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric
Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok
2015-01-01
Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817
NASA Astrophysics Data System (ADS)
Xie, Zheng-Wei; Li, Bo-Zang; Li, Yu-Xian
2003-10-01
Within the framework of the free-electron model, the tunneling magnetoresistance (TMR) and tunneling conductance (TC) in double magnetic tunnel junctions (DMTJ) with nonmagnetic cap layer, i.e. the NM/FM/I/NM/(FM)/I/FM/NM junction is investigated. FM, NM and I represent the ferromagnetic metal, nonmagnetic metal and insulator, respectively, NM(FM) indicates that the middle layer can be NM or FM. Our results show that, due to the spin-dependent interfacial potential barriers, the influences of the thickness of the FM layer on TC and TMR in DMTJ are large, and when the thicknesses of these two FM layers are suitable a large TMR can be obtained. (
Double layer field shaping systems for toroidal plasmas
Ohyabu, Nobuyoshi
1982-01-01
Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.
NASA Astrophysics Data System (ADS)
Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung
2018-02-01
The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.
Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.
Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong
2009-03-01
A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.
Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating
NASA Astrophysics Data System (ADS)
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2017-08-01
In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.
Sound transmission through finite lightweight multilayered structures with thin air layers.
Dijckmans, A; Vermeir, G; Lauriks, W
2010-12-01
The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-09-06
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-01-01
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yao; Liang, Meng; Fu, Jiajia
2015-03-15
In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less
Reversible Heating in Electric Double Layer Capacitors.
Janssen, Mathijs; van Roij, René
2017-03-03
A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014)JPSODZ0378-775310.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)JPSODZ0378-775310.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Asymmetry-symmetry transition of double-sided adhesive tapes
NASA Astrophysics Data System (ADS)
Yamaguchi, Tetsuo; Muroo, Hiroyuki; Sumino, Yutaka; Doi, Masao
2012-06-01
We report on the debonding process of a double-sided adhesive tape sandwiched between two glass plates. When the glass plates are separated from each other at a constant rate, a highly asymmetric extension of top and bottom adhesive layers and bending of the inner film are observed first. As the separation proceeds, the elongation of both layers becomes symmetric, and the inner film becomes flat again. When this happens, there appears a local maximum in the force-displacement curve. We explain this asymmetry-symmetry transition and discuss the role of the bimodal force-displacement relation of each adhesive layer. We also discuss the effect of the inner film thickness and the separation rate on the debonding behavior, which causes undesirable early detachment of the double-sided adhesive tape in a certain condition.
Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process
2009-01-01
A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292
Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer
NASA Astrophysics Data System (ADS)
Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping
2018-06-01
In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure
NASA Astrophysics Data System (ADS)
Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa
2017-12-01
We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.
LDHs/graphene film on aluminum alloys for active protection
NASA Astrophysics Data System (ADS)
Zhang, You; Yu, Peihang; Wang, Juping; Li, Yingdong; Chen, Fei; Wei, Kai; Zuo, You
2018-03-01
A layered double hydroxides (LDHs) nanocontainer film modified with graphene was fabricated on aluminum alloy via a facile two-step process. The structure, morphology and composition of LDHs/graphene film were investigated. Graphene layers were able to seal the pores of nest-like LDHs film. After the modification of graphene, the LDHs film presented hydrophobic (CA 127.8°) and enhanced anticorrosion properties. The active anticorrosion property of the composite film was attributed to the double functions of the impermeable and inert graphene layer and the active inhibitor-loaded LDHs underling film.
NASA Astrophysics Data System (ADS)
Yoon, Mijin; Jee, Myungkook James; Tyson, Tony
2018-01-01
The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.
NASA Astrophysics Data System (ADS)
Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.
2004-08-01
Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS. PMID:29875506
Gremel, Christina M.; Costa, Rui M.
2014-01-01
Shifting between goal-directed and habitual actions allows for efficient and flexible decision-making. Here we demonstrate a novel, within-subject instrumental lever-pressing paradigm where mice shift between goal-directed and habitual actions. We identify a role for orbitofrontal cortex (OFC) in actions following outcome-revaluation, and confirm that dorsal medial (DMS) and lateral striatum (DLS) mediate different action strategies. In-vivo simultaneous recordings of OFC, DMS, and DLS neuronal ensembles during shifting reveal that the same neurons display different activity depending on whether presses are goal-directed or habitual, with DMS and OFC becoming more—and DLS less-engaged during goal-directed actions. Importantly, the magnitude of neural activity changes in OFC following changes in outcome value positively correlates with the level of goal-directed behavior. Chemogenetic inhibition of OFC disruptsgoal-directed actions, while optogenetic activation of OFC specifically increases goal-directed pressing. They also reveal a role for OFC in action revaluation, which has implications for understanding compulsive behavior. PMID:23921250
NASA Astrophysics Data System (ADS)
Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi
2016-04-01
Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.
Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation
NASA Astrophysics Data System (ADS)
Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif
2016-08-01
Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.
Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea
2015-10-19
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.
2016-01-01
The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.
Cui, Sheng-zhong; Wang, Shen-jun; Li, Jing; Xie, Gui-qin; Zhou, Rong; Chen, Ling; Yuan, Xiao-ru
2011-02-01
The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.
Hankin, Elyshia J; Jerram, Richard M; Walker, Alexander M; King, Michael D; Warman, Christopher G A
2012-07-01
To describe outcome after transarticular facet screw stabilization and dorsal laminectomy for treatment of dynamic degenerative lumbosacral stenosis (DLS) in 26 dogs. Retrospective case series. Dogs (n = 26) with dynamic DLS. Medical records (2004-2009) of dogs treated with transarticular facet screw stabilization and dorsal laminectomy were reviewed. Dogs (n = 26) were available for immediate postoperative follow-up, 21 dogs at 6 weeks, and 15 at greater than 6 months. Dogs were evaluated by radiographic assessment and owner questionnaire. Lumbosacral (LS) intervertebral disc (IVD) spaces were measured on pre and postoperative 6-week and 6-month radiographs. In 23 dogs, improvement in clinical signs occurred within 7 days of surgery. Overall postsurgical complication rate directly related to the surgical procedure was 15.4%. LS IVD space measurements taken immediately postoperatively, at 6 weeks, and ≥ 6 months were all significantly increased compared with preoperative measurements. All working dogs (4) returned to full work within 14 months. Most owners (85%) reported their dog was ambulating normally at 6 months with no perceptible lameness during normal activity. All owners perceived their dog's ability to walk, run, and jump after surgery to be improved. Transarticular facet screw stabilization and dorsal laminectomy maintains distraction of the LS IVD space for medium-to-large breed dogs with dynamic DLS with a high degree of owner satisfaction, and is comparable to other reported surgical techniques for DLS. © Copyright 2012 by The American College of Veterinary Surgeons.
Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum.
Zoicas, Iulia; Slattery, David A; Neumann, Inga D
2014-12-01
Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
Richardson, Ian G.
2013-01-01
A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies. PMID:23873067
Performance of Electric Double-Layer Capacitor Simulators
NASA Astrophysics Data System (ADS)
Funabiki, Shigeyuki; Kodama, Shinsuke; Yamamoto, Masayoshi
This paper proposes a simulator of EDLC, which realizes the performance equivalent to electric double-layer capacitors (EDLCs). The proposed simulator consists of an electrolytic capacitor and a two-quadrant chopper working as a current source. Its operation principle is described in the first place. The voltage dependence of capacitance of EDLCs is taken into account. The performance of the proposed EDLC simulator is verified by computer simulations.
Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.
Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong
2012-01-01
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.
NASA Astrophysics Data System (ADS)
Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao
2018-02-01
Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.
NASA Astrophysics Data System (ADS)
Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko
2018-04-01
The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.
KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited
NASA Technical Reports Server (NTRS)
Craig, J.; Allen, C.
1987-01-01
The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.
Control of Interfacial Phenomena in Artificial Oxide Heterostructures
2015-09-01
heterostructures using the field effect to control superconductivity, magnetism, and metal‐insulator transitions. We also identify the existence of double TiO2 ...double TiO2 layers play a crucial role in determining the superconducting states of monolayer FeSe/SrTiO3. 15. SUBJECT TERMS Thin films, conductor...development of oxide‐based electronic devices. We also identify the existence of double TiO2 layers at the surface of SrTiO3 in the recently
Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V.
2018-05-01
The structure and morphology of BimSen epitaxial layers with compositions ranging from Bi2Se3 to the Bi1Se1 grown by molecular beam epitaxy with different flux compositions are investigated by transmission electron microscopy, high-resolution x-ray diffraction, and atomic force microscopy. It is shown that the lattice structure changes significantly as a function of the beam flux composition, i.e., Se/BiSe flux ratio that determines the stoichiometry of the layers. A perfect Bi2Se3 phase is formed only with a sufficiently high additional Se flux, whereas Bi1Se1 is obtained when only a BiSe compound source without additional Se is used. For intermediate values of the excess Se flux during growth, Bi2Se3 -δ layers are obtained with the Se deficit δ varying between 0 and 1. This Se deficit is accommodated by incorporation of additional Bi-Bi double layers into the Bi2Se3 structure that otherwise exclusively consists of Se-Bi-Se-Bi-Se quintuple layers. While a periodic insertion of such Bi double layers would result in the formation of natural BimSen superlattices, we find that this Bi double-layer insertion is rather stochastic with a high degree of disorder depending on the film composition. Therefore, the structure of such epilayers is better described by a one-dimensional paracrystal model, consisting of disordered sequences of quintuple and double layers rather than by strictly periodic natural superlattices. From detailed analysis of the x-ray diffraction data, we determine the dependence of the lattice parameters a and c and distances of the individual (0001) planes dj as a function of composition, evidencing that only the in-plane lattice parameter a shows a linear dependence on composition. The simulation of the diffraction curves with the random stacking paracrystal model yields an excellent agreement with the experimental data and it brings quantitative information on the randomness of the stacking sequence, which is compared to growth modeling using Monte Carlo simulations. The analysis of transmission electron microscopy data furthermore confirms that the Bi-Bi bilayers contain a large amount of vacancies of up to 25%. Conductivity and Hall data confirm that BimSen phases containing Bi-Bi double layers exhibit a rather semimetallic behavior.
Plasma contactor research, 1990
NASA Technical Reports Server (NTRS)
Williams, John D.; Wilbur, Paul J.
1991-01-01
Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.
Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas
2016-02-10
Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
NASA Technical Reports Server (NTRS)
Yang, Qianli; Wu, S. T.; Stone, N. H.; Li, Xiaoquing
1996-01-01
In this paper we solve the self-consistent Vlasov and Poisson equations by a numerical method to determine the local distribution function of the ion and the electron, within a thin layer near the moving body, respectively. Using these ion and electron distributions, the number density for the ions and electrons are determined, such that, the electric potential is obtained within this thin layer (i.e., measured by Debye length). Numerical results are presented for temporal evolution of the electron and ion density and its corresponding electric potential within the layer which shows the formation of electric double layer and its structures. From these numerical results, we are able to determine the maximum conditions of the electric potential, it may create satellite anomaly.
Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes
NASA Astrophysics Data System (ADS)
Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel
2017-10-01
Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.
Boosted output performance of triboelectric nanogenerator via electric double layer effect
Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min
2016-01-01
For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165
NASA Astrophysics Data System (ADS)
Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin
2017-02-01
This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wan; Liang, Na; Peng, Pai
2017-02-15
Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based onmore » quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.« less
Simulation of double layers in a model auroral circuit with nonlinear impedance
NASA Technical Reports Server (NTRS)
Smith, R. A.
1986-01-01
A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.
Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Haque, Q.
2018-01-01
The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.
Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R., E-mail: rajirufai@gmail.com; Scientific Computing, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1C 5S7; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za
2016-03-15
Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperaturemore » and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.« less
NASA Astrophysics Data System (ADS)
Shi, J. M.; Zhang, L. X.; Chang, Q.; Sun, Z.; Feng, J. C.; Ma, N.
2018-06-01
In order to improve the ZrC-SiC ceramic and TC4 brazed joint property, graded double-layered SiC particles (SiCp)-reinforced TC4-based composite structure (named as GLS for convenience) was designed to relieve the residual stress in the joint. The GLS was successfully fabricated on TC4 substrate by double-layered laser deposition technology before the brazing process. The investigation of the GLS shows that the volume fraction of SiCp in the two composite layers was graded (20 and 39 vol pct, respectively). Ti5Si3 and TiC phases formed in the GLS due to the reaction of SiCp and TC4. The laser power-II (the laser power for the second deposition layer) affected the microstructure of the GLS significantly. Increasing the laser power-II would promote the reaction between the SiCp and TC4. But the high laser power-II made the layer I remelt completely and the two layers became homogeneous rather than graded structure. In the ZrC-SiC and TC4 brazed joint, the CTE (coefficient of thermal expansion) was graded from the TC4 to the ZrC-SiC due to the GLS, and the strength of the joint with the GLS (91 MPa) was higher than that without the GLS (43 MPa).
Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.
2018-05-01
We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
Petrovsky, Roman; Krohne, Georg; Großhans, Jörg
2018-03-01
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
1990-11-16
creating an electrical double-layer whenever a bare mica surface is in contact with an aqueous solution . The mica/electrolyte double-layer...between mica in aqueous solutions containing 10-5 to I M KNO 3 (From Reference 44. Copyright 0 1985 Royal Swedish Academy. Reprinted with permission of...can be observed in aqueous KNO 3 solutions at close separations and at high ion concentrations. For example, if the force curves in Figure 8 (top) for
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee
2016-09-01
In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium
NASA Astrophysics Data System (ADS)
Saad, E. I.; Faltas, M. S.
2018-04-01
An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.
NASA Astrophysics Data System (ADS)
Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei
2017-08-01
In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.
Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said
2017-04-19
Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.
Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)
NASA Astrophysics Data System (ADS)
Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin
2016-11-01
A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.
NASA Astrophysics Data System (ADS)
Guan, Yingli; Song, Lixin; Zhou, Yangyang; Yin, Xin; Xie, Xueyao; Xiong, Jie
2017-03-01
Two kinds of TiO2 microspheres (TMS) with average diameter of 1500 nm but different surface were fabricated by solvothermal method from different Ti source. The effect of TMS on the light harvesting and photovoltaic performance of dye-sensitized solar cells (DSSCs)was investigated. The UV-Vis diffusion reflectance spectra and absorption spectra of N719 dye in detached solutions proved that the TMS showed dual functions of light scattering and dye-adsorption which was an important functional material in DSSCs. The results showed that the TMS made from titanium(IV) isopropoxide with rough surface (TMSR) exhibited better photovoltaic performance than that of TMS made from tetrabutyl titanate with smooth surface (TMSS). To further improve the photovoltaic performance, the double-layered DSSCs made of P25 as an underlayer and TMS as a light-scattering layer (P25-TMS) were fabricated. The photovoltaic performance of double-layered DSSCs was higher than that of the single-layered DSSCs with similar thickness. Especially, the DSSCs made of P25 as an underlayer and the TMSR as a light-scattering layer (P25-TMSR) had a highest power conversion efficiency of 7.62%. This was higher than that of single-layered TMSR-based cell (5.54%), P25-based cell (5.75%), and double-layered P25-TMSS-based cell (6.78%) with similar thickness. This was mainly attributed to the large specific surface area, superior light scattering ability, and fast electron transport of TMSR.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Jing, Jing; Fang, Biaopeng
2017-07-01
Improving the photovoltaic performance of CdSe/CdS/PbS co-sensitized double-layered TiO2 solar cells is reported. Double-layered TiO2 films with TiO2 microspheres as the light blocking layers were prepared. PbS, CdS and CdSe quantum dots (QDs) were assembled onto TiO2 photoanodes by simple successive ionic layer absorption and reaction (SILAR) to fabricate CdSe/CdS/PbS co-sensitized solar cells. An improved power conversion efficiency (PCE) of 5.11% was achieved for CdSe/CdS/PbS co-sensitized solar cells at one sun illumination (AM 1.5 G, 100 mW cm-2), which had an improvement of 22.6% over that of the CdSe/CdS co-sensitized solar cells (4.17%). This enhancement is mainly attributed to their better ability of the absorption of solar light with the existence of PbS QDs, the reduction of charge recombination of the excited electron and longer lifetime of electrons, which have been proved with the photovoltaic studies and electrochemical impedance spectroscopy (EIS).
NASA Astrophysics Data System (ADS)
Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im
2015-11-01
We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.
Ambipolar pentacene field-effect transistor with double-layer organic insulator
NASA Astrophysics Data System (ADS)
Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee
2006-08-01
Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.
Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate
NASA Astrophysics Data System (ADS)
Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran
2018-02-01
In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.
A methodology for double patterning compliant split and design
NASA Astrophysics Data System (ADS)
Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert
2008-11-01
Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.
NASA Astrophysics Data System (ADS)
Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi
2016-10-01
The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.
Beliciu, C M; Moraru, C I
2009-05-01
The objectives of this study were to investigate the effect of the solvent on the accuracy of casein micelle particle size determination by dynamic light scattering (DLS) at different temperatures and to establish a clear protocol for these measurements. Dynamic light scattering analyses were performed at 6, 20, and 50 degrees C using a 90Plus Nanoparticle Size Analyzer (Brookhaven Instruments, Holtsville, NY). Raw and pasteurized skim milk were used as sources of casein micelles. Simulated milk ultrafiltrate, ultrafiltered water, and permeate obtained by ultrafiltration of skim milk using a 10-kDa cutoff membrane were used as solvents. The pH, ionic concentration, refractive index, and viscosity of all solvents were determined. The solvents were evaluated by DLS to ensure that they did not have a significant influence on the results of the particle size measurements. Experimental protocols were developed for accurate measurement of particle sizes in all solvents and experimental conditions. All measurements had good reproducibility, with coefficients of variation below 5%. Both the solvent and the temperature had a significant effect on the measured effective diameter of the casein micelles. When ultrafiltered permeate was used as a solvent, the particle size and polydispersity of casein micelles decreased as temperature increased. The effective diameter of casein micelles from raw skim milk diluted with ultrafiltered permeate was 176.4 +/- 5.3 nm at 6 degrees C, 177.4 +/- 1.9 nm at 20 degrees C, and 137.3 +/- 2.7 nm at 50 degrees C. This trend was justified by the increased strength of hydrophobic bonds with increasing temperature. Overall, the results of this study suggest that the most suitable solvent for the DLS analyses of casein micelles was casein-depleted ultrafiltered permeate. Dilution with water led to micelle dissociation, which significantly affected the DLS measurements, especially at 6 and 20 degrees C. Simulated milk ultrafiltrate seemed to give accurate results only at 20 degrees C. Results obtained in simulated milk ultrafiltrate at 6 degrees C could not be explained based on the known effects of temperature on the casein micelle, whereas at 50 degrees C, precipitation of amorphous calcium phosphate affected the DLS measurement.
Minamide, Akihito; Yoshida, Munehito; Iwahashi, Hiroki; Simpson, Andrew K; Yamada, Hiroshi; Hashizume, Hiroshi; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Tsutsui, Shunji; Kagotani, Ryohei; Sonekatsu, Mayumi; Sasaki, Takahide; Shinto, Kazunori; Deguchi, Tsuyoshi
2017-05-01
There is ongoing controversy regarding the most appropriate surgical treatment for lumbar spinal stenosis (LSS) with concurrent degenerative lumbar scoliosis (DLS): decompression alone, decompression with limited spinal fusion, or long spinal fusion for deformity correction. The coexistence of degenerative stenosis and deformity is a common scenario; Nonetheless, selecting the appropriate surgical intervention requires thorough understanding of the patients clinical symptomatology as well as radiographic parameters. Minimally invasive (MIS) decompression surgery was performed for LSS patients with DLS. The aims of this study were (1) to investigate the clinical outcomes of MIS decompression surgery in LSS patients with DLS, and (2) to identify the predictive factors for both radiographic and clinical outcomes after MIS surgery. 438 consecutive patients were enrolled in this study. Inclusion criteria was evidence of LSS and DLS with coronal curvature measuring greater than 10°. The Japanese Orthopaedic Association (JOA) score, JOA recovery rate, low back pain (LBP), and radiographic features were evaluated preoperatively and at over 2 years postoperatively. Of the 438 patients, 122 were included in final analysis, with a mean follow-up of 2.4 years. The JOA recovery rate was 47.6%. LBP was significantly improved at final follow-up. Cobb angle was maintained for 2 years postoperatively (p = 0.159). Clinical outcomes in foraminal stenosis patients were significantly related to sex, preoperative high Cobb angle and progression of scoliosis (p = 0.008). In the severe scoliosis patients, the JOA recovery was 44%, and was significantly depended on progression of scoliosis (Cobb angle: preoperation 29.6°, 2-years follow-up 36.9°) and mismatch between the pelvic incidence (PI) and the lumbar lordosis (LL) (preoperative PI-LL 35.5 ± 21.2°) (p = 0.028). This study investigated clinical outcomes of MIS decompression surgery in LSS patients with DLS. The predictive risk factors of clinical outcomes were severe scoliosis, foramina stenosis, progressive scoliosis and large mismatch of PI-LL. Copyright © 2016 The Japanese Orthopaedic Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoush
2017-10-01
Fiber Bragg grating (FBG) of different configurations used as sensing devices are vulnerable to environmental factors, such as static pressures and thermal loading, which cause their characteristic Bragg reflecting wavelengths to up/down-shift. In this paper, by considering double-coated FBG with different primary and secondary coating materials, the effects of thermal loading and hydrostatic pressure on FBG with different coating-layer thicknesses are analyzed to find design criteria for controlling the Bragg wavelength shift. The obtained results of the analysis may be employed as criteria to design pressure and temperature sensors when using double-coated FBGs.
Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate
NASA Astrophysics Data System (ADS)
Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav
2017-10-01
Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.
Multi-layered chalcogenides with potential for magnetism and superconductivity
Li, Li; Parker, David S.; dela Cruz, Clarina R.; ...
2016-10-24
Layered thallium copper chalcogenides can form single, double, or triple layers of Cu– Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu 2Se 2, TlCu 4S 3, TlCu 4Se 3 and TlCu 6S 4. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3 d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu 2Se 2 (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu 4Semore » 3 suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. Furthermore, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.« less
Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits
Lingawi, Nura W.; Balleine, Bernard W.
2012-01-01
The role of the amygdala central nucleus (CeN) in habit learning was assessed in two experiments. First we examined the effects of bilateral lesions of the anterior CeN on an overtraining-induced lever press habit evaluated using an outcome devaluation protocol. Overtraining generated habitual performance and rendered sham lesioned rats insensitive to outcome devaluation, an effect that was also found in rats given control lesions of the posterior CeN. In contrast, rats with lesions of the anterior CeN did not show normal habit acquisition and their performance remained goal-directed and sensitive to outcome devaluation. Nevertheless, lesions of either the posterior or the anterior CeN abolished the general excitatory influence of a Pavlovian CS on instrumental performance. Next we assessed the functional interaction between the CeN and dorsolateral striatum (DLS), a region previously implicated in the acquisition of habits, using asymmetrical lesions to disconnect these structures. Rats were given a unilateral lesion of anterior CeN and a unilateral lesion of the DLS, made either ipsilateral (control) or contralateral (disconnection) to the CeN lesion, and given overtraining followed by outcome devaluation. Although the ipsilateral lesioned rats were insensitive to devaluation, the contralateral CeN-DLS lesion impaired habit acquisition rendering performance sensitive to the devaluation treatment. These results are the first to implicate the CeN and its connection with a circuit involving DLS in habit learning. They imply that, in instrumental conditioning, regions of amygdala parse the instrumental outcome into the reward and reinforcement signals mediating goal-directed and habitual actions, respectively. PMID:22262905
Pulsed laser deposition of functionalized Mg-Al layered double hydroxide thin films
NASA Astrophysics Data System (ADS)
Vlad, A.; Birjega, R.; Tirca, I.; Matei, A.; Mardare, C. C.; Hassel, A. W.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.
2018-02-01
In this paper, magnesium-aluminium layered double hydroxide (LDH) has been functionalized with sodium dodecyl sulfate (DS) and deposited as thin film by pulsed laser deposition (PLD). Mg, Al-LDH powders were prepared by co-precipitation and used as reference material. Intercalation of DS as an anionic surfactant into the LDHs host layers has been prepared in two ways: co-precipitation (P) and reconstruction (R). DS intercalation occurred in LDH powder via both preparation methods. The films deposited via PLD, in particular at 532 and 1064 nm, preserve the organic intercalated layered structure of the targets prepared from these powders. The results reveal the ability of proposed deposition technique to produce functional composite organo-modified LDHs thin films.
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien
2014-12-01
Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
ERIC Educational Resources Information Center
Lee, Kyungmee; Brett, Clare
2013-01-01
This qualitative case study is the first phase of a large-scale design-based research project to implement a theoretically derived double-layered CoP model within real-world teacher development practices. The main goal of this first iteration is to evaluate the courses and test and refine the CoP model for future implementations. This paper…
Double Layer Structure and Electrode Kinetics.
1980-09-30
Extensive double layer studies were made at the water- membrane and water-mercury interfaces. The effect of the neu- tral compound phloretin , which can...used to determine the nature of the phloretin adsorption isotherm. A boxcar integration method was developed which allows us to measure short-lived...235-252. 5. R. de Levie, S. K. Rangarajan, P. F. Seelig and 0. S. Andersen, On the adsorption of phloretin onto a black lipid membrane, Biophys. J. 25
Double-Diffusive Convection at Low Prandtl Number
NASA Astrophysics Data System (ADS)
Garaud, Pascale
2018-01-01
This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet
NASA Astrophysics Data System (ADS)
Wu, Xian; Ward, Daniel; Prance, Jonathan; Kim, Dohun; Shi, Zhan; Mohr, Robert; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark
2014-03-01
We present measurements on a double dot formed in an accumulation-mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. The gate design incorporates two layers of gates, and the upper layer of gates is split into five different sections to decrease crosstalk between different gates. A novel pattern of the lower layer gates enhances the tunability of tunnel rates. We will describe our attempts to create a singlet-triplet qubit in this device. This work was supported in part by ARO(W911NF-12-0607), NSF(DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. Now works at Lancaster University, UK.
Electrical power generation by mechanically modulating electrical double layers.
Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu
2013-01-01
Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.
A double layer model for solar X-ray and microwave pulsations
NASA Technical Reports Server (NTRS)
Tapping, K. F.
1986-01-01
The wide range of wavelengths over which quasi-periodic pulsations have been observed suggests that the mechanism causing them acts upon the supply of high energy electrons driving the emission processes. A model is described which is based upon the radial shrinkage of a magnetic flux tube. The concentration of the current, along with the reduction in the number of available charge carriers, can rise to a condition where the current demand exceeds the capacity of the thermal electrons. Driven by the large inductance of the external current circuit, an instability takes place in the tube throat, resulting in the formation of a potential double layer, which then accelerates electrons and ions to MeV energies. The double layer can be unstable, collapsing and reforming repeatedly. The resulting pulsed particle beams give rise to pulsating emission which are observed at radio and X-ray wavelengths.
Katsir, Yael; Marmur, Abraham
2014-01-01
Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.
NASA Astrophysics Data System (ADS)
Sun, Jianchao; Fan, Hai; Wang, Nan; Ai, Shiyun
2014-09-01
Vancomycin (Van)- and terephthalate (TA)-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles were successfully prepared by a two-step method, in which, TA acted as a sensitizer to enhance the fluorescent property and Van was modified on the surface of LDH to act as an affinity reagent to bacteria. The obtained products were characterized by X-ray diffraction, transmission electron microscope and fluorescent spectroscopy. The results demonstrated that the prepared Van- and TA-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles with diameter of 50 nm in size showed highly efficient fluorescent property. Furthermore, due to the high affinity of Van to bacteria, the prepared Van-TA-Eu-LDHs nanoparticles showed efficient bacteria labelling by fluorescent property. The prepared nanoparticles may have wide applications in the biological fields, such as biomolecular labelling and cell imaging.
Wang, Shuzheng; Cai, Jin; Ding, Wande; Xu, Zhinan; Wang, Zhining
2015-01-01
We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly. PMID:26266426
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi
In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less
PARTITIONING OF PERFLUOROOCTANOATE INTO PHOSPHATIDYLCHOLINE BILAYERS IS CHAIN LENGTH-INDEPENDENT
Xie, Wei; Bothun, Geoffrey D.; Lehmler, Hans-Joachim
2010-01-01
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature Tm while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA’s effect on the on Tm and the transition width decreased in the order DMPC > DPPC > DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37°C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA’s effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios > 1, which suggests the formation of mixed PFOA-lipid micelles. PMID:20096277
A Smoluchowski model of crystallization dynamics of small colloidal clusters
NASA Astrophysics Data System (ADS)
Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.
2011-10-01
We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with the method of Interactive Temperature with Assumed Chemistry (ITAC). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS measurements and the method of ITAC used in computing the species concentration are discussed. From the flame luminosity results, the increase in ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes. Preliminary results and application of ITAC show some potential capabilities of ITAC in DLS. The measured concentration of methane, and computed concentrations of water and carbon dioxide agree well with available results from numerical simulations.
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.
2000-01-01
A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered fight and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.
2000-06-01
A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered light and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.
Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K
2015-06-15
The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.
Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra
2010-12-01
TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.
Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.
Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik
2009-06-01
For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Diagnostic study of multiple double layer formation in expanding RF plasma
NASA Astrophysics Data System (ADS)
Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna
2018-03-01
Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.
Interactions of double patterning technology with wafer processing, OPC and design flows
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf
2008-03-01
Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.
Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei
2012-05-22
Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.
Simulation and experimental results of optical and thermal modeling of gold nanoshells.
Ghazanfari, Lida; Khosroshahi, Mohammad E
2014-09-01
This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.
Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; Smart, Marshall C.; West, William C.
2011-01-01
Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent mixture of acetonitrile (AN) and methyl formate (MF) enables double-layer capacitor cells to operate well below -40 C with a relatively low ESR. Typically, a less than twofold increase in ESR is observed at -65 C relative to room-temperature values, when these modified electrolyte blends are used in prototype cells. Double-layer capacitor coin cells filled with these electrolytes have displayed the lowest measured ESR for an organic electrolyte to date at low temperature (based on a wide range of electrolyte screening studies at JPL). The cells featured high-surface-area (approximately equal to 2,500 m/g) carbon electrodes that were 0.50 mm thick and 1.6 cm in diameter, and coated with a thin layer of platinum to reduce cell resistance. A polyethylene separator was used to electrically isolate the electrodes.
Vaginal delivery after Misgav-Ladach cesarean section--is the risk of uterine rupture acceptable?
Hudić, Igor; Fatusić, Zlatan; Kamerić, Lejla; Misić, Mladen; Serak, Indira; Latifagić, Anela
2010-10-01
To evaluate whether the single-layer closure as is a routine by the Misgav-Ladach method compared to the double-layer closure as used by the Dörfler cesarean method is associated with an increased risk of uterine rupture in the subsequent pregnancy and delivery. The analysis is retrospective and is based on medical documentation of the Clinic for Gynecology and Obstetrics, University Clinical Centre, Tuzla, Bosnia and Herzegovina. All patients with one previous cesarean section who attempted vaginal birth following cesarean section were managed from 1 January 2002 to 31 December 2008. Exclusion criteria included multiple gestation, greater than one previous cesarean section, previous incision other than low transverse, gestational age at delivery less than 37 weeks and induction of delivery. We identified 448 patients who met inclusion criteria. We found that 303 patients had a single-layer closure (Misgav-Ladach) and 145 had a double-layer closure (Dörffler) of the previous uterine incision. There were 35 cases of uterine rupture. Of those patients with previous single-layer closure, 5.28% (16/303) had a uterine rupture compared to 13.11% (19/145) in the double-layer closure group (p<0.05). We have not found that a Misgav-Ladach cesarean section method (single-layer uterine closure) might be more likely to result in uterine rupture in women who attempted a vaginal birth after a previous cesarean delivery. This cesarean section method should find its confirmation in everyday clinical practice.
X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov,A.
The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less
Application of dynamic light scattering for studying the evolution of micro- and nano-droplets
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.
2018-01-01
The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.
Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.
NASA Astrophysics Data System (ADS)
Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.
2018-06-01
Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.
NASA Astrophysics Data System (ADS)
Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.
2017-09-01
Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.
NASA Astrophysics Data System (ADS)
Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi; Nakamura, Shin; Katsufuji, Takuro; Sawa, Hiroshi
2018-05-01
The physical properties of the mixed-valent iron oxide β -NaFe2O3 were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, 23Na NMR, and 57FeM o ̈ssbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe4 tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe3 +O6 octahedra, owing to a valence change and Fe2 +O6 octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.
A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence
ERIC Educational Resources Information Center
Grayson, Scott M.
2012-01-01
A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…
A Van der Waals-like theory of plasma double layers
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, V. A.
1989-01-01
A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.
It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.