Sample records for double main sequence

  1. W134: A new pre-main-sequence double-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.; Stapelfeldt, Karl R.

    1994-01-01

    We report the discovery that the pre-main-sequence star Walker 134 in the young cluster NGC 2264 is a double-lined spectroscopic binary. Both components are G stars with strong Li I 6708 A absorption lines. Twenty radial velocity measurements have been used to determined the orbital elements of this system. The orbit has a period of 6.3532 +/- 0.0012 days and is circular within the limits of our velocity resolution; e less than 0.01. The total system mass is stellar mass sin(exp 3) i = 3.16 solar mass with a mass ratio of 1.04. Estimates for the orbit inclination angle and stellar radii place the system near the threshold for eclipse observability; howerver, no decrease in brightness was seen during two attempts at photometric monitoring. The circular orbit of W 134 fills an important gap in the period distribution of pre-main-sequence binaries and thereby constrains the effectiveness of tidal orbital circularization during the pre-main sequence.

  2. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    NASA Astrophysics Data System (ADS)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  3. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  4. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    PubMed

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  5. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  6. An Anatomy of a Seismic Sequence in a Deep Gold Mine

    NASA Astrophysics Data System (ADS)

    Gibowicz, S. J.

    1997-12-01

    An unusual swarm-like seismic sequence occurred in April 1993 at the Western Deep Levels gold mine, South Africa. Altogether 199 events with moment magnitude from -0.5 to 3.1 were recorded and located by the mine seismic network. The sequence lasted 12 days and was composed in fact of four main shock-aftershocks sequences, closely following each other in space and time. The events were confined to a volume of rock extending to 670 m in the N-S, 630 m in the E-W, and 390 m in the vertical directions. The first sequence lasted 179 hours and the second only 13 hours, being interrupted by the third sequence which lasted 31 hours, being in turn interrupted by the fourth sequence. The parameter p, describing the rate of occurrence of aftershocks, ranged from 0.7 to 1. The first sequence is characterized by the lowest value of the fractal correlation dimension D = 1.75 and the second by the highest value of D = 2.4, whereas the third and fourth sequences are characterized by the middle value of D = 1.9.¶The corner frequencies of P and S waves are in close proximity and range from 14 to 220 Hz. A display of source parameters as a function of time shows that the four main shocks are most distinctly marked by their source radius. For 46 events a moment tensor inversion was performed. In most cases the double-couple component is dominant, ranging from 60 to 90 percent of the solution. The double-couple solutions correspond to the same number of normal and reverse faults and oblique-slip focal mechanisms. An analysis of space distribution of P, T and B axes reveals that the distribution of B axes is the most regular.

  7. Genomes Behave as Social Entities: Alien Chromatin Minorities Evolve Through Specificities Reduction

    USDA-ARS?s Scientific Manuscript database

    Hybridization and chromosome doubling entailed by allopolyploidization requires genetic and epigenetic modifications, resulting in the adjustment of different genomes to the same nuclear environment. Recently, the main role of retrotransposon/microsatellite-rich regions of the genome in DNA sequenc...

  8. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    PubMed

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  10. Visual and tactile information in double bass intonation control.

    PubMed

    Lage, Guilherme Menezes; Borém, Fausto; Vieira, Maurílio Nunes; Barreiros, João Pardal

    2007-04-01

    Traditionally, the teaching of intonation on the non-tempered orchestral strings (violin, viola, cello, and double bass) has resorted to the auditory and proprioceptive senses only. This study aims at understanding the role of visual and tactile information in the control of the non-tempered intonation of the acoustic double bass. Eight musicians played 11 trials of an atonal sequence of musical notes on two double basses of different sizes under different sensorial constraints. The accuracy of the played notes was analyzed by measuring their frequencies and comparing them with respective target values. The main finding was that the performance which integrated visual and tactile information was superior in relation to the other performances in the control of double bass intonation. This contradicts the traditional belief that proprioception and hearing are the most effective feedback information in the performance of stringed instruments.

  11. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  12. A real time genotyping PCR assay for polyomavirus BK.

    PubMed

    Gard, Lilli; Niesters, Hubert G M; Riezebos-Brilman, Annelies

    2015-09-01

    Polyomavirus BK (BKV) may cause nephropathy in renal transplant recipients and hemorrhagic cystitis in bone marrow recipients. We developed real-time PCRs (RT-PCR) to determine easily and rapidly the different BKV genotypes (BKGT) (I-IV). On the VP1 gene a duplex of RT-PCRs was developed and validated to differentiate the four main BKGT. 212 BKV positive samples (21 plasma, 191 urine) were tested with these specific PCRs. Of these 212 samples, 55 PCR results were additionally confirmed by sequencing a VP1 gene fragment (nucleotide 1630-1956). For every genotype, a highly specific, precise and internally controlled assay was developed with a limit of detection of log 3 copies per ml. In 18 (8.5%) of these samples genotyping was not successful due to a low viral load. By sequence analysis, the genotype of 46 out of 55 and 2 out of 4 samples with double infection could be confirmed. This study describes RT-PCRs for detection of the main BKGT. It proved to be rapid, cheap and sensitive compared to sequencing. Double infections can also be detected. This method will be of value to investigate the role of BKV infection in relation to the genotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Association mapping of flowering and height traits in Germplasm Enhancement of Maize doubled haploid (GEM-DH) lines

    USDA-ARS?s Scientific Manuscript database

    Flowering and plant and ear height-related traits are extensively studied in maize for three main reasons: 1) ease of obtaining phenotypic measurements, 2) advances in genotyping and sequencing technologies have reduced the cost of genomic information, and 3) the importance of these traits for adapt...

  14. Observations of suspected low-mass post-T Tauri stars and their evolutionary status

    NASA Technical Reports Server (NTRS)

    Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.

    1983-01-01

    The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.

  15. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  16. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38

  17. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Effects of Rotation on the Main-sequence Turnoff of Intermediate-age Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Wuming; Bi, Shaolan; Meng, Xiangcun; Liu, Zhie

    2013-10-01

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some "multiple populations" in globular clusters.

  19. Structural genomics: keeping up with expanding knowledge of the protein universe.

    PubMed

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2007-06-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space--a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a re-assessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006.

  20. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

    DOE PAGES

    Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.; ...

    2016-07-15

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here,more » we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.« less

  1. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here,more » we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.« less

  2. Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David

    2015-11-01

    From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  3. In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining.

    PubMed

    Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon

    2018-07-07

    Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Structural genomics: keeping up with expanding knowledge of the protein universe

    PubMed Central

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2010-01-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space — a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a reassessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006. PMID:17587562

  5. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    PubMed

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Efficient theory of dipolar recoupling in–solid state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: Application on BABA and C7 radiofrequency pulse sequences

    PubMed Central

    Reid, Alicia E.; Charpentier, Thibault

    2013-01-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λn(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. PMID:22197191

  7. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.

  8. Spectral Analysis of CLU Galaxies

    NASA Astrophysics Data System (ADS)

    Sutter, Jessica; Cook, David O.; Kasliwal, Mansi M.; Dale, Daniel A.

    2017-01-01

    In order to help select possible EM signals from gravitational wave-emitting sources, a more complete catalog of local galaxies is being created. This catalog, called the Census of the Local Universe (CLU), will attempt to find the position of all star-forming galaxies within 200 Mpc. By doing this, the area on the sky from which a gravitational wave could possibly have originated is reduced by a factor of 100. Besides providing this valuable resource for gravitational wave follow-up, the CLU survey provides an exciting new opportunity for better understanding the properties of galaxies near the same age as the Milky Way. Using spectra obtained with the Palomar 200-inch double-prime spectrograph as well as data from the WISE survey, we have created a main sequence for the CLU survey. By analyzing how this main sequence behaves in local galaxies, we can better understand the relationship between current star formation rate and total galaxy stellar mass.

  9. New high-precision orbital and physical parameters of the double-lined low-mass spectroscopic binary BY Draconis

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Konacki, M.; Muterspaugh, M. W.; Browne, S. E.; Howard, A. W.; Kulkarni, S. R.

    2012-01-01

    We present the most precise to date orbital and physical parameters of the well-known short period (P= 5.975 d), eccentric (e= 0.3) double-lined spectroscopic binary BY Draconis (BY Dra), a prototype of a class of late-type, active, spotted flare stars. We calculate the full spectroscopic/astrometric orbital solution by combining our precise radial velocities (RVs) and the archival astrometric measurements from the Palomar Testbed Interferometer (PTI). The RVs were derived based on the high-resolution echelle spectra taken between 2004 and 2008 with the Keck I/high-resolution echelle spectrograph, Shane/CAT/HamSpec and TNG/SARG telescopes/spectrographs using our novel iodine-cell technique for double-lined binary stars. The RVs and available PTI astrometric data spanning over eight years allow us to reach 0.2-0.5 per cent level of precision in Msin 3i and the parallax but the geometry of the orbit (i≃ 154°) hampers the absolute mass precision to 3.3 per cent, which is still an order of magnitude better than for previous studies. We compare our results with a set of Yonsei-Yale theoretical stellar isochrones and conclude that BY Dra is probably a main-sequence system more metal rich than the Sun. Using the orbital inclination and the available rotational velocities of the components, we also conclude that the rotational axes of the components are likely misaligned with the orbital angular momentum. Given BY Dra's main-sequence status, late spectral type and the relatively short orbital period, its high orbital eccentricity and probable spin-orbit misalignment are not in agreement with the tidal theory. This disagreement may possibly be explained by smaller rotational velocities of the components and the presence of a substellar mass companion to BY Dra AB.

  10. Dramatic improvement in genome assembly achieved using doubled-haploid genomes.

    PubMed

    Zhang, Hong; Tan, Engkong; Suzuki, Yutaka; Hirose, Yusuke; Kinoshita, Shigeharu; Okano, Hideyuki; Kudoh, Jun; Shimizu, Atsushi; Saito, Kazuyoshi; Watabe, Shugo; Asakawa, Shuichi

    2014-10-27

    Improvement in de novo assembly of large genomes is still to be desired. Here, we improved draft genome sequence quality by employing doubled-haploid individuals. We sequenced wildtype and doubled-haploid Takifugu rubripes genomes, under the same conditions, using the Illumina platform and assembled contigs with SOAPdenovo2. We observed 5.4-fold and 2.6-fold improvement in the sizes of the N50 contig and scaffold of doubled-haploid individuals, respectively, compared to the wildtype, indicating that the use of a doubled-haploid genome aids in accurate genome analysis.

  11. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  12. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    PubMed

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  13. Genome Sequence of Saccharomyces cerevisiae Double-Stranded RNA Virus L-A-28.

    PubMed

    Konovalovas, Aleksandras; Serviené, Elena; Serva, Saulius

    2016-06-16

    We cloned and sequenced the complete genome of the L-A-28 virus from the Saccharomyces cerevisiae K28 killer strain. This sequence completes the set of currently identified L-A helper viruses required for expression of double-stranded RNA-originated killer phenotypes in baking yeast. Copyright © 2016 Konovalovas et al.

  14. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  15. 8-Methoxypsoralen photoinduced plasmid-chromosome recombination in Saccharomyces cerevisiae using a centromeric vector.

    PubMed Central

    Meira, L B; Henriques, J A; Magaña-Schwencke, N

    1995-01-01

    The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA. Images PMID:7784218

  16. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation.

    PubMed

    Dulermo, Thierry; Tréton, Brigitte; Beopoulos, Athanasios; Kabran Gnankon, Affoué Philomène; Haddouche, Ramdane; Nicaud, Jean-Marc

    2013-09-01

    Eukaryotes store lipids in a specialised organelle, the lipid body (LB), mainly as triglycerides (TAGs). Both the rates of synthesis and degradation contribute to the control of the accumulation of TAGs. The synthesis of TAGs in yeasts has been well documented, especially in the model yeast Saccharomyces cerevisiae and in the oleaginous yeast Yarrowia lipolytica. However, descriptions of the processes involved in TAG degradation are more scarce and mostly for S. cerevisiae. Here, we report the characterisation of two Y. lipolytica genes, YlTGL3 and YlTGL4, encoding intracellular lipases involved in TAG degradation. The two proteins are localised in lipid bodies, and YlTgl4 was mainly found at the interface between LBs. Surprisingly, the spatial organisation of YlTgl3 and YlTgl4 depends on the culture medium and on the physiological phase of the cell. Inactivation of one or both genes doubles the lipid accumulation capacity of Y. lipolytica, increasing the cell's capacity to accumulate TAGs. The amino acid sequence of YlTgl4 contains the consensus sequence motif (G/A)XSXG, typical of serine hydrolases, whereas YlTgl3 does not. Single and double mutants are unable to degrade TAGs, and higher expression of YlTgl4 correlates with TAG degradation. Therefore, we propose that YlTgl4 is the main lipase responsible for TAG degradation and that YlTgl3 may act as a positive regulator of YlTgl4 rather than a functional lipase. Thus, contrary to S. cerevisiae, Y. lipolytica possesses two intracellular lipases with distinct roles and with distinct localisations in the LB. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Triplex in-situ hybridization

    DOEpatents

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  18. cgDNAweb: a web interface to the cgDNA sequence-dependent coarse-grain model of double-stranded DNA.

    PubMed

    De Bruin, Lennart; Maddocks, John H

    2018-06-14

    The sequence-dependent statistical mechanical properties of fragments of double-stranded DNA is believed to be pertinent to its biological function at length scales from a few base pairs (or bp) to a few hundreds of bp, e.g. indirect read-out protein binding sites, nucleosome positioning sequences, phased A-tracts, etc. In turn, the equilibrium statistical mechanics behaviour of DNA depends upon its ground state configuration, or minimum free energy shape, as well as on its fluctuations as governed by its stiffness (in an appropriate sense). We here present cgDNAweb, which provides browser-based interactive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as predicted by the underlying cgDNA coarse-grain rigid-base model of fragments with arbitrary sequence. The cgDNAweb interface is specifically designed to facilitate comparison between ground state shapes of different sequences. The server is freely available at cgDNAweb.epfl.ch with no login requirement.

  19. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Jorgensen, T. J.

    1995-01-01

    Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.

  20. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

  1. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  2. Stereoselective Synthesis of 8,12-Furanoeudesmanes from Santonin. Absolute Stereochemistry of Natural Furanoeudesma-1,3-diene and Tubipofurane.

    PubMed

    Blay, Gonzalo; Cardona, Luz; García, Begoña; Pedro, José R.; Sánchez, Juan J.

    1996-05-31

    Ketobutenolide 3, easily obtained from santonin (1), has been transformed into two natural furanoeudesmanes 4 and 5, isolated from Commiphora molmol and Tubipora musica, respectively. trans- And cis-decalin systems were obtained by stereoselective reduction of the C(4)-C(5) double bond in 3 in the following way: hydrogenation of 3 over Pd/C followed by acidic treatment gave the cis isomer 10 as the major product; selective hydrogenation of the C(1)-C(2) double bond with the Wilkinson's catalyst followed by reduction with NaTeH yielded mainly the trans isomer 9. Compounds 9 and 10 were transformed into 4 and 5 in parallel sequences. Optical rotation and CD measurements of the synthetic products revealed that the stereochemistry of both natural products should be revised to their enantiomeric form.

  3. Double dynamic scaling in human communication dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua

    2017-05-01

    In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.

  4. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  5. Massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H II regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H II region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  6. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Enzyme-free detection and quantification of double-stranded nucleic acids.

    PubMed

    Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle

    2012-08-01

    We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.

  8. Discovery of Par 1802 as a Low-Mass, Pre-Main-Sequence Eclipsing Binary in the Orion Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Cargile, P. A.; Stassun, K. G.; Mathieu, R. D.

    2008-02-01

    We report the discovery of a pre-main-sequence (PMS), low-mass, double-lined, spectroscopic, eclipsing binary in the Orion star-forming region. We present our observations, including radial velocities derived from optical high-resolution spectroscopy, and present an orbit solution that permits the determination of precise empirical masses for both components of the system. We find that Par 1802 is composed of two equal-mass (0.39 +/- 0.03, 0.40 +/- 0.03 M⊙) stars in a circular, 4.7 day orbit. There is strong evidence, such as the system exhibiting strong Li lines and a center-of-mass velocity consistent with cluster membership, that this system is a member of the Orion star-forming region and quite possibly the Orion Nebula Cluster, and therefore has an age of only a few million years. As there are currently only a few empirical mass and radius measurements for low-mass, PMS stars, this system presents an interesting test for the predictions of current theoretical models of PMS stellar evolution.

  9. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    PubMed Central

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). PMID:22205720

  10. The New Concept of Univentricular Heart

    PubMed Central

    Frescura, Carla; Thiene, Gaetano

    2014-01-01

    The concept of univentricular heart moved from hearts with only one ventricle connected with atria [double inlet ventricle or absent atrioventricular (AV) connection] to hearts not amenable to biventricular repair, namely hearts with two ventricles unable to sustain separately pulmonary and systemic circulations in sequence. In the latter definition, even hearts with one hypoplastic ventricle are considered “functional” univentricular hearts. They include pulmonary/aortic atresia or severe stenosis with hypoplastic ventricle, and rare conditions like huge intramural cardiac tumors and Ebstein anomaly with extreme atrialization of right ventricular cavity. In this setting, the surgical repair is univentricular with “Fontan” operation, bypassing the ventricular mass. In other words, functionally univentricular heart is a condition in which, after surgery, only one ventricle sustain systemic circulation. Univentricular hearts (double inlet or absent AV connection) almost invariably show two ventricular chambers, one main and one accessory, which lacks an inlet portion. The latter is located posteriorly when morphologically left and anteriorly when morphologically right. As far as double inlet left ventricle, this is usually associated with discordant ventriculo-arterial (VA) connection (transposition of the great arteries) and all the blood flow to the aorta, which takes origin from the hypoplastic anterior right ventricle, is ventricular septal defect (bulbo-ventricular foramen) dependent. If restrictive, an aortic arch obstruction may be present. Double inlet left ventricle may be rarely associated with VA concordance (Holmes heart). As far as double inlet right ventricle with posterior hypoplastic left ventricular cavity, ventriculo-arterial connection is usually of double outlet type; thus the term double inlet–outlet right ventricle may be coined. Absent right or left AV connection may develop in the setting of both d- or l-loop, whatever the situs. In this condition, the contra-lateral patent AV valve may be either mitral or tricuspid in terms of morphology and the underlying ventricle (main chamber) either morphologically left or right. Establishing the loop, whatever right or left (also called right or left ventricular topology), is a fundamental step in the segmental-sequential analysis of congenital heart disease. PMID:25072035

  11. New methods for isolation of keratolytic bacteria inducing intractable hoof wall cavity (Gidoh) in a horse; double screening procedures of the horn powder agar-translucency test and horn zymography

    PubMed Central

    KUWANO, Atsutoshi; NIWA, Hidekazu; ARAI, Katsuhiko

    2017-01-01

    ABSTRACT To establish a new system to isolate keratolytic bacteria from the hoof wall cavity (Gidoh) of a racehorse, we invented the horn powder agar-translucency (HoPAT) test and horn zymography (HZ). Using routine bacteriological techniques and these methods, we isolated five strains of keratolytic soil bacteria, which were then identified by means of 16S ribosomal RNA (rRNA) gene sequencing analysis. The findings from the study on the horse suggested that Brevibacterium luteolum played the main role in the local fragility of the hoof, eventually forming a Gidoh in coordination with four other strains of keratolytic bacteria. The double screening procedures of the HoPAT test and HZ were useful and easy techniques for isolating the keratolytic bacteria from the horn lesions. PMID:28400703

  12. Lithium and age of pre-main sequence stars: the case of Parenago 1802

    NASA Astrophysics Data System (ADS)

    Giarrusso, M.; Tognelli, E.; Catanzaro, G.; Degl'Innocenti, S.; Dell'Omodarme, M.; Lamia, L.; Leone, F.; Pizzone, R. G.; Prada Moroni, P. G.; Romano, S.; Spitaleri, C.

    2016-04-01

    With the aim to test the present capability of the stellar surface lithium abundance in providing an estimation for the age of PMS stars, we analyze the case of the detached, double-lined, eclipsing binary system PAR 1802. For this system, the lithium age has been compared with the theoretical one, as estimated by applying a Bayesian analysis method on a large grid of stellar evolutionary models. The models have been computed for several values of chemical composition and mixing length, by means of the code FRANEC updated with the Trojan Horse reaction rates involving lithium burning.

  13. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  14. Investigating the development of double-peak subauroral ion drift (DSAID)

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2017-04-01

    This study focuses on the newly described ionospheric feature, called double-peak subauroral ion drift (DSAID), which is a subclass of the well-known single-peak SAID. Double-layer Region 2 (R2) field aligned currents (FACs) could be the main driver of DSAID. Our aim is to gain new insights into the development of DSAID during its two-stage progression. Observational results are provided by five scenarios, each demonstrating a certain progression sequence of DSAID. Results show that SAID/DSAID occurred during flux transfer events and was accompanied by flow channels (FCs) associated with dayside magnetopause (FC-2) and nightside magnetotail (FC-3) reconnections, with westward electrojet (eastward FC), and with auroral streamers (FC-4). In the premidnight magnetic local time (MLT) sector of stage 2, DSAID development was due to the short-circuiting of the reconnection-injected plasma jets during substorms or pseudobreakups. Thus, the related ring current pressure buildup enhanced the downward R2 FACs leading to double/multiple circuits forming double-layer R2 FACs. During the midnight MLT hours of stage 2, DSAID development was closely related to the westward traveling surge (WTS)/substorm current wedge (SCW). WTS/SCW-related strong upward R1 FACs closed with meriodional currents producing eastward and downward (i.e., downward R2 FAC-style) return currents enhancing the downward R2 FACs and thus leading to double/multiple circuits forming double-layer R2 FACs. Auroral streamers/FC-4 represent a substorm substructure and their occurrence with DSAID after stage 2 demonstrates that this substructure occasionally includes DSAID. Our results demonstrate also that the short-circuited system underlying SAID/DSAID acted sometimes as a current generator and sometimes as a voltage generator.

  15. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.

    PubMed

    Ruwe, Lena; Moshammer, Kai; Hansen, Nils; Kohse-Höinghaus, Katharina

    2018-04-25

    In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B. This comparative study enables valuable insights into fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

  16. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  17. Comparison of double-locus sequence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations.

    PubMed

    Cholley, Pascal; Stojanov, Milos; Hocquet, Didier; Thouverez, Michelle; Bertrand, Xavier; Blanc, Dominique S

    2015-08-01

    Reliable molecular typing methods are necessary to investigate the epidemiology of bacterial pathogens. Reference methods such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) are costly and time consuming. Here, we compared our newly developed double-locus sequence typing (DLST) method for Pseudomonas aeruginosa to MLST and PFGE on a collection of 281 isolates. DLST was as discriminatory as MLST and was able to recognize "high-risk" epidemic clones. Both methods were highly congruent. Not surprisingly, a higher discriminatory power was observed with PFGE. In conclusion, being a simple method (single-strand sequencing of only 2 loci), DLST is valuable as a first-line typing tool for epidemiological investigations of P. aeruginosa. Coupled to a more discriminant method like PFGE or whole genome sequencing, it might represent an efficient typing strategy to investigate or prevent outbreaks. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  19. Double photoionization of the Be isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Barmaki, S.; Albert, M. A.; Belliveau, J.; Laulan, S.

    2018-05-01

    We investigate the double photoionization (DPI) process along the Be isoelectronic sequence (Be‑Ne6+) by solving the time-dependent Schrödinger equation with a spectral method of configuration interaction type. The results that we obtain of the DPI cross sections are in a good agreement with other reported data. We also present the first results of double-to-single photoionization cross sections ratios for Be-like ions in support of possible photofragmentation experiments with x-ray free electron lasers. Finally, we probe the mutual interaction of the valence electrons at different photon energies and examine the subsequent redistribution of the excess photon energy among them.

  20. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae).

    PubMed

    Liu, Zhixiong; Zhang, Dandan; Liu, Di; Li, Fenglan; Lu, Hai

    2013-02-01

    KEY MESSAGE : Two transcript isoforms of AGAMOUS homologs, from single and double flower Prunus lannesiana, respectively, showed different functions. The Arabidopsis floral homeotic C function gene AGAMOUS (AG) confers stamen and carpel identity. Loss of AG function results in homeotic conversions of stamens into petals and formation of double flowers. In order to present a molecular dissection of a double-flower cultivar in Prunus lannesiana (Rosaceae), we isolated and identified a single-copy gene, AG homolog from two genetically cognate P. lannesiana bearing single and double flowers, respectively. Sequence analysis revealed that the AG homolog, prseag-1, from double flowers showed a 170-bp exon skipping as compared to PrseAG (Prunus serrulata AGAMOUS) from the single flowers. Genomic DNA sequence revealed that abnormal splicing resulted in mutant prseag-1 protein with the C-terminal AG motifs I and II deletions. In addition, protein sequence alignment and phylogenetic analyses revealed that the PrseAG was grouped into the euAG lineage. A semi-quantitative PCR analysis showed that the expression of PrseAG was restricted to reproductive organs of stamens and carpels in single flowers of P. lannesiana 'speciosa', while the prseag-1 mRNA was highly transcribed throughout the petals, stamens, and carpels in double flowers from 'Albo-rosea'. The transgenic Arabidopsis containing 35S::PrseAG displayed extremely early flowering, bigger stamens and carpels and homeotic conversion of petals into staminoid organs, but ectopic expression of prseag-1 could not mimic the phenotypic ectopic expression of PrseAG in Arabidopsis. In general, this study provides evidences to show that double flower 'Albo-rosea' is a putative C functional ag mutant in P. lannesiana.

  1. The mitochondrial genome of Ifremeria nautilei and the phylogenetic position of the enigmatic deep-sea Abyssochrysoidea (Mollusca: Gastropoda).

    PubMed

    Osca, David; Templado, José; Zardoya, Rafael

    2014-09-01

    The complete nucleotide sequence of the mitochondrial (mt) genome of the deep-sea vent snail Ifremeria nautilei (Gastropoda: Abyssochrysoidea) was determined. The double stranded circular molecule is 15,664 pb in length and encodes for the typical 37 metazoan mitochondrial genes. The gene arrangement of the Ifremeria mt genome is most similar to genome organization of caenogastropods and differs only on the relative position of the trnW gene. The deduced amino acid sequences of the mt protein coding genes of Ifremeria mt genome were aligned with orthologous sequences from representatives of the main lineages of gastropods and phylogenetic relationships were inferred. The reconstructed phylogeny supports that Ifremeria belongs to Caenogastropoda and that it is closely related to hypsogastropod superfamilies. Results were compared with a reconstructed nuclear-based phylogeny. Moreover, a relaxed molecular-clock timetree calibrated with fossils dated the divergence of Abyssochrysoidea in the Late Jurassic-Early Cretaceous indicating a relatively modern colonization of deep-sea environments by these snails. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae)

    PubMed Central

    Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues

    2018-01-01

    Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26–68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26–28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae. PMID:29813087

  3. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae).

    PubMed

    Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues

    2018-01-01

    Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.

  4. Complete genome sequence of southern tomato virus identified from China using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...

  5. Double muscling in cattle due to mutations in the myostatin gene

    PubMed Central

    McPherron, Alexandra C.; Lee, Se-Jin

    1997-01-01

    Myostatin (GDF-8) is a member of the transforming growth factor β superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals. PMID:9356471

  6. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.

    PubMed

    Zhou, Qian; Lin, Youxiu; Lin, Yuping; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-01-01

    Biomolecular immobilization and construction of the sensing platform are usually crucial for the successful development of a high-efficiency detection system. Herein we report on a novel and label-free signal-amplified aptasensing for sensitive electrochemical detection of small molecules (adenosine triphosphate, ATP, used in this case) by coupling with target-induced hybridization chain reaction (HCR) and the assembly of electroactive silver nanotags. The system mainly consisted of two alternating hairpin probes, a partial-pairing trigger-aptamer duplex DNA and a capture probe immobilized on the electrode. Upon target ATP introduction, the analyte attacked the aptamer and released the trigger DNA, which was captured by capture DNA immobilized on the electrode to form a newly partial-pairing double-stranded DNA. Thereafter, the exposed domain at trigger DNA could be utilized as the initator strand to open the hairpin probes in sequence, and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix. The electrochemical signal derived from the assembled silver nanotags on the nicked double-helix. Under optimal conditions, the electrochemical aptasensor could exhibit a high sensitivity and a low detection limit, and allowed the detection of ATP at a concentration as low as 0.03 pM. Our design showed a high selectivity for target ATP against its analogs because of the high-specificity ATP-aptamer reaction, and its applicable for monitoring ATP in the spiking serum samples. Improtantly, the distinct advantages of the developed aptasensor make it hold a great potential for the development of simple and robust sensing strategies for the detection of other small molecules by controlling the apatmer sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

    PubMed Central

    Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives. PMID:26771381

  8. Recognition of Double Stranded RNA by Guanidine-Modified Peptide Nucleic Acids (GPNA)

    PubMed Central

    Gupta, Pankaj; Muse, Oluwatoyosi; Rozners, Eriks

    2011-01-01

    Double helical RNA has become an attractive target for molecular recognition because many non-coding RNAs play important roles in control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double helical RNA via triple helix formation. Herein we tested if the molecular recognition of RNA can be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex-invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from D-arginine recognized the transactivation response element (TAR) of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNAs and the purine rich strand of bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex non-coding RNAs. PMID:22146072

  9. Recognition of Yeast Species from Gene Sequence Comparisons

    USDA-ARS?s Scientific Manuscript database

    This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...

  10. Wenchuan Event Detection And Localization Using Waveform Correlation Coupled With Double Difference

    NASA Astrophysics Data System (ADS)

    Slinkard, M.; Heck, S.; Schaff, D. P.; Young, C. J.; Richards, P. G.

    2014-12-01

    The well-studied Wenchuan aftershock sequence triggered by the May 12, 2008, Ms 8.0, mainshock offers an ideal test case for evaluating the effectiveness of using waveform correlation coupled with double difference relocation to detect and locate events in a large aftershock sequence. We use Sandia's SeisCorr detector to process 3 months of data recorded by permanent IRIS and temporary ASCENT stations using templates from events listed in a global catalog to find similar events in the raw data stream. Then we take the detections and relocate them using the double difference method. We explore both the performance that can be expected with using just a small number of stations, and, the benefits of reprocessing a well-studied sequence such as this one using waveform correlation to find even more events. We benchmark our results against previously published results describing relocations of regional catalog data. Before starting this project, we had examples where with just a few stations at far-regional distances, waveform correlation combined with double difference did and impressive job of detection and location events with precision at the few hundred and even tens of meters level.

  11. NMR-based diffusion pore imaging by double wave vector measurements.

    PubMed

    Kuder, Tristan Anselm; Laun, Frederik Bernd

    2013-09-01

    One main interest of nuclear magnetic resonance (NMR) diffusion experiments is the investigation of boundaries such as cell membranes hindering the diffusion process. NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if, in principle, the exact shape of closed pores can be determined by NMR diffusion measurements. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without relying on a priori knowledge. In comparison to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long-time limit and allows for a more flexible NMR sequence design, because, e.g., stimulated echoes can be used. Copyright © 2012 Wiley Periodicals, Inc.

  12. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.

    PubMed

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  13. Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.

    PubMed Central

    Ihara, T; Maruo, Y; Takenaka, S; Takagi, M

    1996-01-01

    Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences. PMID:8932383

  14. Modeling DNA bubble formation at the atomic scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleva, V; Rasmussen, K. O.; Garcia, A. E.

    We describe the fluctuations of double stranded DNA molecules using a minimalist Go model over a wide range of temperatures. Minimalist models allow us to describe, at the atomic level, the opening and formation of bubbles in DNA double helices. This model includes all the geometrical constraints in helix melting imposed by the 3D structure of the molecule. The DNA forms melted bubbles within double helices. These bubbles form and break as a function of time. The equilibrium average number of broken base pairs shows a sharp change as a function of T. We observe a temperature profile of sequencemore » dependent bubble formation similar to those measured by Zeng et al. Long nuclei acid molecules melt partially through the formations of bubbles. It is known that CG rich sequences melt at higher temperatures than AT rich sequences. The melting temperature, however, is not solely determined by the CG content, but by the sequence through base stacking and solvent interactions. Recently, models that incorporate the sequence and nonlinear dynamics of DNA double strands have shown that DNA exhibits a very rich dynamics. Recent extensions of the Bishop-Peyrard model show that fluctuations in the DNA structure lead to opening in localized regions, and that these regions in the DNA are associated with transcription initiation sites. 1D and 2D models of DNA may contain enough information about stacking and base pairing interactions, but lack the coupling between twisting, bending and base pair opening imposed by the double helical structure of DNA that all atom models easily describe. However, the complexity of the energy function used in all atom simulations (including solvent, ions, etc) does not allow for the description of DNA folding/unfolding events that occur in the microsecond time scale.« less

  15. The population of single and binary white dwarfs of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  16. Molecular characterization of Giardia psittaci by multilocus sequence analysis.

    PubMed

    Abe, Niichiro; Makino, Ikuko; Kojima, Atsushi

    2012-12-01

    Multilocus sequence analyses targeting small subunit ribosomal DNA (SSU rDNA), elongation factor 1 alpha (ef1α), glutamate dehydrogenase (gdh), and beta giardin (β-giardin) were performed on Giardia psittaci isolates from three Budgerigars (Melopsittacus undulates) and four Barred parakeets (Bolborhynchus lineola) kept in individual households or imported from overseas. Nucleotide differences and phylogenetic analyses at four loci indicate the distinction of G. psittaci from the other known Giardia species: Giardia muris, Giardia microti, Giardia ardeae, and Giardia duodenalis assemblages. Furthermore, G. psittaci was related more closely to G. duodenalis than to the other known Giardia species, except for G. microti. Conflicting signals regarded as "double peaks" were found at the same nucleotide positions of the ef1α in all isolates. However, the sequences of the other three loci, including gdh and β-giardin, which are known to be highly variable, from all isolates were also mutually identical at every locus. They showed no double peaks. These results suggest that double peaks found in the ef1α sequences are caused not by mixed infection with genetically different G. psittaci isolates but by allelic sequence heterogeneity (ASH), which is observed in diplomonad lineages including G. duodenalis. No sequence difference was found in any G. psittaci isolates at the gdh and β-giardin, suggesting that G. psittaci is indeed not more diverse genetically than other Giardia species. This report is the first to provide evidence related to the genetic characteristics of G. psittaci obtained using multilocus sequence analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  18. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  19. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  20. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  1. Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leveque, T.; Gauguet, A.; Michaud, F.

    2009-08-21

    In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(Planck constant/2pi)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(Planck constant/2pi)k momentum transfer by a multipulse sequence and is implemented on a 8(Planck constant/2pi)k interferometer. We demonstrate the area enhancement by measuring inertial forces.

  2. The Combination of Diameters of Cricoid Ring and Left Main Bronchus for Selecting the "Best Fit" Double-Lumen Tube.

    PubMed

    Shiqing, Liu; Wenxu, Qi; Jin, Zhang; Youjing, Dong

    2018-04-01

    The aims of this study were to measure diameters of the cricoid ring and left main bronchus in Asian adult patients and to assess the accuracy of double lumen tube size selected according to cricoid and left main bronchus diameter, respectively. Retrospective observational study. Academic, tertiary care hospital. Preoperative CT scans from 87 men and 94 women who had undergone general anesthesia for lung operations. No intervention. The diameters of the cricoid ring and left main bronchus were measured from thoracic computed tomography images after correction of slant. The "best-fit" size of double lumen tube was determined by comparing diameter of the left main bronchus and cricoid ring with the diameter of the double lumen tube. Diameters of the cricoid ring and left main bronchus were both significantly greater in men compared with women (p < 0.0001). Shapes of cricoid rings were different between genders (p < 0.0001), while shapes of the left main bronchus were not significant different (p = 0.343). With reference to the "best fit" size, the rate of agreement of cricoid ring size, left main bronchus size, and height size for men were 100%, 100%, and 94.3%. For women, the rate of agreement of cricoid ring size, left main bronchus size, and height size were 94.7%, 63.8%, and 51.1%. The "best fit" size of a double lumen tube should be decided by a combination of diameters of the cricoid ring and the left main bronchus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera).

    PubMed

    Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E

    2007-04-01

    The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.

  4. ORBITAL SOLUTIONS FOR TWO YOUNG, LOW-MASS SPECTROSCOPIC BINARIES IN OPHIUCHUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, V.; Prato, L.; Wasserman, L. H.

    2011-01-15

    We report the orbital parameters for ROXR1 14 and RX J1622.7-2325Nw, two young, low-mass, and double-lined spectroscopic binaries recently discovered in the Ophiuchus star-forming region. Accurate orbital solutions were determined from over a dozen high-resolution spectra taken with the Keck II and Gemini South telescopes. These objects are T Tauri stars with mass ratios close to unity and periods of {approx}5 and {approx}3 days, respectively. In particular, RX J1622.7-2325Nw shows a non-circularized orbit with an eccentricity of 0.30, higher than any other short-period pre-main-sequence (PMS) spectroscopic binary known to date. We speculate that the orbit of RX J1622.7-2325Nw has notmore » yet circularized because of the perturbing action of a {approx}1'' companion, itself a close visual pair. A comparison of known young spectroscopic binaries (SBs) and main-sequence (MS) SBs in the eccentricity-period plane shows an indistinguishable distribution of the two populations, implying that orbital circularization occurs in the first 1 Myr of a star's lifetime. With the results presented in this paper we increase by {approx}4% the small sample of PMS spectroscopic binary stars with known orbital elements.« less

  5. Formation of template-switching artifacts by linear amplification.

    PubMed

    Chakravarti, Dhrubajyoti; Mailander, Paula C

    2008-07-01

    Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.

  6. A Programmable DNA Double-Write Material: Synergy of Photolithography and Self-Assembly Nanofabrication.

    PubMed

    Song, Youngjun; Takahashi, Tsukasa; Kim, Sejung; Heaney, Yvonne C; Warner, John; Chen, Shaochen; Heller, Michael J

    2017-01-11

    We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.

  7. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  8. Optimization of a double inversion recovery sequence for noninvasive synovium imaging of joint effusion in the knee.

    PubMed

    Jahng, Geon-Ho; Jin, Wook; Yang, Dal Mo; Ryu, Kyung Nam

    2011-05-01

    We wanted to optimize a double inversion recovery (DIR) sequence to image joint effusion regions of the knee, especially intracapsular or intrasynovial imaging in the suprapatellar bursa and patellofemoral joint space. Computer simulations were performed to determine the optimum inversion times (TI) for suppressing both fat and water signals, and a DIR sequence was optimized based on the simulations for distinguishing synovitis from fluid. In vivo studies were also performed on individuals who showed joint effusion on routine knee MR images to demonstrate the feasibility of using the DIR sequence with a 3T whole-body MR scanner. To compare intracapsular or intrasynovial signals on the DIR images, intermediate density-weighted images and/or post-enhanced T1-weighted images were acquired. The timings to enhance the synovial contrast from the fluid components were TI1 = 2830 ms and TI2 = 254 ms for suppressing the water and fat signals, respectively. Improved contrast for the intrasynovial area in the knees was observed with the DIR turbo spin-echo pulse sequence compared to the intermediate density-weighted sequence. Imaging contrast obtained noninvasively with the DIR sequence was similar to that of the post-enhanced T1-weighted sequence. The DIR sequence may be useful for delineating synovium without using contrast materials.

  9. Development of a high-density intra-specific linkage map of lettuce using genotyping by sequencing (GBS)

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) has been developed as an affordable application of next-generation sequencing for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. In this study we employed a double restriction enzyme digestion protocol (HindIII and NlaIII)...

  10. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52

    PubMed Central

    2018-01-01

    ABSTRACT We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. PMID:29748396

  11. Experimental Design-Based Functional Mining and Characterization of High-Throughput Sequencing Data in the Sequence Read Archive

    PubMed Central

    Nakazato, Takeru; Ohta, Tazro; Bono, Hidemasa

    2013-01-01

    High-throughput sequencing technology, also called next-generation sequencing (NGS), has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA). As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs) from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH) extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called “Gendoo”. We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called “DBCLS SRA” (http://sra.dbcls.jp/). This service will improve accessibility to high-quality data from SRA. PMID:24167589

  12. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses.

    PubMed

    Zepeda-Mendoza, Marie Lisandra; Bohmann, Kristine; Carmona Baez, Aldo; Gilbert, M Thomas P

    2016-05-03

    DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5'-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies.

  13. Homing endonucleases: from basics to therapeutic applications.

    PubMed

    Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo

    2010-03-01

    Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

  14. sup 60 Co. gamma. -rays induce predominantly C/G to G/C transversions in double-stranded M13 DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoebee, B.; Loman, H.; Brouwer, J.

    Upon irradiation with gamma rays of an oxygenated aqueous solution of double-stranded M13 DNA, a very specific mutation spectrum was found with respect to both the type and the positions in the DNA sequence. Of the 23 mutations, which were sequenced, 16 represent a C/G to G/C transversion. A C/G to T/A transition was found once and a G/C to T/A transversion twice. The remaining 4 mutations are frameshifts, 2 are identical and formed by the insertion of a G/C basepair; the other 2 mutations are due to a duplication of 10 basepairs situated at different positions but with amore » remarkable homology in base sequence. Fourteen mutations, including the 2 duplications are found in the neighborhood of a TGCT/ACGA sequence.« less

  15. RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.

    PubMed

    Widmer, G

    1993-03-01

    Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.

  16. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis

    NASA Astrophysics Data System (ADS)

    French, S. W.; Warren, L. M.; Fischer, K. M.; Abers, G. A.; Strauch, W.; Protti, J. M.; Gonzalez, V.

    2010-03-01

    In the Nicaraguan segment of the Central American subduction zone, bookshelf faulting has been proposed as the dominant style of Caribbean plate deformation in response to oblique subduction of the Cocos plate. A key element of this model is left-lateral motion on arc-normal strike-slip faults. On 3 August 2005, a Mw 6.3 earthquake and its extensive foreshock and aftershock sequence occurred near Ometepe Island in Lake Nicaragua. To determine the fault plane that ruptured in the main shock, we relocated main shock, foreshock, and aftershock hypocenters and analyzed main shock source directivity using waveforms from the TUCAN Broadband Seismic Experiment. The relocation analysis was carried out by applying the hypoDD double-difference method to P and S onset times and differential traveltimes for event pairs determined by waveform cross correlation. The relocated hypocenters define a roughly vertical plane of seismicity with an N60°E strike. This plane aligns with one of the two nodal planes of the main shock source mechanism. The directivity analysis was based on waveforms from 16 TUCAN stations and indicates that rupture on the N60°E striking main shock nodal plane provides the best fit to the data. The relocation and directivity analyses identify the N60°E vertical nodal plane as the main shock fault plane, consistent with the style of faulting required by the bookshelf model. Relocated hypocenters also define a second fault plane that lies to the south of the main shock fault plane with a strike of N350°E-N355°E. This fault plane became seismically active 5 h after the main shock, suggesting the influence of stresses transferred from the main shock fault plane. The August 2005 earthquake sequence was preceded by a small eruption of a nearby volcano, Concepción, on 28 July 2005. However, the local seismicity does not provide evidence for earthquake triggering of the eruption or eruption triggering of the main shock through crustal stress transfer.

  17. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  18. Double-S Decimals, Mathematics: 5211.20.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The last of four guidebooks in the sequence, this booklet uses UICSM's "stretcher and shrinker" approach in developing place value, and four operations with decimals, conversion between fractions and decimals, and applications to measurement and rate problems. Overall goals, performance objectives for the course, teaching suggestions,…

  19. Double versus single stenting for coronary bifurcation lesions: a meta-analysis.

    PubMed

    Katritsis, Demosthenes G; Siontis, George C M; Ioannidis, John P A

    2009-10-01

    Several trials have addressed whether bifurcation lesions require stenting of both the main vessel and side branch, but uncertainty remains on the benefits of such double versus single stenting of the main vessel only. We have conducted a meta-analysis of randomized trials including patients with coronary bifurcation lesions who were randomly selected to undergo percutaneous coronary intervention by either double or single stenting. Six studies (n=1642 patients) were eligible. There was increased risk of myocardial infarction with double stenting (risk ratio, 1.78; P=0.001 by fixed effects; risk ratio, 1.49 with Bayesian meta-analysis). The summary point estimate suggested also an increased risk of stent thrombosis with double stenting, but the difference was not nominally significant given the sparse data (risk ratio, 1.85; P=0.19). No obvious difference was seen for death (risk ratio, 0.81; P=0.66) and target lesion revascularization (risk ratio, 1.09; P=0.67). Stenting of both the main vessel and side branch in bifurcation lesions may increase myocardial infarction and stent thrombosis risk compared with stenting of the main vessel only.

  20. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  1. Characterization of Bleomycin-Mediated Cleavage of a Hairpin DNA Library

    PubMed Central

    Segerman, Zachary J.; Roy, Basab; Hecht, Sidney M.

    2013-01-01

    A study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of Fe(II)•BLM to effect cleavage on both the 3' and 5'-arms of the hairpin DNAs was characterized. The strongly bound DNAs were found to be efficient substrates for Fe•BLM A5-mediated hairpin DNA cleavage. Surprisingly, the most prevalent site of BLM-mediated cleavage was found to be the 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence, and other sequences generally not cleaved well by BLM when examined using arbitrarily chosen DNA substrates, were apparent when examining the library of ten hairpin DNAs. In total, 132 sites of DNA cleavage were produced by exposure of the hairpin DNA library to Fe•BLM A5. The existence of multiple sites of cleavage on both the 3′- and 5′-arms of the hairpin DNAs suggested that some of these might be double-strand cleavage events. Accordingly, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double-strand DNA damage. One hairpin DNA was characterized using this method, and gave results consistent with earlier reports of double-strand DNA cleavage, but with a sequence selectivity different from those reported previously. PMID:23834496

  2. 5. Double crib barn, main floor, 4th room from northeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Double crib barn, main floor, 4th room from northeast, southeast and southwest walls - Wilkins Farm, Barn, South side of Dove Hollow Road, 6000 feet east of State Route 259, Lost City, Hardy County, WV

  3. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-04

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.

  4. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52.

    PubMed

    Kent, Brenna; Raymond, Thomas; Mosier, Philip D; Johnson, Allison A

    2018-05-10

    We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. Copyright © 2018 Kent et al.

  5. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  6. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    PubMed

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  7. Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    PubMed Central

    Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.

    2009-01-01

    Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398

  8. Isolation and molecular cloning of a fast-growing strain of human hepatitis A virus from its double-stranded replicative form.

    PubMed Central

    Venuti, A; Di Russo, C; del Grosso, N; Patti, A M; Ruggeri, F; De Stasio, P R; Martiniello, M G; Pagnotti, P; Degener, A M; Midulla, M

    1985-01-01

    A fast-growing strain of human hepatitis A virus was selected and characterized. The virus has the unusual property of developing a strong cytopathic effect in tissue culture in 7 to 10 days. Sequences of the viral genome were cloned into recombinant plasmids with the double-stranded replicative form as a template for the reverse transcription of cDNA. Restriction analysis and direct sequencing indicate that this strain is different from that described by Ticehurst et al. (Proc. Natl. Acad. Sci. USA 80:5885-5889, 1983) in the region that presumptively codes for the major capsid protein VP1, but both isolates have conserved large areas of homology in the untranslated 5'-terminal sequences of the genome. Images PMID:2997478

  9. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.

    PubMed

    Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V

    2017-09-22

    Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.

  10. Distortions induced in double-stranded oligonucleotides by the binding of cis- or trans-diammine-dichloroplatinum(II) to the d(GTG) sequence.

    PubMed Central

    Anin, M F; Leng, M

    1990-01-01

    Conformational changes induced in double-stranded oligonucleotides by the binding of trans- or cis-diamminedichloro platinum(II) to the d(GTG) sequence have been characterized by means of melting temperatures, electrophoretic migrations in non-denaturing polyacrylamide gels, reactivities with the artificial nuclease Phenanthroline-copper and with chemical probes. The cis-platinum adduct behaves more as a centre of directed bend than as a hinge joint, the induced bend angle being of the order of 25-30 degrees. The double helix is locally denatured over 2 base pairs (corresponding to the platinated 5'G residue and the central T residue) and is distorted over 4-5 base pairs. The trans-platinum adduct behaves also more as a centre of directed bend than as a hinge joint, the induced bend angle being of the order of 60 degrees. The double helix is locally denatured over 4 base pairs (corresponding to the immediately 5'T residue adjacent to the adduct and to the three base residues of the adduct). Both the cis- and trans-platinum adducts decrease the thermal stability of the double helix. Images PMID:2388824

  11. HD 143 418 - An Interacting Binary with a Subsynchronously Rotating Primary

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Zverko, J.; Žižňovský, J.; Krtička, J.; Iliev, I. Kh.; Kudryavtsev, D. O.; Gráf, T.; Zejda, M.

    2010-12-01

    HD 143418 is a non-eclipsing double-lined close binary with orbital period Porb=2.282520 d. The photometrically and spectroscopically dominant primary component is a normal A5V star in the middle of its stay on the main sequence with extremely slow, subsynchronous rotation (Prot being about 14 days!). Its photometric monitoring since 1982 revealed orbitally modulated variations with changing form and amplitude. The advanced principal component analysis (APCA) disentangling extract-ed a steady part of light curves obviously caused by the ellipticity of the primary. Seasonal components of the light curves may be related to an expected incidence of circumstellar matter ejected from the tidally spinning up primary component. A possible scenario of the synchronisation process is also briefly discussed.

  12. Two haplotype clusters of Echinococcus granulosus sensu stricto in northern Iraq (Kurdistan region) support the hypothesis of a parasite cradle in the Middle East.

    PubMed

    Hassan, Zuber Ismael; Meerkhan, Azad Abdullah; Boufana, Belgees; Hama, Abdullah A; Ahmed, Bayram Dawod; Mero, Wijdan Mohammed Salih; Orsten, Serra; Interisano, Maria; Pozio, Edoardo; Casulli, Adriano

    2017-08-01

    Human cystic echinococcosis (CE) caused by Echinococcus granulosus s.s. is a major public health problem in Iraqi Kurdistan with a reported surgical incidence of 6.3 per 100,000 Arbil inhabitants. A total of 125 Echinococcus isolates retrieved from sheep, goats and cattle were used in this study. Our aim was to determine species/genotypes infecting livestock in Iraqi Kurdistan and examine intraspecific variation and population structure of Echinococcus granulosus s.s. in this region and relate it to that of other regions worldwide. Using nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 (cox 1) we identified E. granulosus s.s. as the cause of hydatidosis in all examined animals. The haplotype network displayed a double-clustered topology with two main E. granulosus s.s. haplotypes, (KU05) and (KU33). The 'founder' haplotype (KU05) confirmed the presence of a common lineage of non-genetically differentiated populations as inferred by the low non-significant fixation index values. Overall diversity and neutrality indices indicated demographic expansion. We used E. granulosus s.s. nucleotide sequences from GenBank to draw haplotype networks for the Middle East (Iran, Jordan and Turkey), Europe (Albania, Greece, Italy, Romania and Spain), China, Mongolia, Russia, South America (Argentina, Brazil, Chile and Mexico) and Tunisia. Networks with two haplotype clusters like that reported here for Iraqi Kurdistan were seen for the Middle East, Europe, Mongolia, Russia and Tunisia using both 827bp and 1609bp cox1 nucleotide sequences, whereas a star-like network was observed for China and South America. We hypothesize that the double clustering seen at what is generally assumed to be the cradle of domestication may have emerged independently and dispersed from the Middle East to other regions and that haplotype (KU33) may be the main haplotype within a second cluster in the Middle East from where it has spread into Europe, Mongolia, Russia and North Africa. Further studies using metacestodes of human origin are required to investigate the biological importance of E. granulosus s.s. haplotypes/clusters and their association, if any with clinical manifestations of CE infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Integrating Science, Mathematics, and Sociology in an Inquiry-Based Study of Changing Population Density.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Schlenker, Karl R.

    2000-01-01

    Presents a five-activity sequence designed to help students understand the effects of population doubling. Activities consider the effects of population doubling on human interactions, drinking water supplies, and food supply. Students also develop graphs of data and write research papers. (WRM)

  14. The presence of codon-anticodon pairs in the acceptor stem of tRNAs.

    PubMed Central

    Rodin, S; Rodin, A; Ohno, S

    1996-01-01

    A total of 1268 available (excluding mitochondrial) tRNA sequences was used to reconstruct the common consensus image of their acceptor domains. Its structure appeared as a 11-bp-long double-stranded palindrome with complementary triplets in the center, each flanked by the 3'-ACCD and NGGU-5' motifs on each strand (D, base determinator). The palindrome readily extends up to the modern tRNA-like cloverleaf passing through an intermediate hairpin having in the center the single-stranded triplet, in supplement to its double-stranded precursor. The latter might represent an original anticodon-codon pair mapped at 1-2-3 positions of the present-day tRNA acceptors. This conclusion is supported by the striking correlation: in pairs of consensus tRNAs with complementary anticodons, their bases at the 2nd position of the acceptor stem were also complementary. Accordingly, inverse complementarity was also evident at the 71st position of the acceptor stem. With a single exception (tRNA(Phe)-tRNA(Glu) pair), the parallelism is especially impressive for the pairs of tRNAs recognized by aminoacyl-tRNA synthetases (aaRS) from the opposite classes. The above complementarity still doubly presented at the key central position of real single-stranded anticodons and their hypothetical double-stranded precursors is consistent with our previous data pointing to the double-strand use of ancient RNAs in the origin of the main actors in translation- tRNAs with complementary anticodons and the two classes of aaRS. Images Fig. 3 Table 2 Fig. 4 PMID:8643439

  15. Complete Genome Sequences of 38 Gordonia sp. Bacteriophages

    PubMed Central

    Montgomery, Matthew T.; Bonilla, J. Alfred; Dejong, Randall; Garlena, Rebecca A.; Guerrero Bustamante, Carlos; Klyczek, Karen K.; Russell, Daniel A.; Wertz, John T.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2017-01-01

    ABSTRACT We report here the genome sequences of 38 newly isolated bacteriophages using Gordonia terrae 3612 (ATCC 25594) and Gordonia neofelifaecis NRRL59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity. PMID:28057748

  16. Transient effects in π-pulse sequences in MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias

    2018-02-01

    Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.

  17. A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.

    PubMed

    Razvi, F; Gargiulo, G; Worcel, A

    1983-08-01

    Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.

  18. The LAM-PCR Method to Sequence LV Integration Sites.

    PubMed

    Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred

    2016-01-01

    Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.

  19. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  20. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  1. No surviving evolved companions of the progenitor of SN 1006.

    PubMed

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  2. Whole-Genome Sequences of Variants of Bacillus anthracis Sterne and Their Toxin Gene Deletion Mutants

    PubMed Central

    Staab, A.; Plaut, R. D.; Pratt, C.; Lovett, S. P.; Wiley, M. R.; Biggs, T. D.; Bernhards, R. C.; Beck, L. C.; Palacios, G. F.; Stibitz, S.; Jones, K. L.; Goodwin, B. G.; Smith, M. A.

    2017-01-01

    ABSTRACT Here, we report the draft genome sequences of three laboratory variants of Bacillus anthracis Sterne and their double (Δlef Δcya) and triple (Δpag Δlef Δcya) toxin gene deletion derivatives. PMID:29122874

  3. Derivatized versions of ligase enzymes for constructing DNA sequences

    DOEpatents

    Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Tucker, James D [Novi, MN; Dzenitis, John M [Livermore, CA; Papavasiliou, Alexandros P [Oakland, CA

    2006-08-15

    A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.

  4. A new species of Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae) from the double-crested cormorant Phalacrocorax auritus (Lesson) (Aves: Phalacrocoracidae) in North America.

    PubMed

    Kudlai, Olena; Kostadinova, Aneta; Pulis, Eric E; Tkach, Vasyl V

    2015-03-01

    Drepanocephalus auritus n. sp. is described based on specimens from the double-crested cormorant Phalacrocorax auritus (Lesson) in North America. The new species differs from its congeners in its very narrow, elongate body, long uterine field and widely separated testes. Sequences of the nuclear rRNA gene cluster, spanning the 3' end of the nuclear ribosomal 18S rRNA gene, internal transcribed spacer region (ITS1+5.8S gene+ITS2) and partial 28S gene (2,345 bp), were identical in specimens collected from North Dakota, Minnesota and Mississippi, USA. Sequences of the 651 bp long fragment of the mitochondrial cox1 gene exhibited very low intraspecific variability (< 1%). Comparisons of the newly-generated sequences with those available in the GenBank indicate that the sequences from North America published under the name D. spathans Dietz, 1909 in fact represent D. auritus n. sp.

  5. Quantitative trait loci mapping of heat tolerance in a doubled haploid population of broccoli using genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Broccoli is a cool weather vegetable crop with a vernalization requirement to initiate and maintain floral development. Breeding for heat tolerance in broccoli has the potential to both expand viable production areas and extend the growing season. A doubled haploid (DH) population of broccoli (Bras...

  6. High sensitive and direct fluorescence detection of single viral DNA sequences by integration of double strand probes onto microgels particles.

    PubMed

    Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A

    2016-02-21

    A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br; Hart, Andrew G., E-mail: ahart@dim.uchile.cl

    Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that themore » frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.« less

  8. In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence

    PubMed Central

    Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.

    2011-01-01

    Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559

  9. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    NASA Astrophysics Data System (ADS)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  10. Chemical probes of the conformation of DNA modified by cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrot, L.; Leng, M.

    The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the doublemore » helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three base pairs. The AG sites separated from the nearest AG or GG sites by at least three base pairs do not denature the double helix locally when they are in the sequences puAG/pyTC. It is suggested that the distortion within these sequences is induced by adducts located further away along the DNA fragments, these sequences not being the major sites for the binding of cis-DDP.« less

  11. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    PubMed Central

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  12. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  13. Identification of Paracoccidioides brasiliensis by gold nanoprobes

    NASA Astrophysics Data System (ADS)

    Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.

  14. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)

    PubMed Central

    2012-01-01

    Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species. PMID:23186361

  15. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].

    PubMed

    Zhang, Ming-Kui; Wang, Yang; Huang, Chao

    2011-12-01

    By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.

  16. The effect of different control point sampling sequences on convergence of VMAT inverse planning

    NASA Astrophysics Data System (ADS)

    Pardo Montero, Juan; Fenwick, John D.

    2011-04-01

    A key component of some volumetric-modulated arc therapy (VMAT) optimization algorithms is the progressive addition of control points to the optimization. This idea was introduced in Otto's seminal VMAT paper, in which a coarse sampling of control points was used at the beginning of the optimization and new control points were progressively added one at a time. A different form of the methodology is also present in the RapidArc optimizer, which adds new control points in groups called 'multiresolution levels', each doubling the number of control points in the optimization. This progressive sampling accelerates convergence, improving the results obtained, and has similarities with the ordered subset algorithm used to accelerate iterative image reconstruction. In this work we have used a VMAT optimizer developed in-house to study the performance of optimization algorithms which use different control point sampling sequences, most of which fall into three different classes: doubling sequences, which add new control points in groups such that the number of control points in the optimization is (roughly) doubled; Otto-like progressive sampling which adds one control point at a time, and equi-length sequences which contain several multiresolution levels each with the same number of control points. Results are presented in this study for two clinical geometries, prostate and head-and-neck treatments. A dependence of the quality of the final solution on the number of starting control points has been observed, in agreement with previous works. We have found that some sequences, especially E20 and E30 (equi-length sequences with 20 and 30 multiresolution levels, respectively), generate better results than a 5 multiresolution level RapidArc-like sequence. The final value of the cost function is reduced up to 20%, such reductions leading to small improvements in dosimetric parameters characterizing the treatments—slightly more homogeneous target doses and better sparing of the organs at risk.

  17. High-precision relocation for aftershocks of the 2016 ML 5.8 Gyeongju earthquake in South Korea: Stress partitioning controlled by complex fault systems

    NASA Astrophysics Data System (ADS)

    Woo, J. U.; Rhie, J.; Kang, T. S.; Kim, S.; Chai, G.; Cho, E.

    2017-12-01

    Complex inherent fault system is one of key factors controlling the main shock occurrence and the pattern of aftershock sequence. Many field studies have shown that the fault systems in the Korean Peninsula are complex because they formed by various tectonic events since Proterozoic. Apart from that the mainshock is the largest one (ML 5.8) ever recorded in South Korea, the Gyeongju earthquake sequence shows particularly interesting features: ML 5.1 event preceded ML 5.8 event by 50 min and they are located closely to each other ( 1 km). In addition, ML 4.5 event occurred 2 3 km away from the two events after a week of the mainshock. Considering reported focal mechanisms and hypocenters of the three major events, it is unlikely that the earthquake sequence occurs on a single fault plane. To depict the detailed fault geometry associated with the sequence, we precisely determine the relative locations of 1,400 aftershocks recorded by 27 broadband stations, which started to be deployed less than one hour after the mainshock. Double difference algorithm is applied using relative travel time measurements by a waveform cross-correlation method. Relocated hypocenters show that a major fault striking NE-SW and some minor faults get involved in the sequence. In particular, aftershocks immediately following ML 4.5 event seem to occur on a fault striking NW-SE, which is orthogonal to the strike of a major fault. We expect that the Gyeongju earthquake sequence resulted from the stress transfer controlled by the complex inherent fault system in this region.

  18. Improved detection and relocation of micro-earthquakes applied to the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Tary, J. B.; Evangelia, B.; Géli, L.; Lomax, A.

    2016-12-01

    The Sea of Marmara is located at the western end of the North Anatolian Fault (NAF). This part of the NAF is considered as a seismic gap, being between the Izmit and Duzce earthquakes to the East and the Ganos earthquake to the West. Improved detection and location of seismicity in the Sea of Marmara is important for defining the seismic hazard in this area.On July 25, 2011, a Mw 5 earthquake occurred below the Western High in the western part of the Sea of Marmara. This earthquake as well as its aftershock sequence were recorded by a network of 10 ocean bottom seismometers (Ifremer) as well as seafloor observatories (KOERI). The OBSs were deployed from mid-April, 2011, to the end of July, 2011.The aftershock sequence is characterized by deep seismicity ( 10-15 km) around the main shock and shallow seismicity. Some of the shallow seismicity could be located at a similar depth as gas prone sediment layers below the Western High. The exact causes of these shallow aftershocks are still unclear. To better define this aftershock sequence, we use the match filter technique with a selection of aftershocks as templates to dig out child events from the continuous data streams. The templates are cross-correlated with the continuous data for stations with absolute time picks. The cross-correlation coefficients are then summed over all stations and components, and we then compute its median absolute deviation (MAD). Signals are detected when the summed cross-correlation time series exceeds a given number of times the MAD. Using a conservative detection threshold, we obtain a 10-fold increase in the number of events. The newly detected events are then relocated using the double-difference technique. With these newly detected events, we investigate the nucleation phase of the main shock and the aftershock sequence, as well as the possible triggering of the shallow aftershocks by the deeper seismicity.

  19. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes.

    PubMed

    Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia

    2009-04-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.

  20. Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    PubMed Central

    Abramavicius, Darius; Voronine, Dmitri V.; Mukamel, Shaul

    2008-01-01

    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed. PMID:18562293

  1. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    NASA Astrophysics Data System (ADS)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  2. Why double-stranded RNA resists condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexesmore » with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.« less

  3. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  4. Discovery of melanocortin ligands via a double simultaneous substitution strategy based on the Ac-His-DPhe-Arg-Trp-NH2 template.

    PubMed

    Todorovic, Aleksandar; Lensing, Cody J; Holder, Jerry Ryan; Scott, Joseph W; Sorensen, Nicholas B; Haskell-Luevano, Carrie

    2018-05-21

    The melanocortin system regulates an array of diverse physiological functions including pigmentation, feeding behavior, energy homeostasis, cardiovascular regulation, sexual function, and steroidogenesis. Endogenous melanocortin agonist ligands all possess the minimal messaging tetrapeptide sequence His-Phe-Arg-Trp. Based on this endogenous sequence, the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide has previously been shown to be a useful scaffold when utilizing traditional positional scanning approaches to modify activity at the various melanocortin receptors (MC1-5R). The study reported herein was undertaken to evaluate a double simultaneous substitution strategy as an approach to further diversify the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide with concurrent introduction of natural and unnatural amino acids at positions 1, 2, or 4 as well as an octanoyl residue at the N-terminus. The designed library includes the following combinations: (A) double simultaneous substitution at capping group position (Ac) together with position 1, 2, or 4, (B) double simultaneous substitution at position 1 and 2, (C) double simultaneous substitution at position 1 and 4, and (D) double simultaneous substitution at position 2 and 4. Several lead ligands with unique pharmacologies were discovered in the current study including antagonists targeting the neuronal mMC3R with minimal agonist activity and ligands with selective profiles for the various melanocortin subtypes. The results suggest that the double simultaneous substitution strategy is a suitable approach in altering melanocortin receptor potency, selectivity, or converting agonists into antagonists and vice versa.

  5. Dynamical investigations of the multiple stars

    NASA Astrophysics Data System (ADS)

    Kiyaeva, Olga V.; Zhuchkov, Roman Ya.

    2017-11-01

    Two multiple stars - the quadruple star - Bootis (ADS 9173) and the triple star T Taury were investigated. The visual double star - Bootiswas studied on the basis of the Pulkovo 26-inch refractor observations 1982-2013. An invisible satellite of the component A was discovered due to long-term uniform series of observations. Its orbital period is 20 ± 2 years. The known invisible satellite of the component B with near 5 years period was confirmed due to high precision CCD observations. The astrometric orbits of the both components were calculated. The orbits of inner and outer pairs of the pre-main sequence binary T Taury were calculated on the basis of high precision observations by the VLT and on the Keck II Telescope. This weakly hierarchical triple system is stable with probability more than 70%.

  6. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications.

    PubMed

    Kawamoto, Yusuke; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-05-01

    Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Complete Genome Sequence of EtG, the First Phage Sequenced from Erwinia tracheiphila.

    PubMed

    Andrade-Domínguez, Andrés; Kolter, Roberto; Shapiro, Lori R

    2018-02-22

    Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits. Here, we report the genome sequence of the temperate phage EtG, which was isolated from an E. tracheiphila -infected cucumber plant. Phage EtG has a linear 30,413-bp double-stranded DNA genome with cohesive ends and 45 predicted open reading frames. Copyright © 2018 Andrade-Domínguez et al.

  8. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes.

    PubMed

    Bazak, Lily; Haviv, Ami; Barak, Michal; Jacob-Hirsch, Jasmine; Deng, Patricia; Zhang, Rui; Isaacs, Farren J; Rechavi, Gideon; Li, Jin Billy; Eisenberg, Eli; Levanon, Erez Y

    2014-03-01

    RNA molecules transmit the information encoded in the genome and generally reflect its content. Adenosine-to-inosine (A-to-I) RNA editing by ADAR proteins converts a genomically encoded adenosine into inosine. It is known that most RNA editing in human takes place in the primate-specific Alu sequences, but the extent of this phenomenon and its effect on transcriptome diversity are not yet clear. Here, we analyzed large-scale RNA-seq data and detected ∼1.6 million editing sites. As detection sensitivity increases with sequencing coverage, we performed ultradeep sequencing of selected Alu sequences and showed that the scope of editing is much larger than anticipated. We found that virtually all adenosines within Alu repeats that form double-stranded RNA undergo A-to-I editing, although most sites exhibit editing at only low levels (<1%). Moreover, using high coverage sequencing, we observed editing of transcripts resulting from residual antisense expression, doubling the number of edited sites in the human genome. Based on bioinformatic analyses and deep targeted sequencing, we estimate that there are over 100 million human Alu RNA editing sites, located in the majority of human genes. These findings set the stage for exploring how this primate-specific massive diversification of the transcriptome is utilized.

  9. The white dwarf binary pathways survey - II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.

    2017-12-01

    We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.

  10. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    PubMed Central

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  11. Double-stranded telomeric DNA binding proteins: Diversity matters.

    PubMed

    Červenák, Filip; Juríková, Katarína; Sepšiová, Regina; Neboháčová, Martina; Nosek, Jozef; Tomáška, L'ubomír

    2017-01-01

    Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.

  12. A double-labeling procedure for sequence analysis of picomole amounts of nonradioactive RNA fragments.

    PubMed Central

    Gupta, R C; Randerath, E; Randerath, K

    1976-01-01

    A double-labeling procedure for sequence analysis of nonradioactive polyribonucleotides is detailed, which is based on controlled endonucleolytic degradation of 3'-terminally (3H)-labeled oligonucleotide-(3') dialcohols and 5"-terminal analysis of the partial (3H)-labeled fragments following their separation according to chain length by polyethyleneimine- (PEI-)cellulose TLC and detection by fluorography. Undesired nonradioactive partial digestion products are eliminated by periodate oxidation. The 5'-termini are assayed by enzymic incorporation of (32p)-label into the isolated fragments, enzymic release of (32p)-labeled nucleoside-(5') monophosphates, two-dimensional PEI-cellulose chromatography, and autoradiography. Using this procedure, as little as 0.1 - 0.3 A260 unit of tRNA is needed to sequence all fragments in complete ribonuclease T1 and A digests, whereas radioactive derivative methods previously described by us1-4 required 4 - 6 A260 units. Images PMID:826884

  13. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  14. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome.

    PubMed

    Onozawa, Masahiro; Zhang, Zhenhua; Kim, Yoo Jung; Goldberg, Liat; Varga, Tamas; Bergsagel, P Leif; Kuehl, W Michael; Aplan, Peter D

    2014-05-27

    We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.

  15. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.

    PubMed

    Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara

    2017-02-20

    The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.

  16. VizieR Online Data Catalog: NGC 6802 dwarf cluster members and non-members (Tang+, 2017)

    NASA Astrophysics Data System (ADS)

    Tang, B.; Geisler, D.; Friel, E.; Villanova, S.; Smiljanic, R.; Casey, A. R.; Randich, S.; Magrini, L.; San, Roman I.; Munoz, C.; Cohen, R. E.; Mauro, F.; Bragaglia, A.; Donati, P.; Tautvaisiene, G.; Drazdauskas, A.; Zenoviene, R.; Snaith, O.; Sousa, S.; Adibekyan, V.; Costado, M. T.; Blanco-Cuaresma, S.; Jimenez-Esteban, F.; Carraro, G.; Zwitter, T.; Francois, P.; Jofre, P.; Sordo, R.; Gilmore, G.; Flaccomio, E.; Koposov, S.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Damiani, F.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G.; Worley, C. C.; Zaggia, S.

    2016-11-01

    The dwarf stars in NGC 6802 observed by GIRAFFE spectrograph are separated into four tables: 1. cluster members in the lower main sequence; 2. cluster members in the upper main sequence; 3. non-member dwarfs in the lower main sequence; 4. non-member dwarfs in the upper main sequence. The star coordinates, V band magnitude, V-I color, and radial velocity are given. (4 data files).

  17. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing

    PubMed Central

    Mak, Sarah Siu Tze; Gopalakrishnan, Shyam; Carøe, Christian; Geng, Chunyu; Liu, Shanlin; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Zhang, Wenwei; Fu, Shujin; Vieira, Filipe G; Germonpré, Mietje; Bocherens, Hervé; Fedorov, Sergey; Petersen, Bent; Sicheritz-Pontén, Thomas; Marques-Bonet, Tomas; Zhang, Guojie; Jiang, Hui; Gilbert, M Thomas P

    2017-01-01

    Abstract Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA. PMID:28854615

  18. A strange dwarf scenario for the formation of the peculiar double white dwarf binary SDSS J125733.63+542850.5

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-05-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveals that the massive WD has a surface gravity log g1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13 000 K, while the effective temperature of the low-mass WD (M2 < 0.24 M⊙) is T2 ˜ 6400K. Therefore, the massive and the low-mass WDs have a cooling age τ1 ˜ 1 Gyr and τ2 ≥ 5 Gyr, respectively. This is in contradiction with traditional binary evolution theory. In this paper, we propose a strange dwarf (SD) scenario to explain the formation of this double WD binary. We assume that the massive WD is a SD originating from a phase transition (PT) in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the PT. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M⊙ WD and a 1.5 M⊙ main-sequence star in a 1.492 d orbit. Especially, the secondary star (i.e. the progenitor of the low-mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  19. Naming Problems Do Not Reflect a Second Independent Core Deficit in Dyslexia: Double Deficits Explored

    ERIC Educational Resources Information Center

    Vaessen, Anniek; Gerretsen, Patty; Blomert, Leo

    2009-01-01

    The double deficit hypothesis states that naming speed problems represent a second core deficit in dyslexia independent from a phonological deficit. The current study investigated the main assumptions of this hypothesis in a large sample of well-diagnosed dyslexics. The three main findings were that (a) naming speed was consistently related only…

  20. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    USDA-ARS?s Scientific Manuscript database

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  1. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  2. Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

    USDA-ARS?s Scientific Manuscript database

    Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...

  3. Short interfering RNA confers intracellular antiviral immunity in human cells.

    PubMed

    Gitlin, Leonid; Karelsky, Sveta; Andino, Raul

    2002-07-25

    Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism. Animal cells also possess this machinery but its specific function is unclear. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.

  4. DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information

    ERIC Educational Resources Information Center

    McCallister, Gary

    2005-01-01

    The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)

  5. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach-Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  6. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation.

    PubMed

    Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-10-05

    Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

  7. Molecular Basis of β-Thalassemia Intermedia in Erbil Province of Iraqi Kurdistan.

    PubMed

    Shamoon, Rawand P; Al-Allawi, Nasir A S; Cappellini, Maria D; Di Pierro, Elena; Brancaleoni, Valentina; Granata, Francesca

    2015-01-01

    β-Thalassemia intermedia (β-TI) is a clinical term describing a range of clinical phenotypes that are intermediate in severity between the carrier state and β-thalassemia major (β-TM). To characterize the molecular basis of β-TI in Erbil Province, Northern Iraq, 83 unrelated patients were investigated. Detection of β-globin gene mutations was carried out by reverse hybridization assay and direct gene sequencing. All patients were screened for the XmnI polymorphism by direct sequencing of HBG2 ((G)γ promoter gene). Detection of α-globin gene deletions and triplication was carried out using the reverse hybridization assay. Four main molecular patterns were identified in association with the β-TI phenotype, namely: β(+)/β(+) (38.5%), β(+)/β(0) (21.6%), β(0)/β(0) (31.3%), and β(0)/wild type (8.4%). IVS-I-6 (T > C) was the most frequently encountered mutation (55 alleles, 34.6%), followed by IVS-II-1 (G > A) and codon 8 (-AA); furthermore, we report for the first time from Iraq two β(+) mutations, -87 (C > G) and 5' untranslated region (5'UTR) +22 (G > A). The XmnI polymorphism was detected in 47.0% of patients, mainly in association with the β(0)/β(0) genotype. The α-globin gene deletions were encountered in four cases, including one case with (- -(FIL)) double gene deletion, a report that is the first from our country. The α-globin gene triplication was detected in five of the seven heterozygous β-thalassemia (β-thal) patients. Similar to other Mediterranean countries, inheritance of mild β-globin mutations was the main molecular pattern underlying β-TI in our patients followed by the ameliorating effect of the XmnI polymorphism.

  8. Did A Planet Survive A Post-Main Sequence Evolutionary Event?

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca; Jang-Condell, Hannah; Zimmerman, Mara

    2018-06-01

    The GL86 is star system approximately 10 pc away with a main sequence K- type ~ 0.77 M⊙ star (GL 86A) with a white dwarf ~0.49 M⊙ companion (GL86 B). The system has a ~ 18.4 AU semi-major axis, an orbital period of ~353 yrs, and an eccentricity of ~ 0.39. A 4.5 MJ planet orbits the main sequence star with a semi-major axis of 0.113 AU, an orbital period of 15.76 days, in a near circular orbit with an eccentricity of 0.046. If we assume that this planet was formed during the time when the white dwarf was a main sequence star, it would be difficult for the planet to have remained in a stable orbit during the post-main sequence evolution of GL86 B. The post-main sequence evolution with planet survival will be examined by modeling using the program Mercury (Chambers 1999). Using the model, we examine the origins of the planet: whether it formed before or after the post-main sequence evolution of GL86B. The modeling will give us insight into the dynamical evolution of, not only, the binary star system, but also the planet’s life cycle.

  9. Reversed-phase ion-pair liquid chromatography method for purification of duplex DNA with single base pair resolution

    PubMed Central

    Wysoczynski, Christina L.; Roemer, Sarah C.; Dostal, Vishantie; Barkley, Robert M.; Churchill, Mair E. A.; Malarkey, Christopher S.

    2013-01-01

    Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications. PMID:24013567

  10. Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1994-01-01

    A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.

  11. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    PubMed

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  12. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist

    PubMed Central

    Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A.; Bellini, Tommaso

    2010-01-01

    Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described. PMID:20876125

  13. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  14. Absolute properties of the eclipsing binary VV CORVI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Henry, Gregory W.; Sowell, James R., E-mail: fekel@evans.tsuniv.edu, E-mail: gregory.w.henry@gmail.com, E-mail: jim.sowell@physics.gatech.edu

    2013-12-01

    We have obtained red-wavelength spectroscopy and Johnson B and V differential photoelectric photometry of the eclipsing binary VV Crv = HR 4821. The system is the secondary of the common proper motion double star ADS 8627, which has a separation of 5.''2. VV Crv has an orbital period of 3.144536 days and a low but non-zero eccentricity of 0.085. With the Wilson-Devinney program we have determined a simultaneous solution of our spectroscopic and photometric observations. Those orbital elements produce masses of M {sub 1} = 1.978 ± 0.010 M {sub ☉} and M {sub 2} = 1.513 ± 0.008 Mmore » {sub ☉}, and radii of R {sub 1} = 3.375 ± 0.010 R {sub ☉} and R {sub 2} = 1.650 ± 0.008 R {sub ☉} for the primary and secondary, respectively. The effective temperatures of the two components are 6500 K (fixed) and 6638 K, so the star we call the primary is the more massive but cooler and larger component. A comparison with evolutionary tracks indicates that the components are metal rich with [Fe/H] = 0.3, and the system has an age of 1.2 Gyr. The primary is near the end of its main-sequence lifetime and is rotating significantly faster than its pseudosynchronous velocity. The secondary is still well ensconced on the main sequence and is rotating more slowly than its pseudosynchronous rate.« less

  15. Surface effects on the red giant branch

    NASA Astrophysics Data System (ADS)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  16. [Construction of Plasmodium falciparum signal peptide peptidase-GFP mutant and its expression analysis in the malaria parasite].

    PubMed

    Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti

    2014-08-01

    To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.

  17. Critical fluctuations near the pitchfork bifurcations of period-doubling maps

    NASA Astrophysics Data System (ADS)

    Noble, Andrew; Karimeddiny, Saba; Hastings, Alan; Machta, Jonathan

    2015-03-01

    Period-doubling maps, such as the logistic map, have been a subject of intense study in both physics and biology. The period-doubling route to chaos proceeds through a sequence of supercritical pitchfork bifurcations. Here, motivated by applications to population ecology, we investigate the asymptotic behavior of period-doubling bifurcations subject to environmental or demographic noise. We demonstrate, analytically, that fluctuations in the vicinity of each noisy pitchfork bifurcation are described by finite-size mean-field theory. Our results establish an exact correspondence between the bifurcations of far-from-equilibrium systems and the mean-field critical phenomena of equilibrium systems. This material is based upon work supported by the National Science Foundation under INSPIRE Grant No. 1344187.

  18. The basic helix-loop-helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA.

    PubMed

    Popovic, Matija; Wienk, Hans; Coglievina, Maristella; Boelens, Rolf; Pongor, Sándor; Pintar, Alessandro

    2014-04-01

    Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an N-terminal segment, b1, containing functionally important phosphorylation sites, the basic region b2, required for binding to DNA, and the HLH domain. We show that a proline residue in the sequence divides the protein in two parts, a flexible and disordered N-terminal region including b1 and a structured, mainly helical region comprising b2 and the HLH domain. Binding of H1H to a double strand DNA oligonucleotide was monitored through the chemical shift perturbation of backbone amide resonances, and showed that the interaction surface involves not only the b2 segment but also several residues in the b1 and HLH regions. Copyright © 2014 Wiley Periodicals, Inc.

  19. Genomic Sequences of Australian Bluetongue Virus Prototype Serotypes Reveal Global Relationships and Possible Routes of Entry into Australia

    PubMed Central

    Bulach, Dieter M.; Amos-Ritchie, Rachel; Adams, Mathew M.; Walker, Peter J.; Weir, Richard

    2012-01-01

    Bluetongue virus (BTV) is transmitted by biting midges (Culicoides spp.). It causes disease mainly in sheep and occasionally in cattle and other species. BTV has spread into northern Europe, causing disease in sheep and cattle. The introduction of new serotypes, changes in vector species, and climate change have contributed to these changes. Ten BTV serotypes have been isolated in Australia without apparent associated disease. Simplified methods for preferential isolation of double-stranded RNA (dsRNA) and template preparation enabled high-throughput sequencing of the 10 genome segments of all Australian BTV prototype serotypes. Phylogenetic analysis reinforced the Western and Eastern topotypes previously characterized but revealed unique features of several Australian BTVs. Many of the Australian BTV genome segments (Seg-) were closely related, clustering together within the Eastern topotypes. A novel Australian topotype for Seg-5 (NS1) was identified, with taxa spread across several serotypes and over time. Seg-1, -2, -3, -4, -6, -7, -9, and -10 of BTV_2_AUS_2008 were most closely related to the cognate segments of viruses from Taiwan and Asia and not other Australian viruses, supporting the conclusion that BTV_2 entered Australia recently. The Australian BTV_15_AUS_1982 prototype was revealed to be unusual among the Australian BTV isolates, with Seg-3 and -8 distantly related to other BTV sequences from all serotypes. PMID:22514341

  20. Double-blind evaluation of deanol in tardive dyskinesia.

    PubMed

    Penovich, P; Morgan, J P; Kerzner, B; Karch, F; Goldblatt, D

    1978-05-12

    We administered deanol acetamidobenzoate, 2.0 g/day for four weeks, a double-blind, placebo-controlled crossover trial, to 14 patients with tardive dyskineasia. The patient population included both inpatients and outpatients. The response was evaluated by subjective clinical impression and scoring of filmed sequences. Patients' conditions improved significantly from baseline scores while receiving both deanol and placebo, but there was no distinction between the two treatments.

  1. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1

    PubMed Central

    Andrade-Domínguez, Andrés

    2016-01-01

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. PMID:27563032

  2. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  3. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; ...

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  4. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    PubMed

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  5. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paugh, Steven W.; Coss, David R.; Bao, Ju

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  6. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1.

    PubMed

    Li, Huapeng; Wang, Yun; Li, Xiaocheng; Gao, Yong; Wang, Zhijun; Zhao, Yun; Wang, Maolin

    2011-01-01

    A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.

  7. A new isolate of hepatitis B virus from the Philippines possibly representing a new subgenotype C6.

    PubMed

    Cavinta, Lolita; Sun, Jianguang; May, Anja; Yin, Jianhua; von Meltzer, Markus; Radtke, Monika; Barzaga, Nina G; Cao, Guangwen; Schaefer, Stephan

    2009-06-01

    Hepatitis B virus (HBV) genotypes and subgenotypes show distinct geographical prevalence. A genotyping analysis of 28 samples from asymptomatic HBV carriers from the Philippines gave a distribution of HBV genotypes as expected from a previous study: 54% B (15/28), C5 18% (5/28), 14% D (4/28), 7% A1 (2/28). In addition, 7% (2/28) of the samples showed a double infection with genotypes B and D. One of the isolates sequenced completely, ph105, did not group into one of the known subgenotypes after phylogenetic analysis. Ph105 formed a separate clade in genotype C. With a genome length of 3,215 nt. and a serological subtype adr, ph105 exhibited the main features of most genotype C strains. However, ph105 differed by 4.1-7.2% from HBV subgenotypes C1 to C5 when comparing the nucleotide sequence of whole genomes. With only 4.1% difference ph105 was most closely related to subgenotype C2. SimPlot analysis gave no indication for recombination with known HBV genotypes. Ph105 fulfils all criteria for a new subgenotype C6.

  8. Molecular Characterization of Herpes Simplex Virus 2 Strains by Analysis of Microsatellite Polymorphism

    PubMed Central

    Ait-Arkoub, Zaïna; Voujon, Delphine; Deback, Claire; Abrao, Emiliana P.; Agut, Henri; Boutolleau, David

    2013-01-01

    The complete 154-kbp linear double-stranded genomic DNA sequence of herpes simplex virus 2 (HSV-2), consisting of two extended regions of unique sequences bounded by a pair of inverted repeat elements, was published in 1998 and since then has been widely employed in a wide range of studies. Throughout the HSV-2 genome are scattered 150 microsatellites (also referred to as short tandem repeats) of 1- to 6-nucleotide motifs, mainly distributed in noncoding regions. Microsatellites are considered reliable markers for genetic mapping to differentiate herpesvirus strains, as shown for cytomegalovirus and HSV-1. The aim of this work was to characterize 12 polymorphic microsatellites within the HSV-2 genome by use of 3 multiplex PCR assays in combination with length polymorphism analysis for the rapid genetic differentiation of 56 HSV-2 clinical isolates and 2 HSV-2 laboratory strains (gHSV-2 and MS). This new system was applied to a specific new HSV-2 variant recently identified in HIV-1-infected patients originating from West Africa. Our results confirm that microsatellite polymorphism analysis is an accurate tool for studying the epidemiology of HSV-2 infections. PMID:23966512

  9. Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao

    2016-03-01

    We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).

  10. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3'-end.

    PubMed

    Merkiene, Egle; Gaidamaviciute, Edita; Riauba, Laurynas; Janulaitis, Arvydas; Lagunavicius, Arunas

    2010-08-01

    We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.

  11. Critical role of cerebellar fastigial nucleus in programming sequences of saccades.

    PubMed

    King, Susan A; Schneider, Rosalyn M; Serra, Alessandro; Leigh, R John

    2011-09-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria because of either genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. © 2011 New York Academy of Sciences.

  12. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  13. Matrix metalloproteinases outside vertebrates.

    PubMed

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  15. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    DTIC Science & Technology

    2015-06-01

    Love, and S. Gupta at the Whitehead Genome Core for assistance with genome sequencing . This research was supported by NIH K08 HL105678, The Wat...efficient alignment of short DNA sequences to the human genome . Genome Bioi. 10, R25. LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double...of the beginning. Nature reviews. Cancer 12, 818-834, doi:10.1038/nrc3410 (2012). 12 Kool, M. et al. Genome sequencing of SHH medulloblastoma

  16. Synoptic Formation of Double Tropopauses

    NASA Astrophysics Data System (ADS)

    Liu, Chengji; Barnes, Elizabeth

    2018-01-01

    Double tropopauses are ubiquitous in the midlatitude winter hemisphere and represent the vertical stacking of two stable tropopause layers separated by a less stable layer. By analyzing COSMIC GPS data, reanalysis, and eddy life cycle simulations, we demonstrate that they often occur during Rossby wave breaking and act to increase the stratosphere-to-troposphere exchange of mass. We further investigate the adiabatic formation of double tropopauses and propose two mechanisms by which they can occur. The first mechanism operates at the tropopause break in the subtropics where the higher tropical tropopause sits on one side of the break and the lower extratropical tropopause sits on the other. The double tropopauses are then formed by differential meridional advection of the higher and lower tropopauses on the two sides of the tropopause break. We show that anticyclonic wave breaking can form double tropopauses mainly by providing stronger poleward advection of the higher tropopause in its poleward lobe. Cyclonic wave breaking mainly forms double tropopauses by providing stronger equatorward advection of the lower tropopause in its equatorward lobe. We demonstrate in the COSMIC GPS data and reanalysis that about half of the double tropopauses in the Northern Hemisphere winter can be directly attributed to such differential advection. For the second mechanism, adiabatic destabilization of the air above the tropopause contributes to the formation of a double tropopause. In this case, a tropopause inversion layer is necessary for this destabilization to result in a double tropopause.

  17. Main features of detectors and isotopes to investigate double beta decay with increased sensitivity

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2018-03-01

    The current situation in double beta decay experiments, the characteristics of modern detectors and the possibility of increasing the sensitivity to neutrino mass in future experiments are discussed. The issue of the production and use of enriched isotopes in double beta decay experiments is discussed in addition.

  18. Double Consonants in English: Graphemic, Morphological, Prosodic and Etymological Determinants

    ERIC Educational Resources Information Center

    Berg, Kristian

    2016-01-01

    What determines consonant doubling in English? This question is pursued by using a large lexical database to establish systematic correlations between spelling, phonology and morphology. The main insights are: Consonant doubling is most regular at morpheme boundaries. It can be described in graphemic terms alone, i.e. without reference to…

  19. Comprehensive thermodynamic analysis of 3′ double-nucleotide overhangs neighboring Watson–Crick terminal base pairs

    PubMed Central

    O'Toole, Amanda S.; Miller, Stacy; Haines, Nathan; Zink, M. Coleen; Serra, Martin J.

    2006-01-01

    Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented. PMID:16820533

  20. Complete Genome Sequences of 44 Arthrobacter Phages.

    PubMed

    Klyczek, Karen K; Jacobs-Sera, Deborah; Adair, Tamarah L; Adams, Sandra D; Ball, Sarah L; Benjamin, Robert C; Bonilla, J Alfred; Breitenberger, Caroline A; Daniels, Charles J; Gaffney, Bobby L; Harrison, Melinda; Hughes, Lee E; King, Rodney A; Krukonis, Gregory P; Lopez, A Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C; Rinehart, Claire A; Staples, Amanda K; Stowe, Emily L; Garlena, Rebecca A; Russell, Daniel A; Cresawn, Steven G; Pope, Welkin H; Hatfull, Graham F

    2018-02-01

    We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae , Myoviridae , and Podoviridae ) are represented. Copyright © 2018 Klyczek et al.

  1. Complete Genome Sequences of 44 Arthrobacter Phages

    PubMed Central

    Klyczek, Karen K.; Adair, Tamarah L.; Adams, Sandra D.; Ball, Sarah L.; Benjamin, Robert C.; Bonilla, J. Alfred; Breitenberger, Caroline A.; Daniels, Charles J.; Gaffney, Bobby L.; Harrison, Melinda; Hughes, Lee E.; King, Rodney A.; Krukonis, Gregory P.; Lopez, A. Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C.; Staples, Amanda K.; Stowe, Emily L.; Garlena, Rebecca A.; Russell, Daniel A.

    2018-01-01

    ABSTRACT We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae, Myoviridae, and Podoviridae) are represented. PMID:29437090

  2. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  3. The neural basis of parallel saccade programming: an fMRI study.

    PubMed

    Hu, Yanbo; Walker, Robin

    2011-11-01

    The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

  4. Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior

    PubMed Central

    Berman, Rebecca A.; Heiser, Laura M.; Dunn, Catherine A.; Saunders, Richard C.; Colby, Carol L.

    2008-01-01

    Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield as compared to across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for within-hemifield as compared to across-hemifield conditions of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and co-varies with spatial behavior on within-hemifield compared to across-hemifield sequences. PMID:17493922

  5. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities

    PubMed Central

    Hanaoka, Shingo; Nagadoi, Aritaka; Nishimura, Yoshifumi

    2005-01-01

    Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2. PMID:15608118

  6. Main doorway to the display area, straight ahead. Double doors ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main doorway to the display area, straight ahead. Double doors with "top secret" alert lights, coded doorbell, and one way mirror. Stairway to second floor and basement is at the left, as well as the secondary entrance at the east part of the north front. View to east - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  7. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  8. Broadband excitation in nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tycko, Robert

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along withmore » computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The second additional topic is the construction of iterative schemes for narrowband population inversion. The use of sequences that invert spin populations only over a narrow range of rf field amplitudes to spatially localize NMR signals in an rf field gradient is discussed.« less

  9. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the velocity structure of central Chile to improve the real-time monitoring.

  10. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes

    PubMed Central

    Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia

    2009-01-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives. PMID:19422429

  11. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging.

    PubMed

    Saranathan, Manojkumar; Worters, Pauline W; Rettmann, Dan W; Winegar, Blair; Becker, Jennifer

    2017-12-01

    A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T 1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600. © 2017 International Society for Magnetic Resonance in Medicine.

  12. A paper-based device for double-stranded DNA detection with Zif268

    NASA Astrophysics Data System (ADS)

    Zhang, Daohong

    2017-05-01

    Here, a small analytical device was fabricated on both nitrocellulose membrane and filter paper, for the detection of biotinylated double-stranded DNA (dsDNA) from 1 nM. Zif268 was utilized for capturing the target DNA, which was a zinc finger protein that recognized only a dsDNA with specific sequence. Therefore, this detection platform could be utilized for PCR result detection, with the well-designed primers (interpolate both biotin and Zif268 binding sequence). The result of the assay could be recorded by a camera-phone, and analyzed with software. The whole assay finished within 1 hour. Due to the easy fabrication, operation and disposal of this device, this method can be employed in point-of-care detection or on-site monitoring.

  13. Structural studies of the Sputnik virophage.

    PubMed

    Sun, Siyang; La Scola, Bernard; Bowman, Valorie D; Ryan, Christopher M; Whitelegge, Julian P; Raoult, Didier; Rossmann, Michael G

    2010-01-01

    The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 A in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus.

  14. Structural Studies of the Sputnik Virophage▿

    PubMed Central

    Sun, Siyang; La Scola, Bernard; Bowman, Valorie D.; Ryan, Christopher M.; Whitelegge, Julian P.; Raoult, Didier; Rossmann, Michael G.

    2010-01-01

    The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 Å in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus. PMID:19889775

  15. Double Mine Building (N) wall showing clerestory slot windows opening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Double Mine Building (N) wall showing clerestory slot windows opening above level of main roof. Note structure is built on poured concrete foundation partly buried in hillside; view in southeast - Fort McKinley, Double Mine Building, East side of East Side Drive, approximately 125 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  16. Effects of Weight and Syntactic Priming on the Production of Cantonese Verb-Doubling

    ERIC Educational Resources Information Center

    Francis, Elaine J.; Matthews, Stephen; Wong, Reace Wing Yan; Kwan, Stella Wing Man

    2011-01-01

    Verb-doubling, where a copy of the main verb occurs both before and after the direct object, is a structure commonly used in Chinese in sentences containing a frequency or duration phrase. In Cantonese, verb-doubling is highly optional and therefore problematic for existing syntactic, semantic, and pragmatic accounts of its distribution in…

  17. A Main Sequence For Quasars

    NASA Astrophysics Data System (ADS)

    Marziani, Paola; Sulentic, J. W.; Dultzin, D.; Negrete, A.; del Olmo, A.; Martínez-Carballo, M. A.; Stirpe, G. M.; D'Onofrio, M.; Perea, J.

    2016-10-01

    The 4D eigenvector 1 parameter space defined by Sulentic et al. may be seen as a surrogate H-R diagram for quasars. As in the stellar H-R diagram, a source sequence can be easily identified. In the case of quasars, the main sequence appears to be mainly driven by Eddington ratio. A transition Eddington ratio may in part explain the striking observational differences between quasars at opposite ends of the main sequence. The eigenvector-1 approach opens the door towards properly contextualized models of quasar physics, geometry and kinematics. We review some of the progress that has been made over the past 15 years, and point out still unsolved issues.

  18. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Naibo

    This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.

  19. Crystallographic and Modeling Studies of RNase III Suggest a Mechanism for Double-Stranded RNA Cleavage | Center for Cancer Research

    Cancer.gov

    Background: Ribonuclease III belongs to the family of Mg2+-dependent endonucleases that show specificity for double-stranded RNA (dsRNA). RNase III is conserved in all known bacteria and eukaryotes and has 1–2 copies of a 9-residue consensus sequence, known as the RNase III signature motif. The bacterial RNase III proteins are the simplest, consisting of two domains: an

  20. Double blue straggler sequences in globular clusters: The case of NGC 362

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalessandro, E.; Ferraro, F. R.; Massari, D.

    2013-12-01

    We used high-quality images acquired with the Wide Field Camera 3 on board the Hubble Space Telescope to probe the blue straggler star (BSS) population of the galactic globular cluster NGC 362. We have found two distinct sequences of BSSs: this is the second case, after M30, where such a feature has been observed. Indeed, the BSS location, their extension in magnitude and color, and their radial distribution within the cluster nicely resemble those observed in M30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass-transfer binaries, the blue one bymore » collisions. The discovery of four new W UMa stars, three of which lie along the red BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power law (α ∼ –0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core-collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362; in fact, together with M30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the 'dynamical clock' classification proposed by Ferraro et al. The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.« less

  1. Isolation and molecular characterization of Chikungunya virus from the Andaman and Nicobar archipelago, India: evidence of an East, Central, and South African genotype.

    PubMed

    Muruganandam, N; Chaaithanya, I K; Senthil, G S; Shriram, A N; Bhattacharya, D; Jeevabharathi, G S; Sudeep, A B; Pradeepkumar, N; Vijayachari, P

    2011-12-01

    Chikungunya virus (CHIKV) is an Alphavirus belonging to the family Togaviridae. In 2006, CHIKV infection struck the Andaman and Nicobar archipelago, with an attack rate of 60%. There were more than 10 cases with acute flaccid paralysis simulating the Guillian Barre Syndrome. The majority of the patients presented severe joint pain. The cause for such an explosive nature of the outbreak with increased morbidity was not known. The isolation of CHIKV was attempted and succeeded from nine subjects presenting clinical symptoms of Chikungunya fever. The cDNA of all the isolates was sequenced for partial E1 and nsP1 genes. Sequences were aligned based on the double locus sequence typing concept. The phylogenetic analysis shows that sequences of Andaman isolates grouped with the East, Central, and South African genotype of virus isolates from India, Sri Lanka, and Réunion. The genetic distance between Andaman isolates and the Réunion isolates was very small. The phylogenetic analysis confirmed the origin of the isolates responsible for the first ever confirmed CHIKV outbreak in these islands to be the East, Central, and South African genotype. In this manuscript, we discuss the involvement of the East, Central, and South African strain with the Chikungunya fever outbreak in this archipelago and double locus sequence typing as a first time approach.

  2. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1.

    PubMed

    Andrade-Domínguez, Andrés; Kolter, Roberto

    2016-08-25

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. Copyright © 2016 Andrade-Domínguez and Kolter.

  3. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  4. Pivotal Impacts of Retrotransposon Based Invasive RNAs on Evolution.

    PubMed

    Habibi, Laleh; Salmani, Hamzeh

    2017-01-01

    RNAs have long been described as the mediators of gene expression; they play a vital role in the structure and function of cellular complexes. Although the role of RNAs in the prokaryotes is mainly confined to these basic functions, the effects of these molecules in regulating the gene expression and enzymatic activities have been discovered in eukaryotes. Recently, a high-resolution analysis of the DNA obtained from different organisms has revealed a fundamental impact of the RNAs in shaping the genomes, heterochromatin formation, and gene creation. Deep sequencing of the human genome revealed that about half of our DNA is comprised of repetitive sequences (remnants of transposable element movements) expanded mostly through RNA-mediated processes. ORF2 encoded by L1 retrotransposons is a cellular reverse transcriptase which is mainly responsible for RNA invasion of various transposable elements (L1s, Alus, and SVAs) and cellular mRNAs in to the genomic DNA. In addition to increasing retroelements copy number; genomic expansion in association with centromere, telomere, and heterochromatin formation as well as pseudogene creation are the evolutionary consequences of this RNA-based activity. Threatening DNA integrity by disrupting the genes and forming excessive double strand breaks is another effect of this invasion. Therefore, repressive mechanisms have been evolved to control the activities of these invasive intracellular RNAs. All these mechanisms now have essential roles in the complex cellular functions. Therefore, it can be concluded that without direct action of RNA networks in shaping the genome and in the development of different cellular mechanisms, the evolution of higher eukaryotes would not be possible.

  5. Pivotal Impacts of Retrotransposon Based Invasive RNAs on Evolution

    PubMed Central

    Habibi, Laleh; Salmani, Hamzeh

    2017-01-01

    RNAs have long been described as the mediators of gene expression; they play a vital role in the structure and function of cellular complexes. Although the role of RNAs in the prokaryotes is mainly confined to these basic functions, the effects of these molecules in regulating the gene expression and enzymatic activities have been discovered in eukaryotes. Recently, a high-resolution analysis of the DNA obtained from different organisms has revealed a fundamental impact of the RNAs in shaping the genomes, heterochromatin formation, and gene creation. Deep sequencing of the human genome revealed that about half of our DNA is comprised of repetitive sequences (remnants of transposable element movements) expanded mostly through RNA-mediated processes. ORF2 encoded by L1 retrotransposons is a cellular reverse transcriptase which is mainly responsible for RNA invasion of various transposable elements (L1s, Alus, and SVAs) and cellular mRNAs in to the genomic DNA. In addition to increasing retroelements copy number; genomic expansion in association with centromere, telomere, and heterochromatin formation as well as pseudogene creation are the evolutionary consequences of this RNA-based activity. Threatening DNA integrity by disrupting the genes and forming excessive double strand breaks is another effect of this invasion. Therefore, repressive mechanisms have been evolved to control the activities of these invasive intracellular RNAs. All these mechanisms now have essential roles in the complex cellular functions. Therefore, it can be concluded that without direct action of RNA networks in shaping the genome and in the development of different cellular mechanisms, the evolution of higher eukaryotes would not be possible. PMID:29067016

  6. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  7. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales".

    PubMed

    Mushegian, Arcady; Karin, Eli Levy; Pupko, Tal

    2018-01-01

    The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes. Published by Elsevier Inc.

  8. Developmental history and application of CRISPR in human disease.

    PubMed

    Liang, Puping; Zhang, Xiya; Chen, Yuxi; Huang, Junjiu

    2017-06-01

    Genome-editing tools are programmable artificial nucleases, mainly including zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeat (CRISPR). By recognizing and cleaving specific DNA sequences, genome-editing tools make it possible to generate site-specific DNA double-strand breaks (DSBs) in the genome. DSBs will then be repaired by either error-prone nonhomologous end joining or high-fidelity homologous recombination mechanisms. Through these two different mechanisms, endogenous genes can be knocked out or precisely repaired/modified. Rapid developments in genome-editing tools, especially CRISPR, have revolutionized human disease models generation, for example, various zebrafish, mouse, rat, pig, monkey and human cell lines have been constructed. Here, we review the developmental history of CRISPR and its application in studies of human diseases. In addition, we also briefly discussed the therapeutic application of CRISPR in the near future. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Molecular structure of r/GCG/d/TATACGC/ - A DNA-RNA hybrid helix joined to double helical DNA

    NASA Technical Reports Server (NTRS)

    Wang, A. H.-J.; Fujii, S.; Rich, A.; Van Boom, J. H.; Van Der Marel, G. A.; Van Boeckel, S. A. A.

    1982-01-01

    The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA-RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.

  10. Effect of sequence-dependent rigidity on plectoneme localization in dsDNA

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Rabin, Yitzhak

    2016-04-01

    We use Monte-Carlo simulations to study the effect of variable rigidity on plectoneme formation and localization in supercoiled double-stranded DNA. We show that the presence of soft sequences increases the number of plectoneme branches and that the edges of the branches tend to be localized at these sequences. We propose an experimental approach to test our results in vitro, and discuss the possible role played by plectoneme localization in the search process of transcription factors for their targets (promoter regions) on the bacterial genome.

  11. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  12. A Gaia study of the Hyades open cluster

    NASA Astrophysics Data System (ADS)

    Reino, Stella; de Bruijne, Jos; Zari, Eleonora; d'Antona, Francesca; Ventura, Paolo

    2018-03-01

    We present a study of the membership of the Hyades open cluster, derive kinematically-modelled parallaxes of its members, and study the colour-absolute magnitude diagram of the cluster. We use Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) data complemented by Hipparcos-2 data for bright stars not contained in TGAS. We supplement the astrometric data with radial velocities collected from a dozen literature sources. By assuming that all cluster members move with the mean cluster velocity to within the velocity dispersion, we use the observed and the expected motions of the stars to determine individual cluster membership probabilities. We subsequently derive improved parallaxes through maximum-likelihood kinematic modelling of the cluster. This method has an iterative component to deal with 'outliers', caused for instance by double stars or escaping members. Our method extends an existing method and supports the mixed presence of stars with and without radial velocities. We find 251 candidate members, 200 of which have a literature radial velocity, and 70 of which are new candidate members with TGAS astrometry. The cluster is roughly spherical in its centre but significantly flattened at larger radii. The observed colour-absolute magnitude diagram shows a clear binary sequence. The kinematically-modelled parallaxes that we derive are a factor ˜1.7 / 2.9 more precise than the TGAS / Hipparcos-2 values and allow to derive an extremely sharp main sequence. This sequence shows evidence for fine-detailed structure which is elegantly explained by the full spectrum turbulence model of convection.

  13. Structure of water clusters on graphene: A classical molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro

    2018-03-01

    The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.

  14. Double-double bend achromat cell upgrade at the Diamond Light Source: From design to commissioning

    NASA Astrophysics Data System (ADS)

    Bartolini, R.; Abraham, C.; Apollonio, M.; Bailey, C. P.; Cox, M. P.; Day, A.; Fielder, R. T.; Hammond, N. P.; Heron, M. T.; Holdsworth, R.; Kay, J.; Martin, I. P. S.; Mhaskar, S.; Miller, A.; Pulampong, T.; Rehm, G.; Rial, E. C. M.; Rose, A.; Shahveh, A.; Singh, B.; Thomson, A.; Walker, R. P.

    2018-05-01

    Diamond has recently successfully commissioned a major change in the lattice consisting of the substitution of a standard double-bend achromat (DBA) cell with a modified four-bend achromat (4BA) cell called "double-double bend achromat" (DDBA). This work stems from the original studies initiated in 2012 towards a Diamond upgrade and provides the benefit of an additional straight section in the ring available for insertion devices. This paper reviews the DDBA design and layout, the implications for technical subsystems, the associated engineering challenges and the main results of the commissioning completed in April 2017.

  15. Quantum Double of Yangian of strange Lie superalgebra Qn and multiplicative formula for universal R-matrix

    NASA Astrophysics Data System (ADS)

    Stukopin, Vladimir

    2018-02-01

    Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.

  16. On the Detection and Characterization of Polluted White Dwarfs

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars. What happens to this material after the main sequence? With this work, we focus on the characterization of the material around WD 1145+017. The goals are to monitor the white dwarf—which has a transiting, disintegrating planetesimal and determine the composition of the evaporated material for that same white dwarf by looking at high-resolution spectra. We also present preliminary results of follow-up photometric observations of known polluted WDs. If rocky bodies survive red giant branch evolution, then the material raining down on a WD atmosphere is a direct probe of main sequence cosmochemistry. If rocky bodies do not survive the evolution, then this informs the degree of post-main-sequence processing. These case studies will provide the community with further insight about debris disk modeling, the degree of post-main-sequence processing of circumstellar material, and the composition of a disintegrating planetesimal.

  17. The Synthesis of Potentially Catalytic Bimetallic Systems.

    DTIC Science & Technology

    1982-11-29

    a synthetic sequence to the double metal system shown in Figure XIV (p. 19) which incorporates ferrocene as the backbone of the molecule. Such systems...diketone intermediate 1-benzoyl-1’-o-chlorobenzoyl- ferrocene (over) \\/ DO I ?,S 1473 EDITION orI Nov6II s OSETe UNCLASSIFIEDj S/N 0102. LF 014- 6601...to the double metal system shown in Figure XIV (p. 19) which incorporates ferrocene as the backbone of the molecule. Such systems have the potential

  18. Transient kinetics measured with force steps discriminate between double-stranded DNA elongation and melting and define the reaction energetics

    PubMed Central

    Bongini, Lorenzo; Melli, Luca; Lombardi, Vincenzo; Bianco, Pasquale

    2014-01-01

    Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10–25°C). The shortening transient following a 20–35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2–35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition. PMID:24353317

  19. Binding Mode and Selectivity of a Scorpiand-Like Polyamine Ligand to Single- and Double-Stranded DNA and RNA: Metal- and pH-Driven Modulation.

    PubMed

    Inclán, Mario; Guijarro, Lluis; Pont, Isabel; Frías, Juan C; Rotger, Carmen; Orvay, Francisca; Costa, Antoni; García-España, Enrique; Albelda, M Teresa

    2017-11-13

    The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT) 2 , and poly(dGC) 2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA-polyU and poly(dAT) 2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC) 2 with the ligand L induces a quenching of the fluorescence. Cu 2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  1. Mammalian DNA enriched for replication origins is enriched for snap-back sequences.

    PubMed

    Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G

    1984-11-15

    Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.

  2. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing.

    PubMed

    Ba, Hengxing; Jia, Boyin; Wang, Guiwu; Yang, Yifeng; Kedem, Gilead; Li, Chunyi

    2017-09-07

    Sika deer are an economically valuable species owing to their use in traditional Chinese medicine, particularly their velvet antlers. Sika deer in northeast China are mostly farmed in enclosure. Therefore, genetic management of farmed sika deer would benefit from detailed knowledge of their genetic diversity. In this study, we generated over 1.45 billion high-quality paired-end reads (288 Gbp) across 42 unrelated individuals using double-digest restriction site-associated DNA sequencing (ddRAD-seq). A total of 96,188 (29.63%) putative biallelic SNP loci were identified with an average sequencing depth of 23×. Based on the analysis, we found that the majority of the loci had a deficit of heterozygotes (F IS >0) and low values of H obs , which could be due to inbreeding and Wahlund effects. We also developed a collection of high-quality SNP probes that will likely be useful in a variety of applications in genotyping for cervid species in the future. Copyright © 2017 Ba et al.

  3. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing

    PubMed Central

    Ba, Hengxing; Jia, Boyin; Wang, Guiwu; Yang, Yifeng; Kedem, Gilead; Li, Chunyi

    2017-01-01

    Sika deer are an economically valuable species owing to their use in traditional Chinese medicine, particularly their velvet antlers. Sika deer in northeast China are mostly farmed in enclosure. Therefore, genetic management of farmed sika deer would benefit from detailed knowledge of their genetic diversity. In this study, we generated over 1.45 billion high-quality paired-end reads (288 Gbp) across 42 unrelated individuals using double-digest restriction site-associated DNA sequencing (ddRAD-seq). A total of 96,188 (29.63%) putative biallelic SNP loci were identified with an average sequencing depth of 23×. Based on the analysis, we found that the majority of the loci had a deficit of heterozygotes (FIS >0) and low values of Hobs, which could be due to inbreeding and Wahlund effects. We also developed a collection of high-quality SNP probes that will likely be useful in a variety of applications in genotyping for cervid species in the future. PMID:28751500

  4. CNOT sequences for heterogeneous spin qubit architectures in a noisy environment

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco

    Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.

  5. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  6. ORF157 from the Archaeal Virus Acidianus Filamentous Virus 1 Defines a New Class of Nuclease▿

    PubMed Central

    Goulet, Adeline; Pina, Mery; Redder, Peter; Prangishvili, David; Vera, Laura; Lichière, Julie; Leulliot, Nicolas; van Tilbeurgh, Herman; Ortiz-Lombardia, Miguel; Campanacci, Valérie; Cambillau, Christian

    2010-01-01

    Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85°C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an α+β protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined. PMID:20200253

  7. A catalog of aftershock sequences in Greece (1971 1997): Their spatial and temporal characteristics

    NASA Astrophysics Data System (ADS)

    Drakatos, George; Latoussakis, John

    A complete catalog of aftershock sequences is provided for main earthquakes with ML 5.0, which occurred in the area of Greece and surrounding regions the last twenty-seven years. The Monthly Bulletins of the Institute of Geodynamics (National Observatory of Athens) have been used as data source. In order to get a homogeneous catalog, several selection criteria have been applied and hence a catalog of 44 aftershock sequences is compiled. The relations between the duration of the sequence, the number of aftershocks, the magnitude of the largest aftershock and its delay time from the main shock as well as the subsurface rupture length versus the magnitude of the main shock are calculated. The results show that linearity exists between the subsurface rupture length and the magnitude of the main shock independent of the slip type, as well as between the magnitude of the main shock (M) and its largest aftershock (Ma). The mean difference M-Ma is almost one unit. In the 40% of the analyzed sequences, the largest aftershock occurred within one day after the main shock.The fact that the aftershock sequences show the same behavior for earthquakes that occur in the same region supports the theory that the spatial and temporal characteristics are strongly related to the stress distribution of the fault area.

  8. Self-locking double retention redundant pull pin release

    NASA Technical Reports Server (NTRS)

    Killgrove, Thomas O. (Inventor)

    1987-01-01

    A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.

  9. Genomic Predictions and Genome-Wide Association Study of Resistance Against Piscirickettsia salmonis in Coho Salmon (Oncorhynchus kisutch) Using ddRAD Sequencing

    PubMed Central

    Barría, Agustín; Christensen, Kris A.; Yoshida, Grazyella M.; Correa, Katharina; Jedlicki, Ana; Lhorente, Jean P.; Davidson, William S.; Yáñez, José M.

    2018-01-01

    Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD. PMID:29440129

  10. Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task.

    PubMed

    Saimpont, Arnaud; Mercier, Catherine; Malouin, Francine; Guillot, Aymeric; Collet, Christian; Doyon, Julien; Jackson, Philip L

    2016-01-01

    Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double-blind, sham-controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty-six right-handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight-item complex finger sequence for 13 min. Before (Pre-test), immediately after (Post-test 1), and at 90 min after (Post-test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre-test and Post-test 1 and remained stable at Post-test 2 in the three groups (P < 0.001). Furthermore, the percentage increase in performance between Pre-test and Post-test 1 and Post-test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (P < 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Sequencing small genomic targets with high efficiency and extreme accuracy

    PubMed Central

    Schmitt, Michael W.; Fox, Edward J.; Prindle, Marc J.; Reid-Bayliss, Kate S.; True, Lawrence D.; Radich, Jerald P.; Loeb, Lawrence A.

    2015-01-01

    The detection of minority variants in mixed samples demands methods for enrichment and accurate sequencing of small genomic intervals. We describe an efficient approach based on sequential rounds of hybridization with biotinylated oligonucleotides, enabling more than one-million fold enrichment of genomic regions of interest. In conjunction with error correcting double-stranded molecular tags, our approach enables the quantification of mutations in individual DNA molecules. PMID:25849638

  12. Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence.

    PubMed

    Aleza, Pablo; Juárez, José; Hernández, María; Pina, José A; Ollitrault, Patrick; Navarro, Luis

    2009-08-22

    In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.

  13. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro

    Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less

  14. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas)

    DOE PAGES

    Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro; ...

    2017-03-10

    Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less

  15. A different class of Ia supernovae?

    NASA Astrophysics Data System (ADS)

    Horesh, Assaf; Hancock, Paul; Kulkarni, S. R.; Strom, Allison; Gal-Yam, Avishay; Patat, Ferdinando; Goobar, Ariel; Sullivan, Mark; Sternberg, Assaf; Maguire, Kate; Cao, Yi

    2014-04-01

    Type Ia supernovae (SNe Ia) have become well known due to their use as distance estimators for cosmology, yet the nature of their progenitor systems is a matter of hot debate. The two main models are single-degenerate systems (SD) where a white dwarf accretes material from a main sequence or giant companion, and a double-degenerate (DD) merger of two white dwarf stars. Several recent publications have placed stringent upper limits on predicted signatures of SD systems, suggesting some individual events are more likely to be DD explosions. At the same time, other papers show direct evidence for circumstellar material (CSM) around other SNe Ia, favoring SD origins for these explosions. The emerging picture is of a non-uniform population of SNe Ia, arising from a mix of both the SD and DD channels. Here, we propose a focused radio program targeted only at rare nearby SNe Ia that show signatures of CSM (likely SD origin) in their optical spectra. The detection of even one such CSM-rich SN Ia event would be a breakthrough discovery. We provide estimates showing that such detection is possible, and motivate this focused approach over previous "blind" large programs.

  16. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  17. Columbia/Einstein observations of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1979-01-01

    The imaging observations of galactic clusters are presented. These fall into three categories: pre-main-sequence stars in the Orion nebulae, isolated-main-and-post main-sequence stars, and supernova remnants SNR. In addition to SNR, approximately 30 sources were detected.

  18. Sequence dependency of canonical base pair opening in the DNA double helix

    PubMed Central

    Villa, Alessandra

    2017-01-01

    The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair. PMID:28369121

  19. Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora.

    PubMed

    Salem, Nidá M; Golino, Deborah A; Falk, Bryce W; Rowhani, Adib

    2008-01-01

    The three double-stranded (ds) RNAs were detected in Rosa multiflora plants showing rose spring dwarf (RSD) symptoms. Northern blot analysis revealed three dsRNAs in preparations of both dsRNA and total RNA from R. multiflora plants. The complete sequences of the dsRNAs (referred to as dsRNA 1, dsRNA 2 and dsRNA 3) were determined based on a combination of shotgun cloning of dsRNA cDNAs and reverse transcription-polymerase chain reaction (RT-PCR). The largest dsRNA (dsRNA 1) was 1,762 bp long with a single open reading frame (ORF) that encoded a putative polypeptide containing 479 amino acid residues with a molecular mass of 55.9 kDa. This polypeptide contains amino acid sequence motifs conserved in the RNA-dependent RNA polymerases (RdRp) of members of the family Partitiviridae. Both dsRNA 2 (1,475 bp) and dsRNA 3 (1,384 bp) contained single ORFs, encoding putative proteins of unknown function. The 5' untranslated regions (UTR) of all three segments shared regions of high sequence homology. Phylogenetic analysis using the RdRp sequences of the various partitiviruses revealed that the new sequences would constitute the genome of a virus in family Partitiviridae. This virus would cluster with Fragaria chiloensis cryptic virus and Raphanus sativus cryptic virus 2. We suggest that the three dsRNA segments constitute the genome of a novel cryptic virus infecting roses; we propose the name Rosa multiflora cryptic virus (RMCV). Detection primers were developed and used for RT-PCR detection of RMCV in rose plants.

  20. 13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO MAIN ROOM. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  1. Prof. Hayashi's work on the pre-main sequence evolution and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori

    2012-09-01

    Prof. Hayashi's work on the evolution of stars in the pre-main sequence stage is reviewed. The historical background and the process of finding the Hayashi phase are mentioned. The work on the evolution of low-mass stars is also reviewed including the determination of the bottom of the main sequence and evolution of brown dwarfs, and comparison is made with the other works in the same period.

  2. The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation

    NASA Astrophysics Data System (ADS)

    Genel, Shy; Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Pakmor, Rüdiger; Weinberger, Rainer; Hernquist, Lars; Naiman, Jill; Vogelsberger, Mark; Marinacci, Federico; Torrey, Paul

    2018-03-01

    We analyse scaling relations and evolution histories of galaxy sizes in TNG100, part of the IllustrisTNG simulation suite. Observational qualitative trends of size with stellar mass, star formation rate and redshift are reproduced, and a quantitative comparison of projected r band sizes at 0 ≲ z ≲ 2 shows agreement to much better than 0.25 dex. We follow populations of z = 0 galaxies with a range of masses backwards in time along their main progenitor branches, distinguishing between main-sequence and quenched galaxies. Our main findings are as follows. (i) At M*, z = 0 ≳ 109.5 M⊙, the evolution of the median main progenitor differs, with quenched galaxies hardly growing in median size before quenching, whereas main-sequence galaxies grow their median size continuously, thus opening a gap from the progenitors of quenched galaxies. This is partly because the main-sequence high-redshift progenitors of quenched z = 0 galaxies are drawn from the lower end of the size distribution of the overall population of main-sequence high-redshift galaxies. (ii) Quenched galaxies with M*, z = 0 ≳ 109.5 M⊙ experience a steep size growth on the size-mass plane after their quenching time, but with the exception of galaxies with M*, z = 0 ≳ 1011 M⊙, the size growth after quenching is small in absolute terms, such that most of the size (and mass) growth of quenched galaxies (and its variation among them) occurs while they are still on the main sequence. After they become quenched, the size growth rate of quenched galaxies as a function of time, as opposed to versus mass, is similar to that of main-sequence galaxies. Hence, the size gap is retained down to z = 0.

  3. Bacteriophage GC1, a Novel Tectivirus Infecting Gluconobacter Cerinus, an Acetic Acid Bacterium Associated with Wine-Making.

    PubMed

    Philippe, Cécile; Krupovic, Mart; Jaomanjaka, Fety; Claisse, Olivier; Petrel, Melina; le Marrec, Claire

    2018-01-16

    The Gluconobacter phage GC1 is a novel member of the Tectiviridae family isolated from a juice sample collected during dry white wine making. The bacteriophage infects Gluconobacter cerinus , an acetic acid bacterium which represents a spoilage microorganism during wine making, mainly because it is able to produce ethyl alcohol and transform it into acetic acid. Transmission electron microscopy revealed tail-less icosahedral particles with a diameter of ~78 nm. The linear double-stranded DNA genome of GC1 (16,523 base pairs) contains terminal inverted repeats and carries 36 open reading frames, only a handful of which could be functionally annotated. These encode for the key proteins involved in DNA replication (protein-primed family B DNA polymerase) as well as in virion structure and assembly (major capsid protein, genome packaging ATPase (adenosine triphosphatase) and several minor capsid proteins). GC1 is the first tectivirus infecting an alphaproteobacterial host and is thus far the only temperate tectivirus of gram-negative bacteria. Based on distinctive sequence and life-style features, we propose that GC1 represents a new genus within the Tectiviridae , which we tentatively named " Gammatectivirus ". Furthermore, GC1 helps to bridge the gap in the sequence space between alphatectiviruses and betatectiviruses.

  4. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    PubMed

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  5. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  6. Research on parallel combinatory spread spectrum communication system with double information matching

    NASA Astrophysics Data System (ADS)

    Xue, Wei; Wang, Qi; Wang, Tianyu

    2018-04-01

    This paper presents an improved parallel combinatory spread spectrum (PC/SS) communication system with the method of double information matching (DIM). Compared with conventional PC/SS system, the new model inherits the advantage of high transmission speed, large information capacity and high security. Besides, the problem traditional system will face is the high bit error rate (BER) and since its data-sequence mapping algorithm. Hence the new model presented shows lower BER and higher efficiency by its optimization of mapping algorithm.

  7. Double photoionization of Be-like (Be-F5+) ions

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Pindzola, Michael; Colgan, James

    2015-04-01

    The time-dependent close-coupling method is used to study the single photon double ionization of Be-like (Be - F5+) ions. Energy and angle differential cross sections are calculated to fully investigate the correlated motion of the two photoelectrons. Symmetric and antisymmetric amplitudes are presented along the isoelectronic sequence for different energy sharing of the emitted electrons. Our total double photoionization cross sections are in good agreement with available theoretical results and experimental measurements along the Be-like ions. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  8. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  9. X-Rays from the Location of the Double-humped Transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall'Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.

    2017-02-01

    We present the detection of persistent soft X-ray radiation with {L}x˜ {10}41-1042 erg s-1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical-UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event.

  10. X-Rays from the Location of the Double-humped Transient ASASSN-15lh

    PubMed Central

    Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall’Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.

    2017-01-01

    We present the detection of persistent soft X-ray radiation with Lx ~ 1041–1042 erg s−1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical–UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event. PMID:28966348

  11. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2013-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs {WDs}. A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: {1} Procyon {P = 40.83 yr}, containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. {2} Sirius {P = 50.14 yr}, an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. {3} Mu Cas {P = 21.08 yr}, a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: {1} G 107-70 {P = 18.84 yr}, and {2} WD 1818+126 {P = 12.19 yr}. Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  12. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2015-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs (WDs). A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: (1) Procyon (P = 40.83 yr), containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. (2) Sirius (P = 50.14 yr), an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. (3) Mu Cas (P = 21.08 yr), a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: (1) G 107-70 (P = 18.84 yr), and (2) WD 1818+126 (P = 12.19 yr). Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  13. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2014-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs (WDs). A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: (1) Procyon (P = 40.83 yr), containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. (2) Sirius (P = 50.14 yr), an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. (3) Mu Cas (P = 21.08 yr), a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: (1) G 107-70 (P = 18.84 yr), and (2) WD 1818+126 (P = 12.19 yr). Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  14. Automated sample-preparation technologies in genome sequencing projects.

    PubMed

    Hilbert, H; Lauber, J; Lubenow, H; Düsterhöft, A

    2000-01-01

    A robotic workstation system (BioRobot 96OO, QIAGEN) and a 96-well UV spectrophotometer (Spectramax 250, Molecular Devices) were integrated in to the process of high-throughput automated sequencing of double-stranded plasmid DNA templates. An automated 96-well miniprep kit protocol (QIAprep Turbo, QIAGEN) provided high-quality plasmid DNA from shotgun clones. The DNA prepared by this procedure was used to generate more than two mega bases of final sequence data for two genomic projects (Arabidopsis thaliana and Schizosaccharomyces pombe), three thousand expressed sequence tags (ESTs) plus half a mega base of human full-length cDNA clones, and approximately 53,000 single reads for a whole genome shotgun project (Pseudomonas putida).

  15. Molecular cloning of MSSP-2, a c-myc gene single-strand binding protein: characterization of binding specificity and DNA replication activity.

    PubMed Central

    Takai, T; Nishita, Y; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    We have previously reported the human cDNA encoding MSSP-1, a sequence-specific double- and single-stranded DNA binding protein [Negishi, Nishita, Saëgusa, Kakizaki, Galli, Kihara, Tamai, Miyajima, Iguchi-Ariga and Ariga (1994) Oncogene, 9, 1133-1143]. MSSP-1 binds to a DNA replication origin/transcriptional enhancer of the human c-myc gene and has turned out to be identical with Scr2, a human protein which complements the defect of cdc2 kinase in S.pombe [Kataoka and Nojima (1994) Nucleic Acid Res., 22, 2687-2693]. We have cloned the cDNA for MSSP-2, another member of the MSSP family of proteins. The MSSP-2 cDNA shares highly homologous sequences with MSSP-1 cDNA, except for the insertion of 48 bp coding 16 amino acids near the C-terminus. Like MSSP-1, MSSP-2 has RNP-1 consensus sequences. The results of the experiments using bacterially expressed MSSP-2, and its deletion mutants, as histidine fusion proteins suggested that the binding specificity of MSSP-2 to double- and single-stranded DNA is the same as that of MSSP-1, and that the RNP consensus sequences are required for the DNA binding of the protein. MSSP-2 stimulated the DNA replication of an SV40-derived plasmid containing the binding sequence for MSSP-1 or -2. MSSP-2 is hence suggested to play an important role in regulation of DNA replication. Images PMID:7838710

  16. Precise determination, cross-recognition, and functional analysis of the double-strand origins of the rolling-circle replication plasmids in haloarchaea.

    PubMed

    Zhou, Ligang; Zhou, Meixian; Sun, Chaomin; Han, Jing; Lu, Qiuhe; Zhou, Jian; Xiang, Hua

    2008-08-01

    The precise nick site in the double-strand origin (DSO) of pZMX201, a 1,668-bp rolling-circle replication (RCR) plasmid from the haloarchaeon Natrinema sp. CX2021, was determined by electron microscopy and DSO mapping. In this plasmid, DSO nicking occurred between residues C404 and G405 within a heptanucleotide sequence (TCTC/GGC) located in the stem region of an imperfect hairpin structure. This nick site sequence was conserved among the haloarchaeal RCR plasmids, including pNB101, suggesting that the DSO nick site might be the same for all members of this plasmid family. Interestingly, the DSOs of pZMX201 and pNB101 were found to be cross-recognized in RCR initiation and termination in a hybrid plasmid system. Mutation analysis of the DSO from pZMX201 (DSO(Z)) in this hybrid plasmid system revealed that: (i) the nucleotides in the middle of the conserved TCTCGGC sequence play more-important roles in the initiation and termination process; (ii) the left half of the hairpin structure is required for initiation but not for termination; and (iii) a 36-bp sequence containing TCTCGGC and the downstream sequence is essential and sufficient for termination. In conclusion, these haloarchaeal plasmids, with novel features that are different from the characteristics of both single-stranded DNA phages and bacterial RCR plasmids, might serve as a good model for studying the evolution of RCR replicons.

  17. A neural-network-based approach to the double traveling salesman problem.

    PubMed

    Plebe, Alessio; Anile, Angelo Marcello

    2002-02-01

    The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This application poses further constraints, like a collision-avoidance function. The proposed solution is based on a self-organizing map structure, initialized with as many artificial neurons as the number of targets to be reached. One of the key components of the process is the combination of competitive relaxation with a mechanism for deleting and creating artificial neurons. Moreover, in the competitive relaxation process, information about the trajectory connecting the neurons is combined with the distance of neurons from the target. This strategy prevents tangles in the trajectory and collisions between the two tours. Results of tests indicate that the proposed approach is efficient and reliable for harvest sequence planning. Moreover, the enhancements added to the pure self-organizing map concept are of wider importance, as proved by a traveling salesman problem version of the program, simplified from the double version for comparison.

  18. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  19. Prosodic Modification and Vocal Adjustments in Mothers' Speech during Face-to-Face Interaction with Their Two- to Four-Month-Old Infants: A Double Video Study

    ERIC Educational Resources Information Center

    Braarud, Hanne Cecilie; Stormark, Kjell Morten

    2008-01-01

    The purpose of this study was to examine 32 mothers' sensitivity to social contingency during face-to-face interaction with their two- to four-month-old infants in a closed circuit TV set-up. Prosodic qualities and vocal sounds in mother's infant-directed (ID) speech during sequences of live interaction were compared to sequences where expressive…

  20. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  1. UV observations of blue stragglers and population 2 K dwarfs

    NASA Technical Reports Server (NTRS)

    Carney, B. W.; Bond, H. E.

    1986-01-01

    Blue stragglers are stars, found usually in either open or globular clusters, that appear to lie on the main sequence, but are brighter and bluer than the cluster turn-off. Currently, two rival models are invoked to explain this apparently pathological behavior: internal mixing (so that fresh fuel is brought into the stellar core); and mass transfer (by which a normal main sequence star acquires mass from an evolving nearby companion and so moves up the main sequence). The latter model predicts that in the absence of complete mass transfer (i.e., coalescence), blue stragglers should be binary systems with the fainter star in a post-main sequence evolutionary state. It is important to ascertain the cause of this phenomenon since stellar evolution models of main sequence stars play such a vital role in astronomy. If mass transfer is involved, one may easily exclude binaries from age determinations of clusters, but if mixing is the cause, our age determinations will be much less accurate unless we can determine whether all stars or only some mix, and what causes the mixing to occur at all.

  2. The Role Of Rejuvenation In Shaping The High-Mass End Of The Main Sequence

    NASA Astrophysics Data System (ADS)

    Mancini, Chiara

    2017-06-01

    We investigate the nature of star forming galaxies with reduced specific SFRs and high stellar masses, those that seemingly cause the so-called bending of the main sequence. The fact that such objects host large bulges recently lead some to suggest that the internal formation of the bulges, via compaction or disk instabilities, was the late event that induced sSFRs of massive galaxies to drop in a slow downfall and thus the main sequence to bend. We have studied in detail a sample of 16 galaxies at 0.5

  3. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  4. The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.

  5. Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2014-07-14

    The combination of two drop makers such as flow focusing geometries or ┬ junctions is commonly used in microfluidics to fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem, the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.

  6. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens.

    PubMed

    Wang, Weixia; Wan, Pinjun; Lai, Fengxiang; Zhu, Tingheng; Fu, Qiang

    2018-07-01

    Calmodulin (CaM) is an essential protein in cellular activity and plays important roles in many processes in insect development. RNA interference (RNAi) has been hypothesized to be a promising method for pest control. CaM is a good candidate for RNAi target. However, the sequence and function of CaM in Nilaparvata lugens are unknown. Furthermore, the double-stranded RNA (dsRNA) target to CaM gene in pest control is still unavailable. In the present study, two alternatively spliced variants of CaM transcripts, designated NlCaM1 and NlCaM2, were cloned from N. lugens. The two cDNA sequences exhibited 100% identity to each other in the open reading frame (ORF), and only differed in the 3' untranslated region (UTR). NlCaM including NlCaM1 and NlCaM2 mRNA was detectable in all developmental stages and tissues of N. lugens, with significantly increased expression in the salivary glands. Knockdown of NlCaM expression by RNAi with different dsRNAs led to an inability to molt properly, increased mortality, which ranged from 49.7 to 92.5%, impacted development of the ovaries and led to female infertility. There were no significant reductions in the transcript levels of vitellogenin and its receptor or in the total vitellogenin protein level relative to the control group. However, a significant reduction in vitellogenin protein was detected in ovaries injected with dsNlCaM. In addition, a specific dsRNA of NlCaM for control of N. lugens was designed and tested. NlCaM plays important roles mainly in nymph development and uptake of vitellogenin by ovaries in vitellogenesis in N. lugens. dsRNA derived from the less conserved 3'-UTR of NlCaM shows great potential for RNAi-based N. lugens management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Misconceptions on Missing Data in RAD-seq Phylogenetics with a Deep-scale Example from Flowering Plants.

    PubMed

    Eaton, Deren A R; Spriggs, Elizabeth L; Park, Brian; Donoghue, Michael J

    2017-05-01

    Restriction-site associated DNA (RAD) sequencing and related methods rely on the conservation of enzyme recognition sites to isolate homologous DNA fragments for sequencing, with the consequence that mutations disrupting these sites lead to missing information. There is thus a clear expectation for how missing data should be distributed, with fewer loci recovered between more distantly related samples. This observation has led to a related expectation: that RAD-seq data are insufficiently informative for resolving deeper scale phylogenetic relationships. Here we investigate the relationship between missing information among samples at the tips of a tree and information at edges within it. We re-analyze and review the distribution of missing data across ten RAD-seq data sets and carry out simulations to determine expected patterns of missing information. We also present new empirical results for the angiosperm clade Viburnum (Adoxaceae, with a crown age >50 Ma) for which we examine phylogenetic information at different depths in the tree and with varied sequencing effort. The total number of loci, the proportion that are shared, and phylogenetic informativeness varied dramatically across the examined RAD-seq data sets. Insufficient or uneven sequencing coverage accounted for similar proportions of missing data as dropout from mutation-disruption. Simulations reveal that mutation-disruption, which results in phylogenetically distributed missing data, can be distinguished from the more stochastic patterns of missing data caused by low sequencing coverage. In Viburnum, doubling sequencing coverage nearly doubled the number of parsimony informative sites, and increased by >10X the number of loci with data shared across >40 taxa. Our analysis leads to a set of practical recommendations for maximizing phylogenetic information in RAD-seq studies. [hierarchical redundancy; phylogenetic informativeness; quartet informativeness; Restriction-site associated DNA (RAD) sequencing; sequencing coverage; Viburnum.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  8. Research and demonstration results for a new "Double-Solution" technology for municipal solid waste treatment.

    PubMed

    Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu

    2017-11-01

    In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* < {10}10 {M}⊙ ), while massive spirals (with {M}* > {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  10. A complex of RAG-1 and RAG-2 proteins persists on DNA after single-strand cleavage at V(D)J recombination signal sequences.

    PubMed Central

    Grawunder, U; Lieber, M R

    1997-01-01

    The recombination activating gene (RAG) 1 and 2 proteins are required for initiation of V(D)J recombination in vivo and have been shown to be sufficient to introduce DNA double-strand breaks at recombination signal sequences (RSSs) in a cell-free assay in vitro. RSSs consist of a highly conserved palindromic heptamer that is separated from a slightly less conserved A/T-rich nonamer by either a 12 or 23 bp spacer of random sequence. Despite the high sequence specificity of RAG-mediated cleavage at RSSs, direct binding of the RAG proteins to these sequences has been difficult to demonstrate by standard methods. Even when this can be demonstrated, questions about the order of events for an individual RAG-RSS complex will require methods that monitor aspects of the complex during transitions from one step of the reaction to the next. Here we have used template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) in order to assess occupancy of the reaction intermediates by the RAG complex during the reaction. In addition, this approach allows analysis of the accessibility of end products of a RAG-catalyzed cleavage reaction for N nucleotide addition. The results indicate that RAG proteins form a long-lived complex with the RSS once the initial nick is generated, because the 3'-OH group at the nick remains obstructed for TdT-catalyzed N nucleotide addition. In contrast, the 3'-OH group generated at the signal end after completion of the cleavage reaction can be efficiently tailed by TdT, suggesting that the RAG proteins disassemble from the signal end after DNA double-strand cleavage has been completed. Therefore, a single RAG complex maintains occupancy from the first step (nick formation) to the second step (cleavage). In addition, the results suggest that N region diversity at V(D)J junctions within rearranged immunoglobulin and T cell receptor gene loci can only be introduced after the generation of RAG-catalyzed DNA double-strand breaks, i.e. during the DNA end joining phase of the V(D)J recombination reaction. PMID:9060432

  11. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing.

    PubMed

    Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv

    2018-01-01

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.

  12. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  13. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Double Beta Decay Experiments: Present Status and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 × 10-5) are obtained. In the second part of the review prospects of search for the neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  15. RAP80, ubiquitin and SUMO in the DNA damage response.

    PubMed

    Lombardi, Patrick M; Matunis, Michael J; Wolberger, Cynthia

    2017-08-01

    A decade has passed since the first reported connection between RAP80 and BRCA1 in DNA double-strand break repair. Despite the initial identification of RAP80 as a factor localizing BRCA1 to DNA double-strand breaks and potentially promoting homologous recombination, there is increasing evidence that RAP80 instead suppresses homologous recombination to fine-tune the balance of competing DNA repair processes during the S/G 2 phase of the cell cycle. RAP80 opposes homologous recombination by inhibiting DNA end-resection and sequestering BRCA1 into the BRCA1-A complex. Ubiquitin and SUMO modifications of chromatin at DNA double-strand breaks recruit RAP80, which contains distinct sequence motifs that recognize ubiquitin and SUMO. Here, we review RAP80's role in repressing homologous recombination at DNA double-strand breaks and how this role is facilitated by its ability to bind ubiquitin and SUMO modifications.

  16. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  17. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  18. Protein Interaction Profile Sequencing (PIP-seq).

    PubMed

    Foley, Shawn W; Gregory, Brian D

    2016-10-10

    Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  19. Complete Genome Sequence of the Streptomyces Phage Nanodon.

    PubMed

    Erill, Ivan; Caruso, Steven M

    2016-10-06

    Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host. Copyright © 2016 Erill et al.

  20. Hepatitis Delta Antigen Requires a Flexible Quasi-Double-Stranded RNA Structure To Bind and Condense Hepatitis Delta Virus RNA in a Ribonucleoprotein Complex

    PubMed Central

    Griffin, Brittany L.; Chasovskikh, Sergey; Dritschilo, Anatoly

    2014-01-01

    ABSTRACT The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2′OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex. PMID:24741096

  1. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  2. Screening for plant viruses by next generation sequencing using a modified double strand RNA extraction protocol with an internal amplification control.

    PubMed

    Kesanakurti, Prasad; Belton, Mark; Saeed, Hanaa; Rast, Heidi; Boyes, Ian; Rott, Michael

    2016-10-01

    The majority of plant viruses contain RNA genomes. Detection of viral RNA genomes in infected plant material by next generation sequencing (NGS) is possible through the extraction and sequencing of total RNA, total RNA devoid of ribosomal RNA, small RNA interference (RNAi) molecules, or double stranded RNA (dsRNA). Plants do not typically produce high molecular weight dsRNA, therefore the presence of dsRNA makes it an attractive target for plant virus diagnostics. The sensitivity of NGS as a diagnostic method demands an effective dsRNA protocol that is both representative of the sample and minimizes sample cross contamination. We have developed a modified dsRNA extraction protocol that is more efficient compared to traditional protocols, requiring reduced amounts of starting material, that is less prone to sample cross contamination. This was accomplished by using bead based homogenization of plant material in closed, disposable 50ml tubes. To assess the quality of extraction, we also developed an internal control by designing a real-time (quantitative) PCR (qPCR) assay that targets endornaviruses present in Phaseolus vulgaris cultivar Black Turtle Soup (BTS). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    PubMed

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  4. Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods.

    PubMed

    Mirzazadeh, Reza; Kallas, Tomasz; Bienko, Magda; Crosetto, Nicola

    2018-01-01

    DNA double-strand breaks (DSBs) are major DNA lesions that are constantly formed during physiological processes such as DNA replication, transcription, and recombination, or as a result of exogenous agents such as ionizing radiation, radiomimetic drugs, and genome editing nucleases. Unrepaired DSBs threaten genomic stability by leading to the formation of potentially oncogenic rearrangements such as translocations. In past few years, several methods based on next-generation sequencing (NGS) have been developed to study the genome-wide distribution of DSBs or their conversion to translocation events. We developed Breaks Labeling, Enrichment on Streptavidin, and Sequencing (BLESS), which was the first method for direct labeling of DSBs in situ followed by their genome-wide mapping at nucleotide resolution (Crosetto et al., Nat Methods 10:361-365, 2013). Recently, we have further expanded the quantitative nature, applicability, and scalability of BLESS by developing Breaks Labeling In Situ and Sequencing (BLISS) (Yan et al., Nat Commun 8:15058, 2017). Here, we first present an overview of existing methods for genome-wide localization of DSBs, and then focus on the BLESS and BLISS methods, discussing different assay design options depending on the sample type and application.

  5. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae.

    PubMed

    Häring, Monika; Peng, Xu; Brügger, Kim; Rachel, Reinhard; Stetter, Karl O; Garrett, Roger A; Prangishvili, David

    2004-06-01

    A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.

  6. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation.

    PubMed

    Ikehata, Hironobu

    2018-05-31

    Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.

  7. Lattice design for the CEPC double ring scheme

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  8. Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2018-05-01

    I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.

  9. Genomewide Function Conservation and Phylogeny in the Herpesviridae

    PubMed Central

    Albà, M. Mar; Das, Rhiju; Orengo, Christine A.; Kellam, Paul

    2001-01-01

    The Herpesviridae are a large group of well-characterized double-stranded DNA viruses for which many complete genome sequences have been determined. We have extracted protein sequences from all predicted open reading frames of 19 herpesvirus genomes. Sequence comparison and protein sequence clustering methods have been used to construct herpesvirus protein homologous families. This resulted in 1692 proteins being clustered into 243 multiprotein families and 196 singleton proteins. Predicted functions were assigned to each homologous family based on genome annotation and published data and each family classified into seven broad functional groups. Phylogenetic profiles were constructed for each herpesvirus from the homologous protein families and used to determine conserved functions and genomewide phylogenetic trees. These trees agreed with molecular-sequence-derived trees and allowed greater insight into the phylogeny of ungulate and murine gammaherpesviruses. PMID:11156614

  10. Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes.

    PubMed

    Jensen, Peter D; Zhang, Yuanji; Wiggins, B Elizabeth; Petrick, Jay S; Zhu, Jin; Kerstetter, Randall A; Heck, Gregory R; Ivashuta, Sergey I

    2013-01-01

    Long double-stranded RNAs (long dsRNAs) are precursors for the effector molecules of sequence-specific RNA-based gene silencing in eukaryotes. Plant cells can contain numerous endogenous long dsRNAs. This study demonstrates that such endogenous long dsRNAs in plants have sequence complementarity to human genes. Many of these complementary long dsRNAs have perfect sequence complementarity of at least 21 nucleotides to human genes; enough complementarity to potentially trigger gene silencing in targeted human cells if delivered in functional form. However, the number and diversity of long dsRNA molecules in plant tissue from crops such as lettuce, tomato, corn, soy and rice with complementarity to human genes that have a long history of safe consumption supports a conclusion that long dsRNAs do not present a significant dietary risk.

  11. Running Multiple Sub-Jobs with One Job Script on the Peregrine System |

    Science.gov Websites

    =00:10:00 # WALLTIME limit #PBS -l nodes=1:ppn=24 #PBS -q short #PBS -N wait_test #PBS -o std.out #PBS ;stdio.h> main() { double x,h,sum = 0; int i,N; scanf("%d",&N); h=1.0/(double) N; for (i=0 ; i<N; i++) { x=h*((double) i + 0.5); sum += 4.0*h/(1.0+x*x); } printf("\

  12. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA

    NASA Astrophysics Data System (ADS)

    Mielke, Steven P.; Grønbech-Jensen, Niels; Krishnan, V. V.; Fink, William H.; Benham, Craig J.

    2005-09-01

    The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.

  13. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA.

    PubMed

    Mielke, Steven P; Grønbech-Jensen, Niels; Krishnan, V V; Fink, William H; Benham, Craig J

    2005-09-22

    The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.

  14. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  15. Cardiovascular magnetic resonance physics for clinicians: part I.

    PubMed

    Ridgway, John P

    2010-11-30

    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.

  16. Cardiovascular magnetic resonance physics for clinicians: part I

    PubMed Central

    2010-01-01

    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531

  17. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  18. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu

    2018-05-01

    Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

  19. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Apis mellifera Filamentous Virus Genome

    PubMed Central

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D.; de Miranda, Joachim R.; Neumann, Peter

    2015-01-01

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family. PMID:26184284

  1. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  2. Chaotic Behaviour of a Driven P-N Junction

    NASA Astrophysics Data System (ADS)

    Perez, Jose Maria

    The chaotic behavior of a driven p-n junction is experimentally examined. Bifurcation diagrams for the system are measured, showing period doubling bifurcations up to f/32, onset of chaos, reverse bifurcations of chaotic bands, and periodic windows. Some of the measured bifurcation diagrams are similar to the bifurcation diagram of the logistic map x(,n+1) = (lamda)x(,n)(1 - x(,n)). A return map is also measured showing approximately a one-dimensional map with a single extremum at low driving voltages. The intermittency route to chaos is experimentally observed to occur near a tangent bifurcation as the system approaches a period 5 window at (lamda) = (lamda)(,5). Data are presented for the dependence of the average laminar length on (epsilon) = (lamda)(,5) - (lamda), and for the probability distribution P(l) vs. l. The effects of additive stochastic noise on period doubling, chaos, windows, and intermittency are examined and are found to agree with the logistic model and universal predictions. Three examples of crisis of the attractor are observed. The crises occur when an unstable orbit intersects the chaotic attractor. A period adding sequence is reported in which wide periodic windows of period 2, 3, 4, ... are observed for increasing driving voltage. The initial period doubling cascade and the period adding sequence are compared to two theoretical models, with reasonable success.

  3. MSLICE Sequencing

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Norris, Jeffrey S.; Morris, John R.

    2011-01-01

    MSLICE Sequencing is a graphical tool for writing sequences and integrating them into RML files, as well as for producing SCMF files for uplink. When operated in a testbed environment, it also supports uplinking these SCMF files to the testbed via Chill. This software features a free-form textural sequence editor featuring syntax coloring, automatic content assistance (including command and argument completion proposals), complete with types, value ranges, unites, and descriptions from the command dictionary that appear as they are typed. The sequence editor also has a "field mode" that allows tabbing between arguments and displays type/range/units/description for each argument as it is edited. Color-coded error and warning annotations on problematic tokens are included, as well as indications of problems that are not visible in the current scroll range. "Quick Fix" suggestions are made for resolving problems, and all the features afforded by modern source editors are also included such as copy/cut/paste, undo/redo, and a sophisticated find-and-replace system optionally using regular expressions. The software offers a full XML editor for RML files, which features syntax coloring, content assistance and problem annotations as above. There is a form-based, "detail view" that allows structured editing of command arguments and sequence parameters when preferred. The "project view" shows the user s "workspace" as a tree of "resources" (projects, folders, and files) that can subsequently be opened in editors by double-clicking. Files can be added, deleted, dragged-dropped/copied-pasted between folders or projects, and these operations are undoable and redoable. A "problems view" contains a tabular list of all problems in the current workspace. Double-clicking on any row in the table opens an editor for the appropriate sequence, scrolling to the specific line with the problem, and highlighting the problematic characters. From there, one can invoke "quick fix" as described above to resolve the issue. Once resolved, saving the file causes the problem to be removed from the problem view.

  4. The IDEAL study : towards personalized drug treatment of hypertension.

    PubMed

    Bejan-Angoulvant, Theodora; Baguet, Jean-Philippe; Erpeldinger, Sylvie; Boivin, Jean-Marc; Mercier, Alain; Leftheriotis, Georges; Gagnol, Jean-Pierre; Fauvel, Jean-Pierre; Giraud, Céline; Bricca, Giampiero; Gueyffier, François

    2012-01-01

    To identify markers (phenotypic, genetic, or environmental) of blood pressure (BP) response profiles to angiotensin converting enzyme inhibitors (ACEIs) and diuretics. IDEAL was a crossover (two active and two wash out phases), double-blind, placebo-controlled trial. Eligible patients were untreated hypertensive, aged 25 to 70. After two visits, patients were randomized to one of four sequences. The main outcome was BP differences between the active treatment and placebo. One hundred and twenty-four patients were randomised: mean age 53, men 65%, family history of hypertension 60%. Average BP fall at each visit before randomisation was about 2% of the initial level reflecting both a regression to the mean and a placebo effect. The results are expected to improve knowledge in drug's mechanisms of action and pathophysiology of hypertension, and to help in personalizing treatment. The estimation of BP responses to each drug in standardized conditions provided a benefit to each participant. © 2012 Société Française de Pharmacologie et de Thérapeutique.

  5. PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, T. S.; Mathur, S.; Creevey, O. L.

    2014-10-01

    Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismicmore » Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.« less

  6. One- and two-dimensional pulse electron paramagnetic resonance spectroscopy: concepts and applications.

    PubMed

    Van Doorslaer, S; Schweiger, A

    2000-06-01

    During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.

  7. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.

    PubMed

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-08

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.

  8. Reconnaissance of Young M Dwarfs: Locating the Elusive Majority of Nearby Moving Groups

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan; Liu, Michael; Riaz, Basmah; Gizis, John; Shkolnik, Evgenya

    2013-08-01

    With ages between ~8-120 Myr and distances lsim;80 pc, young moving group members make excellent targets for detailed studies of pre-main sequence evolution and exoplanet imaging surveys. We propose a multi-semester spectroscopic program to confirm our sample of ~1300 X-ray-selected active M dwarfs, about one-third of which are expected to be members of young moving groups. Our program consists of three parts: a reconnaissance phase of low-resolution spectroscopy to vet unlikely association members, radial velocity observations to confirm group membership, and deep adaptive optics imaging to study the architecture and demographics of giant planets around low-mass stars. We will also exploit our rich sample to study the evolution of chromospheric and coronal activity in low-mass stars with unprecedented precision. Altogether, this program will roughly double the population of M dwarfs in young moving groups, providing new targets for a broad range of star and planet formation studies in the near-future.

  9. Warm debris disks candidates in transiting planets systems

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.

    2012-05-01

    We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.

  10. Resonance-enhanced two-photon excitation of CaI

    NASA Astrophysics Data System (ADS)

    Casero-Junquera, Elena; Lawruszczuk, Rafal; Rostas, Joëlle; Taieb, Guy

    1994-07-01

    Induced fluorescence following visible (620-655 nm) laser excitation of the CaI radical has been detected not only in the same region (B, A-X transitions), but also in the UV (315-330 nm). The UV two-photon excitation spectrum consists of narrow bands appearing at laser frequencies located within certain bands of the Δ v = 1, 0 sequences of the B 2Σ +-X 2Σ + and A 2Π 1/2-X 2Σ + systems. The main peaks are tentatively assigned to resonance-enhanced excitation of a single vibrational level of the lowest Rydberg D 2Σ + state from successive vibrational levels of the ground state. The excitation process is a one-color two-photon optical—optical-double-resonance via B 2Σ + and A 2Π 1/2 intermediate levels. This analysis is supported by the absorption spectrum observed long ago by Walters and Barratt. The absorption and laser excitation complementary data have been used to derive approximate molecular constants for the D state.

  11. Characteristics of the Variable Star P Cygni Determined from Cluster Membership

    NASA Technical Reports Server (NTRS)

    Turner, David G.; Welch, Gary; Graham, Marianne; Fairweather, David; Horsford, Andrew; Seymour, Michael; Feibelman, Walter; Fisher, Richard (Technical Monitor)

    2001-01-01

    Empirical information on the luminosity, reddening, age, and mass of the variable B2 Oe supergiant P Cygni is derived from its assumed membership in the sparse anonymous cluster on which it is projected, as well as its association with the spatially adjacent cluster IC 4996, which forms a double cluster with the P Cyg cluster. Evidence for the high luminosity of P Cyg is confirmed by its derived absolute magnitude of M(sub V)= -8.46 +/- 0.03, which translates to log (L/L(sun)) = 5.54 +/- 0.02 for an effective temperature consistent with the star's derived space reddening (E(sub B-V) = 0.53 +/- 0.02). More surprising is an age for the associated clusters of 6 (+/- 1.5) x 10(exp 6) years, corresponding to a turnoff point mass of 25.1 (+/- 5.5) M(sun). By inference, P Cygni, as a post main-sequence object, should have a mass of no more than approximately 23-35 M(sun).

  12. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  13. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  14. Strand-invading linear probe combined with unmodified PNA.

    PubMed

    Asanuma, Hiroyuki; Niwa, Rie; Akahane, Mariko; Murayama, Keiji; Kashida, Hiromu; Kamiya, Yukiko

    2016-09-15

    Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy.

    PubMed

    Tomita, Naruya; Tomita, Tetsuya; Yuyama, Kazuhiko; Tougan, Takahiro; Tajima, Tsuyoshi; Ogihara, Toshio; Morishita, Ryuichi

    2003-04-01

    The inhibition of specific transcription regulatory proteins is a novel approach to regulate gene expression. The transcriptional activities of DNA binding proteins can be inhibited by the use of double-stranded oligonucleotides (ODNs) that compete for binding to their specific target sequences in promoters and enhancers. Transfection of this cis-element double-stranded ODN, referred to as decoy ODN, has been reported to be a powerful tool that provides a new class of anti-gene strategies to gene therapy and permits examination of specific gene regulation. We have demonstrated the usefulness of this decoy ODN strategy in animal models of restenosis, myocardial infarction, glomerulonephritis and rheumatoid arthritis. However, one of the major limitations of decoy ODN technology is the rapid degradation of phosphodiester ODNs by intracellular nucleases. To date, several different types of double-stranded decoy ODNs have been developed to overcome this issue. Circular dumb-bell (CD) double-stranded decoy ODNs that were developed to resolve this issue have attracted a high level of interest. In this review, the applications of decoy ODN strategy and the advantages of modified CD double-stranded decoy ODNs will be discussed.

  16. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species.

    PubMed

    Dong, Yan-Qi; Zhao, Wei-Xing; Li, Xiao-Hui; Liu, Xi-Cun; Gao, Ning-Ning; Huang, Jin-Hua; Wang, Wen-Ying; Xu, Xiao-Li; Tang, Zhen-Hai

    2016-10-01

    Haploids and doubled haploids are critical components of plant breeding. This review is focused on studies on haploids and double haploids inducted in cucurbits through in vitro pollination with irradiated pollen, unfertilized ovule/ovary culture, and anther/microspore culture during the last 30 years, as well as comprehensive analysis of the main factors of each process and comparison between chromosome doubling and ploidy identification methods, with special focus on the application of double haploids in plant breeding and genetics. This review identifies existing problems affecting the efficiency of androgenesis, gynogenesis, and parthenogenesis in cucurbit species. Donor plant genotypes and surrounding environments, developmental stages of explants, culture media, stress factors, and chromosome doubling and ploidy identification are compared at length and discussed as methodologies and protocols for androgenesis, gynogenesis, and parthenogenesis in haploid and double haploid production technologies.

  17. Blueberry virus A

    USDA-ARS?s Scientific Manuscript database

    Leaf yellowing on highbush blueberry ‘Spartan’ prompted Isogai et al. to investigate whether a virus was the causal agent of the disorder. After double-stranded RNA extraction from symptomatic material they identified a single band of 17 Kb, indicative of virus infection. Shotgun cloning and sequenc...

  18. Lily Pad Doubling: Proportional Reasoning Development

    ERIC Educational Resources Information Center

    Robichaux-Davis, Rebecca R.

    2017-01-01

    Progressing from additive to multiplicative thinking is critical for the development of middle school students' proportional reasoning abilities. Yet, many middle school mathematics teachers lack a thorough understanding of additive versus multiplicative situations. This article describes a sequence of instructional activities used to develop the…

  19. The diversity of the orthoreoviruses: molecular taxonomy and phylogentic divides.

    USDA-ARS?s Scientific Manuscript database

    The family Reoviridae is a diverse group of viruses with double-stranded ribonucleic acid (RNA) genomes contained within icosahedral, layered protein capsids. Within the Reoviridae, the Orthoreovirus genus includes viruses that infect reptiles, birds and mammals (including humans). Recent sequencing...

  20. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-01

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most Nsbnd H and Csbnd H bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.

  1. Characterization of Two Novel Polyomaviruses of Birds by Using Multiply Primed Rolling-Circle Amplification of Their Genomes

    PubMed Central

    Johne, Reimar; Wittig, Walter; Fernández-de-Luco, Daniel; Höfle, Ursula; Müller, Hermann

    2006-01-01

    Polyomaviruses are small nonenveloped particles with a circular double-stranded genome, approximately 5 kbp in size. The mammalian polyomaviruses mainly cause persistent subclinical infections in their natural nonimmunocompromised hosts. In contrast, the polyomaviruses of birds—avian polyomavirus (APV) and goose hemorrhagic polyomavirus (GHPV)—are the primary agents of acute and chronic disease with high mortality rates in young birds. Screening of field samples of diseased birds by consensus PCR revealed the presence of two novel polyomaviruses in the liver of an Eurasian bullfinch (Pyrrhula pyrrhula griseiventris) and in the spleen of a Eurasian jackdaw (Corvus monedula), tentatively designated as finch polyomavirus (FPyV) and crow polyomavirus (CPyV), respectively. The genomes of the viruses were amplified by using multiply primed rolling-circle amplification and cloned. Analysis of the FPyV and CPyV genome sequences revealed a close relationship to APV and GHPV, indicating the existence of a distinct avian group among the polyomaviruses. The main characteristics of this group are (i) involvement in fatal disease, (ii) the existence of an additional open reading frame in the 5′ region of the late mRNAs, and (iii) a different manner of DNA binding of the large tumor antigen compared to that of the mammalian polyomaviruses. PMID:16537620

  2. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins

    PubMed Central

    2011-01-01

    Background A deficiency in phaseolin and phytohemagglutinin is associated with a near doubling of sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris), particularly cysteine, elevated by 70%, and methionine, elevated by 10%. This mostly takes place at the expense of an abundant non-protein amino acid, S-methyl-cysteine. The deficiency in phaseolin and phytohemagglutinin is mainly compensated by increased levels of the 11S globulin legumin and residual lectins. Legumin, albumin-2, defensin and albumin-1 were previously identified as contributing to the increased sulfur amino acid content in the mutant line, on the basis of similarity to proteins from other legumes. Results Profiling of free amino acid in developing seeds of the BAT93 reference genotype revealed a biphasic accumulation of gamma-glutamyl-S-methyl-cysteine, the main soluble form of S-methyl-cysteine, with a lag phase occurring during storage protein accumulation. A collection of 30,147 expressed sequence tags (ESTs) was generated from four developmental stages, corresponding to distinct phases of gamma-glutamyl-S-methyl-cysteine accumulation, and covering the transitions to reserve accumulation and dessication. Analysis of gene ontology categories indicated the occurrence of multiple sulfur metabolic pathways, including all enzymatic activities responsible for sulfate assimilation, de novo cysteine and methionine biosynthesis. Integration of genomic and proteomic data enabled the identification and isolation of cDNAs coding for legumin, albumin-2, defensin D1 and albumin-1A and -B induced in the absence of phaseolin and phytohemagglutinin. Their deduced amino acid sequences have a higher content of cysteine than methionine, providing an explanation for the preferential increase of cysteine in the mutant line. Conclusion The EST collection provides a foundation to further investigate sulfur metabolism and the differential accumulation of sulfur amino acids in seed of common bean. Identification of sulfur-rich proteins whose levels are elevated in seed lacking phaseolin and phytohemagglutinin and sulfur metabolic genes may assist the improvement of protein quality. PMID:21615926

  3. Double Y-stenting for tracheobronchial stenosis.

    PubMed

    Oki, Masahide; Saka, Hideo

    2012-12-01

    The purpose of the present study was to evaluate the feasibility, efficacy and safety of the double Y-stenting technique, by which silicone Y-stents are placed on both the main carina and another peripheral carina, for patients with tracheobronchial stenosis. Under general anaesthesia, using rigid and flexible bronchoscopes, a Dumon™ Y-stent (Novatech, La Ciotat, France) was first placed on the primary right or secondary left carina followed by another Y-stent on the main carina so as to insert the bronchial limb of the stent into the first Y-stent. Patients who underwent double Y-stent placement during 3 yrs and 1 month in a single centre were retrospectively reviewed. In the study period, 93 patients underwent silicone stent placement and 12 (13%) underwent double Y-stent placement (11 for right and one for left bronchus). A combination of Y-stents, 14 × 10 × 10 mm and 16 × 13 × 13 mm in outer diameter, were most frequently used. Dyspnoea was relieved in all patients. Six out of seven patients with supplemental oxygen before stent placement could be discharged without supplemental oxygen. Median survival after stenting was 94.5 days. One pneumothorax and one granuloma formation occurred. Double Y-stent placement for patients with tracheobronchial stenosis was technically feasible, effective and acceptably safe.

  4. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    PubMed

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the water supply infrastructure.

  5. Methodological reporting of randomized clinical trials in respiratory research in 2010.

    PubMed

    Lu, Yi; Yao, Qiuju; Gu, Jie; Shen, Ce

    2013-09-01

    Although randomized controlled trials (RCTs) are considered the highest level of evidence, they are also subject to bias, due to a lack of adequately reported randomization, and therefore the reporting should be as explicit as possible for readers to determine the significance of the contents. We evaluated the methodological quality of RCTs in respiratory research in high ranking clinical journals, published in 2010. We assessed the methodological quality, including generation of the allocation sequence, allocation concealment, double-blinding, sample-size calculation, intention-to-treat analysis, flow diagrams, number of medical centers involved, diseases, funding sources, types of interventions, trial registration, number of times the papers have been cited, journal impact factor, journal type, and journal endorsement of the CONSORT (Consolidated Standards of Reporting Trials) rules, in RCTs published in 12 top ranking clinical respiratory journals and 5 top ranking general medical journals. We included 176 trials, of which 93 (53%) reported adequate generation of the allocation sequence, 66 (38%) reported adequate allocation concealment, 79 (45%) were double-blind, 123 (70%) reported adequate sample-size calculation, 88 (50%) reported intention-to-treat analysis, and 122 (69%) included a flow diagram. Multivariate logistic regression analysis revealed that journal impact factor ≥ 5 was the only variable that significantly influenced adequate allocation sequence generation. Trial registration and journal impact factor ≥ 5 significantly influenced adequate allocation concealment. Medical interventions, trial registration, and journal endorsement of the CONSORT statement influenced adequate double-blinding. Publication in one of the general medical journal influenced adequate sample-size calculation. The methodological quality of RCTs in respiratory research needs improvement. Stricter enforcement of the CONSORT statement should enhance the quality of RCTs.

  6. Cyberinfrastructure for the NSF Ocean Observatories Initiative

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Vernon, F. L.; Arrott, M.; Chave, A.; Krueger, I.; Schofield, O.; Glenn, S.; Peach, C.; Nayak, A.

    2007-12-01

    The Internet today is vastly different than the Internet that we knew even five years ago and the changes that will be evident five years from now, when the NSF Ocean Observatories Initiative (OOI) prototype has been installed, are nearly unpredictable. Much of this progress is based on the exponential growth in capabilities of consumer electronics and information technology; the reality of this exponential behavior is rarely appreciated. For example, the number of transistors on a square cm of silicon will continue to double every 18 months, the density of disk storage will double every year, and network bandwidth will double every eight months. Today's desktop 2TB RAID will be 64TB and the 10Gbps Regional Scale Network fiber optical connection will be running at 1.8Tbps. The same exponential behavior characterizes the future of genome sequencing. The first two sequences of composites of individuals' genes cost tens of millions of dollars in 2001. Dr. Craig Venter just published a more accurate complete human genome (his own) at a cost on the order of 100,000. The J. Craig Venter Institute has provided support for the X Prize for Genomics offering 10M to the first successful sequencing of a human genome for $1,000. It's anticipated that the prize will be won within five years. Major advances in technology that are broadly viewed as disruptive or revolutionary rather than evolutionary will often depend upon the exploitation of exponential expansions in capability. Applications of these ideas to the OOI will be discussed. Specifically, the agile ability to scale cyberinfrastructure commensurate with the exponential growth of sensors, networks and computational capability and demand will be described.

  7. SNPs in Entire Mitochondrial Genome Sequences (≈15.4 kb) and cox1 Sequences (≈486 bp) Resolve Body and Head Lice From Doubly Infected People From Ethiopia, China, Nepal, and Iran But Not France.

    PubMed

    Xiong, H; Campelo, D; Boutellis, A; Raoult, D; Alem, M; Ali, J; Bilcha, K; Shao, R; Pollack, R J; Barker, S C

    2014-11-01

    Some people host lice on the clothing as well as the head. Whether body lice and head lice are distinct species or merely variants of the same species remains contentious. We sought to ascertain the extent to which lice from these different habitats might interbreed on doubly infected people by comparing their entire mitochondrial genome sequences. Toward this end, we analyzed two sets of published genetic data from double-infections of body lice and head lice: 1) entire mitochondrial coding regions (≈15.4 kb) from body lice and head lice from seven doubly infected people from Ethiopia, China, and France; and 2) part of the cox1 gene (≈486 bp) from body lice and head lice from a further nine doubly infected people from China, Nepal, and Iran. These mitochondrial data, from 65 lice, revealed extraordinary variation in the number of single nucleotide polymorphisms between the individual body lice and individual head lice of double-infections: from 1.096 kb of 15.4 kb (7.6%) to 2 bps of 15.4 kb (0.01%). We detected coinfections of lice of Clades A and C on the scalp hair of three of the eight people from Nepal: one person of the two people from Kathmandu and two of the six people from Pokhara. Lice of Clades A and B coinfected the scalp hair of one person from Atherton, Far North Queensland, Australia. These findings argue for additional large-scale studies of the body lice and head lice of double-infected people. © 2014 Entomological Society of America.

  8. Transitions to Chaos in a Seven-Equation Model of the Business Cycle with Income Redistribution and Private Debt

    NASA Astrophysics Data System (ADS)

    Colacchio, Giorgio

    In the present paper, we investigate the chaotic implications of a seven-equation model of the business cycle. The main distinguishing features of the model are related to: (a) the role played by the bargaining power in the process of income redistribution; (b) the consideration of hysteresis effects on workers’ consumption demand; (c) the effect of public expenditure on labor productivity. In addition, the role played by the agents’ memory on the actual dynamics of the economic system, with particular regard to their learning-by-doing process, is particularly emphasized. Under all these assumptions, the system exhibits a rich and complex phenomenology, characterized by a number of transitions to chaos (in particular via sequences of period doubling bifurcations), aperiodic behavior, bistability, tristability, etc. We maintain that our analysis takes us another step forward in the building of a more general model of the business cycle. In particular, the model we propose may be of help in the explanation of some peculiar features of advanced capitalist economies, with particular regard to the role played by the State in the determination of agents’ disposable income, to the debt dynamics of the various macroagents, and to the main dilemmas of economic policy. More in general, the main lesson one learns from our investigation is that “disequilibrium paths”, characterized by “complicated” dynamics which, more often than not, takes the form of aperiodic motion, should be considered as the “normal” state of the system.

  9. The set of triple-resonance sequences with a multiple quantum coherence evolution period

    NASA Astrophysics Data System (ADS)

    Koźmiński, Wiktor; Zhukov, Igor

    2004-12-01

    The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.

  10. Multiple quay cranes scheduling for double cycling in container terminals

    PubMed Central

    Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen

    2017-01-01

    Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high. PMID:28692699

  11. Multiple quay cranes scheduling for double cycling in container terminals.

    PubMed

    Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen

    2017-01-01

    Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.

  12. Designing pH induced fold switch in proteins

    NASA Astrophysics Data System (ADS)

    Baruah, Anupaul; Biswas, Parbati

    2015-05-01

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  13. Design of the hairpin ribozyme for targeting specific RNA sequences.

    PubMed

    Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A

    1997-01-01

    The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.

  14. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG

    PubMed Central

    Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.

    2015-01-01

    We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573

  15. AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, A. I.

    2009-02-01

    AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.

  16. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    PubMed

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-06-07

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 and two different photocompetent derivatives that carry both alanine substitutions and an intergenic suppressor mutation located far from QB (class 3 strain, Ala-Ala + Arg-M231-->Leu; class 4 strain, Ala-Ala + Asn-M43-->Asp). At pH 8 in the double mutant, we observe a concomitant decrease of nearly 4 orders of magnitude in the rate constants of second electron and proton transfer to QB compared to the wild type. Surprisingly, these rates are increased to about the same extent in both types of suppressor strains but remain > 2 orders of magnitude smaller than those of the wild type. In the double mutant, at pH 8, the loss of Asp-L213 and Glu-L212 leads to a substantial stabilization (> or = 60 meV) of the semiquinone energy level. Both types of compensatory mutations partially restore, to nearly the same level, the original free energy difference for electron transfer from primary quinone QA to QB. The pH dependence of the electron and proton transfer processes in the double-mutant and the suppressor strains suggests that when reaction centers of the double mutant are shifted to lower pH (1.5-2 units), they function like those of the suppressor strains at physiological pH. Our data suggest that the main effect of the compensatory mutations is to partially restore the negative electrostatic environment of QB and to increase an apparent "functional" pK of the system for efficient proton transfer to the active site. This emphasizes the role of the protein in tuning the electrostatic environment of its cofactors and highlights the possible long-range electrostatic effects.

  17. The Winds of Main Sequence B Stars in NGC 6231, Evidence for Shocks in Weak Winds.

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    1996-07-01

    Because the main sequence B stars in NGC 6231 have abnormallystrong C iv wind lines, they are the only main sequence Bstars with distinct edge velocities. Although the underlyingcause for the strong lines remains unknown, these stars doprovide an opportunity to test two important ideas concerningB star winds: 1) that the driving ions in the winds of starswith low mass loss rates decouple from the general flow, and;2) that shocks deep in the winds of main sequence B stars areresponsible for their observed X-rays. In both of thesemodels, the wind accelerates toward a terminal velocity,v_infty, far greater than the observed value, shocking ordecoupling well before it can attain the high v_infty. As aresult, the observable wind accelerates very rapidly, leadingto wind flushing times less than 30 minutes. If theseconjectures are correct, then the winds of main sequence Bstars should be highly variable on time scales of minutes.Model fitting of available IUE data are consistant with thegeneral notion of a rapidly accelerating wind, shocking wellbefore its actual v_infty. However, these are 5 hourexposures, so the fits are to ill-defined mean wind flows.The new GHRS observations will provide adequate spectral andtemporal resolution to observe the expected variability and,thereby, verify the existance of two important astrophysicalprocesses.

  18. RNAi-Mediated Knockdown of Catalase Causes Cell Cycle Arrest in SL-1 Cells and Results in Low Survival Rate of Spodoptera litura (Fabricius)

    PubMed Central

    Hu, Meiying; Chen, Shaohua; Muhammad, Rizwan-ul-Haq; Dong, Xiaolin; Gong, Liang

    2013-01-01

    Deregulated reactive oxygen species (ROS) production can lead to the disruption of structural and functional integrity of cells as a consequence of reactive interaction between ROS and various biological components. Catalase (CAT) is a common enzyme existing in nearly all organisms exposed to oxygen, which decomposes harmful hydrogen peroxide, into water and oxygen. In this study, the full length sequence that encodes CAT-like protein from Spodoptera litura named siltCAT (GenBank accession number: JQ_663444) was cloned and characterized. Amino acid sequence alignment showed siltCAT shared relatively high conservation with other insect, especially the conserved residues which defined heme and NADPH orientation. Expression pattern analysis showed that siltCAT mRNA was mainly expressed in the fat body, midgut, cuticle and malpighian tube, and as well as over last instar larvae, pupa and adult stages. RNA interference was used to silence CAT gene in SL-1 cells and the fourth-instar stage of S. litura larvae respectively. Our results provided evidence that CAT knockdown induced ROS generation, cell cycle arrest and apoptosis in SL-1 cells. It also confirmed the decrease in survival rate because of increased ROS production in experimental groups injected with double-stranded RNA of CAT (dsCAT). This study implied that ROS scavenging by CAT is important for S. litura survival. PMID:23555693

  19. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  20. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  1. DNA unzipping phase diagram calculated via replica theory.

    PubMed

    Roland, C Brian; Hatch, Kristi Adamson; Prentiss, Mara; Shakhnovich, Eugene I

    2009-05-01

    We show how single-molecule unzipping experiments can provide strong evidence that the zero-force melting transition of long molecules of natural dsDNA should be classified as a phase transition of the higher-order type (continuous). Toward this end, we study a statistical-mechanics model for the fluctuating structure of a long molecule of dsDNA, and compute the equilibrium phase diagram for the experiment in which the molecule is unzipped under applied force. We consider a perfect-matching dsDNA model, in which the loops are volume-excluding chains with arbitrary loop exponent c . We include stacking interactions, hydrogen bonds, and main-chain entropy. We include sequence heterogeneity at the level of random sequences; in particular, there is no correlation in the base-pairing (bp) energy from one sequence position to the next. We present heuristic arguments to demonstrate that the low-temperature macrostate does not exhibit degenerate ergodicity breaking. We use this claim to understand the results of our replica-theoretic calculation of the equilibrium properties of the system. As a function of temperature, we obtain the minimal force at which the molecule separates completely. This critical-force curve is a line in the temperature-force phase diagram that marks the regions where the molecule exists primarily as a double helix versus the region where the molecule exists as two separate strands. We compare our random-sequence model to magnetic tweezer experiments performed on the 48 502 bp genome of bacteriophage lambda . We find good agreement with the experimental data, which is restricted to temperatures between 24 and 50 degrees C . At higher temperatures, the critical-force curve of our random-sequence model is very different for that of the homogeneous-sequence version of our model. For both sequence models, the critical force falls to zero at the melting temperature T_{c} like |T-T_{c}|;{alpha} . For the homogeneous-sequence model, alpha=1/2 almost exactly, while for the random-sequence model, alpha approximately 0.9 . Importantly, the shape of the critical-force curve is connected, via our theory, to the manner in which the helix fraction falls to zero at T_{c} . The helix fraction is the property that is used to classify the melting transition as a type of phase transition. In our calculation, the shape of the critical-force curve holds strong evidence that the zero-force melting transition of long natural dsDNA should be classified as a higher-order (continuous) phase transition. Specifically, the order is 3rd or greater.

  2. A novel nonsteroidal antifibrotic oligo decoy containing the TGF-beta element found in the COL1A1 gene which regulates murine schistosomiasis liver fibrosis.

    PubMed

    Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R

    2005-08-01

    Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.

  3. Efficacy of double inversion recovery magnetic resonance imaging for the evaluation of the synovium in the femoro-patellar joint without contrast enhancement.

    PubMed

    Son, Ye Na; Jin, Wook; Jahng, Geon-Ho; Cha, Jang Gyu; Park, Yong Sung; Yun, Seong Jong; Park, So Young; Park, Ji Seon; Ryu, Kyung Nam

    2018-02-01

    To investigate the efficacy of double inversion recovery (DIR) sequence for evaluating the synovium of the femoro-patellar joint without contrast enhancement (CE). Two radiologists independently evaluated the axial DIR and CE T1-weighted fat-saturated (CET1FS) images of 33 knees for agreement; the visualisation and distribution of the synovium were evaluated using a four-point visual scaling system at each of the five levels of the femoro-patellar joint and the location of the thickest synovium. The maximal synovial thickness at each sequence was measured by consensus. The interobserver agreement was good (κ = 0.736) for the four-point scale, and was excellent for the location of the thickest synovium on DIR and CET1FS (κ = 0.955 and 0.954). The intersequential agreement for the area with the thickest synovium was also excellent (κ = 0.845 and κ = 0.828). The synovial thickness on each sequence showed excellent correlation (r = 0.872). The DIR showed as good a correlation as CET1FS for the evaluation of the synovium at the femoro-patellar joint. DIR may be a useful MR technique for evaluating the synovium without CE. • DIR can be useful for evaluating the synovium of the femoro-patellar joint. • Interobserver and intersequential agreements between DIR and CET1FS were good. • Mean thickness of the synovium was significantly different between two sequences.

  4. Double Hits in Schizophrenia.

    PubMed

    Vorstman, Jacob A S; Olde Loohuis, Loes M; Kahn, René S; Ophoff, Roel A

    2018-05-14

    The co-occurrence of a Copy Number Variant (CNV) and a functional variant on the other allele may be a relevant genetic mechanism in schizophrenia. We hypothesized that the cumulative burden of such double hits - in particular those composed of a deletion and a coding single nucleotide variation (SNV) - is increased in patients with schizophrenia.We combined CNV data with coding variants data in 795 patients with schizophrenia and 474 controls. To limit false CNV-detection, only CNVs called only by two algorithms we included. CNV-affected genes were subsequently examined for coding SNVs, which we termed "CNV-SNVs". Correcting for total queried sequence, we assessed the CNV-SNV-burden and the combined predicted deleterious effect. We estimated p-values by permutation of the phenotype.We detected 105 CNV-SNVs; 67 in duplicated and 38 in deleted genic sequence. While the difference in CNV-SNVs rates was not significant, the combined deleteriousness inferred by CNV-SNVs in deleted sequence was almost fourfold higher in cases compared to controls (nominal p = 0.009). This effect may be driven by a higher number of CNV-SNVs and/or by a higher degree of predicted deleteriousness of CNV-SNVs. No such effect was observed for duplications.We provide early evidence that deletions co-occurring with a functional variant may be relevant, albeit of modest impact, for the genetic etiology of schizophrenia. Large-scale consortium studies are required to validate our findings. Sequence-based analyses would provide the best resolution for detection of CNVs as well as coding variants genome-wide.

  5. Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma.

    PubMed

    Borozan, Ivan; Zapatka, Marc; Frappier, Lori; Ferretti, Vincent

    2018-01-15

    Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis. IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the first EBV sequences from non-Asian GC. We further identify sequence changes in some EBV proteins common to GC isolates. In addition, gene expression analysis of eight of the EBV-positive GCs showed consistent expression of both the expected latency proteins and a subset of lytic proteins that was not consistent with typical lytic or abortive lytic expression. These results suggest that novel mechanisms activate expression of some EBV lytic proteins and that their expression may contribute to oncogenesis. Copyright © 2018 American Society for Microbiology.

  6. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  7. Molecular Structure of a Helical ribbon in a Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang

    2002-03-01

    We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.

  8. Molecular Characterization and Phylogenetic Analysis of Pseudomonas aeruginosa Isolates Recovered from Greek Aquatic Habitats Implementing the Double-Locus Sequence Typing Scheme.

    PubMed

    Pappa, Olga; Beloukas, Apostolos; Vantarakis, Apostolos; Mavridou, Athena; Kefala, Anastasia-Maria; Galanis, Alex

    2017-07-01

    The recently described double-locus sequence typing (DLST) scheme implemented to deeply characterize the genetic profiles of 52 resistant environmental Pseudomonas aeruginosa isolates deriving from aquatic habitats of Greece. DLST scheme was able not only to assign an already known allelic profile to the majority of the isolates but also to recognize two new ones (ms217-190, ms217-191) with high discriminatory power. A third locus (oprD) was also used for the molecular typing, which has been found to be fundamental for the phylogenetic analysis of environmental isolates given the resulted increased discrimination between the isolates. Additionally, the circulation of acquired resistant mechanisms in the aquatic habitats according to their genetic profiles was proved to be more extent. Hereby, we suggest that the combination of the DLST to oprD typing can discriminate phenotypically and genetically related environmental P. aeruginosa isolates providing reliable phylogenetic analysis at a local level.

  9. Electric fields yield chaos in microflows

    PubMed Central

    Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.

    2012-01-01

    We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251

  10. Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Du, Zhengdong

    2017-02-01

    In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton-Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants δ _F= 4.66920160\\cdots.

  11. Evidence of Mixed-mode oscillations and Farey arithmetic in double plasma system in presence of fireball

    NASA Astrophysics Data System (ADS)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    2017-10-01

    Plasma fireballs are luminous glowing region formed around a positively biased electrode. The present work reports the observation of mix mode oscillation (MMO) in the dynamics of plasma oscillations that are excited in the presence of fireball in a double plasma device. Source voltage and applied electrode voltage are considered as the controlling parameters for the experiment. Many sequences of distinct multi peaked periodic states reflects the presence of MMO with the variation of control parameter. The sequences of states with two patterns are characterized well by Farey arithmetic, which provides rational approximations of irrational numbers. These states can be characterized by a firing number, the ratio of the number of small amplitude oscillations to the total number of oscillations per period. The dynamical transition in plasma fireball is also demonstrated by spectral analysis, recurrence quantification analysis (RQA) and by statistical measures viz., skewness and kurtosis. The mix mode phenomenon observed in the experiment is consistent with a model that describes the dynamics of ionization instabilities.

  12. Application of Double Spin-Echo Spiral Chemical Shift Imaging to Rapid Metabolic Mapping of Hyperpolarized [1-13C]-Pyruvate

    PubMed Central

    Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2011-01-01

    Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280

  13. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    PubMed

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  14. J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain

    PubMed Central

    Pan, J.W.; Avdievich, N.; Hetherington, H.P.

    2013-01-01

    Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684

  15. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    PubMed Central

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  16. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  17. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  18. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. V. THE AM STARS HD 434 AND 41 SEXTANTIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Williamson, Michael H., E-mail: fekel@evans.tsuniv.ed

    We have detected the secondary component in two previously known spectroscopic binaries, HD 434 and 41 Sex, and for the first time determined double-lined orbits for them. Despite the relatively long period of 34.26 days and a moderate eccentricity of 0.32, combined with the components' rotationally broadened lines, measurement of the primary and secondary radial velocities of HD 434 has enabled us to obtain significantly improved orbital elements. While the 41 Sex system has a much shorter period of 6.167 days and a circular orbit, the estimated V mag difference of 3.2 between its components also makes this a challengingmore » system. The new orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of HD 434 have accuracies of 0.8% or better, while the same quantities for 41 Sex are good to 0.5% or better. Both components of HD 434 are Am stars while the Am star primary of 41 Sex has a late-F or early-G companion. All four stars are on the main sequence. The two components of HD 434 are rotating much faster than their predicted pseudosynchronous velocities, while both components of 41 Sex are synchronously rotating. For the primary of 41 Sex, the spectrum line depth changes noted by Sreedhar Rao et al. were not detected.« less

  19. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  20. Cloud computing for genomic data analysis and collaboration.

    PubMed

    Langmead, Ben; Nellore, Abhinav

    2018-04-01

    Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

  1. Triple helix purification and sequencing

    DOEpatents

    Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.

    1995-01-01

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.

  2. Triple helix purification and sequencing

    DOEpatents

    Wang, R.; Smith, L.M.; Tong, X.E.

    1995-03-28

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.

  3. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6.

    PubMed

    Makeyev, E V; Bamford, D H

    2000-01-04

    In nature, synthesis of both minus- and plus-sense RNA strands of all the known double-stranded RNA viruses occurs in the interior of a large protein assembly referred to as the polymerase complex. In addition to other proteins, the complex contains a putative polymerase possessing characteristic sequence motifs. However, none of the previous studies has shown template-dependent RNA synthesis directly with an isolated putative polymerase protein. In this report, recombinant protein P2 of double-stranded RNA bacteriophage phi6 was purified and demonstrated in an in vitro enzymatic assay to act as the replicase. The enzyme efficiently utilizes phage-specific, positive-sense RNA substrates to produce double-stranded RNA molecules, which are formed by newly synthesized, full-length minus-strands base paired with the plus-strand templates. P2-catalyzed replication is also shown to be very effective with a broad range of heterologous single-stranded RNA templates. The importance and implications of these results are discussed.

  4. THE YOUNG OPEN CLUSTERS KING 12, NGC 7788, AND NGC 7790: PRE-MAIN-SEQUENCE STARS AND EXTENDED STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2012-12-20

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less

  5. Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-09-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ˜2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ˜6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  6. Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*

    PubMed Central

    Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji

    2009-01-01

    Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064

  7. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2016-01-01

    Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6. PMID:27074148

  8. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq).

    PubMed

    Pyne, Robert; Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37-55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21-28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5-16% and 4-18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome.

  9. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq)

    PubMed Central

    Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37–55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21–28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5–16% and 4–18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome. PMID:28922359

  10. [Subcortical laminar heterotopia 'double cortex syndrome'].

    PubMed

    Teplyshova, A M; Gaskin, V V; Kustov, G V; Gudkova, A A; Luzin, R V; Trifonov, I S; Lebedeva, A V

    2017-01-01

    This article presents a clinical case of a 29-year-old patient with 'Double cortex syndrome' with epilepsy, intellectual and mental disorders. Subcortical band heterotopia is a rare disorder of neuronal migration. Such patients typically present with epilepsy and variable degrees of mental retardation and behavioral and intellectual disturbances. The main diagnostic method is magnetic resonance imaging (MRI).

  11. The Learning-Paradigm Campus: From Single- to Double-Loop Learning

    ERIC Educational Resources Information Center

    Tagg, John

    2010-01-01

    Since the 1980s, advocates for change in higher education have called for double-loop learning. One of the main criticisms of the evaluation of colleges and universities was that they measured inputs rather than the outputs. Higher education now needs to apply the lessons of learning and change to campus leadership and organization.

  12. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences.

    PubMed

    Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong

    2013-05-07

    We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.

  13. Genetic Perturbation of the Maize Methylome[W

    PubMed Central

    Li, Qing; Hermanson, Peter J.; Zaunbrecher, Virginia M.; Song, Jawon; Wendt, Jennifer; Rosenbaum, Heidi; Madzima, Thelma F.; Sloan, Amy E.; Huang, Ji; Burgess, Daniel L.; Richmond, Todd A.; McGinnis, Karen M.; Meeley, Robert B.; Danilevskaya, Olga N.; Vaughn, Matthew W.; Kaeppler, Shawn M.; Jeddeloh, Jeffrey A.

    2014-01-01

    DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana. PMID:25527708

  14. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    PubMed

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  15. Computer-Aided Design of RNA Origami Structures.

    PubMed

    Sparvath, Steffen L; Geary, Cody W; Andersen, Ebbe S

    2017-01-01

    RNA nanostructures can be used as scaffolds to organize, combine, and control molecular functionalities, with great potential for applications in nanomedicine and synthetic biology. The single-stranded RNA origami method allows RNA nanostructures to be folded as they are transcribed by the RNA polymerase. RNA origami structures provide a stable framework that can be decorated with functional RNA elements such as riboswitches, ribozymes, interaction sites, and aptamers for binding small molecules or protein targets. The rich library of RNA structural and functional elements combined with the possibility to attach proteins through aptamer-based binding creates virtually limitless possibilities for constructing advanced RNA-based nanodevices.In this chapter we provide a detailed protocol for the single-stranded RNA origami design method using a simple 2-helix tall structure as an example. The first step involves 3D modeling of a double-crossover between two RNA double helices, followed by decoration with tertiary motifs. The second step deals with the construction of a 2D blueprint describing the secondary structure and sequence constraints that serves as the input for computer programs. In the third step, computer programs are used to design RNA sequences that are compatible with the structure, and the resulting outputs are evaluated and converted into DNA sequences to order.

  16. Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice

    PubMed Central

    Jasin, Maria; Lange, Julian

    2017-01-01

    ABSTRACT The SPO11-generated DNA double-strand breaks (DSBs) that initiate meiotic recombination occur non-randomly across genomes, but mechanisms shaping their distribution and repair remain incompletely understood. Here, we expand on recent studies of nucleotide-resolution DSB maps in mouse spermatocytes. We find that trimethylation of histone H3 lysine 36 around DSB hotspots is highly correlated, both spatially and quantitatively, with trimethylation of H3 lysine 4, consistent with coordinated formation and action of both PRDM9-dependent histone modifications. In contrast, the DSB-responsive kinase ATM contributes independently of PRDM9 to controlling hotspot activity, and combined action of ATM and PRDM9 can explain nearly two-thirds of the variation in DSB frequency between hotspots. DSBs were modestly underrepresented in most repetitive sequences such as segmental duplications and transposons. Nonetheless, numerous DSBs form within repetitive sequences in each meiosis and some classes of repeats are preferentially targeted. Implications of these findings are discussed for evolution of PRDM9 and its role in hybrid strain sterility in mice. Finally, we document the relationship between mouse strain-specific DNA sequence variants within PRDM9 recognition motifs and attendant differences in recombination outcomes. Our results provide further insights into the complex web of factors that influence meiotic recombination patterns. PMID:28820351

  17. Multimodal RNA-seq using single-strand, double-strand, and CircLigase-based capture yields a refined and extended description of the C. elegans transcriptome.

    PubMed

    Lamm, Ayelet T; Stadler, Michael R; Zhang, Huibin; Gent, Jonathan I; Fire, Andrew Z

    2011-02-01

    We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.

  18. SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.

    PubMed

    Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony

    2018-05-01

    The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm 3 ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med 79:2620-2628, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Enhancement of fluorescence quenching and exciplex formation in DNA major groove by double incorporation of modified fluorescent deoxyuridines.

    PubMed

    Tanaka, Makiko; Oguma, Kazuhiro; Saito, Yoshio; Saito, Isao

    2012-06-15

    5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Association of Distinct Mutational Signatures With Correlates of Increased Immune Activity in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Connor, Ashton A; Denroche, Robert E; Jang, Gun Ho; Timms, Lee; Kalimuthu, Sangeetha N; Selander, Iris; McPherson, Treasa; Wilson, Gavin W; Chan-Seng-Yue, Michelle A; Borozan, Ivan; Ferretti, Vincent; Grant, Robert C; Lungu, Ilinca M; Costello, Eithne; Greenhalf, William; Palmer, Daniel; Ghaneh, Paula; Neoptolemos, John P; Buchler, Markus; Petersen, Gloria; Thayer, Sarah; Hollingsworth, Michael A; Sherker, Alana; Durocher, Daniel; Dhani, Neesha; Hedley, David; Serra, Stefano; Pollett, Aaron; Roehrl, Michael H A; Bavi, Prashant; Bartlett, John M S; Cleary, Sean; Wilson, Julie M; Alexandrov, Ludmil B; Moore, Malcolm; Wouters, Bradly G; McPherson, John D; Notta, Faiyaz; Stein, Lincoln D; Gallinger, Steven

    2017-06-01

    Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain poor. Advances in next-generation sequencing provide a route to therapeutic approaches, and integrating DNA and RNA analysis with clinicopathologic data may be a crucial step toward personalized treatment strategies for this disease. To classify PDAC according to distinct mutational processes, and explore their clinical significance. We performed a retrospective cohort study of resected PDAC, using cases collected between 2008 and 2015 as part of the International Cancer Genome Consortium. The discovery cohort comprised 160 PDAC cases from 154 patients (148 primary; 12 metastases) that underwent tumor enrichment prior to whole-genome and RNA sequencing. The replication cohort comprised 95 primary PDAC cases that underwent whole-genome sequencing and expression microarray on bulk biospecimens. Somatic mutations accumulate from sequence-specific processes creating signatures detectable by DNA sequencing. Using nonnegative matrix factorization, we measured the contribution of each signature to carcinogenesis, and used hierarchical clustering to subtype each cohort. We examined expression of antitumor immunity genes across subtypes to uncover biomarkers predictive of response to systemic therapies. The discovery cohort was 53% male (n = 79) and had a median age of 67 (interquartile range, 58-74) years. The replication cohort was 50% male (n = 48) and had a median age of 68 (interquartile range, 60-75) years. Five predominant mutational subtypes were identified that clustered PDAC into 4 major subtypes: age related, double-strand break repair, mismatch repair, and 1 with unknown etiology (signature 8). These were replicated and validated. Signatures were faithfully propagated from primaries to matched metastases, implying their stability during carcinogenesis. Twelve of 27 (45%) double-strand break repair cases lacked germline or somatic events in canonical homologous recombination genes-BRCA1, BRCA2, or PALB2. Double-strand break repair and mismatch repair subtypes were associated with increased expression of antitumor immunity, including activation of CD8-positive T lymphocytes (GZMA and PRF1) and overexpression of regulatory molecules (cytotoxic T-lymphocyte antigen 4, programmed cell death 1, and indolamine 2,3-dioxygenase 1), corresponding to higher frequency of somatic mutations and tumor-specific neoantigens. Signature-based subtyping may guide personalized therapy of PDAC in the context of biomarker-driven prospective trials.

  1. Phylogenetic analysis of canine distemper virus in South America clade 1 reveals unique molecular signatures of the local epidemic.

    PubMed

    Fischer, Cristine D B; Gräf, Tiago; Ikuta, Nilo; Lehmann, Fernanda K M; Passos, Daniel T; Makiejczuk, Aline; Silveira, Marcos A T; Fonseca, André S K; Canal, Cláudio W; Lunge, Vagner R

    2016-07-01

    Canine distemper virus (CDV) is a highly contagious pathogen for domestic dogs and several wild carnivore species. In Brazil, natural infection of CDV in dogs is very high due to the large non-vaccinated dog population, a scenario that calls for new studies on the molecular epidemiology. This study investigates the phylodynamics and amino-acid signatures of CDV epidemic in South America by analyzing a large dataset compiled from publicly available sequences and also by collecting new samples from Brazil. A population of 175 dogs with canine distemper (CD) signs was sampled, from which 89 were positive for CDV, generating 42 new CDV sequences. Phylogenetic analysis of the new and publicly available sequences revealed that Brazilian sequences mainly clustered in South America 1 (SA1) clade, which has its origin estimated to the late 1980's. The reconstruction of the demographic history in SA1 clade showed an epidemic expanding until the recent years, doubling in size every nine years. SA1 clade epidemic distinguished from the world CDV epidemic by the emergence of the R580Q strain, a very rare and potentially detrimental substitution in the viral genome. The R580Q substitution was estimated to have happened in one single evolutionary step in the epidemic history in SA1 clade, emerging shortly after introduction to the continent. Moreover, a high prevalence (11.9%) of the Y549H mutation was observed among the domestic dogs sampled here. This finding was associated (p<0.05) with outcome-death and higher frequency in mixed-breed dogs, the later being an indicator of a continuous exchange of CDV strains circulating among wild carnivores and domestic dogs. The results reported here highlight the diversity of the worldwide CDV epidemic and reveal local features that can be valuable for combating the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A DYNAMICAL SIGNATURE OF MULTIPLE STELLAR POPULATIONS IN 47 TUCANAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, Harvey B.; Heyl, Jeremy; Anderson, Jay

    2013-07-01

    Based on the width of its main sequence, and an actual observed split when viewed through particular filters, it is widely accepted that 47 Tucanae contains multiple stellar populations. In this contribution, we divide the main sequence of 47 Tuc into four color groups, which presumably represent stars of various chemical compositions. The kinematic properties of each of these groups are explored via proper motions, and a strong signal emerges of differing proper-motion anisotropies with differing main-sequence color; the bluest main-sequence stars exhibit the largest proper-motion anisotropy which becomes undetectable for the reddest stars. In addition, the bluest stars aremore » also the most centrally concentrated. A similar analysis for Small Magellanic Cloud stars, which are located in the background of 47 Tuc on our frames, yields none of the anisotropy exhibited by the 47 Tuc stars. We discuss implications of these results for possible formation scenarios of the various populations.« less

  3. Wastewater disposal and the earthquake sequences during 2016 near Fairview, Pawnee, and Cushing, Oklahoma

    USGS Publications Warehouse

    McGarr, Arthur F.; Barbour, Andrew

    2017-01-01

    Each of the three earthquake sequences in Oklahoma in 2016—Fairview, Pawnee, and Cushing—appears to have been induced by high-volume wastewater disposal within 10 km. The Fairview M5.1 main shock was part of a 2 year sequence of more than 150 events of M3, or greater; the main shock accounted for about half of the total moment. The foreshocks and aftershocks of the M5.8 Pawnee earthquake were too small and too few to contribute significantly to the cumulative moment; instead, nearly all of the moment induced by wastewater injection was focused on the main shock. The M5.0 Cushing event is part of a sequence that includes 48 earthquakes of M3, or greater, that are mostly foreshocks. The cumulative moment for each of the three sequences during 2016, as well as that for the 2011 Prague, Oklahoma, and nine other sequences representing a broad range of injected volume, are all limited by the total volumes of wastewater injected locally.

  4. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  5. Multilocus phylogenetic analysis and morphological data reveal a new species composition of the genus Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae), parasites of fish-eating birds in the Americas.

    PubMed

    Hernández-Cruz, E; Hernández-Orts, J S; Sereno-Uribe, A L; Pérez-Ponce de León, G; García-Varela, M

    2017-10-04

    Members of the genus Drepanocephalus are endoparasites of fish-eating birds of the families Phalacrocoracidae and Sulidae distributed across the Americas. Currently, Drepanocephalus contains three species, i.e. D. spathans (type species), D. olivaceus and D. auritus. Two additional species, D. parvicephalus and D. mexicanus were transferred to the genus Petasiger. In the current study, available DNA sequences of D. spathans, D. auritus and Drepanocephalus sp., were aligned with newly generated sequences of D. spathans and Petasiger mexicanus. Phylogenetic analyses inferred with three nuclear (LSU, SSU and ITS1, 5.8S, ITS2) and two mitochondrial (cox1, nad1) molecular markers showed that the sequences of D. spathans and D. auritus are nested together in a single clade with very low genetic divergence, with Petasiger mexicanus as its sister species. Additionally, P. mexicanus was not a close relative of other members of the genus Petasiger, showing that P. mexicanus actually belongs to the genus Drepanocephalus, suggesting the need to re-allocate Petasiger mexicanus back into the genus Drepanocephalus, as D. mexicanus. Morphological observations of the newly sampled individuals of D. spathans showed that the position of the testes is variable and testes might be contiguous or widely separated, which is one of the main diagnostic traits for D. auritus. Our results suggest that D. auritus might be considered a synonym of D. spathans and, as a result, the latter represents a species with a wide geographic range across the Americas, parasitizing both the Neotropical and the double-crested cormorant in Argentina, Brazil, Paraguay, Venezuela, Colombia, Mexico, USA and Canada.

  6. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    PubMed

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  7. Genomic-based-breeding tools for tropical maize improvement.

    PubMed

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.

  8. Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure.

    PubMed

    Kono, H; Saven, J G

    2001-02-23

    Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.

  9. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and beta-1,3-glucanase genes in a double-gene construct.

    PubMed

    Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas

    2006-09-01

    A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro.

  10. Double suturless hepaticojejunostomy.

    PubMed

    Brătucu, E; Straja, D; Cirimbei, C; Alecu, M; Nechita, D

    2011-01-01

    In iatrogenic lesions of the main bile duct, especially when the injury is above the level of the hepatic bifurcation, the surgeon ought to use two short and thin biliary stumps. It is necessary to perform separate anastomoses, using a "Y loop" and creating a double hepaticojejunostomy. Technical difficulties increase when the biliary ducts are thinner, tighter and separated from one another for a distance more than 2 cm. In such case we have attempted to develop a double sutureless hepaticojejunostomy by simply keeping the bilioenteric partners in apposition with continuous traction exerted via the biliary stents.

  11. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  12. Pre-main Sequence Evolution and the Hydrogen-Burning Minimum Mass

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori

    There is a lower limit to the mass of the main-sequence stars (the hydrogen-burning minimum mass) below which the stars cannot replenish the energy lost from their surfaces with the energy released by the hydrogen burning in their cores. This is caused by the electron degeneracy in the stars which suppresses the increase of the central temperature with contraction. To find out the lower limit we need the accurate knowledge of the pre-main sequence evolution of very low-mass stars in which the effect of electron degeneracy is important. We review how Hayashi and Nakano (1963) carried out the first determination of this limit.

  13. Reconciling mass functions with the star-forming main sequence via mergers

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  14. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    PubMed Central

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  15. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  16. Multiple forearm robotic elbow configuration

    DOEpatents

    Fisher, John J.

    1990-01-01

    A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  17. Crystal structure and sequence-dependent conformation of the A.G mispaired oligonucleotide d(CGCAAGCTGGCG).

    PubMed Central

    Webster, G D; Sanderson, M R; Skelly, J V; Neidle, S; Swann, P F; Li, B F; Tickle, I J

    1990-01-01

    The crystal structure of the dodecanucleotide d(CGCAAGCTGGCG) has been determined to a resolution of 2.5 A and refined to an R factor of 19.3% for 1710 reflections. The sequence crystallizes as a B-type double helix, with two G(anti).A(syn) base pairs. These are stabilized by three-center hydrogen bonds to pyrimidines that induce perturbations in base-pair geometry. The central AGCT region of the helix has a wide (greater than 6 A) minor groove. PMID:2395870

  18. 3D polymer gel dosimetry using a 3D (DESS) and a 2D MultiEcho SE (MESE) sequence

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos; Karolemeas, Kostantinos; Papadakis, Antonios E.; Zacharopoulou, Fotini; Papanikolaou, Nickolas; Gourtsoyiannis, Nicholas

    2006-12-01

    The utilization of 3D techniques in Magnetic Resonance Imaging data aquisition and post-processing analysis is a prerequisite especially when modern radiotherapy techniques (conformal RT, IMRT, Stereotactic RT) are to be used. The aim of this work is to compare a 3D Double Echo Steady State (DESS) and a 2D Multiple Echo Spin Echo (MESE) sequence in 3D MRI radiation dosimetry using two different MRI scanners and utilising N-VInylPyrrolidone (VIPAR) based polymer gels.

  19. The properties and environment of primitive solar nebulae as deduced from observations of solar-type pre-main sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.

    1991-01-01

    The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.

  20. Species-specific Typing of DNA Based on Palindrome Frequency Patterns

    PubMed Central

    Lamprea-Burgunder, Estelle; Ludin, Philipp; Mäser, Pascal

    2011-01-01

    DNA in its natural, double-stranded form may contain palindromes, sequences which read the same from either side because they are identical to their reverse complement on the sister strand. Short palindromes are underrepresented in all kinds of genomes. The frequency distribution of short palindromes exhibits more than twice the inter-species variance of non-palindromic sequences, which renders palindromes optimally suited for the typing of DNA. Here, we show that based on palindrome frequency, DNA sequences can be discriminated to the level of species of origin. By plotting the ratios of actual occurrence to expectancy, we generate palindrome frequency patterns that allow to cluster different sequences of the same genome and to assign plasmids, and in some cases even viruses to their respective host genomes. This finding will be of use in the growing field of metagenomics. PMID:21429991

  1. Signatures of progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hoeflich, P.; Chakraborty, S.; Comaskey, W.; Fisher, A.; Hristov, B.; Collins, D.; Diamond, T. R.; Dragulin, P.; Hsiao, E. Y.; Sadler, B.

    Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be a WD (double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion \\citep{branch95,nomoto03,wang2012}. Light curves and spectra of the explosion look similar because a 'stellar amnesia' \\citep{h06}. Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds \\citep{webbink84,isern11}, b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards \\citep{n82,hk96,Kromer2010}; c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems \\citep{WI73,Piersanti2004}. Simulations of the explosions depend on the inital conditions at the onset of the explosions, namely the mass and angular momentum of the WD(s). For all scenarios, diversity in SNe Ia must be expected because the WD originates from a range of Main Sequence masses (MMS < 8 M_⊙) and metallicities Z. Moreover, there is growing evidence that magnetic fields B may have to be added to the 'mix'. Only with recent advances in observations ranging from X-ray to radio, high precision spectroscopy, polarimetry and photometry and in the time-domain astronomy we obtain constraints for progenitor, on the explosion scenarios and links emerge between the progenitors and their environment with LCs and spectral signatures needed for high precision cosmology. It is too early to give final answers but we present our personal view. We will give some examples from the theory point of view and discuss future prospects with upcoming ground based, ELT, GMT and space based such as JWST, Euclide and WFIRST instruments.

  2. DETAIL VIEW ON THE MAIN ASSEMBLY LEVEL OF ELEVATOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW ON THE MAIN ASSEMBLY LEVEL OF ELEVATOR SHOWING THE DOUBLED COLUMN FOR THE BUILDING EXPANSION JOINT AT COLUMN LINE AA-18. - Offutt Air Force Base, Glenn L. Martin-Nebraska Bomber Plant, Building D, Peacekeeper Drive, Bellevue, Sarpy County, NE

  3. Double bifurcation optimization stent system technique for left main stenosis.

    PubMed

    Vassilev, D; Mateev, H; Alexandrov, A; Karamfiloff, K; Gil, R J

    2014-12-01

    We present a first-in-man case with implantation in culottes' fashion of two dedicated coronary bifurcation stents (BiOSS Lim) in distal left main stenosis. The immediate procedural and very short-term result was excellent. © 2014, Wiley Periodicals, Inc.

  4. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convectivemore » climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.« less

  6. A reassessment of IgM memory subsets in humans

    PubMed Central

    Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M.; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K.; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2015-01-01

    From paired blood and spleen samples from three adult donors we performed high-throughput V-h sequencing of human B-cell subsets defined by IgD and CD27 expression: IgD+CD27+ (“MZ”), IgD−CD27+(“memory”, including IgM (“IgM-only”), IgG and IgA) and IgD−CD27− cells (“double-negative”, including IgM, IgG and IgA). 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for Vh-gene mutation, H-CDR3-length, and Vh/Jh usage, comparing these different characteristics with all sequences from their subset of origin, for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency, and lower Vh4 and higher Jh6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (between MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The “IgM-only” subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27+ switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells, and that IgM memory and MZ B cells constitute two distinct entities. PMID:26355154

  7. A novel progesterone receptor membrane component (PGRMC) in the human and swine parasite Taenia solium: implications to the host-parasite relationship.

    PubMed

    Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge

    2018-03-09

    We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the field of host-parasite co-evolution as well as the sex-associated susceptibility to this infection. In a more practical matter, present results may contribute to the molecular design of new drugs with anti-parasite actions.

  8. Gene encoding the group B streptococcal protein R4, its presence in clinical reference laboratory isolates & R4 protein pepsin sensitivity.

    PubMed

    Smith, B L; Flores, A; Dechaine, J; Krepela, J; Bergdall, A; Ferrieri, P

    2004-05-01

    R proteins were first identified by Lancefield in group B Streptococcus (GBS) as resistant to trypsin at pH8 and sensitive to pepsin at pH2. The R4 protein found predominantly in type III and some type II and V invasive isolates conforms to these criteria. The Rib protein, although structurally and epidemiologically similar to R4, was reported as resistant to both proteases. We report here the gene encoding the R4 protein from a type III group B streptococcal isolate (76-043) well characterized in our laboratory. Trypsin extracted GBS proteins were assayed for protease sensitivities by double-diffusion Ouchterlony using varying conditions for the enzyme pepsin. Standard haemoglobin assay was used to examine pepsin enzymatic activity. Thirty clinical isolates of varying protein profiles identified by double-diffusion from our reference strain laboratory were screened by PCR and Southern technique. SDS-PAGE gel purified R4 amino acid sequences were determined and used to design oligonucleotide primers for screening a 76-043 genomic library. R4 was sensitive to pepsin at pH2 but appeared resistant at pH4, the reported pH used for Rib. By standard haemoglobin assay and trypsin extract studies of R4 protein, pepsin was shown to be active at pH2, yet easily inactivated; assays of GBS surface proteins are critical at pH2. Of the amino acids initially sequenced from R4, 88 per cent (61/69) showed identity to Rib; the r4 nucleotide sequence was identical to that of rib. All isolates with strong positive protein reactions for R4 were positive in both PCR and Southern technique, whereas isolates expressing alpha, beta, R1/R4, and R5 (BPS) protein profiles were not. Sequenced PCR products aligned with identity to the R4 and Rib nucleotide sequences and confirmed the identity of these proteins and their molecular sequences.

  9. A Reassessment of IgM Memory Subsets in Humans.

    PubMed

    Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2015-10-15

    From paired blood and spleen samples from three adult donors, we performed high-throughput VH sequencing of human B cell subsets defined by IgD and CD27 expression: IgD(+)CD27(+) ("marginal zone [MZ]"), IgD(-)CD27(+) ("memory," including IgM ["IgM-only"], IgG and IgA) and IgD(-)CD27(-) cells ("double-negative," including IgM, IgG, and IgA). A total of 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for VH gene mutation, H-CDR3-length, and VH/JH usage, comparing these different characteristics with all sequences from their subset of origin for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency and lower VH4 and higher JH6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (among MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The "IgM-only" subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27(+) switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells and that IgM memory and MZ B cells constitute two distinct entities. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans

    PubMed Central

    Chung, George; Rose, Ann M.; Petalcorin, Mark I.R.; Martin, Julie S.; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P.; Yanowitz, Judith L.; Boulton, Simon J.

    2015-01-01

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. PMID:26385965

  11. Topological ferrimagnetic behaviours of coordination polymers containing manganese(II) chains with mixed azide and carboxylate bridges and alternating F/AF/AF'/AF'/AF interactions.

    PubMed

    Wang, Yan-Qin; Liu, Hou-Ting; Qi, Yan; Gao, En-Qing

    2014-08-21

    Two Mn(ii) complexes with azide and a new zwitterionic tetracarboxylate ligand 1,2,4,5-tetrakis(4-carboxylatopyridinium-1-methylene)benzene (L(1)), {[Mn5(L(1))2(N3)8(OH)2]·12H2O}n () and {[Mn5(L(1))2(N3)8(H2O)2](ClO4)2·6H2O}n (), have been synthesized and characterized crystallographically and magnetically. and contain similar alternating chains constructed by azide and carboxylate bridges. The independent sets of bridges alternate in an ABCCB sequence between adjacent Mn(ii) ions: (EO-N3)2 double bridges (EO = end-on) (denoted as A), [(EO-N3)(OCO)2] triple bridges (denoted as B) and [(EO-N3)(OCO)] double bridges (denoted as C). The alternating chains are interlinked into 2D coordination networks by the tetrapyridinium spacers. Magnetic studies demonstrate that the magnetic coupling through the double EO azide bridges is ferromagnetic and that through mixed azide/carboxylate bridges is antiferromagnetic. The unprecedented F/AF/AF'/AF'/AF coupling sequence along the chain dictates an uncompensated ground spin state (S = 5/2 per Mn5 unit) and leads to one-dimensional topological ferrimagnetism, which features a minimum in the χT versus T plot.

  12. Stacked-unstacked equilibrium at the nick site of DNA.

    PubMed

    Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D

    2004-09-17

    Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.

  13. Nucleotide sequence of the coat protein gene of Lettuce big-vein virus.

    PubMed

    Sasaya, T; Ishikawa, K; Koganezawa, H

    2001-06-01

    A sequence of 1425 nt was established that included the complete coat protein (CP) gene of Lettuce big-vein virus (LBVV). The LBVV CP gene encodes a 397 amino acid protein with a predicted M(r) of 44486. Antisera raised against synthetic peptides corresponding to N-terminal or C-terminal parts of the LBVV CP reacted in Western blot analysis with a protein with an M(r) of about 48000. RNA extracted from purified particles of LBVV by using proteinase K, SDS and phenol migrated in gels as two single-stranded RNA species of approximately 7.3 kb (ss-1) and 6.6 kb (ss-2). After denaturation by heat and annealing at room temperature, the RNA migrated as four species, ss-1, ss-2 and two additional double-stranded RNAs (ds-1 and ds-2). The Northern blot hybridization analysis using riboprobes from a full-length clone of the LBVV CP gene indicated that ss-2 has a negative-sense nature and contains the LBVV CP gene. Moreover, ds-2 is a double-stranded form of ss-2. Database searches showed that the LBVV CP most resembled the nucleocapsid proteins of rhabdoviruses. These results indicate that it would be appropriate to classify LBVV as a negative-sense single-stranded RNA virus rather than as a double-stranded RNA virus.

  14. Piscine reovirus: Genomic and molecular phylogenetic analysis from farmed and wild salmonids collected on the Canada/US Pacific Coast

    USGS Publications Warehouse

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul S.; Richmond, Zina; Purcell, Maureen K.; Johns, Robert; Johnson, Stewart C.; Sakasida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period.

  15. Piscine Reovirus: Genomic and Molecular Phylogenetic Analysis from Farmed and Wild Salmonids Collected on the Canada/US Pacific Coast

    PubMed Central

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul; Richmond, Zina; Johns, Robert; Purcell, Maureen K.; Johnson, Stewart C.; Saksida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period. PMID:26536673

  16. Real-Time Demonstration of the Main Characteristics of Chaos in the Motion of a Real Double Pendulum

    ERIC Educational Resources Information Center

    Vadai, Gergely; Gingl, Zoltan; Mellar, Janos

    2012-01-01

    Several studies came to the conclusion that chaotic phenomena are worth including in high school and undergraduate education. The double pendulum is one of the simplest systems that is chaotic; therefore, numerical simulations and theoretical studies of it have been given large publicity, and thanks to its spectacular motion, it has become one of…

  17. Visual Working Memory and Number Sense: Testing the Double Deficit Hypothesis in Mathematics

    ERIC Educational Resources Information Center

    Toll, Sylke W. M.; Kroesbergen, Evelyn H.; Van Luit, Johannes E. H.

    2016-01-01

    Background: Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. Aims: The aim of this study was to test the DD…

  18. Evidence of chaotic pattern in solar flux through a reproducible sequence of period-doubling-type bifurcations

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1991-01-01

    A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.

  19. Evidence of chaotic pattern in solar flux through a reproducible sequence of period-doubling-type bifurcations

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1991-01-01

    Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.

  20. R/L, a double reporter mouse line that expresses luciferase gene upon Cre-mediated excision, followed by inactivation of mRFP expression.

    PubMed

    Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang

    2016-10-01

    The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.

  1. The Apis mellifera filamentous virus genome

    USDA-ARS?s Scientific Manuscript database

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  2. A new restriction endonuclease from Citrobacter freundii

    PubMed Central

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  3. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    PubMed

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  4. 75 FR 62820 - Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... I. Summary Synthetic biology, the developing interdisciplinary field that focuses on both the design and fabrication of novel biological components and systems as well as the re-design and fabrication of... develop, maintain, and document protocols to determine if a sequence ``hit'' qualifies as a true...

  5. Development and Implementation of High-Throughput SNP Genotyping in Barley

    USDA-ARS?s Scientific Manuscript database

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  6. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C 2H 4, C 2H 3F, and 1,1-C 2H 2F 2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  7. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  8. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment

    PubMed Central

    Aleza, Pablo; Froelicher, Yann; Schwarz, Sergio; Agustí, Manuel; Hernández, María; Juárez, José; Luro, François; Morillon, Raphael; Navarro, Luis; Ollitrault, Patrick

    2011-01-01

    Background and Aims Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation. Methods Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of ‘Tardivo di Ciaculli’ mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype (‘Carrizo’ citrange; Citrus sinensis × Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries. Key Results Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area. Conclusions Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks. PMID:21586529

  9. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    PubMed

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  10. A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Mendez, R. A.; Tokovinin, A.; Horch, E.

    2017-07-01

    The prospect of exquisite-precision parallaxes that will be enabled by the Gaia satellite dramatically changes the landscape of observational stellar astrophysics: If one considers the Hipparcos double stars that lie within 250 pc of the Solar system, a parallax determined by Gaia would yield an uncertainty under 1% for all these objects. In this volume, there are 591 Hipparcos double star discoveries and 160 spectroscopic binaries from the Geneva-Copenhagen spectroscopic survey in the declination range of -20° to -90°. These two samples are important as a source of new binaries from which we will derive masses, component luminosities, and effective temperatures in the coming years. The northern hemisphere counterpart of these objects have been systematically observed at the WIYN Telescope by Horch and collaborators (Horch, E. P., van Altena, W. F., Howell, S. B., Sherry, W. H., & Ciardi, D. R. 2011, AJ, 141, 180). On the other hand, Tokovinin has shown the ability of HRCam at the CTIO/SOAR 4m telescope for binary star research. In 2014 we started a speckle survey with SOAR+HRCam that will complement and significantly extend those previous efforts, allowing us to compile a unique all-sky, volume-limited speckle survey of these two primary samples. So far 12 nights (spread over 3 semesters) have been granted through the Chilean reserved time, with lots of binaries confirmed, many new binaries found, and with several multiple systems discovered (Tokovinin et al., 2015, AJ, 150, 50 and 2016, AJ, 151, 153). Our survey, when complete, will open the door to many sensitive tests of stellar evolution theory, and a large number of new points on the MLR. With this we will truly be able to investigate effects such as metallicity and age on the MLR for the first time. In cases where one component has evolved off the main sequence, age determinations will also be possible.

  11. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi".

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-07-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    NASA Astrophysics Data System (ADS)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  13. Motor programming when sequencing multiple elements of the same duration.

    PubMed

    Magnuson, Curt E; Robin, Donald A; Wright, David L

    2008-11-01

    Motor programming at the self-select paradigm was adopted in 2 experiments to examine the processing demands of independent processes. One process (INT) is responsible for organizing the internal features of the individual elements in a movement (e.g., response duration). The 2nd process (SEQ) is responsible for placing the elements into the proper serial order before execution. Participants in Experiment 1 performed tasks involving 1 key press or sequences of 4 key presses of the same duration. Implementing INT and SEQ was more time consuming for key-pressing sequences than for single key-press tasks. Experiment 2 examined whether the INT costs resulting from the increase in sequence length observed in Experiment 1 resulted from independent planning of each sequence element or via a separate "multiplier" process that handled repetitions of elements of the same duration. Findings from Experiment 2, in which participants performed single key presses or double or triple key sequences of the same duration, suggested that INT is involved with the independent organization of each element contained in the sequence. Researchers offer an elaboration of the 2-process account of motor programming to incorporate the present findings and the findings from other recent sequence-learning research.

  14. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  15. In Vivo Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells

    PubMed Central

    Hembach, Katharina; Baum, Alina; García-Sastre, Adolfo; Söding, Johannes; Conzelmann, Karl-Klaus

    2014-01-01

    RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In the past decade extensive efforts were made to elucidate the nature of putative RLR ligands. In vitro and transfection studies identified 5′-triphosphate containing blunt-ended double-strand RNAs as potent RIG-I inducers and these findings were confirmed by next-generation sequencing of RIG-I associated RNAs from virus-infected cells. The nature of RNA ligands of MDA5 is less clear. Several studies suggest that double-stranded RNAs are the preferred agonists for the protein. However, the exact nature of physiological MDA5 ligands from virus-infected cells needs to be elucidated. In this work, we combine a crosslinking technique with next-generation sequencing in order to shed light on MDA5-associated RNAs from human cells infected with measles virus. Our findings suggest that RIG-I and MDA5 associate with AU-rich RNA species originating from the mRNA of the measles virus L gene. Corresponding sequences are poorer activators of ATP-hydrolysis by MDA5 in vitro, suggesting that they result in more stable MDA5 filaments. These data provide a possible model of how AU-rich sequences could activate type I interferon signaling. PMID:24743923

  16. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization.

    PubMed

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.

  17. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071

    2015-08-15

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less

  18. Finding the Onset of Convection in Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2003-01-01

    The primary goal of the work performed under this grant was to locate, if possible, the onset of subphotospheric convection zones in normal main sequence stars by using the presence of emission in high temperature lines in far ultraviolet spectra from the FUSE spacecraft as a proxy for convection. The change in stellar structure represented by this boundary between radiative and convective stars has always been difficult to find by other empirical means. A search was conducted through observations of a sample of A-type stars, which were somewhat hotter and more massive than the Sun, and which were carefully chosen to bridge the theoretically expected radiative/convective boundary line along the main sequence.

  19. Lithium abundances among solar-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Wilkin, Francis P.; Strom, Stephen E.; Seaman, Robert L.

    1989-01-01

    Measurements of Li I 6707 A line strengths were carried out for two samples of pre-main-sequence (PMS) stars (L 1641 and Taurus-Auriga), and the Li abundances estimated for PMS stars are compared with those deduced from observations of Li line strengths for main-sequence stars in the Alpha Persei cluster. It was found that the maximum Li abundances among the PMS stars with solar mass values greater than 1.0 exceed the maximum abundances for Alpha Per stars by at least 0.3 dex. Some PMS stars, including few apparently young stars, showed large (greater than 1.0 dex) Li depletion, and some apparently old PMS stars showed little or no depletion.

  20. Habitable zones around main sequence stars

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.

    1993-01-01

    A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.

  1. Double jeopardy revisited: clinical decision making in unstable patients with, thoraco-abdominal stab wounds and, potential injuries in multiple body cavities.

    PubMed

    Clarke, Damian L; Gall, Tamara M H; Thomson, Sandie R

    2011-05-01

    In the setting of the hypovolaemic patient with a thoraco-abdominal stab wound and potential injuries in both the chest and abdomen, deciding which cavity to explore first may be difficult.Opening the incorrect body cavity can delay control of tamponade or haemorrhage and exacerbate hypothermia and fluid shifts. This situation has been described as one of double jeopardy. All stab victims from July 2007 to July 2009 requiring a thoracotomy and laparotomy at the same operation were identified from a database. Demographics, site and nature of injuries, admission observations and investigations as well as operative sequence were recorded. Correct sequencing was defined as first opening the cavity with most lethal injury. Incorrect sequencing was defined as opening a cavity and finding either no injury or an injury of less severity than a simultaneous injury in the unopened cavity. The primary outcome was survival or death. Sixteen stab victims underwent thoracotomy and laparotomy during the same operation. All were male with an age range of 18–40 (mean/median 27). Median systolic blood pressure on presentation was 90 mm Hg. (quartile range 80–90 mm Hg). Median base excess was 6.5 (quartile range 12 to 2.2). All the deaths were the result of cardiac injuries. Incorrect sequencing occurred in four patients (25%). In this group there were four negative abdominal explorations prior to thoracotomy with two deaths. There was one death in the correct sequencing group. Incorrect sequencing in stab victims who require both thoracotomy and laparotomy at the same sitting is associated with a high mortality. This is especially true when the abdomen is incorrectly entered first whilst the life threatening pathology is in the chest. Clinical signs may be confusing, leading to incorrect sequencing of exploration. The common causes for confusion include failure to appreciate that cardiac tamponade does not present with bleeding and difficulty in assessing peritonism in an unstable patient with multiple stab wounds. In the setting of the unstable patient with stab wounds and suspected dual cavity injuries the chest should be opened first followed by the abdomen. 2010 Elsevier Ltd. All rights reserved.

  2. Occurrence and Nature of Double Alleles in Variable-Number Tandem-Repeat Patterns of More than 8,000 Mycobacterium tuberculosis Complex Isolates in The Netherlands

    PubMed Central

    Kamst, Miranda; van Hunen, Rianne; de Zwaan, Carolina Catherina; Mulder, Arnout; Supply, Philip; Anthony, Richard; van der Hoek, Wim; van Soolingen, Dick

    2017-01-01

    ABSTRACT Since 2004, variable-number tandem-repeat (VNTR) typing of Mycobacterium tuberculosis complex isolates has been applied on a structural basis in The Netherlands to study the epidemiology of tuberculosis (TB). Although this technique is faster and technically less demanding than the previously used restriction fragment length polymorphism (RFLP) typing, reproducibility remains a concern. In the period from 2004 to 2015, 8,532 isolates were subjected to VNTR typing in The Netherlands, with 186 (2.2%) of these exhibiting double alleles at one locus. Double alleles were most common in loci 4052 and 2163b. The variables significantly associated with double alleles were urban living (odds ratio [OR], 1.503; 95% confidence interval [CI], 1.084 to 2.084; P = 0.014) and pulmonary TB (OR, 1.703; 95% CI, 1.216 to 2.386; P = 0.002). Single-colony cultures of double-allele strains were produced and revealed single-allele profiles; a maximum of five single nucleotide polymorphisms (SNPs) was observed between the single- and double-allele isolates from the same patient when whole-genome sequencing (WGS) was applied. This indicates the presence of two bacterial populations with slightly different VNTR profiles in the parental population, related to genetic drift. This observation is confirmed by the fact that secondary cases from TB source cases with double-allele isolates sometimes display only one of the two alleles present in the source case. Double alleles occur at a frequency of 2.2% in VNTR patterns in The Netherlands. They are caused by biological variation rather than by technical aberrations and can be transmitted either as single- or double-allele variants. PMID:29142049

  3. First evaluation of drug-resistant Mycobacterium tuberculosis clinical isolates from Congo revealed misdetection of fluoroquinolone resistance by line probe assay due to a double substitution T80A-A90G in GyrA.

    PubMed

    Aubry, Alexandra; Sougakoff, Wladimir; Bodzongo, Pamela; Delcroix, Guy; Armand, Sylvie; Millot, Gérald; Jarlier, Vincent; Courcol, René; Lemaître, Nadine

    2014-01-01

    Tuberculosis (TB) is one of the major public health problems in Congo. However, data concerning Mycobacterium tuberculosis drug resistance are lacking because of the insufficient processing capacity. So, the aim of this study was to investigate for the first time the resistance patterns and the strain lineages of a sample of M. tuberculosis complex (MTBC) isolates collected in the two main cities of Congo. Over a 9-day period, 114 smear-positive sputa isolated from 114 patients attending centers for the diagnosis and treatment of TB in Brazzaville and Pointe Noire were collected for culture and drug susceptibility testing (DST). Detection of mutations conferring drug resistance was performed by using line probe assays (GenoType MTBDRplus and MTBDRsl) and DNA sequencing. Strain lineages were determined by MIRU-VNTR genotyping. Of the 114 sputa, 46 were culture positive for MTBC. Twenty-one (46%) were resistant to one or more first-line antiTB drugs. Of these, 15 (71%) were multidrug resistant (MDR). The most prevalent mutations involved in rifampin and isoniazid resistance, D516V (60%) in rpoB and S315T (87%) in katG respectively, were well detected by MTBDRplus assay. All the 15 MDR strains were susceptible to fluoroquinolone and injectable second-line drug. No mutation was detected in the rrs locus involved in resistance to amikacin and capreomycin by both the MTBDRsl assay and DNA sequencing. By contrast, 9 MDR strains belonging to the same cluster related to T-family were identified as being falsely resistant to fluoroquinolone by the MTBDRsl assay due to the presence of a double substitution T80A-A90G in GyrA. Taken together, these data revealed a possible spread of a particular MDR clone in Congo, misidentified as fluoroquinolone resistant by MTBDRsl assay. Thus, this test cannot replace gold-standard culture method and should be interpreted carefully in view of the patient's native land.

  4. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  5. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequency in a transmission system meeting the following parameters: (1) The modulating signal for the main... frequency modulate the main carrier between the limits of 8 and 10 percent. (3) One stereophonic subcarrier... stereophomic subcarriers are not precluded. (4) Double sideband, suppressed-carrier, amplitude modulation of...

  6. Computational Analysis of Mouse piRNA Sequence and Biogenesis

    PubMed Central

    Betel, Doron; Sheridan, Robert; Marks, Debora S; Sander, Chris

    2007-01-01

    The recent discovery of a new class of 30-nucleotide long RNAs in mammalian testes, called PIWI-interacting RNA (piRNA), with similarities to microRNAs and repeat-associated small interfering RNAs (rasiRNAs), has raised puzzling questions regarding their biogenesis and function. We report a comparative analysis of currently available piRNA sequence data from the pachytene stage of mouse spermatogenesis that sheds light on their sequence diversity and mechanism of biogenesis. We conclude that (i) there are at least four times as many piRNAs in mouse testes than currently known; (ii) piRNAs, which originate from long precursor transcripts, are generated by quasi-random enzymatic processing that is guided by a weak sequence signature at the piRNA 5′ends resulting in a large number of distinct sequences; and (iii) many of the piRNA clusters contain inverted repeats segments capable of forming double-strand RNA fold-back segments that may initiate piRNA processing analogous to transposon silencing. PMID:17997596

  7. Chromosome rearrangements via template switching between diverged repeated sequences

    PubMed Central

    Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.

    2014-01-01

    Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035

  8. Lithium in lower-main-sequence stars of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra; Lambert, David L.; Stauffer, John R.

    1988-01-01

    Lithium abundances are presented for main-sequence stars of spectral types F, G, and K in the young open cluster Alpha Per. For 46 cluster members, a correlation between Li abundance and projected rotational velocity v sin i is found: all of the Li-poor stars are slow rotators. Two explanations are proposed to account for the correlation: (1) that the Li depletion is introduced following a rapid spin-down phase experienced by young low-mass stars, and that this episode of Li depletion may be the dominant one determining the spread of Li abundances among young low-mass main-sequence stars, and (2) that star formation has occurred over a finite period such that the older stars have undergone a spin-down and depletion of Li by a means that may or may not depend on rotation. The Li abundance in the warm and rapidly rotating stars appears to be undepleted, as is predicted by recent models of pre-main-sequence stars. The depletion observed in the cool stars exceeds the level predicted by these models.

  9. A sample of potential disk hosting first ascent red giants

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John

    2018-01-01

    Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.

  10. Mechanism of protein import across the chloroplast envelope.

    PubMed

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  11. 8. VIEW FORWARD IN CREW'S QUARTERS (FOC'S'LE) SHOWING DOUBLE TIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW FORWARD IN CREW'S QUARTERS (FOC'S'LE) SHOWING DOUBLE TIER OF BUNKS IN THE EVELINA M. GOULART. KINGPOST IS AT CENTER OF PHOTOGRAPH WITH FORE PEAK IN BACKGROUND. A FOLDING MESS TABLE IS AT LOWER LEFT OF PHOTOGRAPH. NOTE BENCH SEAT BELOW LOWEST TIER OF BUNKS. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  12. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    USGS Publications Warehouse

    Herman, Matthew W.; Nealy, Jennifer; Yeck, William; Barnhart, William; Hayes, Gavin; Furlong, Kevin P.; Benz, Harley M.

    2017-01-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for the mainshock, one using teleseismic broadband waveforms and the other using static GPS and InSAR surface displacements, which indicate high slip north of the epicenter and west-northwest of the epicenter near the oceanic trench. These models and slip distributions published in other studies suggest spatial slip uncertainties of ~25 km and have peak slip values that vary by a factor of 2. We relocate aftershock hypocenters using a Bayesian multiple-event relocation algorithm, revealing a cluster of aftershocks under the Chilean coast associated with deep (20–45 km depth) mainshock slip. Less vigorous aftershock activity also occurred near the trench and along strike of the main aftershock region. Most aftershocks are thrust-faulting events, except for normal-faulting events near the trench. Coulomb failure stress change amplitudes and signs are uncertain for aftershocks collocated with deeper mainshock slip; other aftershocks are more clearly associated with loading from the mainshock. These observations reveal a frictionally heterogeneous interface that ruptured in patches at seismogenic depths (associated with many aftershocks) and with homogeneous slip (and few aftershocks) up to the trench. This event likely triggered seismicity separate from the main slip region, including along-strike events on the megathrust and intraplate extensional events.

  13. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics

    PubMed Central

    Pasi, Marco; Maddocks, John H.; Lavery, Richard

    2015-01-01

    Microsecond molecular dynamics simulations of B-DNA oligomers carried out in an aqueous environment with a physiological salt concentration enable us to perform a detailed analysis of how potassium ions interact with the double helix. The oligomers studied contain all 136 distinct tetranucleotides and we are thus able to make a comprehensive analysis of base sequence effects. Using a recently developed curvilinear helicoidal coordinate method we are able to analyze the details of ion populations and densities within the major and minor grooves and in the space surrounding DNA. The results show higher ion populations than have typically been observed in earlier studies and sequence effects that go beyond the nature of individual base pairs or base pair steps. We also show that, in some special cases, ion distributions converge very slowly and, on a microsecond timescale, do not reflect the symmetry of the corresponding base sequence. PMID:25662221

  14. A new cryptic virus belonging to the family Partitiviridae was found in watermelon co-infected with Melon necrotic spot virus.

    PubMed

    Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv

    2013-10-01

    A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.

  15. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  16. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    NASA Astrophysics Data System (ADS)

    Li, Feng-Guo; Ai, Bao-Quan

    2011-06-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.

  17. EXors and the stellar birthline

    NASA Astrophysics Data System (ADS)

    Moody, Mackenzie S. L.; Stahler, Steven W.

    2017-04-01

    We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, I.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects. Second, the very existence of embedded EXors demonstrates that at least some Class I infrared sources are not true protostars, but very young pre-main-sequence objects still enshrouded in dusty gas. Finally, we believe that the embedded pre-main-sequence phase is of observational and theoretical significance, and should be included in a more complete account of early stellar evolution.

  18. The environmental impacts on the star formation main sequence: An Hα study of the newly discovered rich cluster at z = 1.52

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi

    2014-07-01

    We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven bymore » the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.« less

  19. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  20. Circumstellar Material on and off the Main Sequence

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.

  1. A Wide-field Survey for Transiting Hot Jupiters and Eclipsing Pre-main-sequence Binaries in Young Stellar Associations

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; DePoy, Darren L.; Lambas, Diego G.; Colazo, Carlos; Stringer, Katelyn

    2016-09-01

    The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of three nearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  2. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat.

    PubMed

    Remenova, Tatiana; Morand, Olivier; Amato, Dominick; Chadha-Boreham, Harbajan; Tsurutani, Scott; Marquardt, Thorsten

    2015-06-19

    Gastrointestinal (GI) disturbances such as diarrhea and flatulence are the most frequent adverse effects associated with miglustat therapy in type 1 Gaucher disease (GD1) and Niemann-Pick disease type C (NP-C), and the most common recorded reason for stopping treatment during clinical trials and in clinical practice settings. Miglustat-related GI disturbances are thought to arise from the inhibition of intestinal disaccharidases, mainly sucrase isomaltase. We report the effects of a co-administered dietary probiotic, S. boulardii, on the GI tolerability of miglustat in healthy adult subjects. In a double-blind, placebo-controlled, two-period, two-treatment cross-over trial, healthy adult male and female subjects were randomly allocated to treatment sequences, A-B and B-A (treatment A - miglustat 100 mg t.i.d. + placebo; treatment B - miglustat 100 mg t.i.d. + S. boulardii [500 mg, b.i.d.]). GI tolerability data were collected in patient diaries. The primary endpoint was the total number of 'diarrhea days' (≥3 loose stools within a 24-h period meeting Bristol Stool Scores [BSS] 6-7) based on WHO criteria. Secondary endpoints comprised numerous other diarrhea and GI tolerability indices. Twenty-one subjects received randomized therapy in each treatment sequence (total N = 42), and overall, 37 (88 %) subjects completed the study. The total number of diarrhea days was <1.5 for both treatment sequences, and approximately 60 % of subjects did not experience diarrhea during either treatment period. The mean (SD) number of diarrhea days was lower with miglustat + S. boulardii (0.8 [2.4] days) than with miglustat + placebo (1.3 [2.4] days), but the paired treatment difference was not statistically significant (-0.5 [2.4] days; p = 0.159). However, a significant treatment difference (-0.7 [1.9]; p < 0.05) was identified after post hoc exclusion of a clear outlier who had a very high number of diarrhea days (n = 13) and inconsistent GI tolerability reporting. The incidence of the GI AEs was higher with miglustat + placebo (82 %) than with miglustat + S. boulardii (73 %). There were no between-treatment differences in miglustat pharmacokinetics. Although the primary endpoint was not met, the results of the post-hoc analysis suggest that co-administration of miglustat with S. boulardii might improve GI tolerability.

  4. Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.

    PubMed

    Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A

    2016-05-17

    The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Sourav, E-mail: sourav.kundu@saha.ac.in; Karmakar, S. N., E-mail: sachindranath.karmakar@saha.ac.in

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effectmore » of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.« less

  6. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

    PubMed

    Chung, George; Rose, Ann M; Petalcorin, Mark I R; Martin, Julie S; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P; Yanowitz, Judith L; Boulton, Simon J

    2015-09-15

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. © 2015 Chung et al.; Published by Cold Spring Harbor Laboratory Press.

  7. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-05

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  9. Review of modern double beta decay experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, A. S., E-mail: barabash@itep.ru

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay inmore » new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.« less

  10. Novel technologies in doubled haploid line development.

    PubMed

    Ren, Jiaojiao; Wu, Penghao; Trampe, Benjamin; Tian, Xiaolong; Lübberstedt, Thomas; Chen, Shaojiang

    2017-11-01

    haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Double-well chimeras in 2D lattice of chaotic bistable elements

    NASA Astrophysics Data System (ADS)

    Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.

    2018-01-01

    We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.

  12. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  13. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.

  14. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III

    PubMed Central

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3′ end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells. PMID:25764216

  15. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    PubMed

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  16. A new rainbow trout (Oncorhynchus mykiss) reference genome assembly

    USDA-ARS?s Scientific Manuscript database

    In an effort to improve the rainbow trout reference genome assembly, we have re-sequenced the doubled-haploid Swanson line using the longest available reads from the Illumina technology. Overall we generated over 510 million 260nt paired-end shotgun reads, and 1 billion 160nt mate-pair reads from f...

  17. Optimization of a bundle divertor for FED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  18. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    PubMed Central

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  19. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat.

    PubMed

    Hao, Ming; Li, Aili; Shi, Tongwei; Luo, Jiangtao; Zhang, Lianquan; Zhang, Xuechuan; Ning, Shunzong; Yuan, Zhongwei; Zeng, Deying; Kong, Xingchen; Li, Xiaolong; Zheng, Hongkun; Lan, Xiujin; Zhang, Huaigang; Zheng, Youliang; Mao, Long; Liu, Dengcai

    2017-02-10

    The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat.

  20. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease.

    PubMed

    Rogacheva, Maria V; Manhart, Carol M; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-02-28

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.

Top